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de�nitions.) The image of � 2 �m under g is onventionally denoted �g. Words � and �are in the same orbit if there is a permutation g 2 G whih maps � to �g = �. The orbitspartition the set of words into equivalene lasses, and the omputational problem is tosample words in suh a way that eah orbit is equally likely to be output.1The main tool whih has been used for sampling orbits is Burnside's Lemma,2 whihsays that eah orbit omes up jGj times (as the �rst omponent) in the set of pairs�(� ; G) := f(�; g) j � 2 �m; g 2 G and �g = �g: (1)Thus, we are interested in the omputational problem of sampling uniformly at randomfrom �(� ; G), given (an eÆient representation of) G.Wormald [17℄ has shown how to solve this sampling problem for rigid strutures. Thatis, he has given an eÆient random sampling algorithm that works whenever a high frationof the pairs in �(� ; G) have g equal to the identity permutation. Wormald's method doesnot extend to the ase in whih the identity permutation ontributes only a small fration3of the pairs in �(� ; G). However, Jerrum proposed a natural approah based on Markovhain simulation whih does extend to this ase [8℄.We give the details of the Markov hain simulation approah in Setion 2. In brief, theidea is to onsider the following bipartite graph: The verties on the left-hand side are allwords in �m. The verties on the right-hand side are all permutations in G. There is anedge from word � to permutation g if and only if �g = �. This graph essentially implementsBurnside's Lemma: The lemma shows that the stationary distribution of a random walkon the graph assigns equal weight to eah orbit, i.e., to eah unlabelled struture. TheMarkov hain that we onsider, whih we refer to as the \Burnside proess", is the randomwalk on this graph observed on alternate steps.We may obtain a nearly uniform unlabelled sample by simulating the Burnside proessfrom a �xed initial state for suÆiently many steps, and returning the �nal state. TheeÆieny of this sampling method is dependent on the so-alled mixing time of the Burnsideproess: in rough terms, how many steps is \suÆiently many"? The aim of this artileis to show that the mixing time of the Burnside proess is sometimes very large. We nowmake that statement preise.For any two probability distributions � and �0 on a �nite set 	 , de�ne the total variationdistane between � and �0 to beDtv(�; �0) := maxA�	 j�(A)� �0(A)j = 12Xx2	 j�(x)� �0(x)j:1Here is a onrete example: Let � be a binary alphabet. Enode the adjaeny matrix of an n-vertexgraph as a word of length m = �n2�. The relevant permutation group is the group (ating on words) whihis indued by the group of all permutations of the n verties. Note that two graphs are in the same orbitif and only if they are isomorphi.2Although this lemma is ommonly referred to as \Burnside's Lemma", it is really due to Cauhy andFrobenius [14℄.3Spei�ally, Wormald's approah an be used when the fration of pairs in �(� ; G) whih are due tothe identity is at least the inverse of some polynomial in m.2



Suppose M is an ergodi Markov hain with state spae 	 and stationary distribution �,and let the t-step distribution ofM , when started in state x0, be �t. The mixing time ofM ,given initial state x0, is a funtion �x0 : (0; 1)! N , from toleranes Æ to simulation times,de�ned as follows: for eah Æ 2 (0; 1), let �x0(Æ) be the smallest t suh that Dtv(�t0 ; �) � Æfor all t0 � t. If the initial state is not signi�ant or is unknown, it is appropriate to de�ne�(Æ) = maxx �x(Æ), where the maximum is over all x 2 	 . By rapid mixing, we meanthat �(Æ) � poly(m; log Æ�1), where m is the input size|in our ase the degree of thegroup