
Noname manuscript No.
(will be inserted by the editor)

On the Computational Complexity
of Weighted Voting Games

Edith Elkind1 · Leslie Ann Goldberg2 · Paul

W. Goldberg2 · Michael Wooldridge2

the date of receipt and acceptance should be inserted later

Abstract Coalitional games provide a useful tool for modeling cooperation in multia-

gent systems. An important special class of coalitional games is weighted voting games,

in which each player has a weight (intuitively corresponding to its contribution), and

a coalition is successful if the sum of its members’ weights meets or exceeds a given

threshold. A key question in coalitional games is finding coalitions and payoff division

schemes that are stable, i.e., no group of players has any rational incentive to leave. In

this paper, we investigate the computational complexity of stability-related questions

for weighted voting games. We study problems involving the core, the least core, and

the nucleolus, distinguishing those that are polynomial-time computable from those

that are NP-hard or coNP-hard, and providing pseudopolynomial and approximation

algorithms for some of the computationally hard problems.

1 Introduction

Coalitional games provide a simple but rich mathematical framework within which is-

sues related to cooperation in multi-agent systems can be investigated [8,16,6]. Crudely,

a coalitional game can be understood as a game in which players can benefit from co-

operation. More formally, a coalitional game is described by a function that assigns a

value to each coalition (subset) of players: this value corresponds to the payoff that the

members of this coalition can achieve by working together. The key questions in such

games relate to which coalitions will form, and how the benefits of cooperation will be

shared.

In more detail, an outcome of a coalitional game is a coalition or, sometimes, a

coalition structure (a partition of the players into disjoint coalitions), together with an

imputation, i.e., a payoff distribution vector which specifies how to share the value of

each coalition among its members. In many settings, including the one considered in

this paper, it is customary to stipulate that the grand coalition, i.e., the coalition that

1 Edith Elkind, School of Electronics and Computer Science, University of Southampton, SO17
1BJ, UK · Nanyang Technological University, Singapore
2 Leslie Ann Goldberg, Paul W. Goldberg, Michael Wooldridge, Department of Computer
Science, University of Liverpool, Liverpool L69 3BX, UK.

2

consists of all players, should form1. In this case, an outcome can be identified with a

payoff vector that distributes the value of the grand coalition among all players.

A natural plausibility criterion for an outcome of a game is stability: given an

outcome, no subset of players should be able to profit by deviating from it. There are

several solution concepts that attempt to capture this intuition, the most important of

which is perhaps the core. There are also other approaches to choosing the best way of

distributing payoffs: for example, one can use the Shapley value, which is, in a sense,

the most “fair” way to share the value of the grand coalition.

From a computational perspective, the key issues relating to coalitional games

are, first, how such games should be represented, (since the obvious representation is

exponentially large in the number of players, and is hence infeasible); and second, the

extent to which cooperative solution concepts can be efficiently computed.

A particular class of succinctly representable coalitional games is that of weighted

voting games. A weighted voting game is one in which each player is given a numeric

weight, and a coalition takes the value 1 if the sum of its weights exceeds a particular

threshold, and the value 0 otherwise. Weighted voting games are widely used in practice.

For example, the voting system of the European Union is a combination of weighted

voting games [4]. They can also be used to model resource allocation in multiagent

systems: in this case, the weight of each agent corresponds to the amount of resources

available to that agent, the threshold corresponds to the total amount of resources

needed to achieve a given task, and the total value of the task is normalised to 1.

The computational properties of the fairness-related solution concepts for weighted

voting games (such as, e.g., the Shapley value) are well-studied (see Section 6 for an

overview). However, much less is known about the complexity of the stability-related

solution concepts for these games. The goal of this paper is to fill this gap. We focus

on three solution concepts—the core, the least core, which is a natural relaxation of

the core, and the nucleolus, which can be thought of as the single “most stable” payoff

vector. Although the complexity of determining non-emptiness of the core has been

studied for a variety of representations, comparatively little research has considered

the least core and the nucleolus.

The remainder of the paper is structured as follows. Section 2 introduces the rele-

vant concepts and definitions from coalitional game theory. Section 3 investigates the

complexity of computing the core and the least core. Theorems 1 and 2 together with

Corollary 1 give a polynomial-time algorithm for determining whether the core is empty

and computing the nucleolus if the core is not empty. Theorem 3 gives intractability

results (NP-hardness and co-NP-hardness) for determining whether the ε-core of a

weightd voting game is non-empty, determining whether a given imputation is in the ε-

core, constructing an imputation in the ε-core, determining whether a given imputation

is in the least core, and constructing an imputation in the least core. We mitigate these

hardness results by showing, in Theorem 5, that all of these problems can be solved in

pseudopolynomial time. That is, all of the problems can be solved in polynomial time

for weighted voting games in which the weights are at most polynomially larger than

the number of players. In Section 3.2 we present a fully polynomial time approximation

scheme (FPTAS) for the value of the least core. Section 4 investigates the complexity

of computing the nucleolus payments of agents. Theorem 7 shows that it is coNP-hard

to determine whether the nucleolus payoff of a given agent is 0, which implies that

it is computationally hard to compute the nucleolus payment of an agent, or to ap-

1 For an analysis of weighted voting games with coalition structures, see [10].

3

proximate this payment within a constant factor. Nevertheless, we show in Theorem 8

that, for a wide class of weighted voting games, it is easy to approximate the nucleolus

payment of a minimal winning coalition. Section 5 extends some of our results to k-

vector weighted voting games, a class of coalitional games with more representational

power than weighted voting games. Corollary 3 gives a polynomial-time algorithm for

determining whether the core of such a game is empty and for computing the nucleo-

lus if the core is not empty. Theorem 9 gives intractability results (NP-hardness and

coNP-hardness) for determining whether the ε-core of a k-vector weighted voting game

is non-empty, determining whether a given imputation is in the ε-core, constructing an

imputation in the ε-core, determining whether a given imputation is in the least core,

and constructing an imputation in the least core. Theorem 11 shows that all of these

problems can be solved in pseudopolynomial time (for fixed k). Finally, Theorem 10

shows that it is coNP-hard to determine whether the nucleolus payoff of a given agent

is 0.

Throughout the paper, we assume some familiarity with computational complex-

ity [20] and approximation algorithms [1].

2 Preliminary Definitions

Except where explicitly stated otherwise, we assume numbers are rationals. Our re-

sults extend straightforwardly to any “sensible” representation of real numbers, but

we use rationals to avoid tangential representational issues. Unless stated otherwise

(specifically, Theorem 5), we assume the rational values are represented in binary. This

allows us to use the machinery of polynomial-time reductions and NP-hardness. In

all of our proofs, “polynomial” means “polynomial in the size of the input”. Some of

the problems we consider are function problems, rather than decision problems [20,

Chapter 10]. We use the standard notion of NP-hardness for function computation, so

when we say it is NP-hard to compute a function, we mean that it is NP-hard with re-

spect to polynomial-time Turing reductions. (Thus, the existence of a polynomial-time

algorithm for computing the function would imply P=NP.)

We briefly review relevant definitions from coalitional game theory [19, pp.255–

298]. A coalitional game consists of a set I of players, or agents, and a total function

ν : 2I 7→ R, which assigns a real value to every coalition (subset of the agents).

Intuitively, ν(S) is the value that could be obtained by coalition S ⊆ I if its members

chose to cooperate, or form a coalition. However, it does not address the question of

how the agents cooperate to obtain this value. The grand coalition is the set I of all

agents. A coalitional game is monotone if ν(S) ≤ ν(S ∪ {i}) for all i ∈ I and all

S ⊆ I \ {i}, and simple if we have ν(S) ∈ {0, 1} for all S ⊆ I. In a simple game, a

coalition is called winning if ν(S) = 1 and losing otherwise. Also, in a simple game,

a player i is called a veto player if we have ν(S) = 0 for all S ⊆ I \ {i}. Intuitively,

veto players are the most powerful players in the game. Conversely, if a player i has

no power at all, i.e., if ν(S) = ν(S ∪ {i}) for all S ⊆ I \ {i}, then i is called a dummy

player.

