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COUNTING UNLABELLED SUBTREES OF A TREE
IS #P-COMPLETE

LESLIE ANN GOLDBERG AND MARK JERRUM

Abstract

The problem of counting unlabelled subtrees of a tree (i.e.,sub-
trees that are distinct up to isomorphism) is #P-complete, and hence
equivalent in computational difficulty to evaluating the permanent
of a 0,1-matrix.

1. Introduction

Valiant’s complexity class #P (see [11]) stands in relation to counting problems as NP
does to decision problems. A functionf : Σ� ! N is in #P if there is a nondeterministic
polynomial-time Turing machineM such that the number of accepting computations ofM
on inputx is f (x), for all x 2 Σ�. A counting problem, i.e., a functionf : Σ� ! N, is said
to be #P-hard if every function in #P is polynomial-time Turing reducibleto f ; it is com-
plete for #P if, in addition,f 2 #P. A #P-complete problem is equivalent in computational
difficulty to such problems as counting the number of satisfying assignments to a Boolean
formula, or evaluating the permanent of a 0,1-matrix, whichare widely believed to be in-
tractable. For background information on #P and its completeness class, refer to one of the
standard texts, e.g., [3, 8].

The main result of the paper—advertised in the abstract, andstated more formally
below—is interesting on two counts. First, it provides a rare example of a natural ques-
tion about trees which is unlikely to be polynomial-time solvable. (Two other examples are
determining a vertex ordering of minimum bandwidth [1, 4], or determining the “harmo-
nious chromatic number” [2].) Second, it is, as far as we are aware, the first intractability
result concerning the counting of unlabelled structures.

Some definitions. Byrooted tree (T;r) we simply mean a treeT with a distinguished
vertexr, theroot. An embedding of a treeT 0 in a treeT is a injective mapι from the vertex
set ofT 0 to the vertex set ofT such that(ι(u); ι(v)) is an edge ofT whenever(u;v) is a
edge ofT 0. SometimesT 0 andT will be rooted, in which case we may insist thatι maps
the rootr0 of T 0 to the rootr of T . We now define a sequence of problems leading to one
of interest; we do not claim that both the intermediate problems are particularly natural.

Name. #BIPARTITEMATCHINGS.
Instance. A bipartite graphG with n vertices in each of its two vertex sets.
Output. The number of matchings of all sizes inG.

Name. #COMMONROOTEDSUBTREES.
Instance. Two rooted trees,(T1;r1) and(T2;r2).
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Output. The number of distinct (up to isomorphism) rooted trees(T;r) such that(T;r)
embeds in(T1;r1) and(T2;r2) with r mapped tor1 andr2, respectively.

Name. #ROOTEDSUBTREES.
Instance. A rooted tree,(T;r).
Output. The number of distinct (up to isomorphism) rooted trees(T 0;r0) such that(T 0;r0)

embeds in(T;r) with r0 mapped tor.

Name. #SUBTREES.
Instance. A treeT .
Output. The number of distinct (up to isomorphism) subtrees ofT .

We will use each of the problem names in an obvious way to denote a function from
instances to outputs: thus #ROOTEDSUBTREES(T;r) denotes the number of distinct rooted
subtrees of the rooted tree(T;r). Our main result is the following.

Theorem 1. #SUBTREESis #P-complete.

Proof. The #P-hardness of #BIPARTITEMATCHINGS follows from Valiant’s paper [11]. In
particular, Valiant shows that the problem IMPERFECTMATCHINGS is #P-complete. IM-
PERFECTMATCHINGS is the same as #BIPARTITEMATCHINGS except that the size of the
two vertex sets may differ. IMPERFECTMATCHINGS may be reduced to #BIPARTITEM-
ATCHINGS by adding vertices to the smaller vertex set. Thus, #P-hardness of #SUBTREES

follows from Lemmas 2–4 and from the transitivity of polynomial-time Turing reducibil-
ity. We will now show that #SUBTREES is in #P. Suppose thatT is a tree with vertex
setVn = fv0; : : : ;vn�1g. We will order the vertices inVn so thatvi < v j iff i < j. For every
(labelled) subtreeT 0 of T , let V (T 0) denote the vertex set ofT 0. We will say that sub-
treeT 00 is larger than subtreeT 0 if and only if there is a vertexvi 2Vn such thatvi 2V (T 00),
vi 62V (T 0) and