G|and Æ the tolerane. Stuart Anderson has suggested the phrase torpid mixingto desribe the ontrasting situation where mixing time is exponential in the input size.The Burnside proess was shown to be rapidly mixing for some very speial groupsG [8℄.However, it was an open question whether it is rapidly mixing in general. The preise resultof this artile (Theorem 11) is a onstrution of an in�nite family of permutation groups Gfor whih we show that the mixing time �(13) is exponential in the degree of G. Thus,if we use the t-step distribution to estimate the probability �(A) of some event A � 	in the stationary distribution, the result may be out by as muh as 13 , unless we take texponentially large.The main idea of the proof is to relate the mixing time of the Burnside proess to the\Swendsen-Wang proess", a partiular dynamis for the Potts model in statistial physis.The Swendsen-Wang proess was shown by Gore and Jerrum [6℄ to have exponential mix-ing time at a ertain ritial value of a parameter alled \temperature". It turns out thatthe Swendsen-Wang proess de�ned on a graph � at a di�erent (lower, non-ritial) tem-perature has exatly the same dynamis as the Burnside proess on a derived permutationgroup G3(� ). Thus we only have to relate the Swendsen-Wang proess at the two di�erenttemperatures, whih we do using the \l-streth" onstrution used by other authors [7℄.The dynamis of the Swendsen-Wang proess is not perfetly preserved by the l-strethonstrution, but the orrespondene is lose enough to yield the laimed result.Setions 2 and 3 desribe the Burnside and Swendsen-Wang proesses; Setion 4 de-sribes the relationship between the two; Setion 5 relates the Swendsen-Wang proessat two di�erent temperatures via the l-streth onstrution, thus ompleting the \torpidmixing" proof; �nally, Setion 6 onludes with some open problems.2 The Burnside proessLet � = f0; : : : ; k � 1g be a �nite alphabet of ardinality k, and G a permutation groupon [m℄ = f0; : : : ; m� 1g. For g 2 G and i 2 [m℄, denote by ig the image of i under g. Thegroup G has a natural ation on the set �m of all words of length m over the alphabet � ,indued by permutations of the \positions" 0; : : : ; m � 1. Under this indued ation, thepermutation g 2 G maps the word � = a0a1 : : : am�1 to the word �g = � = b0b1 : : : bm�1de�ned by bj = ai for all i; j 2 [m℄ satisfying ig = j. The ation of G partitions �m into anumber of orbits, these being the equivalene lasses of �m under the equivalene relationthat identi�es � and � whenever there exists g 2 Gmapping � to �. The orbit f�g : g 2 Ggontaining the word � 2 �m is denoted �G. As we indiated in the introdution, Burnside's3



Lemma says that eah orbit omes up jGj times in the set �(� ; G) de�ned in equation (1).Thus, we are interested in the problem of uniformly sampling elements of �(� ; G).A standard attak on ombinatorial sampling problems [10℄ is to design a Markovhain whose states are the strutures of interest (in this ase the state spae is G) andwhose transition probabilities are hosen so that the stationary distribution is the requiredsampling distribution. The following natural Markov hain was proposed by Jerrum [8℄. Aswe noted in the introdution, it is essentially a random walk on the bipartite graph whihorresponds to Burnside's Lemma. The state spae of the Markov hain MB = MB(G;� )is just G. The transition probabilities from a state g 2 G are spei�ed by the followingoneptually simple two-step experiment:(B1) Sample � uniformly at random (u.a.r.) from the set Fix g := f� 2 �m : �g = �g.