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Abstract

In this paper we analyse a very simple dynamic work-stealing algorithm. In the work-
generation model, there are n (work) generators. A generator-allocation function is simply
a function from the n generators to the n processors. We consider a fixed, but arbitrary,
distribution D over generator-allocation functions. During each time-step of our process,
a generator-allocation function h is chosen from D, and the generators are allocated to
the processors according to h. Each generator may then generate a unit-time task which
it inserts into the queue of its host processor. It generates such a task independently with
probability λ. After the new tasks are generated, each processor removes one task from its
queue and services it. For many choices of D, the work-generation model allows the load
to become arbitrarily imbalanced, even when λ < 1. For example, D could be the point
distribution containing a single function h which allocates all of the generators to just one
processor. For this choice of D, the chosen processor receives around λn units of work at
each step and services one. The natural work-stealing algorithm that we analyse is widely
used in practical applications and works as follows. During each time step, each empty
processor (with no work to do) sends a request to a randomly selected other processor.
Any non-empty processor having received at least one such request in turn decides (again
randomly) in favour of one of the requests. The number of tasks which are transferred
from the non-empty processor to the empty one is determined by the so-called work-
stealing function f . In particular, if a processor that accepts a request has ℓ tasks stored
in its queue, then f(ℓ) tasks are transferred to the currently empty one. A popular work-
stealing function is f(ℓ) = ⌊ℓ/2⌋, which transfers (roughly) half of the tasks. We analyse
the long-term behaviour of the system as a function of λ and f . We show that the system
is stable for any constant generation rate λ < 1 and for a wide class of functions f . Most
intuitively sensible functions are included in this class (for example, every monotonically
non-decreasing function f which satisfies 0 ≤ f(ℓ) ≤ ℓ/2 and f(ℓ) = ω(1) as a function
of ℓ is included). Furthermore, we give upper bounds on the average system load (as a
function of f and n). Our proof techniques combine Lyapounov function arguments with
domination arguments, which are needed to cope with dependency.
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gorithms: a Computational Approach” and the Future and Emerging Technologies Programme of the EU under
contract numbers IST-1999-14186 (ALCOM-FT) and IST-1999-14036 (RAND-APX). A preliminary version
of this article is published in the proceedings of the 42nd Annual Symposium on Foundations of Computer
Science (FOCS’01).
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1 Introduction

Load balancing is the process of distributing load among a set of processors. There are two
main approaches to distributed load balancing, namely sender-initiated strategies, in which
processors may decide to give away tasks, and receiver-initiated strategies (which are often
referred to as work-stealing), in which processors may request extra work. In both cases, the
decision to transfer tasks is typically threshold based. That is, it is based on having too many
or too few tasks in one’s own queue.

In recent years, there has been a lot of work devoted to rigorously analysing load balancing,
most of which concentrates on sender-initiated approaches or related allocation processes such
as balls-into-bins games. However, it appears that many practitioners prefer the receiver-
initiated approach (work-stealing) because this approach appears to work better for their
applications. The efficiency of work-stealing probably helps to explain the success of Leiserson
et al.’s language Cilk [9], a language for multithreaded parallel programming which uses work-
stealing in its kernel. There are numerous examples of practical applications of work-stealing.
In [16], Feldmann, Monien and Mysliwietz investigate the behaviour of parallel MIN/MAX-
tree evaluation in the context of parallel game (chess) programs employing work-stealing
strategies. In [13], Decker introduces VDS (Virtual Data Space), a load-balancing system for
irregular applications that makes use of work stealing and other strategies. In [23], Dutt and
Mahapatra use work stealing for parallel branch and bound algorithms.

Despite the practical usefulness of work stealing, there are not many known theoretical
results about its performance.

Most existing theoretical work on load balancing assumes a rather well-behaved system.
For instance, most work on sender-initiated load-balancing uses a work-generation model in
which each processor generates at most a constant number of new tasks per step. In balls-
into-bins games, each ball (task) chooses its bin (processor) uniformly at random, which also
yields a relatively balanced system.

In this paper we analyse a simple and fully distributed work-stealing algorithm. Our
work-generation model allows for an arbitrary placement of n so-called generators among the
set of n processors. Each generator generates a new task with a certain probability λ at each
time step. In the extreme case, there can be one processor being host to n generators. In this
case the one processor has an expected increase of λn − 1 tasks per step, whereas all other
processors do not generate tasks at all.

Our load-balancing algorithm follows a very simple and natural work-stealing approach.
At each time step, each empty processor sends a request to one randomly chosen other pro-
cessor. Each non-empty processor having received at least one such request selects one of
them randomly. Now each empty processor P whose request is accepted by a processor, Q,
“steals” f(ℓ) tasks from Q, where ℓ denotes Q’s load.

Our results are concerned mostly with the stability of the system. A system is said to
be unstable if the system load (the sum of the load of all processors) grows unboundedly
with time. We present both negative and positive results, depending on the work-stealing
function f . First we show that if the work-stealing function is ω(1) as a function of the load
(i.e., f(ℓ) = ω(1) as a function of ℓ) then the system is stable (provided f is monotonically
non-decreasing and satisfies 0 ≤ f(ℓ) ≤ ℓ/2). This result still holds if we put an upper
bound on the amount of work that can be “stolen” by a single request. That is, for an upper
bound hz which is independent of ℓ (but depends on n) and will be defined in Lemma 2,
the work-stealing function defined by f ′(ℓ) = min(f(ℓ), f(hz)) is also stable. The value hz
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depends upon the function f but it need not be very large. For the function f(ℓ) = ⌊ℓ/2⌋, the
value hz is bounded from above by a polynomial in n. See Section 3 for details. Our stability
results are complemented by a straightforward lower bound: The system is unstable if f(ℓ)
is too small, for example, if f(ℓ) < λn − 1. Finally, we provide upper bounds on the system
load in a stationary system (again, depending on f).

1.1 New Results

Before we state our results, we introduce our model and the work-stealing algorithm.
The model. We start with a collection of n synchronised processors, connected by

some network topology. During each time step, every processor may send a request (requesting
extra work) to at most one other processor, and any processor receiving more than one such
request accepts at most one of them.

In our model, we have n generators. A generator-allocation function is a function from
the n generators to the n processors. We consider a fixed, but arbitrary, distribution D over
generator-allocation functions. During each time-step of our process, a generator-allocation
function h is chosen from D, and the generators are allocated to the processors according
to h. Each generator may then generate a unit-time task which it inserts into the queue of
its host processor. It generates such a task independently with probability λ ∈ [0, 1]. After
the new tasks are generated, each processor removes one task from its queue and services it.
We assume constant service time for all tasks.

In the absence of a load-balancing mechanism, many choices of D allow the load to become
arbitrarily imbalanced, even when λ < 1.