A weighted voting game is a coalitional game G given by a set of agents I =

{1, . . . , n}, their non-negative weights w = {w1, . . . , wn}, and a threshold T ; we write

G = (I; w;T). For a coalition S ⊆ I, its value ν(S) is 1 if
P
i∈S wi ≥ T ; otherwise,

ν(S) = 0. Without loss of generality, we assume that the value of the grand coalition

{1, . . . , n} is 1, i.e.,
P
i∈I wi ≥ T . Note that any weighted voting game is monotone

4

and simple. As argued in the introduction, these games can be used to model settings

where the agents need to pool resources to accomplish a task, and the value of this

task is normalised to 1.

An imputation is a division of the value of the grand coalition amongst the agents.

In particular, for a weighted voting game, an imputation is a vector of non-negative

numbers p = (p1, . . . , pn), one for each agent in I, such that
P
i∈I pi = 1. We refer to

pi as the payoff of agent i: this is the total payment he receives when he participates

in the grand coalition and the profits are divided according to p. We write w(S) to

denote
P
i∈S wi. Similarly, p(S) denotes

P
i∈S pi.

Given a coalitional game, the goal is typically to find a “fair” imputation, i.e.,

the share of each agent is proportional to his or her contribution, or “stable”, in the

sense that it provides little or no incentive for a group of agents to abandon the grand

coalition and form a coalition of their own. There are many ways to formalise these

ideas. These are known as solution concepts. In this paper, we study three solution

concepts: the core, the least core, and the nucleolus, which we will now define.

Given an imputation p = (p1, . . . , pn), the excess e(p, S) of a coalition S under

p is defined as p(S) − ν(S). If a coalition’s excess is positive, it means that the total

payoff that its members receive under p is higher than what they can get on their own,

while for a coalition with a negative excess the opposite is true. The core is a set of

imputations under which the excess of each coalition is non-negative: an imputation p

is in the core if for every S ⊆ I we have e(p, S) ≥ 0. Informally, p is in the core if it

is the case that no coalition can improve its payoff by breaking away from the grand

coalition because its payoff p(S) according to the imputation is at least as high as the

value ν(S) that it would get by breaking away. The excess vector of an imputation p is

the vector e(p) = (e(p, S1), . . . , e(p, S2n)), where S1, . . . , S2n is a list of all subsets of I

ordered so that e(p, S1) ≤ e(p, S2) ≤ · · · ≤ e(p, S2n). In other words, the excess vector

lists the excesses of all coalitions from the smallest (which may be negative) to the

largest. The nucleolus is an imputation x = (x1, . . . , xn) that satisfies e(x) ≥lex e(y)

for any other imputation y, where ≥lex is the lexicographic order. It is known [24]

that the nucleolus is well-defined (i.e., an imputation with a lexicographically maximal

excess vector always exists) and is unique.

Intuitively, the nucleolus is a good imputation because it balances the excesses of

the coalitions, making them as equal as possible. It is easy to see that the nucleolus

is in the core whenever the core is non-empty. Furthermore, the core is non-empty if

and only if the first entry of the excess vector that corresponds to the nucleolus is

non-negative.

While the notion of the core is perhaps the most natural way to capture stability

in coalitional games, it suffers from a serious drawback: the core of a given game can

be empty. Moreover, as we will see in the next section, this situation is quite typical

for weighted voting games: it is known (see, for example, Theorem 1) that the core of

a simple game is empty unless there is a veto player, a situation that is unlikely to

occur in weighted voting games that arise in real-life scenarios. It is therefore natural

to ask if the notion of the core can be relaxed in a way that ensures non-emptiness. A

positive answer to this question is provided by the notion of the least core. We say that

an imputation p is in the ε-core if e(p, S) ≥ −ε for all S ⊆ I; it is in the least core, if

it is in the ε-core for some ε ≥ 0 and the ε′-core is empty for any ε′ < ε. We say that

the value of the least core is ε. Clearly, the least core is always non-empty and contains

the nucleolus. Observe that the notion of the least core can be used to model stability

in settings where there is a cost associated with deviating from the grand coalition: if

5

this cost is larger than the value of the least core, all outcomes in the least core are

likely to be stable.

We conclude this section with an example that illustrates the notions that have

been introduced here.

Example 1 Consider a weighted voting game with five players {1, 2, 3, 4, 5} whose

weights are w1 = 2, w2 = 2, w3 = 2, w4 = 3, and w5 = 3, and a threshold T = 6.

In this game, both {1, 2, 3} and {4, 5} are winning coalitions. Therefore, the core of

this game is empty, as under any imputation the total payoff to at least one of these

coalitions will be at most 1
2 , so its excess will be − 1

2 or less. On the other hand, it is

not hard to construct an imputation in the 1
2 -core of this game: consider, for example,

p1 = (1
6 ,

1
6 ,

1
6 ,

1
4 ,

1
4) or p2 = (1

6 ,
1
6 ,

1
6 ,

1
6 ,

1
3). It is straightforward to verify that under

both p1 and p2 the payoff of each winning coalition is at least 1
2 . Indeed, the coalition

{4, 5} gets payoff 1
2 under both imputations. Every other winning coalition has at least

three participants, so its payoff under either of these imputations is at least 3 ∗ 1
6 = 1

2 .

We conclude that the least core of this game is equal to its 1
2 -core.

We will now show that p1 is the nucleolus of this game. First observe that p1 is

a “more stable” imputation than p2. Indeed, under p1 there are exactly two winning

coalitions that get a payoff of 1
2 (namely, {1, 2, 3} and {4, 5}) and other winning coali-

tions get a payoff of at least 7
12 . On the other hand, under p2 there are five winning

coalitions that get a payoff of exactly 1
2 (namely, {4, 5}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4},

and {2, 3, 4}). Hence, the excess vector for p1 is lexicographically larger than that for

p2.

Now, let p be the nucleolus; we will argue that p = p1. First, if p({1, 2, 3}) > 1
2 ,

then p({4, 5}) < 1
2 , so p is not in the least core and hence cannot be the nucleolus.

Therefore, p({1, 2, 3}) ≤ 1
2 , and by a similar argument p({4, 5}) ≤ 1

2 . Now, the first two

elements of (e(p1, S1), . . . , e(p1, S2n)) are − 1
2 , so it must be the case that p({1, 2, 3}) =

p({4, 5}) = 1
2 . Moreover, if p 6= p′, then the third element of the excess vector for p

must be greater than the third element of the excess vector for p1, i.e., − 5
12 . We will

now show that this is impossible.

First, suppose that p4 6= p5. As we have p4 + p5 = 1
2 , this implies that at least

one of them is less than 1
4 ; without loss of generality, assume p4 < 1

4 . Now, if we

have p1 = p2 = p3 = 1
6 , then p({1, 2, 4}) < 7

12 . If p1, p2, p3 are not all equal, as

p1 + p2 + p3 = 1
2 , at least one of them (assume without loss of generality that it is p3)

exceeds 1
6 , so p1 + p2 <

1
3 and, again, p({1, 2, 4}) < 7

12 . We conclude that for p to be

the nucleolus, it must be the case that p4 = p5 = 1
4 . Finally, suppose that p4 = p5 = 1

4 ,

but p1, p2, p3 are not all equal. Then the largest of them (without loss of generality,

p3) satisfies p3 >
1
6 , so we have p1 + p2 <

1
3 and p({1, 2, 4}) < 7

12 , a contradiction. We

conclude that p = p1.

3 The Core and the Least Core

We start by considering the core—perhaps the best known and most-studied solution

concept in coalitional game theory. As argued above, asking whether the core of the

game is non-empty amounts to asking whether the grand coalition is stable.

Name: EmptyCore.

Instance: Weighted voting game (I; w;T).

Question: Is the core empty?

6

There is a well-known folk theorem that provides a criterion for non-emptiness of

the core of a simple game. For the sake of completeness, we reproduce both the theorem

and its proof here.

Theorem 1 The core of a weighted voting game G = (I; {w1, . . . , wn};T) is non-

empty if and only if G has a veto player, i.e., there is an agent i such that i ∈ ∩ν(S)=1S.

Proof If i is a veto player, then the allocation xi = 1, xj = 0 for i 6= j is obviously in

the core. Conversely, suppose that there are no veto players in G. Consider an arbitrary

imputation p = (p1, . . . , pn) and an agent i with pi > 0. Since i is not a veto player,

there is a coalition S such that i 6∈ S, ν(S) = 1. We have p(S) ≤ 1 − pi < 1, so

e(p, S) < 0.

We can use Theorem 1 to describe the nucleolus of a weighted voting game with

non-empty core.

