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ent Te
hnologiesWe study 
ontention resolution in a multiple-a

ess 
hannel su
h as the Ethernet 
hannel. Inthe model that we 
onsider, n users generate messages for the 
hannel a

ording to a probabilitydistribution. Raghavan and Upfal have given a proto
ol in whi
h the expe
ted delay (time toget servi
ed) of every message is O(log n) when messages are generated a

ording to a Bernoullidistribution with generation rate up to about 1=10. Our main results are the following proto
ols:(a) one in whi
h the expe
ted average message delay is O(1) when messages are generated a

ord-ing to a Bernoulli distribution with a generation rate smaller than 1=e, and (b) one in whi
h theexpe
ted delay of any message is O(1) for an analogous model in whi
h users are syn
hronized(i.e., they agree about the time), there are potentially an in�nite number of users, and messagesare generated a

ording to a Poisson distribution with generation rate up to 1=e. (Ea
h message
onstitutes a new user.)To a
hieve (a), we �rst show how to simulate (b) using n syn
hronized users, and then showhow to build the syn
hronization into the proto
ol.Categories and Subje
t Des
riptors: F.2 [Theory of Computation℄: Analysis of Algorithmsand Problem Complexity; G.3 [Mathemati
s of Computing℄: Probability and Statisti
sGeneral Terms: Theory, ProbabilityAdditional Key Words and Phrases: Multiple-a

ess 
hannel, Ethernet, 
ontention resolution,Markov 
hains1. INTRODUCTIONA multiple-a

ess 
hannel is a broad
ast 
hannel that allows multiple users to 
om-muni
ate with ea
h other by sending messages onto the 
hannel. If two or moreusers simultaneously send messages, then the messages interfere with ea
h other(
ollide), and the messages are not transmitted su

essfully. The 
hannel is not
entrally 
ontrolled. Instead, the users use a 
ontention-resolution proto
ol to re-solve 
ollisions. Although the most familiar multiple-a

ess 
hannels are lo
al-area networks (su
h as the Ethernet network) whi
h are implemented using 
able,multiple-a

ess 
hannels are now being implemented using a variety of te
hnologiesin
luding opti
al 
ommuni
ations. Thus, good 
ontention-resolution proto
ols 
anbe used for 
ommuni
ation between 
omputers on lo
al-area networks, for 
ommu-
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ation in opti
al networks, and (therefore) for simulating shared-memory parallel
omputers (su
h as PRAMs) on opti
al networks.Raghavan and Upfal 
onsidered the model in whi
h n users generate messages a
-
ording to a Bernoulli distribution with total generation rate up to about 1/10 [Ragha-van and Upfal 1999℄. (More details about the arrival distribution are given in Se
-tion 1.1.) They gave a proto
ol in whi
h the expe
ted delay (time to get servi
ed)of every message is O(logn). Using the same model, we present a proto
ol in whi
hthe expe
ted average message delay is O(1) provided that the total generation rateis suÆ
iently small (less than 1=e).1 We derive our result by 
onsidering an anal-ogous model in whi
h users are syn
hronized (i.e., they agree about the time), thenumber of users is potentially in�nite, and messages arrive a

ording to a Poissondistribution with parameter up to about 1=e. Ea
h message 
onstitutes a new user.We give a proto
ol in whi
h the expe
ted delay of any message is O(1). The syn-
hronizing of our users allows our proto
ol to use di�erent time steps for di�erentpurposes. Thus, for example, those time steps that are equal to 1 modulo 2 
ouldbe used for messages making their �rst attempt, time steps equaling 2 modulo 4
an be used for messages making their se
ond attempt, and so on. The partitioningof time steps is what makes it possible to have bounded expe
ted delay.On
e we have proved that the expe
ted delay of ea
h message is O(1), we showhow to simulate the proto
ol using n syn
hronized users. Here ea
h user is respon-sible for a potentially in�nite number of messages (rather than for a single message)and the diÆ
ult part is dealing with all of the messages in 
onstant time.The analysis of our n-user proto
ol requires the n users to have syn
hronized
lo
ks. We next show how to simulate the syn
hronized 
lo
ks (for reasonably longperiods of time) by building syn
hronization into the proto
ol. Thus, our �nal pro-to
ol 
onsists of \normal" phases in whi
h the users are syn
hronized and operatingas des
ribed above and \syn
hronization phases" in whi
h the users are syn
hro-nizing. The syn
hronization phases are robust in the sense that they 
an handlepathologi
al situations (su
h as users starting in the middle of a syn
hronizationphase). Thus, we are able to a
hieve 
onstant expe
ted message delay even formodels in whi
h users are allowed to start and stop (see Se
tion 1.1 for details).1.1 The Multiple-A