The algorithm. The work-stealing algorithm is very simple and natural. During each
time step, each empty processor (with no work to do) sends a request to one other processor,
which is chosen independently and uniformly at random. Each non-empty processor that
received at least one request selects one of these independently and uniformly at random. Then
each empty processor whose request was accepted “steals” tasks from the other processor.

The number of tasks which are transferred from the non-empty processor to the empty
one is determined by the so-called work-stealing function f . In particular, if a processor
that accepts a request has ℓ tasks stored in its queue, then f(ℓ) tasks are transferred to
the currently empty one. A popular work-stealing function is f(ℓ) = ⌊ℓ/2⌋, which transfers
(roughly) half of the tasks.

The results. Recall that a system is said to be stable if the system load (the sum
of the load of all processors) does not grow unboundedly with time. Obviously, stability for
large arrival rates is among the most desirable features of load-balancing algorithms.

In Theorem 10 we show that, given a suitable work-stealing function, our algorithm yields a
stable system for any constant arrival rate λ < 1 and any distribution of the generators. Most
intuitively sensible work-stealing functions are suitable (for example, every monotonically
non-decreasing function f(ℓ) which is ω(1) as a function of ℓ and satisfies 0 ≤ f(ℓ) ≤ ℓ/2
is suitable). The rough requirement (for f to be suitable) is that for some finite value Φf

(which may depend upon n), and some z = O(log n) and T = Θ(log n), we may apply f to Φf

z times and the resulting value is still at least 2T . (That is, f z(Φf ) ≥ 2T .) Our stability
result still holds if we put an appropriate upper bound on the amount of work that can be
stolen by a single request. Details are given in Section 3.

In Theorem 12 we provide upper bounds on the expected system load as well as corres-
ponding tail bounds. The upper bounds are described in terms of Φf and n. For many natural
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work-stealing functions f , Φf is at most a polynomial in n, so the system-load bounds are
polynomial in n. For example, Φf is at most a polynomial in n for the natural work-stealing
function f(ℓ) = ⌊ℓ/2⌋.

Finally, in Theorem 22, we classify some work-stealing functions that do not result in a
stable system. For example, the system is unstable if f(ℓ) < λn − 1.

The proofs. Since the proofs are technical, we briefly introduce the underlying idea.
We model our system by a discrete-time, countable Markov chain in which states are tuples
giving the number of tasks currently allocated to each processor. The standard method
for determining whether such a Markov chain is ergodic (i.e., whether it has a stationary
distribution) is to find an appropriate Lyapounov function [10, 15, 25] (a potential function
with an appropriate drift). Foster’s theorem (see Theorem 2.2.3 of [15]) shows that the chain
is ergodic if and only if there is a positive Lyapounov function which is expected to decrease
by a positive amount from every state except some finite subset of the state space. For
many computer science applications, it is apparently prohibitively difficult to find such a
one-step Lyapounov function, even when one is known to exist. Thus, multiple-step analysis
is used [21, 18, 3]. We use the multiple-step extension of Foster’s theorem due to Fayolle,
Malyshev and Menshikov (see Lemma 7). The technical difficulty of our proof arises because
of the lack of independence as the system evolves over multiple steps. To derive our results,
we study the behaviour of a different and simpler Markov chain. The new Markov chain does
not dominate the original chain forever, but we show that it does dominate the original chain
for a sufficiently long period of time, and this enables us to prove that the original chain is
ergodic. The proof of ergodicity, together with a martingale bound of [17] gives us our bound
on the stationary behaviour of the chain.

1.2 Known Results

Most known theoretical results on load-balancing are for unconditional algorithms (which
perform load-balancing every few steps, regardless of the system state) or for sender-initiated
approaches. First, there has been a lot of work on static problems, in which the number of jobs
to be serviced is fixed and may even be known in advance. For these results, see [4, 34, 12, 2, 5].

In our paper, we work on dynamic load-balancing, in which tasks are generated over time.
We will now describe previous work on this problem. In [1], Adler, Berenbrink and Schröder
consider a process in which m jobs arrive in each round to n servers and each server is allowed
to remove one job per round. They introduce a simple algorithm in which each job chooses
between 2 random servers. They show that, provided m ≤ n/6e, no job is likely to wait more
than O(log log n) rounds. In [11] the authors analyse several dynamic balls-into-bins games
with deletion.

In [26], Mitzenmacher presents a new differential-equations approach for analysing both
static and dynamic load-balancing strategies. He demonstrates the approach by providing
an analysis of the supermarket model: jobs (customers) arrive as a Poisson stream of rate
λn, λ < 1, at a collection of n servers. Each customer chooses d servers independently and
uniformly at random, and waits for service at the one with the shortest queue. The service
time of the customers is exponentially distributed with mean 1. Mitzenmacher achieves
results on the expected time that a customer spends in the system. Furthermore, he shows
that for any time interval of fixed length, the maximum system load is likely to be at most
log log n/ log d+O(1). In [35] Vvedenskaya, Dobrushin and Karpelevich independently present
similar results. For related results, see [27, 30, 28].
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In [33], Rudolph, Slivkin-Allalouf and Upfal present a simple distributed load-balancing
strategy. They consider a work-generation model in which, at every time step, the load
change of any processor due to local generation and service is bounded by some constant.
The balancing strategy works as follows. Each processor stores its tasks in a local queue.
Whenever a processor accesses its local queue, the processor performs a balancing operation
with a probability inversely proportional to the size of its queue. The balancing operation
examines the queue size of a randomly chosen processor and then equalises their load. They
show that the expected load of any processor at any point of time is within a constant factor
of the average load.

In [22], Lüling and Monien use a similar work-generation model. A processor initiates
a load-balancing action if its load has changed by a constant factor since its last balancing
action. They show that the expected load difference between any two processors is bounded
by a constant factor. They also bound the corresponding variance.

In [6, 7] the authors introduce and investigate the performance of certain randomised
load-balancing algorithms under stochastic and adversarial work-generation models. They
consider two different work-generation models. In the first model, in each step, each processor
generates a task with some probability p < 1, and then each non-empty processor services
a task with probability p(1 + ǫ) for ǫ > 0. In the second model, each processor is allowed
to change its load in each step, provided that the load is only increased or decreased by at
most a fixed constant amount. With high probability, the algorithms balance the system
load up to additive terms of O(log log n) and O((log log n)2), respectively. In particular, in
the first model, the maximum load of any processor can be upper bounded by one of these
terms (depending on the algorithm), whereas in the second model, the maximum load of any
processor can be upper bounded by the average load plus O(log log n). The algorithms and
analysis of [6, 7] are fundamentally different from the one considered here. In particular,
their algorithms are sender-initiated, i.e., overloaded processors seek to distribute their load.
Moreover, their algorithms are considerably more complicated than ours.

There is relatively little existing theoretical work on receiver-initialised approaches. The
interesting thing is that this approach seems to be highly efficient in practice (much more
than, say, “give-away-if-overloaded”), but there are no (or hardly any) rigorous theoretical
results.