Theorem 2 If the core of a weighted voting game G = (I; w;T) is non-empty, then

its nucleolus is given by xi = 1
k if i is a veto player and xi = 0 otherwise, where k is

the number of veto players in G. That is, the nucleolus shares the value of the grand

coalition equally among the veto players.

Proof Let V be the set of veto players in G. Any imputation (p1, . . . , pn) that has

pi > 0 for some i 6∈ V is not in the core of G, as there exists a set S with ν(S) = 1,

i 6∈ S, for which we have e(p, S) ≤ −pi. Hence, as the nucleolus x is always in the

core, it satisfies xi = 0 for all i 6∈ V . Now, consider a vector p with pi = 0 for i 6∈ V ,

and suppose that pi 6= 1
k for some i ∈ V . Pick any j ∈ argmin{pi | i ∈ V }. We have

pj <
1
k . Let t = |{S | ν(S) = 1}| + |{S | S ⊆ I \ V }|. The excess vectors for p and x

start with t zeros, followed by pj and 1
k , respectively. Hence, the excess vector for p is

lexicographically smaller than the excess vector for x.

It follows that one can decide EmptyCore in polynomial time. Moreover, if the

core is non-empty, the nucleolus can be easily computed.

Corollary 1 There exists a polynomial-time algorithm that checks whether the core of

a weighted voting game is non-empty. Moreover, if the core is non-empty, the nucleolus

has polynomially-bounded rational coordinates and can be computed in polynomial time.

Proof To verify the non-emptiness of the core, for each agent i, we check if i is present

in all winning coalitions, i.e., if w(I \ {i}) < T . If no such agent has been found, the

core is empty. Clearly, this algorithm runs in polynomial time. Similarly, to compute

the nucleolus, it suffices to identify all veto players. The coordinates of the nucleolus

are then rational numbers of the form 1/k, where k ≤ n is the total number of veto

players.

We will now formulate several natural computational problems related to the no-

tions of the ε-core and the least core.

Name: EpsilonCore.

Instance: Weighted voting game (I; w;T), and rational value ε ≥ 0.

Question: Is the ε-core of (I; w;T) non-empty?

7

Clearly, (G, ε) is a “yes”-instance of EpsilonCore if and only if the value of the

least core of G is at most ε. In Corollary 2 we will show that if all weights are rational

numbers, then the value of the least core is a rational number as well; moreover it can

be represented using polynomially many bits.

Rather than just verifying that the ε-core is non-empty, one may be interested

in verifying whether a particular imputation is in the ε-core, or in constructing an

imputation in the ε-core.

Name: In-EpsilonCore.

Instance: Weighted voting game (I; w;T), rational value ε ≥ 0, and imputation p.

Question: Is p in the ε-core of (I; w;T)?

Name: Construct-EpsilonCore.

Instance: Weighted voting game (I; w;T) and rational value ε ≥ 0.

Output: An imputation p in the ε-core of (I; w;T) or ⊥ if the ε-core of (I; w;T) is

empty.

Moreover, we can formulate the same questions for the least core. Note that the least

core is always non-empty, and therefore Construct-LeastCore is phrased somewhat

differently from Construct-EpsilonCore.

Name: In-LeastCore.

Instance: Weighted voting game (I; w;T), imputation p.

Question: Is p in the least core of (I; w;T)?

Name: Construct-LeastCore.

Instance: Weighted voting game (I; w;T).

Output: An imputation p in the least core of (I; w;T).

There are obvious relationships between some of these problems. For example, if a

given imputation p is in the least core of G, and the ε-core of G is non-empty, then p is

in the ε-core of G (since if the ε-core of a game is non-empty, it contains the least core of

that game). Moreover, there is a similar relationship between Construct-LeastCore

and Construct-EpsilonCore. Also, Construct-EpsilonCore can be seen as a

generalisation of EpsilonCore. However, being able to construct an imputation in

the ε-core (respectively, the least core) of a game does not provide us with a direct

method for checking whether an arbitrary imputation is in the ε-core (respectively,

the least core) of that game. Therefore, in what follows, we study the computational

complexity of these problems independently (though using similar constructions).

We will now show that all the 5 problems listed above are computationally hard.

We reduce from the well-known NP-complete Partition problem, in which we are

given positive integers a1, . . . , an such that
Pn
i=1 ai = 2K, and asked whether there is

a subset of indices J such that
P
i∈J ai = K [14, p.223].

Given an instance (a1, . . . , an;K) of Partition, let I = {1, . . . , n, n + 1} be a set

of agents. Let G = (I; w;T) be the weighted voting game with T = K, wi = ai for

i = 1, . . . , n and wn+1 = K. We will use the following lemmas.

8

Lemma 1 For a “yes”-instance of Partition, the value of the least core of G is 2
3 ,

and any imputation q = (q1, . . . , qn+1) in the least core satisfies qn+1 = 1
3 .

Proof Consider the imputation p given by pi = wi
3K for i = 1, . . . , n+ 1 (this is a valid

imputation, as
Pn+1
i=1 wi = 3K). For any set S with ν(S) = 1 we have

P
i∈S wi ≥ K,

so
P
i∈S pi ≥

1
3 and e(p, S) ≥ − 2

3 ; for any set S with ν(S) = 0 we have e(p, S) ≥ 0.

We conclude that the value of the least core of G is at most 2
3 .

On the other hand, for a “yes”-instance of Partition, there are three disjoint

coalitions in I that have value 1: S1 = J , S2 = {1, . . . , n} \ J , and S3 = {n + 1}.
Any imputation p such that pn+1 6= 1

3 has p(Si) <
1
3 for some i = 1, 2, 3 and hence

e(p, Si) < − 2
3 . Hence, any imputation q that maximises the minimum excess satis-

fies qn+1 = 1
3 . Consequently, the value of the least core, ε, satisfies ε = 2

3 , and any

imputation in the least core has qn+1 = 1
3 .

Lemma 2 For a “no”-instance of Partition, the value of the least core of G is at

most 2
3 −

1
6K and any imputation q in the least core satisfies qn+1 ≥ 1

3 + 1
6K .

Proof We will start with the imputation pi = wi
3K defined in the proof of the previous

lemma, and modify it so as to ensure that for a new imputation p′, the excess of each

coalition is at least − 2
3 + 1

6K . The imputation p′ will serve as a witness that the value

of the least core of G is at most 2
3 −

1
6K . Consequently, for any imputation q in the

least core we have e(q, S) ≥ − 2
3 + 1

6K for all S ⊆ I. In particular, taking S = {n+ 1},
we obtain qn+1 ≥ 1

3 + 1
6K .

The imputation p′ is defined as follows: p′i = pi − 1
6nK for i = 1, . . . , n, p′n+1 =

pn+1 + 1
6K . To see that p′ is a valid imputation, note that

P
i∈I p

′
i =

P
i∈I pi = 1, and

p′i = wi
3K −

1
6nK > 0. Now, consider any set S such that ν(S) = 1. If S ⊆ {1, . . . , n},

as our game was constructed from a “no”-instance of Partition, we have
P
i∈S wi ≥

K + 1. Hence, X
i∈S

p′i =
X
i∈S

„
wi
3K
− 1

6nK

«
≥ K + 1

3K
− |S|

6nK

≥ 1

3
+

1

3K
− 1

6K
=

1

3
+

1

6K
.

Consequently, e(p′, S) ≥ −2
3 + 1

6K . On the other hand, if n+ 1 ∈ S, we have p′(S) ≥
1
3 + 1

6K .

Theorem 3 The decision problems EpsilonCore and In-EpsilonCore are coNP-

hard. The decision problem In-LeastCore is NP-hard. The function problems Construct-

EpsilonCore and Construct-LeastCore are NP-hard.

Proof By combining Lemmas 1 and 2, we conclude that the 2
3 −

1
6K -core of G =

(I; w;T) is nonempty if and only if we started with a “no”-instance of Partition.

Also, the imputation p′ constructed in the proof of Lemma 2 (p′i = wi
3K −

1
6nK for

i = 1, . . . , n, p′n+1 = 1
3 + 1

6K) is in the 2
3 −

1
6K -core if and only if we started with

a “no”-instance of Partition. Hence, both EpsilonCore and In-EpsilonCore are

coNP-hard.

The imputation p, where pi = wi
3K , i = 1, . . . , n, pn+1 = 1

3 , is in the least core if

and only if the game G was constructed from a “yes”-instance of Partition. Hence,

In-LeastCore is NP-hard.

