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Routing in Optical Networks:
The Problem of Contention

LESLIE ANN GOLDBERG

ABSTRACT. A Completely Connected Optical Communication Parallel Com-
puter (OCPC) consists of n processors which are connected by a complete
network. Communication on this network proceeds in a sequence of syn-
chronous communication steps. During each communication step each pro-
cessor can send one message to any other processor. If a processor is the
destination of a single message during a communication step then it receives
the message. However, if a processor is the destination of more than one
message during a communication step then the messages are garbled and
they are not delivered. We consider a class of message routing algorithms
called token routing algorithms. An algorithm for routing messages on an
optical network is said to be a token routing algorithmif it has the property
that the only messages that are exchanged by the processors are the orig-
inal messages to be routed, and these messages are treated as tokens. In
this model each message is associated with a token which is passed on when
the message is sent. Messages can be forwarded from one processor to an-
other. However, a processor must have the token corresponding to a given
message in order to send the message. We consider a contention resolution
problem in which two processors (which are not known to each other) are
given messages and the goal is to get both messages to processor 1. This
problem can be solved in O(loglogn) steps by a deterministic token rout-
ing algorithm. We show that all deterministic token routing algorithms for
solving this problem require Q(loglog n) steps. As a corollary, we find that
every deterministic token-routing algorithm for routing k-relations on an
n-processor OCPC requires §2(k + loglogn) communication steps.
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1. Introduction

In massively parallel computers, processors communicate by exchanging mes-
sages over a network of communication links. In current machines the network is
necessarily of low degree. Each processor can communicate directly with only a
few other processors, and the remainder of the processors must be reached indi-
rectly by routing messages along a sequence of links. Optical technology is likely
to significantly speed up parallel computation because it makes it possible to
build networks of high degree. In particular, the huge bandwidth of the optical
medium can be divided so that each processor has its own channel for receiving
messages and each processor can send on any channel’. Even though such an in-
terconnection network is a complete graph, there remains the constraint that no
processor can receive messages simultaneously from two other processors without
corruption. That is, contention makes it difficult to route messages. Our goal is
to understand the effect of contention on optical routing problems.

The mathematical model that we use for optical routing is the Completely
Connected Optical Communication Parallel Computer (OCPC) model of Ander-
son and Miller [1]). In this model, n processors are connected by a complete
network. Communication on this network consists of a sequence of synchronous
communication steps. During each communication step each processor can send
one message to any other processor. If a processor is the destination of a sin-
gle message during a given communication step then it receives the message.
However, if a processor is the destination of more than one message during a
communication step then the messages are garbled and they are not delivered.

Previous papers related to the problem of routing on the OCPC include [1,
5, 6, 7, 8, 9, 11 and 13). One problem that has been studied is that of
routing an h-relation on an OCPC. An h-relation is a communication problem
in which each processor has at most h messages to send and at most h messages to
receive. Anderson and Miller [1] have observed that an h-relation can be routed
in A communication steps if all of the processors are given total information
about the h-relation to be realized. It is more usual to assume that initially each
processor only knows about the messages that it wants to send and the processors
learn about the h-relation only by receiving messages from other processors.
In this case it is difficult to avoid contention and the problem of routing A-
relations becomes (provably) more difficult. In particular, Goldberg, Jerrum
and MacKenzie [8] have shown that (for A > 1) every randomized algorithm for
routing arbitrary h-relations on an n-processor OCPC requires Q(h ++/loglogn)
expected communication steps. The fastest known randomized algorithm for
solving this problem (due to Goldberg, Jerrum, Leighton, and Rao [7]) takes
O(h + loglogn) communication steps.

We believe that every randomized algorithm for routing h-relations on an n-

1The division of the bandwidth is typically done by wavelength division multiplezing. For
more information about the implementation of such networks see [10], [3] and [4] and the
references in [6] and [12].
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processor OCPC requires Q(k + loglogn) communication steps. However, this
conjecture has not been proved. More is known for specific classes of optical
routing algorithms. In particular, several authors have studied a class of al-
gorithms called direct algorithms for routing h-relations. An OCPC algorithm
for realizing h-relations is said to be direct if it has the property that the only
messages that are exchanged by the processors are the original messages of the
h-relation and these messages are sent directly to their destinations with no
forwarding. Geréb-Graus and Tsantilas [6] have shown that h-relations can
be routed in O(h + log hlogn) expected communication steps by a randomized
direct algorithm. MacKenzie, Plaxton and Rajaraman [11] have shown that
every such algorithm requires Q(h + (log h/ loglog k) log n) expected communi-
cation steps. MacKenzie, Plaxton and Rajaraman have also studied the problem
of routing h-relations with deterministic direct algorithms. They showed that
Q(hlogn/logh) steps are required and that O(hlognlogh) steps suffice.