In [29], Mitzenmacher applies his differential-equations approach in order to analyse sev-
eral randomised work-stealing algorithms in a dynamic setting. In contrast to our work, he
assumes that every processor has a Poisson generating process with rate λ < 1. Hence, in
contrast to our generation model, the load is generated in a more-or-less balanced fashion
and the system is stable even without any work-stealing. Each task has an exponentially
distributed service time with mean 1. He models a number of work-stealing algorithms with
differential equations and compares the equations with each other in order to predict which
strategies will be most successful. For each set of equations, he shows that the queue-lengths
decrease more quickly than for a set of equations which models the process with no work
stealing.

In [8], Blumofe and Leiserson analyse a scheduling strategy for strict multi-threaded com-
putations. A multi-threaded computation consists of a set of threads, each of which is a
sequential ordering of unit-time tasks. During a computation, a thread can spawn other
threads which are stored in a local queue. They present a work-stealing algorithm in which
every idle processor tries to steal a thread from a randomly chosen other processor. The
analysis shows that the expected time to execute such a multi-threaded computation on P
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processors is O(T1/P + T∞), where T1 denotes the minimum sequential execution time of the
multi-threaded computation, and T∞ denotes the minimum execution time with an infinite
number of processors. Furthermore, they estimate the probability that the execution time
is increased by an additional factor. In [14], Fatourou and Spirakis develop an algorithm
for k-strict multi-threaded computations. In this case, all data dependencies of a thread are
directed to ancestors in at most k higher levels.

2 The Work-Stealing Process

Suppose that we have n processors and n generators, which create work for the processors.
Each processor keeps a queue of jobs which need to be done. The evolution of the system can
be described by a Markov chain X. The state Xt after step t is a tuple (Xt(1), . . . ,Xt(n))
in which Xt(i) represents the length of the i’th processor’s queue after step t. Initially, all of
the queues are empty, so the start state is (0, . . . , 0).

Let N = {1, . . . , n}. Let P = {h | N → N} be the set of all generator-allocation functions.
When generators are allocated according a particular function h ∈ P, h(i) is designated as
the host of the i’th generator. The Markov chain X has three parameters. D is an arbitrary
distribution over P. A new generator-allocation function is selected from D during each step
of the chain. The parameter λ governs the rate at which jobs are generated – each generator
creates a job during each step independently with probability λ and adds the job to the queue
of its current host. Finally, the function f is the work-stealing function. In Section 3, we will
state the properties that f must satisfy for our analysis. Figure 1 describes the transition
from state Xt to state Xt+1.

3 Work-stealing functions

In this section, we state the properties that the work-stealing function, f , must satisfy for
our analysis.

Definition 1 We assume that for a positive constant δ, the arrival rate λ is at most 1 − δ.
Let c be a constant which is sufficiently large with respect to δ−1 (see the proof of Lemma 14)
and let α = 4e(c+1). Let z = ⌈α lg n⌉. Let ν = n−2 +n−α and let T = ⌈ 2c

1−λ/(1−ν) lg n⌉. Note
that T is positive as long as ν < δ and we will consider values of n for which this is true.
Let g be the function given by g(ℓ) = f(ℓ − T ). We will use the function g in our analysis
of the work-stealing process. Suppose that a processor has ℓ units of work in its queue. If no
units of work are generated or stolen during T steps, it will then have ℓ−T units. Finally, it
may give away f(ℓ− T ) = g(ℓ) units to another processor which requests work. Let Φf be the
smallest integer such that, for all j ∈ {0, . . . , z}, gj(Φf/n) ≥ 2T , where gj(y) denotes the j-
fold application of function g to argument y. That is, g0(y) = 1, g1(y) = g(y), g2(y) = g(g(y))
and so on. If no such integer Φf exists, say Φf = ∞. Informally, Φf is a quantity that is
so large that if we start with Φf units of work and focus on the (at least Φf/n) units of work
in some particular queue and allow this work to be stolen up to z times, the quantity of work
remaining at every processor involved is at least 2T . This idea will be made more precise
later.

We require the work-stealing function f to satisfy the following properties.



The Natural Work-Stealing Algorithm is Stable 7

1. Choose the generator-allocation function ht from D.

2. Each generator generates a new job independently with probability
λ. It adds the job to the queue of its current host. In particu-
lar, the i’th processor updates the size of its queue from Xt(i) to
X ′

t(i), where X ′
t(i) is defined to be Xt(i) plus the sum of |h−1

t (i)|
independent Bernoulli random variables with mean λ.

3. Each processor with an empty queue chooses a request destination
uniformly at random (u.a.r.) from N . Formally, rt(i) is defined to
be 0 if X ′

t(i) > 0. Otherwise, rt(i) is chosen u.a.r. from N .

4. Each processor which receives a request chooses a recipient and al-
locates some of its load to give away to the recipient. Formally, we
start by setting j+

t (i) = j−t (i) = 0 for all i ∈ N . Then every k ∈ N
for which r−1

t (k) is non-empty chooses ℓ u.a.r. from r−1
t (k) and sets

j+
t (ℓ) = j−t (k) = f(X ′

t(k)).

5. The work is shared and then each queue processes one job. Formally,
for all i, Xt+1(i) is set to max(0,X ′

t(i) + j+
t (i) − j−t (i) − 1).

Figure 1: The Markov chain X. The transition from Xt to Xt+1.

Property 1: 0 ≤ f(ℓ) ≤ ℓ/2, and

Property 2: f(ℓ) is monotonically non-decreasing in ℓ, and

Property 3: Φf is finite.

Properties 1 and 2 are natural and easy to understand. We conclude this section by show-
ing that many natural work-stealing functions, which satisfy Properties 1 and 2, also satisfy
Property 3. We start with a general lemma and then conclude with particular examples.

Lemma 2 Suppose that the work-stealing function f satisfies Properties 1 and 2. Let h0 =
2T . Suppose that there are positive integers h1, . . . , hz satisfying f(hi − T ) ≥ hi−1. Then
Φf ≤ nhz.

Proof: We wish to show that for all j ∈ {0, . . . , z}, gj(hz) ≥ 2T . Since f satisfies Property 1,
the condition f(hi − T ) ≥ hi−1 implies that hi−1 ≤ hi. Therefore, for any j ∈ {0, . . . , z},
hz−j ≥ h0 ≥ 2T . Thus, it suffices to prove gj(hz) ≥ hz−j which we will do by induction on j
with base case j = 0. For the inductive step, note that

gj+1(hz) = f(gj(hz) − T ) ≥ f(hz−j − T ) ≥ hz−(j+1),

where the first inequality uses the monotonicity of f (Property 2) and the inductive hypo-
thesis. �
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Corollary 3 Suppose that the work-stealing function f satisfies Properties 1 and 2. Suppose
that f(ℓ) = ω(1) as a function of ℓ. Then f satisfies Property 3.