9

By solving Construct-EpsilonCore with ε = 2
3 −

1
6K , we can solve Partition

as follows: if our algorithm outputs ⊥, then we started with a “yes”-instance of Parti-

tion, and if it outputs an imputation, we started with a “no”-instance of Partition.

Similarly, if we can construct an imputation p in the least core, we can solve Partition

by looking at its last component pn+1: if pn+1 = 1
3 , we started with a “yes”-instance

of Partition, and if pn+1 >
1
3 , we started with a “no”-instance of Partition.

We can prove a matching upper bound on the complexity of one of these problems.

Namely, we can show that In-EpsilonCore is in coNP, and therefore coNP-complete.

To see this, note that one can demonstrate that an imputation p is not in the ε-core

of the game G by guessing a set S such that e(p, S) < −ε.
For EpsilonCore, the situation is somewhat different. To show that the ε-core

of a game G is non-empty, we can guess an imputation p and then show that for all

coalitions S we have e(p, S) ≥ −ε. If we could prove that it is enough to restrict our

attention to imputations with polynomial bit complexity, this argument would show

that EpsilonCore is in Σp2 . To see that this is indeed the case, note that if the ε-core

of the game is non-empty then it contains the least core, which, by Corollary 2 (see

the next section), contains an imputation with polynomial-size rational values. This

imputation can be used as a witness that the ε-core is non-empty. Hence, EpsilonCore

is indeed in Σp2 .

Similarly, we will now show that In-LeastCore is in Πp
2 . We will do so by proving

that the complementary problem, i.e., checking that a given imputation p is not in

the least core of G is in Σp2 . This follows from the fact that, to demonstrate that p

is not in the least core, it suffices to produce another imputation q whose worst-case

performance is better than that of p. In other words, p is not in the least core if and

only if there exists an imputation q and a set S such that for all T ⊆ I we have

e(q, T) > e(p, S).

Indeed, suppose that p is not in the least core of G. Let ε be the value of the least

core. Then the least core contains an imputation q that satisfies e(q, T) ≥ −ε for all

T , whereas there exists an S such that e(p, S) < −ε. Observe that we can choose our

witness imputation q to be the element of the least core constructed in the proof of

Theorem 5; by Corollary 2 it has polynomial bit complexity.

Conversely, suppose that p is in the least core of G. We will now show that for

any imputation q and any set S ⊆ I, there exists a T ⊆ I such that e(q, T) ≤ e(p, S).

Indeed, let ε be the value of the least core. We have e(p, S) ≥ −ε for all S ⊆ I. Now,

suppose that there exists an imputation q such that for some S ⊆ I and any T ⊆ I we

have e(q, T) > e(p, S). This would imply e(q, T) > −ε for all T , a contradiction with

ε being the value of the least core.

We summarise our results in the following theorem.

Theorem 4 The problem In-EpsilonCore is in coNP (and hence coNP-complete).

The problem EpsilonCore is in Σp2 and the problem In-LeastCore is in Πp
2 .

3.1 Pseudopolynomial time algorithm for the ε-core and the least core

We will now describe a pseudopolynomial time algorithm for the problems introduced

in the previous section. This means that all five problems can be solved in polynomial

time if the weights are at most polynomially large in n, or (equivalently) if they are

represented in unary notation.

10

Theorem 5 If all weights are given in unary, the problems Construct-LeastCore,

In-LeastCore, Construct-EpsilonCore, In-EpsilonCore, and EpsilonCore are

in P.

Proof Consider the following linear program:

max C;

p1 + · · ·+ pn = 1

pi ≥ 0 for all i = 1, . . . , nX
i∈J

pi ≥ C for all J ⊆ I such that
X
i∈J

wi ≥ T (1)

This linear program attempts to maximise the minimum excess by computing the

greatest lower bound C on the payment to each winning coalition (i.e., a coalition

whose total weight is at least T). Any solution to this linear program is a vector of the

form (p1, . . . , pn, C); clearly, the imputation (p1, . . . , pn) is in the least core, which has

value 1− C.

Unfortunately, the size of this linear program may be exponential in n, as there

is a constraint for each winning coalition. Nevertheless, we will now show how to

solve it in time polynomial in n and
P
i∈I wi, by constructing a separation oracle for

it. A separation oracle for a linear program is an algorithm that, given a putative

feasible solution, checks whether it is indeed feasible, and if not, outputs a violated

constraint [15]. It is known that a linear program can be solved in polynomial time

as long as it has a polynomial-time separation oracle [15, Thm. 6.4.9, p. 179]. In our

case, this means that we need an algorithm that given a vector (p1, . . . , pn, C), checks

if there is a winning coalition J such that
P
i∈J pi < C.

To construct the separation oracle, we use dynamic programming to determine

P0 = min p(J) over all winning coalitions J . If P0 < C, then the constraint that

corresponds to argminw(J)≥T p(J) is violated. Let W =
P
i∈I wi. For k = 1, . . . , n

and w = 1, . . . ,W , let xk,w = min{p(J) | J ⊆ {1, . . . , k}, w(J) = w}. Clearly, we have

P0 = minw=T,...,W xn,w. It remains to show how to compute xk,w. For k = 1, we have

x1,w = p1 if w = w1 and x1,w = +∞ otherwise. Now, suppose we have computed xk,w
for all w = 1, . . . ,W . Then we can compute xk+1,w as min{xk,w, pk+1 + xk,w−wk

}.
The running time of this algorithm is polynomial in n and W , i.e., in the size of the

input.

Now, consider the application of the linear program for a weighted voting game

G = (I; w;T). The constructed imputation p is a solution for Construct-LeastCore

with instance G. Also, the solution to EpsilonCore with instance (G, ε) should be

“yes” iff ε ≥ 1 − C. The solution to In-LeastCore with instance (G,p′) should be

“yes” if and only if every winning coalition S ⊆ I has p′(S) ≥ C. This can be checked

in polynomial time using the separation oracle from the proof of Theorem 5.

We will now show that we can use the same approach to solve Construct-

EpsilonCore and In-EpsilonCore. Indeed, to solve In-EpsilonCore, we can simply

run the dynamic programming algorithm described above for the given input vector p

and check if P0 ≥ 1− ε. For Construct-EpsilonCore we modify the linear program

by removing the objective function (so that the linear program becomes a linear feasi-

bility program) and replacing C with 1− ε in all constraints involving C. Clearly, any

solution to this program is an imputation in the ε-core of the game, and the program

has no solutions if and only if the ε-core of the game is empty.

11

The linear program constructed in the proof of Theorem 5 has coefficients in {0, 1}.
It follows that this linear program has solutions that are rational numbers with poly-

nomial bit complexity. (Recall that the bit complexity of an integer number r is given

by 1 + dlog2(|r|+ 1)e, and the bit complexity of a rational number p/q, where p and q

are integers, is the sum of the bit complexities of p and q.)

Corollary 2 Suppose that ε is the value of the least core of a game G. Then ε is a

rational number whose bit complexity is at most 12n2(n + 1). Moreover, there is an

imputation p = (p1, . . . , pn) in the least core of G such that each pi has bit complexity

at most 12n2(n+ 1).

Proof Corollary 10.2a in [25, p. 122] states that a linear program of the form

max
x∈Rn

{(c,x) | Ax ≤ b},

where A is an m× n integer matrix, b is an integer vector of length m, c is an integer

vector of length n, and (c,x) denotes the inner product of c and x, has an optimal

solution given by a vector with rational coordinates that have bit complexity at most

4n2(n+1)(σ+1), where σ is the maximum bit complexity of the entries in A, b and c.

Observe that this bound does not depend on m (which in our case is exponential in n).

For the linear program that characterises the least core, all entries of the corresponding

matrix and vectors are 1, 0, or −1 (in particular, we have c = (0, . . . , 0, 1)), so we have

σ = 2. Hence, the bit complexity of the vector (p1, . . . , pn, C) is at most 12n2(n+ 1).

As ε = 1− C, the result follows.

3.2 Approximation scheme for the least core

In this section, we show that the pseudopolynomial algorithm of the previous section

can be converted into an approximation scheme. More precisely, we construct an algo-

rithm that, given a game G = (I; w;T) and a δ > 0, outputs ε′ such that if ε is the

value of the least core of G then ε ≤ ε′ ≤ ε+ 2δ. The running time of our algorithm is

polynomial in the size of the input as well as 1/δ, i.e., it is a fully polynomial additive

approximation scheme. Subsequently, we show that it can be modified into a fully poly-

nomial multiplicative approximation scheme (FPTAS), i.e., an algorithm that outputs

ε′ satisfying ε ≤ ε′ ≤ (1 + δ)ε [1, p.111].