The lower bounds of MacKenzie, Plaxton and Rajaraman demonstrate that
direct algorithms are not very good at dealing with contention in optical net-
works. The goal of this work is to investigate the contention-resolution capability
of a wider class of algorithms, which we call foken routing algorithms. An algo-
rithm for routing messages on an optical network is said to be a token routing
algorithm if it has the property that the only messages that are exchanged by
the processors are the original messages to be routed and these messages are
treated as tokens. In this model, messages can be forwarded from one processor
to another. However, a processor must have the token corresponding to a given
message in order to send the message. (The token is passed on when the message
is sent.) The motivation for considering token routing algorithms is that copy-
ing messages is expensive, so one would like to have message-routing algorithms
which do not make many copies of the messages to be delivered. Token routing
algorithms do not make copies of messages. The routing algorithm of Goldberg,
Jerrum, Leighton, and Rao, by contrast, could make up to logn copies of any
given message.

In order to investigate the contention-resolution capability of token-routing
algorithms, we study a simple contention resolution problem, which we call the
2-contention resolution problem. In this problem, two processors (which are not
known to each other) are given messages and the goal is to get both messages to
processor 12, In this paper we confine our attention to deterministic algorithms.
The 2-contention resolution problem can be solved in O(loglogn) steps by a
deterministic token routing algorithm on an n-processor OCPC. We show that
all such algorithms require Q(loglogn) steps®. As a corollary, we find that every

2The 2-contention resolution problem is similar to the 2-station “control tower problem”
studied in [11]. The only difference is that the control tower problem requires algorithms to
be direct. (A similar problem has been studied in a different context in [2].)

3In fact, we show that for any z > 2, the z-contention resolution problem, in which z
processors are given messages to deliver to processor 1, requires (z +loglog n) communication
steps. Surprisingly, this result is not implied by the fact that Q(loglog n) steps are required to
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deterministic token-routing algorithm for routing h-relations on an n-processor
OCPC requires Q(h + loglogn) communication steps.

2. Contention Resolution by Token Routing Algorithms

We begin this section by observing that the 2-contention resolution problem
can be solved in O(log log n) steps by a token routing algorithm on an n-processor
OCPC. The algorithm, which was suggested to us by Satish Rao, is as follows.
Suppose that the two messages are given to the ith processor and the jth pro-
cessor. Let 4),...,%0gn be the bits in the binary representation of i and let
J1,-- -, Jlogn be the bits in the binary representation of j. Processors i and j use
binary search to find an integer £ such that ¢y # j,. (The bits ¢, and j; will be
used to break the contention.) To start the binary search, processor i sends its
message to the processor whose binary representation is i1, ... , i(1ogn)/2,0,. .-, 0
and processor j sends its message to the processor whose binary representation
is j1,---,J(logn)/2:0,-..,0. If there is a collision then the two processors con-
centrate their search on the second half of their bits. Otherwise, the messages
are returned, and the two processors concentrate their search on the first half of
their bits.

In this section we will prove the following theorem.

THEOREM 1. Every token routing algorithm requires Q(loglogn) steps to
solve the 2-contention resolution problem on an n-processor OCPC.

Since the 2-contention resolution problem is a particular example of a 2-
relation, we obtain the following corollary.

COROLLARY 2. Ewvery token routing algorithm for routing h-relations on an
n-processor OCPC requires Q(h + loglogn) communication steps.

In order to get a result which is slightly stronger than Theorem 1 we will gen-
eralize the 2-contention resolution problem and we will consider the z-contention
resolution problem (for £ > 2), in which  processors (which are not known to
each other) are given messages. The goal is to deliver all of the messages to
processor 1. We will prove the following.