Proof: Since f(ℓ) = ω(1), the function gets arbitrarily big and the values h1, . . . , hz in
Lemma 2 exist. �

Corollary 3 demonstrates that having f(ℓ) = ω(1) is sufficient in the sense that this,
together with Properties 1 and 2, implies Property 3. Having f(ℓ) = ω(1) is not necessary
though, as the following observation shows.

Observation 4 Suppose that the work-stealing function f satisfies Properties 1 and 2. Let
h0 = 2T . Suppose (as in Lemma 2) that there are positive integers h1, . . . , hz satisfying
f(hi − T ) ≥ hi−1. Let f ′ be the work-stealing function given by f ′(ℓ) = min(f(ℓ), f(hz)).
Then f ′ satisfies Properties 1–3 and has Φf ′ ≤ nhz.

We end the section by giving an upper bound for Φf when f is a member of a popular
class of work-stealing functions.

Lemma 5 Let f(ℓ) = ⌊ℓ/r⌋ for some r ≥ 2. This function satisfies Properties 1–3 and
satisfies

Φf ≤ n(2T + 2r)(2r)z.

Proof: We use Lemma 2. Let hi = (2T +2r)(2r)i for i ∈ {1, . . . , z}. Then for i ∈ {1, . . . , z},

f(hi − T ) = f((2T + 2r)(2r)i − T )

≥
(2T + 2r)(2r)i

r
−

T

r
− 1

=
(2T + 2r)(2r)i

2r
+

(2T + 2r)(2r)i

2r
−

2T

2r
−

2r

2r

≥ (2T + 2r)(2r)i−1

≥ hi−1.

�

Remark 6 The value Φf corresponding to the function f in Lemma 5 is bounded from above
by a polynomial in n. To see this, note that the multiplier in the definition of T is

1

1 − λ
1−ν

≤
1

1 − 1−δ
1−ν

=
1 − ν

δ − ν
≤

1

δ − ν
≤

2

δ
,

where the last inequality assumes ν ≤ δ/2, which is true if n is sufficiently large with respect
to the constant δ−1.
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4 Upper bounds

In this section we prove that the system is stable for every work-stealing function satisfying
Properties 1–3 in Section 3. Our analysis does not depend upon the particular distribution D
which governs the allocation of generators — the analysis works for an arbitrary distribution.

As already outlined in Section 1, the basic idea is the following. The Markov Chain X
models our system. Since this chain is difficult to analyse directly, we introduce a second
chain Z and investigate properties of Z instead. Then, using a coupling, we relate the results
to chain X itself.

To put it very informally and non-rigorously, the core idea is to show that during an
interval of length T = O(log n) not too many requests are sent. Since in our model not sending
a request means servicing a task, we can show that in this case the system load decreases.
Obviously, the crux is bounding the number of requests during the interval. Informally, this
is done by assuming (for contradiction) that there are many requests during the interval, say
at least R. Since the system load is initially high, there is at least one processor, processor P ,
which initially has a high load. This implies that after around R′ < R requests, we can view
most of the requests that have been accepted in a tree with P at the root, and the leaves being
processors that either directly or indirectly received a portion of P ’s initial load. By showing
that (i) there are many leaves, and (ii) the tree does not grow very deep, we can conclude
that after R′ requests, there are many processors having a large load (at least T ), and none of
them will send a request during the next T steps. Hence, we can contradict the assumption
that R requests get sent during the interval. Of course, this kind of proof-by-contradiction is
invalid if we want to avoid conditioning the random variables during the T steps, so we have
to do things more carefully.

4.1 Background

We start with some brief definitions regarding Markov chains. For more details, see [19]. The
Markov chains that we consider are time homogeneous (transition probabilities do not change
over time) and irreducible (every state is reachable from every other) and aperiodic (the gcd
of the lengths of valid paths from state i to itself is 1). An irreducible aperiodic Markov
chain (Υt) is said to be recurrent if, with probability 1, it returns to its start state. That is,
it is recurrent if

Pr(Υt = Υ0 for some t ≥ 1) = 1.

Otherwise, it is said to be transient. It is said to be positive recurrent or ergodic if the
expected time that it takes to return to the start state is finite. In particular, let

Tret = min{t ≥ 1 | Υt = Υ0}.

The chain is said to be positive recurrent if E[Tret] < ∞. A positive recurrent chain has
a unique stationary distribution π. When we analyse the Markov Chain X we will use
the following generalisation of Foster’s theorem, due to Fayolle, Malyshev and Menshikov
(Theorem 2.2.4 of [15]).

Lemma 7 (Foster; Fayolle, Malyshev, Menshikov) A time-homogeneous irreducible aperi-
odic Markov chain ζ with a countable state space Ω is positive recurrent iff there exists a pos-
itive function Φ(x), x ∈ Ω, a number ξ > 0, a positive integer-valued function β(x), x ∈ Ω,
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and a finite set C ′ ⊆ Ω, such that the following inequalities hold.

E[Φ(ζt+β(ζt)) − Φ(ζt) | ζt = x] ≤ −ξβ(x), x 6∈ C ′ (1)

E[Φ(ζt+β(ζt)) | ζt = x)] < ∞, x ∈ C ′. (2)

We also use the following Chernov-Hoeffding inequalities. The first of these is a special
case of Theorem 4.2 of [31] and the second is taken from Theorem 5.7 of [24].

Lemma 8 (Chernov) Let Z1, . . . , Zs be independent Bernoulli trials with Pr(Zi = 1) = p.
Let Ẑ =

∑s
i=1 Zi. Then for any ρ in (0, 1], Pr(Ẑ < (1 − ρ)sp) ≤ exp(−spρ2/2)).

Lemma 9 (Hoeffding) Let Z1, . . . , Zs be independent r.v’s with ai ≤ Zi ≤ bi, for suitable
constants ai, bi, and all 1 ≤ i ≤ s. Also let Ẑ =

∑s
i=1 Zi. Then for any t > 0,

Pr
(
|Ẑ − E(Ẑ)| ≥ t

)
≤ exp

(
−2t2

/ s∑

i=1

(bi − ai)
2
)

4.2 Results

Our Markov chain X is time-homogeneous, irreducible, and aperiodic. Its state space is
countable. Therefore, it satisfies the initial conditions of Lemma 7. We will prove the following
theorem.

Theorem 10 Let δ be a positive constant and λ an arrival rate which is at most 1 − δ. Let
f be a work-stealing function satisfying Properties 1–3 in Section 3. Then for every n which
is sufficiently large with respect to δ−1, the Markov chain X is positive recurrent.

Theorem 10 guarantees that the Markov chain X has a stationary distribution π. The next
theorem is concerned with the value of the total system load in the stationary distribution.
Recall from Definition 1 that ν = n−2 +n−α. Our next theorem uses the following additional
definitions.

Definition 11 Let ǫ be (1 − λ/(1 − ν))/4. Let Φ(Xt) be the system load after step t. That
is, Φ(Xt) =

∑n
i=1 Xt(i).