V (T 0)\fvi+1; : : : ;vng=V (T 00)\fvi+1; : : : ;vng:
Let T 00 be a subtree ofT . EitherT 00 is the smallest subtree ofT in its isomorphism class or
there is a vertexv` 2V (T 00) such that the sub-forestF̀ of T induced by vertex setfvi 2Vn j vi < v`g[fvi 2V (T 00) j vi > v`g
contains a tree isomorphic toT 00. Thus, one can determine whetherT 00 is the smallest
subtree ofT in its isomorphism class by solvingsubgraph isomorphism with inputsF` and
T 00 for all v` 2V (T 00). SinceF̀ is a forest andT 00 is a tree, this can be done in polynomial
time [3] using the method of Edmonds and Matula. It is now simple to describe the #P
computation: With inputT , each branch picks a subtreeT 00 of T and rejects unlessT 00 is
the smallest subtree ofT in its isomorphism class.

2. The reductions

Denote by6T the relation “is polynomial-time Turing reducible to.”

Lemma 2.

#BIPARTITEMATCHINGS6T #COMMONROOTEDSUBTREES:
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Figure 1: The skeleton of treesT1 andT2, illustrating the presence of edge(ui;v j) in G.

Proof. Let G be an instance of #BIPARTITEMATCHINGS with vertex setsfu0; : : : ;un�1g
andfv0; : : : ;vn�1g. FromG, we construct two rooted trees,(T1;r1) and(T2;r2), each based
on a fixed skeleton. The skeleton ofT1 has vertex setfxi; j : 06 i6 n�1 and 06 j 6 n2+ i+1g[fr1g;
and edge setf(xi; j;xi; j+1) : 06 i6 n�1 and 06 j 6 n2+ ig[f(r1;xi;0) : 06 i6 n�1g:
Informally, the skeleton ofT1 consists ofn paths of different lengths emanating from the
root r1, as illustrated in Figure 1. Thesen paths correspond to then verticesfuig of G.

The skeleton ofT2 is similar to the skeleton ofT1, except the paths now have equal
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length. It has vertex setfyi; j : 06 i6 n�1 and 06 j 6 n2+ng[fr2g;
and edge setf(yi; j;yi; j+1) : 06 i6 n�1 and 06 j 6 n2+n�1g[f(r2;yi;0) : 06 i6 n�1g:
Then paths emanating fromr2 correspond to the to then verticesfvig of G.

The treesT1 andT2 themselves are built by adding to the respective skeletons certain
edges encoding the graphG. Specifically, for each edge(ui;v j) of G, we add an edge from
a new vertex to vertexxi;in+ j of T1 and add an edge from a new vertex to vertexy j;in+ j

of T2.
Let T � denote the set of all finite (unlabelled) rooted trees(T;r) that have leaves at

all distances in the range[n2+ 2;n2+ n+ 1℄ from the rootr. For any rooted tree(T;r),
let T (T;r) denote the set of all (unlabelled) rooted subtrees of(T;r). Thus, the quantity
#ROOTEDSUBTREES(T;r) is just the size ofT (T;r). We first observe that there is a bijec-
tion between the set of matchings (of all sizes) inG and the setT (T1;r1)\T (T2;r2)\T �,
and then conclude the proof by showing how to compute the sizeof T (T1;r1)\T (T2;r2)\
T

� using an oracle for #COMMONROOTEDSUBTREES.
Consider some tree(T;r) 2 T (T1;r1)\T (T2;r2)\T �. From the definition ofT � we

see thatT must contain the entire skeleton ofT1. Let us now see which other edges ofT1

can be present inT . That is, we will now consider the “pendant edges” which hangoff of
the skeleton ofT1. Suppose that for somei and j in f0; : : : ;n�1g there is a pendant edgee
at distancein+ j+1 from the root ofT . Then the edge(ui;v j) must be present inE(G).
Also, for any j0 2 f0; : : : ;n�1gwhich is not equal toj, T cannot contain a pendant edgee0
at distancein + j0 + 1 from the root. (To see this, note that by the construction ofT1,
edgee0 would be a descendant ofxi;0 in T1. The presence ofe in T ensures thatxi;0 and
y j;0 are associated with the same vertex ofT but e0 is not a descendant ofy j;0 in T2.)
Similarly, for anyi0 2 f0; : : : ;n� 1g which is not equal toi, T cannot contain a pendant
edgee0 at distancei0n+ j + 1 from the root. Thus,T contains at mostn pendant edges
and these correspond to a matching inE(G). So, every rooted tree(T;r) 2 T (T1;r1)\
T (T2;r2)\T � may be interpreted as a matching inG, and vice versa. This is the sought
for bijection between the set of matchings inG and the setT (T1;r1)\T (T2;r2)\T �. To
conclude, we just need to show how compute the size of the latter set using an oracle for
#COMMONROOTEDSUBTREES.