Consider the linear program (1) in which C is some fixed integer multiple of δ and

the goal is to find a feasible solution for this value of C or report than none exists. It

is known that problems of this type can be solved in polynomial time as long as they

have a polynomial-time separation oracle. We will describe a subroutine A that, given

C, either outputs a feasible solution p for C − δ or correctly solves the problem for C.

Our algorithm runs A for C = 0, δ, 2δ, . . . , 1 and outputs ε′ = 1− C′, where C′ is the

maximum value of C for which A finds a feasible solution.

Clearly, we have ε ≤ 1 − C′. Now, let C∗ = 1 − ε be the optimal solution to the

original linear program and let k∗ = max{k | kδ ≤ C∗}. As k∗δ ≤ C∗, there is a feasible

solution for k∗δ. When A is given k∗δ, it either solves the linear program correctly, i.e.,

finds a feasible solution for k∗δ, or finds a feasible solution for k∗δ− δ. In any case, we

have C′ ≥ (k∗ − 1)δ ≥ C∗ − 2δ, i.e., 1− C′ ≤ ε+ 2δ.

It remains to describe the subroutine A. Given a C = kδ, it attempts to solve the

linear program using the ellipsoid method. However, whenever the ellipsoid method

12

calls the separation oracle for some payoff vector p, we simulate it as follows. We set

δ′ = δ/n and round down p to the nearest multiple of δ′, i.e., set p′i = max{jδ′ | jδ′ ≤
pi}. We have 0 ≤ pi− p′i ≤ δ

′. Let xi,j = max{w(J) | J ⊆ {1, . . . , j},p′(J) = iδ′}. The

values xi,j are easy to compute by dynamic programming. Consider U = max{xi,n |
i = 1, . . . , (k− 1)n− 1}. This is the maximum weight of a coalition whose total payoff

under p′ is at most C − δ − δ′. Since all entries of the modified payoff vector p′ are

multiples of δ′, this is the maximum weight of a coalition whose total payoff under p′

is less than C − δ. If U < T , the payoff to each winning coalition under p′ is at least

C − δ; as pi ≥ p′i for all i ∈ I, the same is true for p. Hence, p is a feasible solution for

C − δ, so A outputs p and stops.

If U ≥ T , there exists a winning coalition J such that p′(J) < C − δ. Since

|p′i − pi| ≤ δ′ = δ/n for all i ∈ I, this implies p(J) < C. Moreover, this J can be

found using standard dynamic programming techniques. This means that that we have

found a violated constraint, i.e., successfully simulated the separation oracle and can

continue with the ellipsoid method.

To convert this algorithm into an FPTAS, we need the following lemma.

Lemma 3 If the core of a weighted voting game G = (I; w;T) is empty, i.e., the value

of the least core of G is greater than 0, then this value is at least 1
n .

Proof The proof is similar to that of Theorem 2. Consider any imputation p in the

least core of G. There exists an agent i such that pi ≥ 1
n . As the core of G is empty, it

cannot be the case that i is present in all winning coalitions, i.e., there exists a coalition

J such that i 6∈ J , w(J) ≥ T . On the other hand, we have p(J) ≤ 1− 1
n , so the value

of the least core of G is at least 1
n .

We are now ready to prove the main result of this section.

Theorem 6 There exists a fully polynomial time approximation scheme for the value

of the least core of a weighted voting game, i.e., an algorithm that, given a game G =

(I; w;T) and a parameter δ, outputs an ε′ that satisfies ε ≤ ε′ ≤ (1 + δ)ε, where ε is

the value of the least core of G, and runs in time poly(n, logw(I), 1/δ).

Proof Set δ′ = 2δ/n and run the algorithm described above on G, δ′. Clearly, the

running time of this algorithm is polynomial in n, logw(I), and 1/δ. Moreover, it

outputs ε′ that satisfies ε ≤ ε′ ≤ ε + 2δ′. We have ε + 2δ′ = ε + δ/n ≤ ε(1 + δ), and

therefore ε′ ≤ ε(1 + δ).

4 The Nucleolus

Consider the following computational problems:

Name: Nucleolus.

Instance: Weighted voting game (I; w;T), agent i ∈ I.

Output: The nucleolus payoff of agent i in (I; w;T).

Name: IsZero-Nucleolus.

Instance: Weighted voting game (I; w;T), agent i ∈ I.

Question: Is the nucleolus payoff of agent i in (I; w;T) equal to 0?

13

We will show that IsZero-Nucleolus is coNP-hard. Clearly, this implies that the

function problem Nucleolus is NP-hard. We start with the following lemma.

Lemma 4 For weighted voting games, if an agent i is a dummy, his nucleolus payoff

is 0.

Proof Suppose that i is a dummy, i.e., ν(S) = ν(S ∪ {i}) for all S ⊆ I, but xi 6= 0,

and consider the excess vector for x. Let e(x, S) be the first element of this vector;

clearly, ν(S) = 1. It is easy to see that i 6∈ S: otherwise, we would have ν(S \ {i}) = 1

and moreover, x(S \ {i}) = x(S)− xi < x(S). Now, consider an imputation q given by

qi = xi
2 , qj = xj + xi

2(n−1)
for j 6= i. For any non-empty coalition T such that i 6∈ T we

have q(T) > x(T). Moreover, as qi 6= 0, using the same argument as for x, we conclude

that the first element of the excess vector e(q, T) satisfies i 6∈ T . Hence,

e(q, T) = q(T)− ν(T) > x(T)− ν(T) = e(x, T) ≥ e(x, S),

a contradiction with the definition of the nucleolus.

Remark 1 The converse of Lemma 4 is not true. Consider the coalitional game with

I = {1, 2, 3}, w = { 1
2 ,

1
4 ,

1
4} and T = 3

4 . Winning coalitions are those that contain

agent 1 and at least one of agents 2 and 3. Players 3 is not a dummy because for

S = {1, 3} we have ν(S) = 1, ν(S \ {3}) = 0. However, since 1 is a veto player, by

Theorem 2, the nucleolus payoff of player 3 is 0.

Theorem 7 The problem IsZero-Nucleolus is coNP-hard.

Proof As in the proof of Theorem 3, we construct a weighted voting game based on

an instance of Partition. Given an instance A = (a1, . . . , an;K) of Partition, let

G = (I; w;T) be the weighted voting game with I = {1, . . . , n, n + 1}, T = K + 1,

wn+1 = 1, and wi = ai for i = 1, . . . , n. We will show that xn+1 6= 0 if and only if A

is a “yes”-instance of Partition.

Suppose first that A is a “no”-instance of Partition. Consider any winning coali-

tion S ⊆ I such that n + 1 ∈ S. We have w(S) ≥ K + 1. Moreover, if w(S) = K + 1,

then w(S \ {n+ 1}) = K, implying that there is a partition. Hence, w(S) > K + 1, or,

equivalently, ν(S \ {n+ 1}) = 1. We conclude that the (n+ 1)st agent is a dummy. By

Lemma 4, this implies xn+1 = 0.

Now, suppose that A is a “yes”-instance of Partition. Let I ′ = I − {n + 1} and

let J be a partition of I ′ satisfying w(J) = w(I ′ \ J) = K. Consider an imputation

p with pn+1 = 0. The sets S1 = J ∪ {n + 1} and S2 = (I ′ \ J) ∪ {n + 1} satisfy

ν(S1) = ν(S2) = 1. As pn+1 = 0, we have p(S1) + p(S2) = p(J) + p(I ′ \ J) = 1, so

min{e(p, S1), (p, S2)} ≤ − 1
2 . That is, for any imputation with pn+1 = 0 the minimum

excess is at most − 1
2 . On the other hand, under the imputation qi = wi

2K+1 the payoff

of each winning coalition is at least K+1
2K+1 >

1
2 , i.e., for this imputation the minimum

excess is strictly greater than − 1
2 . As we have minS⊆I e(x, S) ≥ minS⊆I e(q, S), we

conclude that xn+1 6= 0.