Theorem 12 Let δ be a positive constant and λ an arrival rate which is at most 1 − δ. Let
f be a work-stealing function satisfying Properties 1–3 in Section 3. Then for every n which
is sufficiently large with respect to δ−1,

Eπ[Φ(Xt)] ≤ Φf + 2nT/ǫ + nT,

and for any non-negative integer m,

Prπ[Φ(Xt) > Φf + 2nTm + nT ] ≤ exp(− ln(1 + ǫ)(m + 1)).
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4.3 A Simpler Markov chain

Let C be the set of states x with Φ(x) < Φf . In this section we define a simper Markov
chain Z that will be used in order to analyse the Markov chain X with a start state x 6∈ C.

The state space of Z is more complicated than the state space of X, but in some sense
the information contained in a state of Z is less precise than the information contained in a
state of X. In particular, a state Zt consists of a tuple

(Lt(1), . . . , Lt(n), Yt(1), . . . , Yt(n)).

The variable Lt(i) gives a crude indication of the load at processor i after step t. In any
initial state that we will consider, exactly one processor (which we will call Jx) will have
L0(Jx) large. All other processors will have L0(i) = 0. Informally, these variables will have
the following role for a processor i. Let t be the first time-step during which processor i steals
some of the work that originally sat at processor Jx. For t′ ≤ t, the variable Yt′(i) denotes
the load of processor i and Lt′(i) = 0. For t′ > t, the variable Lt′(i) is positive and Yt′(i) = 0.
The exact value of Lt′(i) gives an indication of how many times the work that processor i
acquired at step t has been split (and therefore, of how long it will last).

We will be observing the evolution of the Markov chain X starting at a state X0 = x
with Φ(x) ≥ Φf . This condition guarantees that for some i ∈ N , X0(i) ≥ Φf/n. Let Jx

be the smallest such i. In the following, we will be paying special attention to load which
originates at processor Jx. Thus, in the Markov chain Z, the state Z0 which corresponds
to X0 is defined as follows. L0(Jx) = 2z and Y0(Jx) = 0. For all i 6= Jx, L0(i) = 0 and
Y0(i) = X0(i). For convenience, we will say that a processor i is “heavily loaded” in state
Zt if and only if Lt(i) > 0. Thus, Jx is the only processor which is deemed to be “heavily
loaded” in Z0. Note that the state Z0 is strictly a function of x. We will refer to this state
as Z(x). The transition from Zt to Zt+1 is described in Figure 2. It may look surprising at
first that the “heavy load” parameter Lt(k) is halved every time a heavily loaded processor
transfers load. This halving allows us to study the dissemination of load from Jx without
considering the many dependent events.

Let R′
t be the set of requests made during the transition from Zt to Zt+1. (This transition

is referred to as “step t + 1”.) That is, R′
t = |{i | r′t(i) > 0}|. Let τ ′ be the smallest integer

such that R′
0 + · · · + R′

τ ′−1 ≥ cn lg n. Let Ψ be the smallest integer such that, for some i,
LΨ(i) = 1. Intuitively, LΨ(i) = 1 means that i has received load (directly or indirectly)
from Jx (so it is “heavily loaded”) but this load has been split many times (it has been split
z times, in fact). The following lemma shows that, with high probability, there are no such i
and Ψ if at most cn log n requests are sent.

Lemma 13 Suppose x 6∈ C. Run Markov chain Z starting at Z0 = Z(x). Then

Pr(Ψ ≤ τ ′) ≤ n−α.

Proof: Since at most n requests are sent in a single step, the total number of requests sent
during steps 1, . . . , τ ′ is at most (c + 1)n lg n.

Recall the construction of Z(x) from the beginning of Section 4.3. In particular, there is
one “heavily loaded” processor, Jx, with L0(Jx) = 2z. Every other processor i has L0(i) = 0.

Imagine that the value L0(Jx) = 2z corresponds to a collection of 2z tokens which initially
sit at processor Jx. The value Lt(k) gives the number of tokens which sit at processor k
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1. Choose the generator-allocation function ht from D.

2. If Lt(i) > 0 then Y ′
t (i) is defined to be 0 (just like Yt(i)). Otherwise,

Y ′
t (i) is defined to be Yt(i) plus the sum of |h−1

t (i)| Bernoulli random
variables with mean λ.

3. r′t(i) is defined to be 0 except when Lt(i) = 0 and Y ′
t (i) = 0. In this

case, r′t(i) is chosen u.a.r. from N .

4. Start by setting

j+
t (i) = j−t (i) = l−t (i) = l+t (i) = 0,

for each i ∈ N . Then every k ∈ N for which r′t
−1(k) is non-empty

chooses ℓ u.a.r. from r′t
−1(k) and sets l+t (ℓ) = l−t (k) = Lt(k)/2 and

j+
t (ℓ) = j−t (k) = f(Y ′

t (k)).

5. For all i ∈ N , Lt+1(i) is set to Lt(i) + l+t (i) − l−t (i). If Lt+1(i) > 0
then Yt+1(i) = 0. Otherwise, Yt+1(i) is set to

max(0, Y ′
t (i) + j+

t (i) − j−t (i) − 1).

Figure 2: The transition from Zt to Zt+1.

following step t. This is always a power of 2. If Lt(k) > 1 then the instruction l+t (ℓ) =
l−t (k) = Lt(k)/2 in Step 3 of the transition from Zt to Zt+1 splits the collection of tokens
sitting at processor k and transfers half of these tokens to processor ℓ. The event Ψ ≤ τ ′

occurs if and only if some token has its group split z times during steps 1, . . . , τ ′.
What is the probability that a given token has its group split z times? This is at most

(
(c + 1)n lg n

z

)
n−z ≤

(
e(c + 1) lg n

z

)z

.

The probability that there exists a token which has its group split z times is thus at most

(
2e(c + 1) lg n

z

)z

≤

(
2e(c + 1)

α

)α lg n

= n−α.

�

The next lemma shows that, with high probability, the number of requests sent during
the observed T time steps is less than cn log n. This means that we have very little idle time
during this period, which in turn implies the decrease of the system load (as we will see later).

Lemma 14 Suppose x 6∈ C. Run Markov chain Z starting at Z(x).

Pr(τ ′ ≤ T ) ≤ n−2.
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Proof: Recall that R′
t is the number of requests during the transition from Zt to Zt+1. In

particular, R′
t = |{i | Lt(i) = 0 ∧ Y ′

t (i) = 0}|. R′
t is a random variable which depends only

upon the state Zt and upon the host-distribution function ht. In particular, every processor i

with Lt(i) = 0 and Yt(i) = 0 contributes 1 to R′
t independently with probability (1 − λ)|h

−1
t

(i)|

and contributes 0 to R′
t otherwise.