THEOREM 3. Suppose that z > 2. Ewvery token routing algorithm requires
Q(loglogn) steps to solve the z-contention resolution problem on an n-processor
OCPC.

It is clear that Theorem 1 follows from Theorem 3. It is not obvious that the
converse is true. In fact, Theorem 1 is somewhat easier to prove than Theorem 3
because in Theorem 1 one can make use of the fact that, since there are only two
messages in the 2-contention resolution problem, either both messages collide on
a given step, or neither collides. In the remainder of the section we will prove
Theorem 3.

solve the 2-contention resolution problem.
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We will say that an algorithm for the z-contention resolution problem is weakly
successful on a given input in ¢ steps if, when it is run with that input for ¢ steps,
at least one of the following is true.

1. There is some processor that sees more than one of the z messages, or
2. Every message visits a processor in {1,...,logn}.

We will prove the following lemma.

LEMMA 4. Suppose that z > 2 and that T < loglogn/2. Suppose that A is a
token-routing algorithm that allegedly solves the z-contention resolution problem
on an n-processor OQCPC. Then there is aen input on which A is not weakly
successful in T steps.

Clearly, Theorem 3 follows from Lemma 4. To prove Lemma 4 we use the
following notation. A t-step history will be defined to be a pair (¢, C) in which
iis an integer in the range 1 < i < n and C is a subset of {1,...,t}. (The t-step
history (%, C) will be used in the proof to denote the fact that in a certain run
of a certain algorithm a token starting at processor ¢ had collisions on the steps
in C (and not on the steps in {1,...,t} — C).

We will use the following claim.

CLAIM 5. Suppose that t > 0 and suppose that a token routing algorithm is
run on an inpul on which it is not weakly successful in t steps. Then for any
integer t' in the range 1 < t' <t +1, and for any token in the input, the t-step
history of the token contains enough information to deduce

1. which processor held the token at the start of step ¥,
2. whether (and where) the token was sent on step t', and
3. which processor held the token at the end of step t'.

PRrROOF OF CLAIM 5. Claim 5 is proved by induction on ¢. The case t =0 is
trivial. Suppose that ¢ > 0 and suppose that a token routing algorithm is run
on an input on which it is not weakly successful in ¢ steps. Consider any token
in the input. By induction, the (¢ — 1)-step history of the token contains enough
information for us to deduce which processor (call it p) held the token at the
start of step ¢t + 1. Since the algorithm is not weakly successful in ¢ steps p did
not see any other tokens during steps 1,...,¢. Thus, all information available
to p at the start of step ¢ + 1 is encoded in the ¢-step history of the token. O

It follows from Claim 5 that if a token routing algorithm is not weakly success-
ful on a given input in ¢ steps then the ¢ + 1st step of the algorithm is a function
of the t-step histories of the tokens. Thus, for the purposes of proving Lemma 4,
we can encode a T-step algorithm as a sequence of functions fy,..., fr. Func-
tion f; will map every (¢ — 1)-step history to an integer in the range {0, ...,n}. If
(%, C) is the (¢ — 1)-step history of a given token and f;(¢,C) = 0 then the token
will be held at step t. Otherwise, it will be sent to f;(Z, C).

Suppose that ¢ > 2 and that T < loglogn/2. Fix a T-step token routing
algorithm A = fi,..., fr. We wish to show that there is an input on which A4
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is not weakly successful in T steps.

For each t in the range {0,...,T} we will define a hypergraph H;. Let the
vertices of H; be all possible ¢-step histories. For each size z subset {iy,... iz}
of {1,...,n} we will add up to one hyperedge to H; as follows: Consider a run
of t steps of A when the z tokens start at processors 71,...,i;. If during these
t steps some processor sees more than one of the x messages then do not add
a hyperedge corresponding to {i1,...,i;}. Otherwise, let (i;,C;;) denote the
t-step history of the token that started at i; in this run of the algorithm and put
the hyperedge containing the z vertices (4;,C;;) in H,.