ess Channel ModelFollowing previous work on multiple-a

ess 
hannels, we work in a time-slottedmodel in whi
h time is partitioned into intervals of equal length, 
alled steps. Duringea
h step, the users generate messages a

ording to a probability distribution. Forour model with in�nitely-many users, we assume the probability distribution isPoisson, while, for our models with �nitely-many users, we assume the probabilitydistribution is Bernoulli (for ea
h user). Thus, ea
h user generates at most onemessage per step. During ea
h step, ea
h user may attempt to send at most onemessage to the 
hannel. If more than one attempt is made during a given timestep, the messages 
ollide and must be retransmitted. If just a single user attemptsto send to the 
hannel, it re
eives an a
knowledgment that the transmission wassu

essful. Users must queue all unsu

essful messages for retransmission and they1Note that the delay of a message depends upon both: (a) randomness in the input (messagearrivals), and (b) randomness in the algorithm.
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ted Delay � 3use a 
ontention-resolution proto
ol to de
ide when to retransmit. Note that wedo not pla
e any bound on the amount of 
omputation a user may perform at thebeginning of a step. That is, we are 
ounting 
ommuni
ation steps, not 
omputationsteps.In the Syn
hronized In�nitely-Many Users Model, there is a single parameter �.The number of messages generated at ea
h step is determined a

ording to a Poissondistribution with parameter �. Ea
h message is deemed to be a new user. After auser has sent its message su

essfully, it leaves the system.There are two variants of the Finitely-Many Users Model. In both variants, thereare n users. The �rst variant (whi
h we 
onsider in Se
tion 3) is the Syn
hronizedFinitely-Many Users Model. In this model, the n users are syn
hronized and they allrun for the entire time that the proto
ol is running. When we 
onsider this model,we will need to 
onsider two message-arrival distributions. Our main results willhold for the f�ig1�i�n-Bernoulli arrival distribution, whi
h is de�ned as follows.Ea
h user i is asso
iated with a positive probability �i and it generates a messageindependently with probability �i during ea
h time step. Our results hold whenPi �i is at most � for some � < 1=e. The f�ig1�i�n-Bernoulli arrival distributionis a natural message-arrival distribution whi
h has been studied previously and itwill help the reader to keep this distribution in mind. However, in order to makeour proofs go through, we must also 
onsider a more te
hni
al generalization ofthis distribution, namely a f�ig1�i�n-dominated arrival distribution. In su
h adistribution, we require that for every user i, every time step t, and every event E
on
erning|the arrival of messages at steps other than t, and/or|the arrival of messages at users other than i,the probability, 
onditioned on event E, that user i generates a message at step t isat most �i. Note that the f�ig1�i�n-Bernoulli arrival distribution is a f�ig1�i�n-dominated arrival distribution, but there are also other, less natural, f�ig1�i�n-dominated arrival distributions.The se
ond variant of the Finitely-Many Users Model is 
alled the Unsyn
hro-nized Finitely-Many Users Model. In this model, the n users are not syn
hronizedand are allowed to start and stop over time, provided that ea
h user runs for at leasta 
ertain polynomial number of steps every time it starts. The starting and stop-ping times should not depend upon the progress of the proto
ol. (The motivationfor allowing users to start and stop is to model ma
hine 
rashes.) See Se
tion 4for details. We generalize the de�nitions of f�ig1�i�n-Bernoulli and f�ig1�i�n-dominated distributions so that they apply to this model by stipulating that nomessages are generated at users whi
h are stopped. As stated above, for our mainresults, we will be most interested in the f�ig1�i�n-Bernoulli distribution, withPi �i < 1=e. The result of Raghavan and Upfal applies to any f�ig1�i�n-Bernoulliarrivals distribution in whi
h Pi �i � �0 where �0 � 1=10.In the Syn
hronized In�nitely-Many Users Model we will show that the expe
teddelay of any message is O(1). In the Unsyn
hronized Finitely-Many Users Modelwe will show only that the expe
ted average delay of messages is O(1). To be
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ise, let Wi be the delay of the ith message, and letWavg = limm!1 1m mXi=1 Wi:(Intuitively, Wavg is the average waiting time of messages in the system.) We willshow that if the message generation rate is suÆ
iently small (less than 1=e), thenE[Wavg℄ = O(1).The multiple-a