To make the conditioning clear, we will let R′(s, h) be the random variable whose distri-
bution is the same as that of R′

t, conditioned on Zt = s and ht = h.
By Lemma 9,

Pr

(
|R′(s, h) − E(R′(s, h))| ≥

cn lg n

8T

)
≤ exp

(
−2

(
cn lg n

8T

)2

/n

)
.

Let σ denote exp

(
−2
(

cn lg n
8T

)2
/n

)
. Note that σ is exponentially small in n. (This follows

from the definition of T .)
Say that (s, h) is “dangerous” if

E(R′(s, h)) ≥ (cn lg n)/(4T ).

Note that if (Zt, ht) is not dangerous, then, with probability at least 1 − σ, the number of
requests during the transition from Zt to Zt+1 is at most

(cn lg n)/(4T ) + (cn lg n)/(8T ) ≤ (cn lg n)/(2T ).

Now suppose that (s, h) is dangerous and let k be any processor. Then

Pr(r′t
−1

(k) = ∅ | Zt = s ∧ ht = h) ≤ σ +

(
1 −

1

n

) cn lg n

8T

≤ σ +

(
1 −

1

n

) δn

18

≤ 1 − γ,

for a small positive constant γ which depends upon δ (but not upon c or n). Let Mt denote
the number of heavily-loaded processors during step t, i.e.,

Mt = |{i | Lt(i) > 0}|.

Let ξt denote the number of heavily-loaded processors during step t that don’t get reques-
ted, i.e.,

ξt = |{k | Lt(k) > 0 ∧ r′t
−1

(k) = ∅}|.

If (s, h) is dangerous then

E[ξt | Zt = s ∧ ht = h] ≤ (1 − γ)Mt.

Thus by Markov’s inequality,

Pr
(
ξt ≥ (1 − γ/2)Mt | Zt = s ∧ ht = h

)
≤ 1 −

γ

2 − γ
.
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If ξt < (1 − γ/2)Mt then at least (γ/2)Mt of the Mt heavily loaded processors give away
work, so Mt+1 ≥ (1 + γ/2)Mt. We say that the step following on from a dangerous state is
“useful” if this occurs. We have just seen that for every dangerous state (s, h), the probability
that the next step is useful is at least γ

2−γ .
Thus, if we have D dangerous states during some time interval, the number of useful steps

following them dominates (from above) the sum of D independent Bernoulli random variables
with probability p = γ

2−γ . Applying Lemma 8 with D = (2/p) log1+γ/2(n) and ρ = 1/2, we
find that the probability that this sum is less than log1+γ/2(n) is at most exp(− log1+γ/2(n)/4).
This means that if we have D dangerous states, then the probability that there are at least
log1+γ/2(n) useful steps following them is at least 1 − exp(− log1+γ/2(n)/4).

Now, if there are actually at least log1+γ/2(n) useful steps during steps 1–t, Mt+1 = n,
so there can be no further dangerous states. We conclude that with probability at least
1 − exp(− log1+γ/2(n)/4) there are at most D dangerous steps ever.

If we make c sufficiently large with respect to γ then D < c lg n/2.
Now we have that, except for probability exp(− log1+γ/2(n)/4), the dangerous steps con-

tribute fewer than cn lg n/2 requests (ever). Furthermore, except for probability at most σT ,
the un-dangerous steps contribute at most cn lg n/2 requests during the first T steps. Thus,
the probability that τ ′ ≤ T is at most

exp(− log1+γ/2(n)/4) + σT ≤ n−2.

�

Lemmas 13 and 14 imply the following.

Corollary 15 Suppose x 6∈ C. Run Markov chain Z starting at Z(x).

Pr(T < τ ′ < Ψ) ≥ 1 − n−α − n−2.

Lemma 16 Suppose x 6∈ C. Run Markov chain Z starting at Z(x). For any t ≤ Ψ and any
i ∈ N , either Lt(i) = 0, or, for some j ∈ {0, . . . , z}, Lt(i) = 2j .

Proof: The lemma is proved by induction on t with the base case t = 0. Consider the
assignment

Lt+1(i) = (Lt(i) − l−t (i)) + l+t (i)

in the transition from Zt to Zt+1 in Figure 1. If the second term in the expression, l+t (i), is
greater than zero, then it is equal to Lt(k)/2 for some k with r′t(i) = k so Lt(i) = 0. The first
term in the expression, Lt(i)− l−t (i), is either Lt(i) or Lt(i)/2. Thus, Lt+1(i) is either Lt(i) or
it is Lt(k)/2 for some k. Using the terminology from the proof of Lemma 13, Lt+1(i) = 2z−m

means that the tokens that sit at processor i after step t + 1 have had their group split m
times. Since t ≤ Ψ, m ≤ z. �

4.4 Proof of Theorem 10

Our first task is to relate the Markov chain X to the simpler Markov chain Z. Recall the
definitions of τ ′, R′

t and Ψ from Section 4.3. Let Rt be the set of requests made during the
transition from Xt to Xt+1. That is, Rt = |{i | rt(i) > 0}|. Let τ be the smallest integer such
that R0 + · · · + Rτ−1 ≥ cn lg n.
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Lemma 17 If x 6∈ C then
Pr(τ ≤ T | X0 = x) ≤ ν.

Proof:
A (Markovian) coupling1 of the Markov chains X and Z is a stochastic process (Xt, Zt)

such that (Xt), considered marginally, is a faithful copy of X and (Zt), considered marginally,
is a faithful copy of Z. We will describe a coupling starting from state (x,Z(x)). That is,
in our coupling, X0 = x and Z0 = Z(x). The coupling will have the property that for all
t ≤ min(T, τ ′,Ψ) and all i,

r′t(i) = rt(i). (3)

From (3), we can conclude that whenever the Z chain satisfies T < τ ′ < Ψ, the coupled X
chain satisfies T < τ . Thus,

Pr(T < τ | X0 = x) ≥ Pr(T < τ ′ < Ψ | Z0 = Z(x)),

so the lemma follows from Corollary 15.
To give the details of the coupling, we will use the notation in Figures 1 and 2. Recall

from Definition 1 that g is the function given by g(y) = f(y−T ), where f is the work-stealing
function which is guaranteed to satisfy gj(Φf/n) ≥ 2T for a finite Φf and for all j ∈ {0, . . . , z}.

Our coupling will satisfy the following invariants for any i ∈ N and any t ≤ min(T, τ ′,Ψ).

(1) r′t(i) = rt(i), and

(2) Lt(i) = 0 implies Xt(i) = Yt(i), and

(3) Lt(i) = 2j implies Xt(i) ≥ gz−j(Φf/n) − t.

As we observed above, our objective is to describe a coupling that satisfies invariant (1). The
other invariants will help us to show that our constructed coupling is indeed a coupling, in
the sense that the marginal distributions are correct. The purpose of the third invariant is to
ensure that, in the chain X, a node will not become empty soon if the corresponding node in
chain Z is heavily loaded.