(B2) Sample h u.a.r. from the point stabiliser G� := fh 2 G : �h = �g.The new state is h. Algorithmially, it is not diÆult to implement (B1). However, Step(B2) is apparently diÆult in general. (It is equivalent under randomised polynomial-time redutions to the Setwise Stabiliser problem, whih inludes Graph Isomorphism as aspeial ase.) Nevertheless, there are signi�ant lasses of groups G for whih an eÆient(polynomial time) implementation exists. Luks has shown that p-groups|groups in whihevery element has order a power of p for some prime p|is an example of suh a lass [11℄.Returning to the Markov hain itself, we note immediately thatMB is ergodi, sine ev-ery state (permutation) an be reahed from every other in a single transition, by seletingthe word � = 0m in step (B1). Let � : G! [0; 1℄ denote the stationary distribution of MB.Then �(g) is proportional to the degree of vertex g in the bipartite graph orrespondingto Burnside's Lemma, whih is jFix gj = k(g), where (g) denotes the number of yles inthe permutation g. We have therefore established the following Lemma from [9℄:Lemma 1 Let � be the stationary distribution of the Markov hain MB(G;� ). Then�(g) = k(g)=j�(� ; G)j for all g 2 G.Although the Markov hain MB on G is the most onvenient one for us to work with, itis lear that we an invert the order of steps (B1) and (B2) to obtain a dual Markov hainM 0B(G;� ) with state spae �m. The dual Markov hain4 has greater pratial appeal, asit gives a uniform sampler for orbits (i.e., unlabelled strutures):Lemma 2 Let �0 be the stationary distribution of the Markov hain M 0B(G;� ). Then�0(�) = jGjj�Gj j�(� ; G)jfor all � 2 �m; in partiular, �0 assigns equal probability to eah orbit �G.4In referenes [8℄ and [9℄, the primed and unprimed versions are reversed.4



The result again follows from a onsideration of the random walk on the bipartite graph,using the elementary group-theoreti fat that jG�j � j�Gj = jGj.Peter Cameron has observed that a Markov hain similar to M 0B may be de�ned forany group ation, not just the speial ase of a permutation group G ating on �m bypermutation of positions. In the general setting: given a point �, selet u.a.r. a groupelement g that �xes �, and then selet a point that is �xed by g. Thus, the generalisationof M 0B to arbitrary group ations provides a potentially eÆient proedure for uniformlysampling unlabelled strutures (i.e., sampling strutures up to symmetry). This proedurehas been implemented in ertain algorithms for determining the onjugay lasses of a�nite group [16℄.Of ourse, the e�etiveness of M 0B (equivalently MB) as a basis for a general purposesampling proedure for unlabelled strutures depends on its mixing time. It was knownthat MB mixes rapidly in some speial ases (see Jerrum [8℄), but it was not previouslyknown whether MB mixes rapidly for all groups G. Spei�ally, it was not known whetherthe mixing time of MB(G;� ) is uniformly bounded by a polynomial in m, the degree of G.The result in this artile is a onstrution of an in�nite family of permutation groups forwhih we show that the mixing time of MB grows exponentially in the degree m.3 The Swendsen-Wang proessAs noted in the Introdution, our strategy is to relate the mixing time of the Burnsideproess to that of the Swendsen-Wang proess. In this setion we desribe the latterproess, whih provides a partiular dynamis for the q-state Potts model. In fat, weneed only onsider the speial ase q = 3. See Martin's book [13℄ for bakground on thePotts model.A (3-state) Potts system is de�ned by a graph � = (V;E) and a real number (\inversetemperature") �. For ompatness, we will sometimes denote an edge (i; j) 2 E by ij. Aon�guration of the system is an assignment � : V ! f0; 1; 2g of \spins" or olours to theverties of � . The set of all 3jV j possible on�gurations is denoted by 
 . We assoiateeah on�guration � 2 