Remark 2 Theorem 7 implies that the problem Nucleolus cannot be approximated

within any constant factor unless P=NP. More formally, it is not in the complexity

class APX [1, p.91] unless P=NP.

14

Remark 3 We can use the construction in the proof of Theorem 3 to show that Nucle-

olus is NP-hard; however, it does not imply the coNP-hardness of IsZero-Nucleolus.

Conversely, the proof of Theorem 7 does not immediately imply that the least core-

related problems are computationally hard. Therefore, to prove that all of our problems

are computationally hard, we need both constructions.

Remark 4 While we have proved that IsZero-Nucleolus is coNP-hard, it is not clear

if it is in coNP. Indeed, to verify that the nucleolus payoff of an agent i is 0, we would

have to prove that there is an imputation x (the nucleolus) with xi = 0, and that any

imputation p with pi > 0 produces an excess vector that is lexicographically smaller

than that of x. The latter condition involves exponentially-long vectors.

It is natural to ask if the pseudopolynomial time algorithm for the least core-related

problems that was presented in the previous section can be adapted to compute the

nucleolus. Paper [13] shows that the answer to this question is “yes”, but the general-

isation is far from trivial.

4.1 Approximating the Nucleolus

Without loss of generality, we can assume that the sum of the weights in a weighted

voting game is 1. We will refer to such a game as a normalised weighted voting game.

Note that any weighted voting game is equivalent to some normalised game.

For many normalised weighted voting games considered in the literature, the vector

w coincides with the nucleolus. For example, consider the set C of constant-sum games.

A normalised weighted voting game G = (I; w;T) is in C if, for all S ⊆ I, ν(S) + ν(I \
S) = 1. Peleg[21] shows the following. Suppose G = (I; w;T) ∈ C. Let x be the

nucleolus for G and let G′ = (I; x;T). Then the nucleolus of G′ is also equal to x. A

similar result for the set C′ of symmetric games is shown in [31].

A normalised weighted voting game G = (I; w;T) is in C′ if T = 1
2 and there is a

coalition S with ν(S) = ν(I \ S).

It is not true in general that the vector w coincides with the nucleolus. It is also

not true that wi is a good approximation to the nucleolus payoff xi. For example, in

the game considered in Remark 1 the nucleolus payment x3 is 0 but w3 = 1
4 (so these

are not related by a constant factor). The nucleolus payment xi can also exceed wi by

an arbitrary factor. For example, take an arbitrarily small δ > 0. Consider the game

with I = {1, 2}, w = {1 − δ, δ}, and T = 1 − δ/2. By Theorem 2, x = (0.5, 0.5) so

x2 = 0.5. In any case, it is clear from Corollary 2 that wi cannot be a constant-factor

approximation to the nucleolus payment xi of an individual agent i, since that would

imply P=NP.

However, if we focus on approximating the payoffs of coalitions rather than individ-

ual players, we can obtain positive results for a large class of weighted voting games.

Namely, in Theorem 8 we show that, for an appropriate sense of approximation based

on coalitions, the vector w can be seen as a good approximation to the nucleolus. While

this notion of approximation is quite different from the traditional one, we believe that

it may be appropriate in the context of coalitional games: in such games, decisions to

deviate are made by coalitions rather than individual players, and it is assumed that

the players within a coalition can redistribute the payoffs. Hence, it makes sense to

compare the behavior of two payoff vectors from the perspective of coalitions.

We start with a simple lower bound on nucleolus payments.

15

Lemma 5 Let G = (I; w;T) be a normalised weighted voting game. If w(S) ≥ T then

x(S) ≥ T .

Proof A winning coalition S has e(w, S) = w(S)−1 ≥ T −1. The nucleolus maximises

the minimum payoff to a winning coalition, so e(x, S) ≥ T − 1 and x(s) ≥ T .

A minimal winning coalition is a coalition S with w(S) ≥ T such that every proper

subset S′ ⊂ S satisfies w(S′) < T . We will now use Lemma 5 to show that the weight

of any minimal winning coalition is at most twice its nucleolus payoff.

Lemma 6 Let G = (I; w;T) be a normalised weighted voting game. Suppose that

every agent i ∈ I has wi ≤ T . Let S ⊆ I be a minimal winning coalition in G. Then

w(S) < 2x(S).

Proof Let i be an agent in S. Since S is minimal, w(S \ {i}) < T . So w(S) < T +wi <

2T . The result now follows from Lemma 5.

We do not know whether there is a value α such every minimal winning coalition

S of a normalised weighted voting game satisfies x(S) ≤ αw(S). However, it is easy to

see that this is true with α = 2 if T ≥ 1
2 since x(S) ≤ 1 and, for a winning coalition S,

w(S) ≥ T ≥ 1
2 . So we get the following observation.

Observation 1 Let G = (I; w;T) be a normalised weighted voting game with T ≥ 1
2 .

Let S ⊆ I be a winning coalition in G. Then x(S) ≤ 2w(S).

If T is less than 1
2 but is relatively large compared to the individual weights, the

vector w is still a good approximation to the nucleolus.

Lemma 7 Consider a normalised weighted voting game G = (I; w;T) that satisfies

wi ≤ εT , T ≥ ε
1+ε for some ε ≤ 1. For any such game, any minimal winning coalition

S ⊆ I satisfies x(S) ≤ 3w(S)

Proof For any minimal winning coalition S, we have w(S \ {i}) < T for all i ∈ S, so

w(S) < T+wi < T (1+ε). Now, fix a minimal winning coalition S0. We have w(S0) ≥ T ,

w(I \S0) > 1−T (1+ ε). We can construct a collection of t = b 1−T (1+ε)
T (1+ε)

c ≥ 1
T (1+ε)

−2

disjoint minimal winning coalitions in I \ S0. (For example, we can construct these

coalitions consecutively by adding agents to a current coalition one by one until the

weight of the coalition under construction becomes at least T .) Let these coalitions

be S1, . . . , St. Lemma 5 implies x(Si) ≥ T for i = 1, . . . , t. Hence, x(S0) ≤ 1 − tT ≤
2T − 1

1+ε + 1 ≤ 2T + ε
1+ε ≤ 3T ≤ 3w(S0).

Remark 5 Let G = (I; w;T) be a normalised weighted voting game which satisfies

wi ≤ T 2 for every agent i ∈ I. Then Lemma 7 applies with ε = T .

Remark 6 By setting ε = 1 in Lemma 7, we can obtain that x(S) ≤ 3w(S) for T ≥ 1
2

with the additional restriction that wi ≤ T for all wi; considering the case T ≥ 1
2

separately using Observation 1 gives us a stronger result.

Lemma 6, Observation 1 and Lemma 7 give us the following theorem. The theorem

shows that, for a wide class of normalised weighted voting games, the weight vector w

approximates the nucleolus x in the sense that the payoff to a minimal winning coalition

only differs by at most a factor of 3 under these two imputations.

16

Theorem 8 Let G = (I; w;T) be a normalised weighted voting game. Suppose that

every agent i ∈ I has wi ≤ T . If T ≥ 1
2 then any minimal winning coalition S satisfies

w(S)/2 ≤ x(S) ≤ 2w(S). If there is an ε ∈ (0, 1] such that T ≥ ε
1+ε and every agent

satisfies wi ≤ εT then any minimal winning coalition S satisfies w(S)/2 ≤ x(S) ≤
3w(S).

5 Generalisations to k-vector Weighted Voting Games

While weighted voting game represent a wide class of decision-making scenarios, there

are also natural classes of problems that cannot be represented in this manner. Con-

sider, for example, a political decision-making procedure in which, to pass a bill, the

total weight of a coalition must exceed a certain threshold, and, in addition, the size

of the coalition must exceed a certain threshold as well. Similarly, in task execution

scenarios, there may be several types of resources needed to achieve a task, and each

agent may possess a certain amount of each resource. Such coalitional games can be

seen as intersections of weighted voting games, in the sense that a coalition is winning

if it is a winning coalition in each of the component games. Formally, such scenarios

are modeled as k-vector weighted voting games, defined as follows [29,30].

Definition 2 A k-vector weighted voting game is given by a set of players I, |I| =

n, a list of k n-dimensional vectors (w1, . . . ,wk), and a list of k thresholds T =

(T 1, . . . , T k); we write G = (I; w1, . . . ,wk; T). Given a k-vector weighted voting game

G = (I; w1, . . . ,wk; T), we say that a coalition J ⊆ I is winning if we have wj(J) ≥ T j
for all j = 1, . . . , k, and losing otherwise. The parameter k is usually referred to as the

dimension of the game.