The coupling is as follows. We start with X0 = x and Z0 = Z(x). Recall the construction
of Z(x) from Section 4.3. In particular, L0(Jx) = 2z and Y0(Jx) = 0. For every other i,
L0(i) = 0 and Y0(i) = x(i). Invariants (2) and (3) are satisfied for t = 0 since X0(Jx) ≥ Φf/n.

Now the transition from (Xt, Zt) to (Xt+1, Zt+1) is given as follows. In part 1 of the
transition, the same generator-allocation function ht is chosen for both chains. The X ′

t(i)
variables are defined in part 2 of the transition from Xt to Xt+1. In part 2 of the coupled
transition from Zt to Zt+1, we set Y ′

t (i) = 0 if Lt(i) > 0. Otherwise, we set Y ′
t (i) = X ′

t(i).
Note that, since invariant (2) held after step t, the Y ′

t (i) variables are set according to the
correct marginal distribution. The rt(i) variables are defined in part 3 of the transition from
Xt to Xt+1. In part 3 of the coupled transition from Zt to Zt+1, we set r′t(i) = rt(i). To
show that the marginal distribution is correct, we observe that if Lt(i) = 0 then we defined
Y ′

t (i) to be X ′
t(i). Thus, the r′t(i) variables are assigned correctly. On the other hand,

if Lt(i) > 0 then, by Lemma 16, Lt(i) = 2j for some j ∈ {0, . . . , z} so by invariant (3),
Xt(i) ≥ gz−j(Φf/n) − t ≥ 2T − t > 0. Thus, X ′

t(i) > 0, and r′t(i) is defined correctly. In

1The word “coupling” is normally used to combine two copies of the same Markov chain so we are using
the word in a slightly nonstandard way.
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part 4 of the transition from Xt to Xt+1, we do the following. For every k ∈ N for which
r−1
t (k) is non-empty, we choose ℓ u.a.r. from r−1

t (k). Since r′t
−1(k) = rt

−1(k), we can make
the same choice for k in part 4 of the transition from Zt to Zt+1.

We need to prove that the coupling maintains invariants (1), (2), and (3). Invariant (1)
(the one that we actually want) is by construction. Invariant (2) is not too difficult. Lemma 16
shows that all of the variables Lt(i) are non-negative. Furthermore, the analysis in the
proof of Lemma 16 reveals that Lt+1(i) = 0 implies Lt(i) = 0. (To see this, recall that
Lt+1(i) = (Lt(i) − l−t (i)) + l+t (i). The second of these terms is non-negative, and the first
is either Lt(i) or Lt(i)/2.) Thus, whenever we have Lt+1(i) = 0 we have Yt(i) = Xt(i) and
in the coupling we get Y ′

t (i) = X ′
t(i). In part 5 of the transition from Xt to Xt+1 we set

Xt+1(i) = max(0,X ′
t(i) + j+

t (i) − j−t (i) − 1) and in part 5 of the transition from Zt to Zt+1,
we set Yt+1(i) = max(0, Y ′

t (i) + j+
t (i) − j−t (i) − 1). Thus we need only argue that the j+

t (i)
and j−t (i) variables get the same values in both copies. The j−t (i) variable is the same since
Y ′

t (i) = X ′
t(i). The j+

t (i) variables are only positive if processor i made a request, namely
rt(i) = r′t(i) = k, for some k. Since Lt+1(i) = 0, we know Lt(k) = 0. Hence, Y ′

t (k) = X ′
t(k),

and the j+
t (i) values are indeed the same.

Finally, we need to prove that the coupling maintains invariant (3). Suppose that Lt+1(i) =
2j . We wish to show that Xt+1(i) ≥ gz−j(Φf/n) − (t + 1). First, suppose Lt(i) = 0. In this
case, Lt+1(i) = Lt(k)/2 where rt(i) = k. Then

Xt+1(i) ≥ f(Xt(k)) − 1

≥ f(gz−j−1(Φf/n) − t) − 1

≥ f(gz−j−1(Φf/n) − T ) − 1

= gz−j(Φf/n) − 1

≥ gz−j(Φf/n) − (t + 1),

where the first inequality follows from the transition in Figure 1 and the second inequality
follows from the fact that invariant (3) held after step t and f is monotonically non-decreasing
(Property 2 in Section 3). The third inequality also follows from the fact that f is monoton-
ically non-decreasing.

Second, suppose Lt(i) = 2j . In this case r−1
t (i) is empty, so

Xt+1(i) ≥ Xt(i) − 1 ≥ gz−j(Φf/n) − t − 1.

Finally, suppose Lt(i) = 2j+1. (To see that this these are the only cases, namely, that
Lt(i) ∈ {0, 2j , 2j+1}, see the proof of Lemma 16.) In this case r−1

t is non-empty, so

Xt+1(i) ≥ Xt(i) − f(Xt(i)) − 1.

Since f satisfies f(ℓ) ≤ ℓ/2 (Property 1 in Section 3), we have

Xt+1(i) ≥ f(Xt(i)) − 1,

which is the same as the first case.
�

The next lemma shows that the load has an appropriate drift when τ > T .
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Lemma 18 If x 6∈ C then

E[Φ(XT ) | (X0 = x) ∧ (τ > T )] ≤ Φ(x) − 2ǫnT.

Proof:
Let At be the number of new jobs that arrive in the system during the transition from Xt

to Xt+1. Namely,

At =
∑

i∈N

(X ′
t(i) − Xt(i)).

Let Y = A0 + · · · + AT−1. Splitting E[Y | X0 = x] into two conditional expectations,
conditioned on whether or not τ > T , we find

E[Y | (X0 = x)∧ (τ > T )] =
E[Y | X0 = x] − Pr(τ ≤ T | X0 = x)E[Y | (X0 = x) ∧ (τ ≤ T )]

Pr(τ > T | X0 = x)
.

By Lemma 17, the denominator is at least 1 − ν. The numerator is at most E[Y | X0 = x],
which is λnT , since during each of the T steps each of the n generators generates a new job
independently with probability λ. Thus,

E[Y | (X0 = x) ∧ (τ > T )] ≤
λnT

1 − ν
.

If τ > T then the number of jobs serviced during steps 1–T is at least nT − cn lg n. (If a
processor does not make a request then it certainly services a job.) Thus, the quantity

E[Φ(XT ) | (X0 = x) ∧ (τ > T )]

is at most the initial load, Φ(x), plus the expected number of arrivals, which we have seen
above is at most λnT

1−ν , minus the expected number of services, which is at least nT − cn lg n.
Putting all of this together, we get

E[Φ(XT ) | (X0 = x) ∧ (τ > T )] ≤ Φ(x) − (1 −
λ

1 − ν
)nT + cn lg n

≤ Φ(x) −
1 − λ

1−ν

2
nT

= Φ(x) − 2ǫnT.

where the second inequality uses the definition of T in Definition 1 and the equality uses the
definition of ǫ in Definition 11. �

Lemma 19 Suppose that n is sufficiently large with respect to δ−1. If x 6∈ C then

E[Φ(XT ) | X0 = x] ≤ Φ(x) − ǫnT.