 with an energy H(�) := Pij2E �1 � Æ(�(i); �(j))�, where Æ isthe Kroneker-Æ funtion whih is 1 if its arguments are equal, and 0 otherwise. Thusthe energy of a on�guration is just the number of edges onneting unlike olours. The(Boltzmann) weight of a on�guration � is exp(�� H(�)). The partition funtion of the3-state Potts model is Z = Z(� ; �) :=X�2
 exp �� � H(�)�; (2)it is the normalising fator in the Gibbs distribution on on�gurations, whih assigns prob-ability exp(�� H(�))=Z to on�guration �. To avoid the exponentials, we will de�ne theedge weight � of the Potts system to be e��, so the partition funtion (2) may be rewrittenas Z = Z(� ; �) =X�2
 Yij2E �[1�Æ(�(i);�(j))℄: (3)5



Thus the weight of a on�guration is �b, where b is the number of bihromati edges.The Swendsen-Wang proess spei�es a Markov hainMSW(� ; �) on 
 . Let the urrentPotts on�guration be denoted by �. The next on�guration �0 is obtained as follows.(SW1) Let A = fij 2 E : �(i) = �(j)g be the set of monohromati edges. Selet a subsetA � A by retaining eah edge in A independently with probability p = 1� �.(SW2) The graph (V;A) onsists of a number of onneted omponents. For eah onnetedomponent, a olour is hosen u.a.r. from f0; 1; 2g, and all verties within the om-ponent are assigned that olour.That the Markov hain with transitions de�ned by this experiment is ergodi is immediate;that it has the orret (i.e., Gibbs) distribution is not too diÆult to show. (See, forexample, Edwards and Sokal [4℄.) Both the Swendsen-Wang proess (MSW(� ; �)) andthe Burnside proess (MB(G;� )) are examples of Markov hains using the \method ofauxiliary variables" (see [4℄ and [1℄).4 The relationship between the Burnside proess andthe Swendsen-Wang proessLet � be a �nite alphabet of size k, and let � = (V;E) be an undireted graph de�ning a 3-state Potts system with edge weight � = k�2. We will onstrut an assoiated permutationgroup G3(� ) suh that the dynamis of the Burnside proess on (G3(� );� ) is essentiallythe same as the Swendsen-Wang dynamis on (� ; �). This onstrution generalises aonstrution from [8℄, whih deals with the ase k = 2 (i.e., the binary alphabet ase).The permutation group G3(� ) ats on the set � = Se2E �e, whih is the disjoint unionof three-element sets �e. Arbitrarily orient the edges of � , so that eah edge e 2 E hasa de�ned start-vertex e� and end-vertex e+. For e 2 E and v 2 V , denote by he some�xed permutation that indues a 3-yle on �e and leaves everything else �xed, and denoteby gv the generator gv := Ye:e+=v he � Ye:e�=v h�1e :Finally, de�ne G3(� ) = hgv : v 2 V i, the group generated by fgvg.Observe that the generators of G3(� ) ommute and have order three, so eah permu-tation g 2 G3(� ) an be expressed asg = g(�) := Yv2V gv�(v) =Ye2E he�(e+)��(e�); (4)where � : V ! f0; 1; 2g. Provided the graph � is onneted, this expression is essentiallyanonial, in that � is uniquely determined up to addition (mod 3) of a onstant funtion.To see this, note that g uniquely determines the exponent of he in expansion (4), whih inturn determines the di�erene between the olours (viewed as integers) at the endpoints of6



edge e. Note that all three of the on�gurations assoiated with g indue the same set Ain (SW1). Thus, the transition probabilities from the three on�gurations are the same,and we an therefore think of g as being assoiated with all three on�gurations.Lemma 3 Suppose � is a graph, � a �nite alphabet, and let k = j� j. ThenMB(G3(� );� ) �= MSW(� ; k�2);that is to say, eah permutation g in the state spae ofMB(G3(� );� ) an be assoiated withexatly three on�gurations in the state spae of MSW(� ; k�2) in suh a way that transitionprobabilities are preserved.Proof. We assoiate eah permutation g 2 G3(� ) with three on�gurations as desribedabove. As we observed, the transition probabilities of the three on�gurations in SW areidential.Perhaps the easiest way to show that these transition probabilities are the same asthose in MB is to ombine the experiment de�ning the Burnside proess (see (B1) and(B2)) with that de�ning the Swendsen-Wang proess (see (SW1) and (SW2)) into a singleoupled version. Start with the pair (g; �g), where �g is one of the three on�gurationsassoiated with g.