Let L be the set of allleaves in (T1;r1) whose distances from the rootr1 are in the range[n2 + 2;n2 + n + 1℄. Let U be the set of allvertices in (T2;r2) whose distances fromr2

are in the range[n2 + 2;n2 + n + 1℄. For eachj 2 f0; : : : ;ng, let T j
1 be the tree formed

from (T1;r1) by adorning every vertex inL with a tuft of n+ j edges and letT j
2 be the

tree formed from(T2;r2) by adorning every vertex inU with a tuft of n+ j edges. By the
phrase “adorning a vertexv with a tuft of t edges” we mean the following: createt new
vertices and add an edge from each of these new vertices tov.” For k 2 f0; : : : ;ng, let ak

be the number of rooted trees inT (T 0
1 ;r1)\T (T 0

2 ;r2) that havek vertices of degreen+1.
Clearly,

an = jT (T1;r1)\T (T2;r2)\T
� j:

So we want to show how to computean using an oracle for #COMMONROOTEDSUB-
TREES.
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We claim (and shall justify presently) thatjT (T j
1 ;r1)\T (T j

2 ;r2)j= n

∑
k=0

ak( j+1)k: (1)

Thus, we can use an oracle for #COMMONROOTEDSUBTREES to evaluate the left-hand
side of 1 atj = 0; : : :n; then we can computean by Lagrange interpolation.1

It remains to prove equation (1). We define a projection function

π : T (T j
1 ;r1)\T (T j

2 ;r2)! T (T 0
1 ;r1)\T (T 0

2 ;r2)
as follows. For any rooted tree(T;r) in the domain,(T 0;r) = π(T;r) is the maximumr-
rooted subtree of(T;r) that has no vertex of degree greater thann+ 1. To see thatT 0 is
uniquely defined, consider an embedding of(T;r) into (T j

1 ;r1). The only vertices of degree
greater thann+1 are those which are mapped to tufts. Thus,(T 0;r) is obtained from(T;r)
by pruning tufts with more thann pendant edges down to exactlyn pendant edges. Note
also that the resulting tree(T 0;r) can be embedded in both(T 0

1 ;r1) and(T 0
2 ;r2), so π is

indeed well defined.
How large isπ�1(T 0;r)? To every tuft with exactlyn pendant edges we may add any

number of pendant edges, from 0 toj. All the tufts are distinguishable, because they are all
at distinct distances from the rootr. Thus all these possible augmentations lead to distinct
trees, andπ�1(T 0;r) = ( j+1)k, wherek is the number of vertices in(T 0;r) of degreen+1.
Thus, each of theak rooted trees inT (T 0

1 ;r1)\T (T 0
2 ;r2) with k vertices of degreen+1

are mapped byπ�1 to ( j+1)k trees inT (T j
1 ;r1)\T (T j

2 ;r2). The lemma follows.

Lemma 3.

#COMMONROOTEDSUBTREES6T #ROOTEDSUBTREES:
Proof. Suppose that(T1;r1) and (T2;r2) constitute an instance of #COMMONROOTED-
SUBTREES. Let (T;r) be the rooted tree formed by takingT1 andT2 and adding a new
root, r, and edges(r;r1) and(r;r2). For notational convenience, introduce the following
quantities:

N1 = #ROOTEDSUBTREES(T1;r1);
N2 = #ROOTEDSUBTREES(T2;r2);
N = #ROOTEDSUBTREES(T;r); and
C = #COMMONROOTEDSUBTREES((T1;r1);(T2;r2)):

We start by observing that

N = 1+N1+N2�C+N1N2��
C
2

�:
To see this, note that(T;r) has� one distinct subtree in which the degree ofr is 0, and� N1+N2�C distinct subtrees in which the degree ofr is 1, and� N1N2� �C

2

�
distinct subtrees in which the degree ofr is 2.

1See Valiant [11] for details of this process, particularly the claim that interpolation is a polynomial-time opera-
tion.
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Thus,C(C+1) = 2Z, whereZ denotes

1+N1+N2+N1N2�N:
To computeC, first calculateZ using an oracle for #ROOTEDSUBTREES. Then, observe
that

C2 < 2Z < (C+1)2;
soC is theinteger square root of 2Z, which can be computed inΘ(logZ) time. Note that
logZ is polynomially-bounded in the size of the input, since, forexample,N16 2n1, where
n1 is the number of vertices inT1.