Proof:

E[Φ(XT ) | X0 = x] = Pr(τ > T | X0 = x)E[Φ(XT ) | (X0 = x) ∧ τ > T ]

+ Pr(τ ≤ T | X0 = x)E[Φ(XT ) | (X0 = x) ∧ τ ≤ T ].

By Lemma 18, this is at most

Pr(τ > T | X0 = x)(Φ(x) − 2ǫnT ) + Pr(τ ≤ T | X0 = x)E[Φ(XT ) | (X0 = x) ∧ τ ≤ T ].
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Since at most n messages arrive per step, this is at most

Pr(τ > T | X0 = x)(Φ(x) − 2ǫnT ) + Pr(τ ≤ T | X0 = x)(Φ(x) + nT ).

This can be re-arranged as

Φ(x) − (1 − Pr(τ ≤ T | X0 = x))(2ǫnT ) + Pr(τ ≤ T | X0 = x)(nT ) =

Φ(x) − 2ǫnT + Pr(τ ≤ T | X0 = x)(2ǫnT + nT ).

By Lemma 17, this is at most

Φ(x) − 2ǫnT + ν(2ǫnT + nT ) = Φ(x) − ǫnT − (ǫnT − ν2ǫnT − νnT ).

The lemma follows from the fact that

ν ≤
ǫ

2ǫ + 1
, (4)

which is true, provided that n is sufficiently large with respect to δ−1. To establish Equa-
tion (4), refer to Definitions 1 and 11. If n is sufficiently large then ν ≤ δ/2, so

4ǫ = 1 −
λ

1 − ν
≥ 1 −

1 − δ

1 − ν
=

δ − ν

1 − ν
≥

δ

2
.

Also,

ν ≤
δ/8

2(δ/8) + 1
≤

ǫ

2ǫ + 1
.

�

Combining Lemma 19 and Lemma 7, we get a proof of Theorem 10.

4.5 Proof of Theorem 12

The proof of Theorem 12 uses the following theorem, which is Theorem 1 of [17].

Lemma 20 (Bertsimas, Gamarnik, Tsitsiklis) Consider a time-homogeneous Markov chain ζ
with a countable state space Ω and stationary distribution π′. If there is a positive function
Φ(x), x ∈ Ω, a number ξ > 0, and a number β ≥ 0 such that

E[Φ(ζt+1) − Φ(ζt) | ζt = x] ≤ −ξ,Φ(x) > β, (5)

and
|Φ(ζt+1) − Φ(ζt)| ≤ νmax, (6)

and, for any x,
Pr[Φ(ζt+1) > Φ(ζt) | ζt = x] ≤ pmax, (7)

and
Eπ′ [Φ(ζt)] < ∞, (8)

then for any non-negative integer m,

Prπ′ [Φ(ζt) > β + 2νmaxm] ≤

(
pmaxνmax

pmaxνmax + ξ

)m+1

,

and

Eπ′ [Φ(ζt)] ≤ β +
2pmax(νmax)

2

ξ
.
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Let Wi = Φ(XiT ) for i ∈ {0, 1, 2, . . .}. Lemma 19 shows that the process W0,W1, . . .
behaves like a supermartingale above Φf . That is, it satisfies Equation 5 with ξ = ǫnT and
β = Φf . In itself, this does not imply that E[Wt] is bounded (see Pemantle and Rosenthal’s
paper [32] for counter-examples). However, we also have

|Wt+1 − Wt| ≤ nT (9)

for any t. That is, Equation 6 is satisfied with νmax = nT . This implies (for example, by
Theorem 1 of [32] or by Theorem 2.3 of [20]) that Eπ[Wt] is finite (so Equation 8 is satisfied).
Lemma 20 can now be applied with pmax = 1 to get

Eπ[Wt] ≤ Φf + 2nT/ǫ, (10)

and for any non-negative integer m,

Prπ[Wt > Φf + 2nTm] ≤

(
nT

nT + ǫnT

)(m+1)

. (11)

The theorem now follows from the observation that for 0 ≤ j < T ,

Φ(XiT+j) ≤ Φ(XiT ) + nj.

5 Lower Bounds

In this section we give the straightforward lower bound which shows that the system is not
stable for unsuitable work-stealing functions. Of course we have to put some restrictions on
D in order to obtain instability. For example, if D is the point distribution containing a single
function h which allocates one generator to each processor, then the system will be stable
even without any work stealing.

The proof of our lower bound uses the following lemma, which is Theorem 2.2.7 of [15].

Lemma 21 (Fayolle, Malyshev, Menshikov) An irreducible aperiodic time-homogeneous
Markov chain ζ with countable state space Ω is transient if there is a positive function Φ with
domain Ω and there are positive constants C, d and ξ such that

1. there is a state x with Φ(x) > C, and a state x with Φ(x) ≤ C, and

2. E[Φ(ζ1) − Φ(ζ0) | ζ0 = x] ≥ ξ for all x with Φ(x) > C, and

3. if |Φ(x) − Φ(y)| > d then the probability of moving from x to y in a single move is 0.

If we use k = 1 in the statement of the following theorem, we find that the system is unstable
if f(ℓ) < λn − 1.

Theorem 22 Let δ be a positive constant and λ an arrival rate which is at most 1−δ. Suppose
that D contains a single generator-allocation function h which distributes the n generators
equally among some set of k processors. Suppose that for all ℓ, f(ℓ) ≤ j(n). Then the Markov
chain X is transient if

k · (j(n) + 1) < λn.
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Proof: This theorem can be proven easily using Lemma 21. Recall that the start state X0

is (0, . . . , 0) (all queues are initially empty). First, we bound the amount of work that can be
done during any given step. When a processor steals work, it only gets enough work for at
most j(n) rounds. Since each processor only gives work to one other processor per round, and
there are at most k processors with generators, at most j(n)k processors without generators
have work to do during any given step. Thus, at most (j(n) + 1)k tasks can be done during
any step. The expected load increase of the system during a step is λn. Using Lemma 21
with Φ as the system load, it is easy to see that the system is transient if k(j(n) + 1) < λn.

�

6 Conclusions

We have analysed a very simple work-stealing algorithm, which is successfully being used in
practical applications. In this paper we have analysed its performance for a wide range of
parameters. We have shown that it is stable for any constant generation rate λ < 1 and a
wide class of work-stealing functions f . On the other hand, we have shown that for every
λ > 0 there is a class of unsuitable work-stealing functions, for which it is not stable. Finally,
we have derived upper bounds on the system load, when the system is stable.

It would be interesting to know whether there is a nice characterisation of the class of
functions that lead to stability. It would also be interesting to know how far our upper-bounds
on system load are from the truth. We suspect that the system load is actually much smaller
than our upper bounds indicate, but it would be useful to have rigorous experimental results.
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