(C1) Sample � u.a.r. from the set Fix g = f� 2 �m : �g = �g of words �xed by g. LetA := fe 2 E : � is not onstant on �eg. The pair (�;A) is the intermediate state.(C2) Sample h u.a.r. from the point stabiliser G� = fh 2 G : �h = �g.The new pair is (h; �h) (hoose �h uniformly at random from the three on�gurationsassoiated with h).By onstrution, the transitions g ! � ! h our with the probabilities ditated by(B1) and (B2). We must hek that the indued transitions �g ! A ! �h math (SW1)and (SW2) in probability. Let e = uv 2 E be any edge, and onsider the ation of gon �e. If �g(u) = �g(v) then the ation of g on �e is the identity, and probability that �is onstant on �e is k�2. Thus the probability that e 2 A is 1 � k�2, independent of theother edge hoies, as required by (SW1), where � = k�2. Otherwise, �g(u) 6= �g(v) andthe ation of g on �e is a 3-yle. Neessarily, � is onstant on �e, and e =2 A, again asrequired by (SW1). So the distribution of A � E is orret.To verify the seond step, again let e = uv 2 E be any edge. If e 2 A then � is notonstant on �e, entailing that the ation of h on �e is the identity and �h(u) = �h(v).Conversely, if e =2 A then � is onstant on �e, and �h(u)� �h(v) is unonstrained. Thush 7! �h is a bijetion from G� to on�gurations that are onstant on onneted omponentsof (V;A), and the distribution of �h is as demanded by (SW2).7



5 Torpid mixingWe have seen that the Burnside proess is equivalent to the Swendsen-Wang proess at apartiular edge-weight �; and it is known that the Swendsen-Wang proess at a di�erentedge weight (whih is approximately 1� (4 ln 2)=jV j, where V is the vertex set of � ) hasexponential mixing time [6℄. In this setion we bridge the gap between the di�erent edgeweights.Denote by Pl the path of length l or l-path, i.e., the graph with vertex set [l + 1℄ andedge set ffi; i + 1g : 0 � i < lg.Lemma 4 Consider a randomly sampled on�guration of the 3-state Potts model on Plwith edge weight �. The indued distribution of olours on the two end verties of Pl isidential to the distribution of on�gurations of the 3-state Potts model on P1 (= K2) withedge weight �̂(l) := (1 + 2�)l � (1� �)l(1 + 2�)l + 2(1� �)l : (5)Proof. De�ne w(l) 2 R2 to be the vetor whose �rst (respetively, seond) omponentw(l)0 (respetively, w(l)1 ) is the total weight of those on�gurations on Pl whose (ordered)endpoints have olours (0; 0) (respetively, (0; 1)). Clearly, there is nothing speial in thepartiular hoie of olours; the pair (0; 0) ould be replaed by any pair of like olours,and (0; 1) by any pair of unlike ones. Introdue the matrixT := � 1 2�� 1 + �� ;a straightforward indution on l establishesw(l) = T l�10� :The matrix T has eigenvalues 1� � and 1 + 2�. Introdue two further matriesD := � 1� � 00 1 + 2�� and S := � 2 1�1 1� :Then T = SDS�1 and hene T l = SDlS�1. Noting thatS�1 = 13 � 1 �11 2 � ;we obtain w(l) = SDlS�1�10� = 13 � (1 + 2�)l + 2(1� �)l(1 + 2�)l � (1� �)l � : (6)Sine Pl is equivalent|in the sense of the statement of the lemma|to a single edge withe�etive weight w(l)1 =w(l)0 , Lemma 4 follows immediately.8



Denote by Kn
Pl the graph obtained from the omplete graph on n verties by subdividingeah edge by l � 1 intermediate verties of degree two. Thus eah edge of Kn beomes inKn