Lemma 4.

#ROOTEDSUBTREES6T #SUBTREES:
Proof. For anyi, an “i-tuft” is a tree consisting of one (centre) vertex with degree i andi
(outer) vertices, each of which has degree 1.

Suppose that(T;r) is an instance of #ROOTEDSUBTREES. Let ∆ denote the maximum
degree of a vertex inT . Let T 0 be the tree formed fromT by taking a new(∆+ 3)-tuft,
and identifying one of the outer vertices withr. Let T 00 be the tree formed fromT by
taking a new(∆+2)-tuft, and identifying one of the outer vertices withr. Let N0 denote
#SUBTREES(T 0) and letN00 denote #SUBTREES(T 00). Then #ROOTEDSUBTREES(T;r) is
equal toN0�N00, so it can be computed using an oracle for #SUBTREES.

3. Some consequences

Following Valiant [11], we say that a functionf : Σ�! N is in FP if it can be computed
by a deterministic polynomial-time Turing machine. We say that it is in FPg for a prob-
lem g if it can be computed by a deterministic polynomial-time Turing machine which is
equipped with an oracle forg. Finally, we say that it is in FPA for a complexity classA if
there is someg 2 A such thatf 2 FPg.

Let #CONNECTEDSUBGRAPHSbe the problem of counting unlabelled connected sub-
graphs of a graph. Formally, let it be defined as follows.

Name. #CONNECTEDSUBGRAPHS

Instance. A graphG.
Output. The number of distinct (up to isomorphism) connected subgraphs ofG.

Corollary 5. #CONNECTEDSUBGRAPHSis complete for FP#P.

Proof. #CONNECTEDSUBGRAPHSis FP#P-hard by Theorem 1. We will show that #CON-
NECTEDSUBGRAPHSis in the class FPspan-P, which will be defined shortly. The result will
then follow by Toda’s theorem [9].

We start by defining the relevant complexity classes. A function f : Σ� ! N is in the
class span-P [7] if there is a polynomial-time nondeterministic Turing machineM (with an
output device) such that the number ofdifferent accepting outputs ofM on inputx is f (x),
for all x 2 Σ�.

A function f : Σ� ! N is in #NP if there is a polynomial-time nondeterministic Turing
machineM and an oracleA 2 NP such that the number of accepting computations ofMA

on inputx is f (x), for all x 2 Σ�.
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The classes #P, span-P, and #NP are related [7] by

#P� span-P� #NP:
Thus,

FP#P� FPspan-P� FP#NP:
But FP#NP�FP#PH, where #PH is the class of functions that count the number of accepting
computations of polynomial-time nondeterministic Turingmachines with oracles from PH.
Furthermore, Toda and Watanabe [10] show #PH� FP#P. Thus,

FP#P= FPspan-P:
(See also Section 1:8 of Welsh’s book [12].)

We now complete the proof by showing that #CONNECTEDSUBGRAPHSis in FPspan-P.
Let N(G;k) denotek! times the number of distinct (up to isomorphism) connectedsize-k
subgraphs ofG. Since

#CONNECTEDSUBGRAPHS(G) = n

∑
k=1

1
k!

N(G;k);
wheren is the number of vertices ofG, it suffices to show that computingN(G;k) is in
span-P. Each branch of the computation tree forN(G;k) chooses� a size-k connected subgraphH of G,� a bijectionσ from the vertices ofH to the setfv1; : : : ;vkg, and� a permutationπ of v1; : : : ;vk.

Let H 0 be the graph formed fromH by relabelling each vertexv of H with the labelσ(v).
If π is an automorphism ofH 0 then(H 0;π) is output. Otherwise, the branch rejects. The
result now follows from Burnside’s Lemma, which implies that for any given isomorphism
class ofk-vertex graphs, the number of graphs in the isomorphism class times the number
of automorphisms of any member of the class is equal tok!. (For example, see [5].)

Let #GRAPHSUBTREES be the problem of counting unlabelled subtrees of a graph.
Formally, let it be defined as follows.

Name. #GRAPHSUBTREES

Instance. A graphG.
Output. The number of distinct (up to isomorphism) subtrees ofG.

Corollary 6. #GRAPHSUBTREESis complete for FP#P.

Proof. This is the same as the proof of Corollary 5, except that the span-P computation
rejects any subgraphH which is not a tree. A more direct proof could be obtained by using
a polynomial-time canonical labelling algorithm for treessuch as the one by Hopcroft and
Tarjan [6].
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