ess 
hannel model that we have des
ribed is a
knowledgment-based be
ause the only information that a user re
eives about the state of the
hannel is the history of its own transmission attempts. (In the Unsyn
hronizedFinitely-Many Users Model, we also assume that the users all know some upperbound on the number of simultaneous live users.) Other models have been 
on-sidered. One popular model is the ternary feedba
k model in whi
h, at the endof ea
h time step, ea
h user re
eives information indi
ating whether zero, one, ormore than one messages were sent to the 
hannel at that time step. Stable pro-to
ols are known [Greenberg et al. 1987; Vvedenskaya and Pinsker 1983℄ for the
ase in whi
h � is suÆ
iently small (at most 0:4878 � � �). However, Tsybakov andLikhanov [Tsybakov and Likhanov 1987℄ have shown that, in the in�nitely-manyusers model, no proto
ol a
hieves a throughput better than 0.568. (That is, in thelimit, only a 0.568 fra
tion of the time-steps are used for su

essful sends.) By 
on-trast, Pippenger [Pippenger 1981℄ has shown that if the exa
t number of messagesthat tried at ea
h time step is known to all users, there is a stable proto
ol for every� < 1. We believe that the weaker a
knowledgment-based model is more realisti
for purposes su
h as PRAM emulation and opti
al routing and we follow [H�astadet al. 1996; Ma
Kenzie et al. 1998; Raghavan and Upfal 1999℄ in fo
using on thismodel hen
eforth.In this paper we 
on
entrate on the dynami
 
ontention-resolution problem inwhi
h messages arrive a

ording to a probability distribution. Other work [Ma
Ken-zie et al. 1998℄ has fo
ussed on the stati
 s
enario in whi
h a given set of users startwith messages to send. Similar stati
 
ontention-resolution problems arise in opti-
al routing [Anderson and Miller 1988; Ger�eb-Graus and Tsantilas 1992; Goldberget al. 1997℄ and in simulating shared memory 
omputers on distributed networks[Dietzfelbinger and Meyer auf der Heide 1993; Goldberg et al. 1999; Ma
Kenzieet al. 1998℄.1.2 Previous workThere has been a tremendous amount of work on proto
ols for multiple-a

ess
hannels. Here we will only dis
uss theoreti
al results 
on
erning dynami
 proto
olsin the a
knowledgment-based model that we use. We refer the reader to the papers
ited here and in Se
tion 1.1 for work on proto
ols using di�erent assumptions ormodels.The multiple-a

ess 
hannel �rst arose in the 
ontext of the ALOHA system,whi
h is a multi-user 
ommuni
ation system based on radio-wave 
ommuni
a-tion [Abramson 1973℄. As we noted earlier, it also arises in the 
ontext of lo
al-areanetworks. For example, the Ethernet proto
ol [Met
alfe and Boggs 1976℄ is a pro-to
ol for multiple-a

ess 
hannels. Mu
h resear
h on multiple-a

ess 
hannels wasspurred by ALOHA, espe
ially in the information theory 
ommunity; see, for ex-
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ted Delay � 5ample, the spe
ial issue of IEEE Trans. Info. Theory on this topi
 [IEEE Trans.on Information Theory 1985℄.We now give an informal des
ription of a 
ommon idea that runs through mostknown proto
ols for our problem; this is merely a rough sket
h, and there are manyvariants. In the In�nitely-Many Users Model, 
onsider a newly-born message P . P
ould try using the 
hannel a few times with some fairly high probability. If it issu

essful, it leaves the system; if not, then P 
ould guess that its trial probabilitywas \too high", and try using the 
hannel with lower and lower probability until itsu

essfully leaves the system.One way to formalize this is via ba
ko� proto
ols, whi
h are parameterized by anon-de
reasing fun
tion f : Z+ ! Z+, where Z+ denotes the set of non-negativeintegers. In the In�nitely-Many Users Model, a message P that has made i � 0unsu

essful attempts at the 
hannel, will pi
k a number r uniformly at randomfrom f1; 2; : : : ; f(i)g, and will next attempt using the 
hannel r time steps fromthen. If su

essful, P will leave the system, otherwise it will in
rement i and repeatthe pro
ess. In the Finitely-Many Users Model, ea
h user queues its messages and
ondu
ts su
h a proto
ol with the message at the head of its queue; on
e thismessage is su