Pl a opy of the l-path Pl. We refer to the verties of degree n�1 as exterior vertiesand those of degree two as interior. (Assume n > 3 to avoid trivialities.) We remarkthat this onstrution is just the \l-streth", used in related situations by Jaeger, Vertiganand Welsh [7℄. The l-streth operation allows us to move between di�erent edge weights,at least if we forget for a moment the spei� dynamis imposed by the Swendsen-Wangproess.Lemma 5 Consider a randomly sampled on�guration of the 3-state Potts model on Kn
Pl with edge weight �. The indued distribution of olours on the exterior verties of Kn
Plis idential to the distribution of on�gurations of the 3-state Potts model on Kn with edgeweight �̂, where �̂ = �̂(l) is as in (5).Proof. Suppose � is any Potts on�guration on the graph Kn 
 Pl, and S is any subsetof its verties. Denote by �jS 2 f0; 1; 2gjSj the restrition of � to the set S. Throughsome elementary algebrai manipulation, we may express the partition funtion of a Pottssystem on Kn 
 Pl in terms of the partition funtion of a Potts system on Kn with edgeweight loser to 1. In the following manipulation, we assume that the verties of Kn 
 Plare numbered 0; : : : ; N � 1 and that the exterior verties reeive numbers in the range0; : : : ; n� 1. Furthermore, Uij � [N ℄ denotes the set of l � 1 interior verties lying on thel-path between exterior verties i and j, and Eij denotes the set of edges on that path.Z(Kn 
 Pl; �)=X� Yuv2E �[1�Æ(�(u);�(v))℄=X�j[n℄ X�jU0;1 � � � X�jUn�2;n�1  Yuv2E0;1 �[1�Æ(�(u);�(v))℄ � � � Yuv2En�2;n�1 �[1�Æ(�(u);�(v))℄!=X�j[n℄ X�jU0;1 Yuv2E0;1 �[1�Æ(�(u);�(v))℄!� � � X�jUn�2;n�1 Yuv2En�2;n�1 �[1�Æ(�(u);�(v))℄!=X�j[n℄ Y0�i<j�n�1C �̂[1�Æ(�(i);�(j))℄= Cn(n�1)=2 Z(Kn; �̂);where C is a onstant (atually w(l)0 ). The penultimate equality above uses Lemma 4.Let �̂ 2 f0; 1; 2gn be any on�guration on Kn. From the above manipulation, wesee that the weight of the on�guration �̂ on Kn is equal|modulo the onstant fatorCn(n�1)=2|to the sum of the weights of on�gurations � of Kn 
 Pl that agree with �̂ onthe exterior verties or, symbolially, �j[n℄ = �̂. This proves Lemma 5.9



Lemma 6 There exists an in�nite sequene of pairs (n; l) = f(n(l); l) : l = 1; 2; : : :g suhthat �����1� �̂(l)�� 4 ln 2n(l) ���� � 3n(l)2for all pairs, where �̂(l) is de�ned as in (5).Proof. The funtion 1 � �̂(l) dereases monotonially to 0, as l ! 1. Given l, hoose nto be the unique natural number satisfying4 ln 2n(l) + 1 < 1� �̂(l) � 4 ln 2n(l) :The upper and lower bounds di�er by less than 3n(l)�2. Thus, we have proved Lemma 6.Let 
 be the set of on�gurations of the 3-state Potts model on Kn 
 Pl. For eahon�guration � 2 
 , de�ne (�) 2 R3 be the 3-vetor whose ith omponent is the pro-portion of exterior verties of Kn
 Pl given olour i by �. Then let 
1:1:1(") (respetively,
4:1:1(")) denote the set of on�gurations � suh that (�) lies within an "-ball entred at(13 ; 13 ; 13) (respetively, one of the three "-balls entred at (23 ; 16 ; 16), (16 ; 23 ; 16), or (16 ; 16 ; 23)).Lemma 7 Let a on�guration � be sampled from the 3-state Potts model on Kn
Pl withedge weight �, and suppose that 1� �̂(l) = (4 ln 2)=n+O(n�2). Then, for any " > 0:(i) Pr(� 2 
1:1:1(")) = 
(n�2);(ii) Pr(� 2 
4:1:1(")) = 
(n�2); and(iii) Pr(� =2 
1:1:1(") [ 
4:1:1(")) = e�
(n).The impliit onstants depend only on ".Proof. By Lemma 4, we may equivalently work with the Potts model on Kn with edgeweight �̂(l).When 1� �̂(l) = (4 ln 2)=n, i.e., the error term is 0, this is preisely the result of Goreand Jerrum [6, Prop 3℄. See also Bollob�as, Grimmett and Janson [2℄. The validity of theproof given in [6℄ is una�eted by the error term: an additive error O(n�2) in �̂(l) translatesto an additive perturbation O(n�1) in the funtion f in [6, eq. (2)℄. This perturbation maybe absorbed into the error term � appearing in that equation, whih is 