Note that the set of hyperedges of H; can be constructed from f; and from
the set of hyperedges of H;_;. Suppose that H; has a hyperedge correspond-
ing to {i1,...,iz}. Then H;_, will also have a hyperedge corresponding to

{i1,...,iz}. Now, suppose that H;_; contains a hyperedge consisting of the
vertices (41,Cy,),...,(i5,Ci.). To see whether H; contains a hyperedge cor-
responding to {i3,...,i;} and, if so, to determine which such hyperedge is

in Hy, we proceed as follows. For each vertex (i;,Cj,) in the hyperedge in
H,;_y: If there is another vertex (ix,C;,) in the hyperedge in H;_; such that
J:(3;,Cs ;) = fi(ix, Ci,) and this quantity is non-zero then let Ci, =Ci; U {t}.
Otherwise, let C ; = C;,;. Now look at the -step histories (i1, CY)), . .. , (iz, C, )
By Claim 5 we can use these t-step histories to determine whether, during the
t steps of a run of .4 with tokens starting at {¢,...,%,}, some processor sees
more than one of the  messages. If not, the hyperedge consisting of vertices
(41,CL,),- -+, (82, C}) is put in Hy.

A clique in H, is defined to be a subset S of the vertices such that every size z
subset of S is a hyperedge of H;. Consider the size of the largest clique in H;.

CLAIM 6. Hy contains the n-clique consisting of the vertices (1,0),...,(n,0).
ProoF. Straightforward.

CLAIM 7. Suppose that A is weakly successful on every input in T steps. Then
the largest clique in Hr has size af most logn.

ProOF. To prove Claim 7 note that every hyperedge in Hr consists of z ver-
tices (¢1,Cy,), - .« , (ig, Ci,) such that when the algorithm is run for T steps with
the tokens starting at 4;,...,¢, every token visits a processor in {1,...,logn}
but no processor sees more than one of the  tokens. O

CrLaIM 8. If H; has a cliqgue of size m for m > logn then Hyyy has a clique
of size m!/3.

Proor oF CrLaIM 8. The proof of Claim 8 is based on an argument which
is sometimes known as the “Dedekind box” argument. Suppose that H; has a
clique containing m vertices. Suppose that at least m1/3 of these vertices (call
them (j1,Cj,), - - - (Jms3,Cj_,,5)) are mapped to the same point by fi41. If
this point is 0 then these same vertices form a clique in Hy4;. If it is non-zero
then the vertices (j1,Cj, U{t}),...,(Jmiss,Cj_,,5 U {t}) form a clique in Hey,.

ml/3
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Otherwise, at least m?/3 of the m vertices are mapped to distinct points by fi41
(call the m?/3 vertices (j1,Cj,),---, (Jmar3,Cj_,,5)). We will identify a large
subset S of these vertices which forms a clique in Hy4;. To identify S, we
construct a graph G on vertex set (j1,Cj,), ... , (Jnars, Cj_4s5)- For each vertex
(4i, Cj;) add up to one edge to the graph as follows: If fiy1(ji,Cj;) > 0 and
there is another vertex (j¢, Cj,) such that the t-step history (jg, Cj,) indicates
that the token starting at j, visited fi41(ji, Cj;) in the first ¢ steps then add the
edge ((4i, Cj;), (Je, Cj,)) to G. (There can be at most one such vertex (j¢, Cj,)
because the vertices form a clique in H;.) It is clear that if we choose as S any
set of vertices that is an independent set in G then the vertices in S will form
a clique in Hyy;. Note that the maximum degree of a vertex in G is ¢t + 2. By
Turan’s theorem, G has an independent set of size m?/3/(t + 3) > m'/3. O

Claim 6 and Claim 8 imply that Hy has a clique of size at least n(!/3)" which
is greater than log n, as long as n is sufficiently large. Therefore, Lemma 4 follows
from Claim 7.

3. Open Problems

This paper does not address the problem of solving the 2-contention reso-
lution problem with randomized token routing algorithms. The obvious direct
randomized algorithm for solving this problem runs in 3 expected steps, but the
probability that more steps are required is large. A related problem is that of
deriving a lower bound for the problem of routing h-relations with randomized
token routing algorithms. It is possible that the technique of Goldberg, Jerrum
and MacKenzie [8] could be used to convert Theorem 1 (or Theorem 3) into a
randomized lower bound for h-relation routing. A much more interesting open
problem is to extend our result to obtain an Q(h + loglogn) lower bound for
routing h-relations with general OQCPC algorithms. A first step towards proving
this result might be to extend the proof of Theorem 1 to a similar theorem for
a model which allows limited copying of messages.
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