It is well-known [29] that not all k-vector weighted voting games can be represented

as weighted voting games. Consider, for example, a 2-dimensional game G with four

players {1, 2, 3, 4}, weight vectors w1 = (9, 1, 5, 5) and w2 = (1, 9, 5, 5) and thresholds

T 1 = T 2 = 10. In this game, {1, 2} and {3, 4} are winning coalitions. However, if we

swap the players 2 and 3, i.e., consider the coalitions {1, 3} and {2, 4}, we observe

that both of these coalitions are losing: indeed, w2
1 + w2

3 < 10, w1
2 + w1

4 < 10. On the

other hand, in [29] it is shown that this situation cannot occur in a weighted voting

game. More precisely, given a weighted voting game G′ = (I ′; w′;T ′) and two disjoint

winning coalitions C1 and C2, for all x ∈ C1, y ∈ C2 with weights w′x, w
′
y, at least

one of the coalitions C1 \ {x} ∪ {y} and C2 \ {y} ∪ {x} must be winning: if w′x ≥ w′y,

then w′(C2 \ {y} ∪ {x}) ≥ w′(C2) ≥ T ′, and if w′x < w′y, then w′(C1 \ {x} ∪ {y}) ≥
w′(C1) ≥ T ′. We conclude that G cannot be represented as a weighted voting game.

Several complexity questions related to k-vector weighted voting games are studied

in [12]; however, paper [12] does not consider stability issues in such games. In this

section, we extend some of the results presented in the previous sections to k-vector

weighted voting games. First, observe that Theorem 2 applies to all simple games,

and, in particular to k-vector weighted voting games. Hence, we get the following

generalisation of Corollary 1.

Corollary 3 There exists a polynomial-time algorithm that checks whether the core

of a k-vector weighted voting game is non-empty. Moreover, if the core is non-empty,

the nucleolus has polynomially-bounded rational coordinates and can be computed in

polynomial time.

17

For any positive integer k, we can extend all of our computational problems by

allowing the input to be a k-vector weighted voting game (rather than a weighted

voting game). We refer to the extended problem by the same name as the original

problem, but with the prefix “k-”. For example, we define k-EmptyCore as follows.

Name: k-EmptyCore.

Instance: k-vector weighted voting game G = (I; w1, . . . ,wk; T).

Question: Is the core empty?

Any weighted voting game can be trivially represented as a k-vector weighted voting

game by introducing dummy weight vectors w2 = · · · = wk = (0, . . . , 0) and dummy

thresholds T 2 = · · · = T k = 0. Hence, we get the following generalisation of Theorem 3.

Theorem 9 The decision problems k-EpsilonCore and k-In-EpsilonCore are coNP-

hard. The decision problem k-In-LeastCore is NP-hard. The function problems k-

Construct-EpsilonCore and k-Construct-LeastCore are NP-hard.

We also get the following generalisation of Theorem 7.

Theorem 10 The problem k-IsZero-Nucleolus is coNP-hard.

As for our algorithmic results, the situation is more complicated. We can modify

the pseudopolynomial time algorithm presented in the proof of Theorem 5 to work for

k-vector weighted voting games. Thus, we have the following result.

Theorem 11 Given a k-vector weighted voting game G = (I; w1, . . . ,wk; T), the

problems k-EpsilonCore, k-Construct-EpsilonCore, k-In-EpsilonCore, k-Construct-

LeastCore, and k-In-LeastCore can be solved in time poly(n,W k), where

W = max
j=1,...,k

nX
i=1

wji

In particular, if the weights wji are presented in unary and k is fixed, then these problems

can be solved in polynomial time.

Proof The proof is similar to that of Theorem 5. Namely, we consider the linear program

max C;

p1 + · · ·+ pn = 1

pi ≥ 0 for all i = 1, . . . , nX
i∈J

pi ≥ C for all J ⊆ I such that J is a winning coalition in G (2)

and show that it can be solved in polynomial time by constructing a polynomial-time

separation oracle for it.

As in the proof of Theorem 5, the separation oracle is an algorithm that takes a

vector (p1, . . . , pn, C) as an input and checks if there is a winning coalition J such thatP
i∈J pi < C. Our algorithm is based on dynamic programming. For j = 1, . . . , n and

any integer vector v = (v1, . . . , vk) ∈ [0,W]k, let

x(j,v) = min{p(J) | J ⊆ {1, . . . , j}, w1(J) = v1, . . . , wk(J) = vk}.

18

It is straightforward to compute x(1,v): we have x(1,v) = p1 if w1
1 = v1, w2

1 =

v2, . . . , wk1 = vk and x(1,v) = +∞ otherwise. Now, suppose we have computed x(j,v)

for all v ∈ [0,W]k. Then we can compute x(j + 1,v) as min{x(j,v), pj+1 + x(j,v′)},
where v′ is given by (v1−w1

j+1, . . . , v
k−wkj+1). Now, suppose that we have computed

x(n,v) for all v ∈ [0,W]k. We can now check all vectors v that correspond to winning

coalitions of G, i.e., the ones that satisfy vj ≥ T j for j = 1, . . . , k. If any of the

corresponding values of x(n,v) is less than C, then there is a violated constraint. The

running time of this algorithm is polynomial in n and W k, hence we have successfully

constructed an efficient separation oracle for our linear program.

As in the proof of Theorem 5, a solution to this linear program can be converted

to solutions to k-EpsilonCore, k-In-LeastCore, k-Construct-LeastCore, k-In-

LeastCore, and k-Construct-LeastCore.

On the other hand, we do not know how to adapt our approximation algorithm

to run in polynomial time for k-vector weighted voting games. Intuitively, the reason

for this is that in this setting we cannot use dynamic programming to find a winning

coalition that is paid less than a certain amount. We propose finding an approximation

algorithm for the least core in k-vector weighted voting games as an open problem.

6 Related Work

Cooperative game theory was introduced into to the artificial intelligence community

largely through the work of Shehory and Kraus [28], who emphasised the coalition

formation problem from a computational point of view. They developed algorithms

for coalition structure formation in which agents were modelled as having different

capabilities, and were assumed to benevolently desire some overall task to be accom-

plished, where this task had some complex (plan-like) structure [26–28]. Sandholm and

colleagues developed algorithms to find optimal coalition structures (i.e., partitions of

agents) with worst case guarantees (that is, ones whose performance is within some

given ratio bound k of optimal) [23].

More recently, the general issue of finding representations for coalitional games that

strike a useful balance between tractability and expressive power has received some

attention. Conitzer and Sandholm consider a modular representation of coalitional

games, where a characteristic function is represented as a collection of sub-games [5];

under this representation, they showed that checking non-emptiness of the core is coNP-

complete. In related work, Ieong and Shoham propose a representation of coalitional

games called marginal contribution nets [16]. In this representation, a characteristic

function over a set I of agents is represented as a set of rules, with the structure

pattern −→ value.

The pattern is a propositional formula whose variables correspond to the elements of

I, and such a rule is said to apply to a group of agents S if the truth assignment that

sets the variables corresponding to the elements of S to > while setting all other vari-

ables to ⊥ satisfies this formula. The value of a coalition in the marginal contribution

network representation is then the sum over the values of all the rules that apply to the

coalition. Ieong and Shoham show that, under this representation, checking whether

an imputation is in the core is coNP-complete, while checking whether the core is

19

non-empty is coNP-hard. They also show that their representation can capture that of

Conitzer and Sandholm [5].

The first systematic investigation of the computational complexity of solution con-

cepts in coalitional games was undertaken by Deng and Papadimitriou [9]. They used a

representation based on weighted graphs. To represent a coalitional game with agents

I, they used an undirected graph on I, with integer weights wi,j between nodes i, j ∈ I.