(1). Thus, wehave proved Lemma 7.We now need to ompare the dynamis of the Swendsen-Wang proesses on Kn 
Pl and Kn, more preisely, the Markov hains MSW(Kn 
 Pl; �) and MSW(Kn; �̂). Theorrespondene will not be exat, as in Lemma 3, but it will be lose enough for ourpurposes. 10



Let G�;p denote the standard random graph model in whih an undireted �-vertexgraph is formed by adding, independently with probability p, for eah unordered pair ofverties (i; j), an edge onneting i and j. Suppose that p < d=�, with d < 1 a onstant,and � is seleted aording to the model G�;p. It is a lassial result that, with probabilitytending to 1 as � !1, the onneted omponents of � all have size O(log �). We requirea (fairly rude) large deviation version of this result.Lemma 8 Let � be seleted aording to the model G�;p, where p < d=� and 0 < d < 1is a onstant. Then the probability that � ontains a omponent of size exeeding p� isexp(�
(p� )).Proof. This result in exatly this form appears as [6, Lemma 4℄. See O'Connell [15,Thm 3.1℄ for a muh more preise large-deviation result for the \giant omponent" ofa sparse random graph.We also need:Lemma 9 (Hoe�ding) Let Z1; : : : ; Zs be independent r.v's with ai � Zi � bi, for suitableonstants ai; bi, and all 1 � i � s. Also let bZ =Psi=1 Zi. Then for any t > 0,Pr �j bZ � Exp bZj � t� � exp��2t2 . sXi=1 (bi � ai)2�Proof. See MDiarmid [12, Thm 5.7℄.Lemma 10 Let a on�guration � 2 
 be sampled from the 3-state Potts model on Kn
Plwith edge weight �, and suppose that 1 � �̂(l) = (4 ln 2)=n + O(n�2). Let �0 2 
 be theresult of applying one step of the Swendsen-Wang proess, starting at �. Then, for any" > 0, Pr(�0 2 
1:1:1(") j � 2 
1:1:1(")) = 1� e�
(pn );and Pr(�0 2 
4:1:1(") j � 2 
4:1:1(")) = 1� e�
(pn ):The impliit onstants depend only on ".Proof. For i; j exterior verties of Kn 
 Pl satisfying �(i) = �(j).Pr(Path i$ j is monohromati) = 1w(l)0 = 3(1 + 2�)l + 2(1� �)l ;where the seond equality is from (6). After step (SW1),Pr(Path i$ j is ontained in A)= Pr(Path i$ j is monohromati)� (1� �)l= 3(1� �)l(1 + 2�)l + 2(1� �)l= 1� �̂(l): 11



For onveniene, set p̂ = 1��̂(l). Now suppose � 2 
1:1:1(") and onsider the set of exteriorverties of some given olour, and let � � (13+")n be the size of that set. Provided " is smallenough (" = 1=40 will do), p̂� � d < 1. By Lemma 8, with probability 1� exp(�
(p� )),the maximum number of exterior verties in any onneted omponent of the graph ([N ℄; A)restrited to this olour-lass is at most p�. (Reall that [N ℄ is the vertex set of Kn
Pl.)Combining this observation for all three olours, and noting � = �(n), we obtain thefollowing: with probability 1 � exp(�
(pn )), the number of external verties in anyonneted omponent of ([N ℄; A) is at most pn.Let s be the number of suh omponents, and n1; : : : ; ns be their respetive sizes. Theexpeted size of a olour-lass onstruted in step (SW2) is n=3, and beause there aremany omponents (at least pn ) we expet the atual size of eah olour-lass to be loseto the expetation. We quantify this intuition by appealing to the Hoe�ding bound. Fixa olour, say 0, and de�ne the random variables Y1; : : : ; Ys and bY byYi = �ni; if the ith omponent reeives olour 0 in step (SW2);0; otherwise,and bY =Psi=1 Yi. Then Exp bY = n=3 and, by Lemma 9, for any t > 0,Pr �jbY � Exp bY j � t� � exp��2t2 . sXi=1 n2i�� exp(�2t2n�3=2);sine sXi=1 n2i � sXi=1 nipn = n3=2:Similar bounds apply, of ourse, to the other olours. Choosing t = "n=p3 we see that,with probability 1 � exp(�
(pn )), the size of every olour lass in �0 lies in the range�(13 � "=p3 )n; (13 + "=p3 )n�; but this ondition implies �0 2 