The value ν(C) of a coalition C ⊆ I was then defined to be
P
{i,j}⊆I wi,j , i.e., the value

of a coalition C ⊆ I is the weight of the subgraph induced by C. Given this representa-

tion, Deng and Papadimitriou showed that the problem of determining emptiness of the

core was NP-complete, while the problem of checking whether a specific imputation was

in the core of such a game was coNP-complete [9, p.260]; they also showed that these

problems could be solved in polynomial time for graphs with non-negative weights [9,

p.261], and gave the first complexity results for weighted voting games. Subsequently,

computational complexity issues have been studied for many other compactly repre-

sentable coalitional games. Bilbao and colleagues [3] surveyed a representative sample

of papers in this area. They focussed on settings in which the characteristic function

was given by various combinatorial structures. Given such representations, they showed

that (1) establishing membership of the core ranges from polynomial-time computable

to coNP complete; (2) determining whether the core is empty is in general NP-complete;

(3) computing the Shapley value is in general #P-complete; (4) computing the nucle-

olus is in general NP-hard. However, there exist natural games in which some or all of

these problems are polynomial-time solvable. For example, Deng et al. [7] show that

the nucleolus of a network flow game can be computed in polynomial time.

With respect to computational aspects of weighted voting games, the focus of the

existing research has been on fairness-related solution concepts. In particular, it has

been shown that, for weighted voting games, computing the Shapley value of a given

player is #P-complete [14], and that it is coNP-hard to determine whether this value is

zero [18,8,22]. In fact, even approximating the Shapley value within a constant factor

is intractable unless P=NP—see Remark 2. On the other hand, there exist presu-

dopolynomial algorithms for computing the Shapley value that are based on dynamic

programming [14,17]. Many of these results apply to the Banzhaf power index [2],

another popular solution concept for this class of games.

7 Conclusions and Future Work

We have systematically investigated the complexity of solution concepts for weighted

voting games, a compact class of simple coalitional games that are widely used in prac-

tice. We have shown that many stability-related solution concepts in weighted voting

games are hard to compute when the players’ weights are given in binary. The complex-

ity results for the decision problems considered in the paper are summarised in Table 7.

On the other hand, for the least core-related problems, we provided both pseudopoly-

nomial algorithms (i.e., algorithms that run in time polynomial in the maximum weight

— see Theorem 5) and a fully polynomial time approximation scheme (FPTAS — see

Theorem 6). We also generalised many of our results to k-vector weighted voting games

(see Section 5). One of the main contributions of the present paper is to consider the

least core and the nucleolus: while other solution concepts such as the core and Shapley

value have been thoroughly studied from a computational point of view, the least core

and the nucleolus has attracted little attention in this respect.

20

Perhaps the most obvious and exciting directions for future work involve considering

combinations of weighted voting games. Our first results in this direction are presented

in section 5, and relate to conjunctions of weighted voting games, in which a coalition

wins overall if it wins in a collection of k distinct weighted voting games. Such multi-

cameral decision making bodies are common in the political world: examples include

the US federal legislature and the voting system of the European Union [30]. One can

imagine other, richer voting systems, for example involving Boolean combinations of

weighted voting games.

Acknowledgments: This research was supported by the EPSRC under the “Market

Based Control” project, and by the ESRC EUROCORES LogiCCC project “Compu-

tational Foundations of Social Choice”. A preliminary version of this paper appeared

in AAAI’07 [11].

References

1. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi.
Complexity and Approximation. Springer-Verlag: Berlin, Germany, 1999.

2. J. F. Banzhaf. Weighted voting doesn’t work: a mathematical analysis. Rutgers Law
Review, 19:317–343, 1965.

3. J. Bilbao, J. Fernández, and J. López. Complexity in cooperative game theory. Manuscript.
4. J. M. Bilbao, J. R. Fernández, N. Jiminéz, and J. J. López. Voting power in the European

Union enlargement. European Journal of Operational Research, 143:181–196, 2002.
5. V. Conitzer and T. Sandholm. Computing Shapley values, manipulating value division

schemes, and checking core membership in multi-issue domains. In Proceedings of the
Ninteenth National Conference on Artificial Intelligence (AAAI-2004), pages 219–225,
San Jose, CA, 2004.

6. V. Conitzer and T. Sandholm. Complexity of constructing solutions in the core based on
synergies among coalitions. Artificial Intelligence, 170:607–619, 2006.

7. X. Deng, Q. Fang, and X. Sun. Finding nucleolus of flow game. In Proceedings of the
Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 124–131, New
York, 2006. ACM.

8. X. Deng and C. H. Papadimitriou. On the complexity of cooperative solution concepts.
Math. Oper. Res., 19(2):257–266, 1994.

9. X. Deng and C. H. Papadimitriou. On the complexity of cooperative solution concepts.
Mathematics of Operations Research, 19(2):257–266, 1994.

10. E. Elkind, G. Chalkiadakis, and N. R. Jennings. Coalition structures in weighted voting
games. In Proc. 18th European Conference on Artificial Intelligence (ECAI’08), 2008.

11. E. Elkind, L. A. Goldberg, P. W. Goldberg, and M. Wooldridge. Computational com-
plexity of weighted threshold games. In Proc. 22nd Conference on Artificial Intelligence
(AAAI’07), 2007.

12. E. Elkind, L. A. Goldberg, P. W. Goldberg, and M. Wooldridge. On the dimensionality
of voting games. In Proc. 23rd Conference on Artificial Intelligence (AAAI’08), 2008.

13. E. Elkind and D. Pasechnik. Computing the nucleolus of weighted voting games. In Proc.
20th ACM-SIAM Symposium on Discrete Algorithms (SODA’09), 2009.

Problem name Lower bound Upper bound Reference
EmptyCore P P Corollary 1
EpsilonCore coNP Σp

2 Theorems 3, 4
In-EpsilonCore coNP coNP Theorem 4
In-LeastCore NP Πp

2 Theorems 3, 4
IsZero-Nucleolus coNP ? Theorem 7

Table 1 Complexity results for binary weights

21

14. M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

15. M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinatorial op-
timization, volume 2 of Algorithms and Combinatorics. Springer-Verlag, Berlin, second
edition, 1993.

16. S. Ieong and Y. Shoham. Marginal contribution nets: A compact representation scheme for
coalitional games. In Proceedings of the Sixth ACM Conference on Electronic Commerce
(EC’05), Vancouver, Canada, 2005.

17. T. Matsui and Y. Matsui. A survey of algorithms for calculating power indices of weighted
majority games. J. Oper. Res. Soc. Japan, 43(1):71–86, 2000. New trends in mathematical
programming (Kyoto, 1998).

18. Y. Matsui and T. Matsui. NP-completeness for calculating power indices of weighted ma-
jority games. Theoret. Comput. Sci., 263(1-2):305–310, 2001. Combinatorics and computer
science (Palaiseau, 1997).

19. M. J. Osborne and A. Rubinstein. A Course in Game Theory. The MIT Press: Cambridge,
MA, 1994.

20. C. H. Papadimitriou. Computational Complexity. Addison-Wesley: Reading, MA, 1994.
21. B. Peleg. On weights of constant-sum majority games. SIAM J. Appl. Math., 16:527–532,

1968.
22. K. Prasad and J. S. Kelly. NP-completeness of some problems concerning voting games.

Internat. J. Game Theory, 19(1):1–9, 1990.
23. T. Sandholm, K. Larson, M. Andersson, O. Shehory, and F. Tohmé. Coalition structure

generation with worst case guarantees. Artificial Intelligence, 111(1–2):209–238, 1999.
24. D. Schmeidler. The nucleolus of a characteristic function game. SIAM J. Appl. Math.,

17:1163–1170, 1969.
25. A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003.
26. O. Shehory and S. Kraus. Coalition formation among autonomous agents: Strategies and

complexity. In C. Castelfranchi and J.-P. Müller, editors, From Reaction to Cognition
— Fifth European Workshop on Modelling Autonomous Agents in a Multi-Agent World,
MAAMAW-93 (LNAI Volume 957), pages 56–72. Springer-Verlag: Berlin, Germany, 1995.

27. O. Shehory and S. Kraus. Task allocation via coalition formation among autonomous
agents. In Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence (IJCAI-95), pages 655–661, Montréal, Québec, Canada, Aug. 1995.

28. O. Shehory and S. Kraus. Methods for task allocation via agent coalition formation.
Artificial Intelligence, 101(1-2):165–200, 1998.

29. A. Taylor and W. Zwicker. Weighted voting, multicameral representation, and power.
Games and Economic Behavior, 5:170–181, 1993.

30. A. D. Taylor and W. S. Zwicker. Simple Games: Desirability Relations, Trading, Pseu-
doweightings. Princeton University Press, 1999.

31. L. A. Wolsey. The nucleolus and kernel for simple games or special valid inequalities for
0 − 1 linear integer programs. Internat. J. Game Theory, 5(4):227–238, 1976.