1:1:1(").This proves the �rst part of Lemma 10, onerning 
1:1:1("); the seond part of thelemma follows from the �rst by Lemma 7 and time-reversibility. In partiular, it followsfrom the fat that MSW satis�es the detailed balane ondition:Pr(� = �1 ^ �0 = �2) = Pr(� = �2 ^ �0 = �1);for all on�gurations �1 and �2, where � is sampled from the stationary distribution.It is now a short step to the main theorem. Reall that �(13) denotes the number of steps tbefore the t-step distribution is within variation distane 13 of the stationary distribution(maximised over the hoie of starting state).Theorem 11 Let � be a �nite alphabet of size at least two. There exists an in�nite familyof permutation groups G suh that the mixing time of the Burnside proess MB(G;� ) isexponential in the degree m of G; spei�ally �(1=3) = 
(exp(m1=(4+"))) for any " > 0.12



Proof. By Lemma 3, it is enough to exhibit an in�nite family of graphs � suh thatMSW(� ; �) has exponential mixing time, where � = k�2. This family of graphs will ofourse be (Kn(l)
Pl : l 2 N) where n(l) is as de�ned in lemma 6. The family of permutationgroups promised by the theorem will then be (G3(Kn(l) 
 Pl) : l 2 N).Consider a trajetory (�t : t 2 N) of MSW(Kn 
 Pl; �) starting in the stationary distri-bution. We say that the trajetory esapes at step t if(�t 2 
1:1:1(") ^ �t+1 =2 
1:1:1(")) _ (�t 2 
4:1:1(") ^ �t+1 =2 
4:1:1(")):For eah t, by Lemma 10, the probability of esape at time t is bounded by exp(�
(pn )).Furthermore, by Lemma 7 the probability of the event�0 =2 
1:1:1(") [ 
4:1:1(")is also bounded by exp(�
(pn )).Thus there is a funtion T = T (n) = exp(
(pn )) suh that, with probability atleast 910 , the initial segment of the trajetory (�t : 0 � t � T ) lies either entirely within
1:1:1(") or entirely within 
4:1:1("). Hene there is an initial state s 2 
1:1:1(") suh thatPr(�T =2 
1:1:1(") j �0 = s) � 110 , and similarly for s 2 
4:1:1("). Choose suh an initialstate s from whihever of 
1:1:1(") or 
4:1:1(") has the smaller total weight in the stationarydistribution. Then the variation distane of the T -step distribution from the stationarydistribution is at least 12 � e�
(n) � 110 � 13 . Finally note that m = O(n2l) = O(n2 logn).(It is straightforward to see from Lemma 6 that l = O(logn).) Thus, we have provedTheorem 11.Although the de�nition of � ontains an existential quanti�ation over initial states, it willbe seen that Theorem 11 is not very sensitive to the initial state: �(13) an be replaedby �s(13), where s ranges over almost every state in 
1:1:1(") or 
4:1:1("), as appropriate(\almost every" being interpreted with respet to the stationary distribution).6 Open problemsIn this paper, we have shown that the Burnside proess is not rapidly mixing in general.It remains an open question whether there is some other polynomial-time method whihahieves the same distribution as the Burnside proess, either on permutations (as inLemma 1) or on words (as in Lemma 2). Sine (B1) is easy to implement in polynomial-time, a polynomial-time sampling algorithm for the stationary distribution � of Lemma 1would yield a polynomial-time sampler for the stationary distribution �0 of Lemma 2 (i.e.,the uniform distribution on orbits). If there is a polynomial-time sampling algorithm for thedistribution � this will imply [9℄ that there is a fully polynomial randomised approximationsheme for the single-variable yle index polynomial for every integer k (see [3℄). Suha result would be a striking ontrast to the result of the authors (see [5℄) whih showsthat, unless NP = RP, no suh approximation algorithm exists for any �xed rationalnon-integer k. 13
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