essful, the failure 
ount i is reset to 0. If f(i) = (i + 1)�(1) or2i, then su
h a proto
ol is naturally termed a polynomial ba
ko� proto
ol or abinary exponential ba
ko� proto
ol, respe
tively. (The fun
tion f , if it exists, mustbe 
hosen judi
iously: if it grows too slowly, the messages will tend to try usingthe 
hannel too often, thus leading to frequent 
ollisions and hen
e long messagelifetimes. But if f grows too qui
kly, the messages will tend to use the 
hannel tooinfrequently, and again the throughput rate will su�er as messages are retained inthe system.)For our model of interest, the dynami
 setting with a
knowledgment-based pro-to
ols, the earliest theoreti
al results were negative results for the Unsyn
hronizedIn�nitely-Many Users Model. Kelly [Kelly 1985℄ showed that, for any � > 0, anyba
ko� proto
ol with a ba
ko� fun
tion f(i) that is smaller than any exponentialfun
tion is unstable in the sense that the expe
ted number of su

essful transmis-sions to the 
hannel is �nite. Aldous [Aldous 1987℄ showed, for every � > 0, thatthe binary exponential ba
ko� proto
ol is unstable in the sense that the expe
tednumber of su

essful transmissions in time steps [1; t℄ is o(t) and that the expe
tedtime until the system returns to the empty state is in�nite.In striking 
ontrast to Kelly's result, the important work of [H�astad et al. 1996℄showed, among other things, that in the Unsyn
hronized Finitely-Many UsersModel, for all f�ig1�i�n-Bernoulli distributions with Pi �i < 1, all superlinearpolynomial ba
ko� proto
ols are stable in the sense that the expe
ted time to re-turn to the empty state and the expe
ted average message delay are �nite. However,they also proved that the expe
ted average message delay in su
h a system is 
(n).Raghavan and Upfal showed that, for any f�ig1�i�n-Bernoulli distribution withPi �i up to about 1=10, there is a proto
ol in whi
h the expe
ted delay of anymessage is O(log(n)) [Raghavan and Upfal 1999℄. It is also shown in [Raghavanand Upfal 1999℄ that, for ea
h member P of a large set of proto
ols that in
ludesall known ba
ko� proto
ols, there exists a threshold �P < 1 su
h that if � > �Pthen E[Wave℄ = 
(n) must hold for P .
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onsider the Syn
hronized In�nitely-Many Users Model and give a proto
olin whi
h the expe
ted delay of any message is O(1) for message generation rates upto 1=e. (Note that this arrival rate threshold of 1=e is higher than the threshold ofapproximately 1=10 allowed in [Raghavan and Upfal 1999℄. We argue in Se
tion 5that handling arrival rates greater than 1=e is a 
hallenging problem.) As far as weknow, our proto
ol is the �rst a
knowledgment-based proto
ol whi
h is provablystable in the sense of [H�astad et al. 1996℄. An interesting point here is that ourresults are 
omplementary to those of [H�astad et al. 1996℄: while the work of [H�astadet al. 1996℄ shows that (negative) results for the In�nitely-Many Users Model mayhave no bearing on the Finitely-Many Users Model, our results suggest that betterintuition and positive results for the Finitely-Many Users Model may be obtainedvia the In�nitely-Many Users Model.Our in�nite-users proto
ol is simple. We 
onstru
t an expli
it, easily 
omputable
olle
tion fSi;t : i; t = 0; 1; 2; : : :g of �nite sets of nonnegative integers Si;t where,for all i and t, every element of Si;t is smaller than every element of Si+1;t. Amessage born at time t whi
h has made i (unsu

essful) attempts to send to the
hannel so far, pi
ks a time r uniformly at random from Si;t, and tries using the
hannel at time r. If it su

eeds, it leaves the system. Otherwise, it in
rementsi and repeats this pro
ess. We give bounds on the probability that the delay ofthe message is high and we use these bounds to show that the expe
ted numberof messages (and hen
e the expe
ted total storage size) in the system at any giventime is O(1), improving on the O(logn) bound of [Raghavan and Upfal 1999℄.On
e we have proved that the expe
ted delay of ea
h message is O(1), we showhow to simulate the In�nitely-Many Users Proto
ol using n syn
hronized users,a
hieving low expe
ted delay for a variety of message-arrival distributions.Finally, we 
onsider the Unsyn
hronized Finitely-Many Users Model. Our earlieranalysis required syn
hronized 
lo
ks and we show how to simulate this for reason-ably long periods of time by building syn
hronization into our �nal proto
ol. Thesyn
hronization is 
ompli
ated by the fa
t that the model allows users to start andstop over time.The stru
ture of our �nal proto
ol is simple. Most of the time, the users aresimulating our In�nitely-Many Users Proto
ol from Se
tion 2. The users o

asion-ally enter a syn
hronizing phase to make sure that the 
lo
ks are syn
hronized(or to resyn
hronize after a user enters the system). Note that the syn
hronizingphase has some probability of (undete
tably) failing, and thus it must be repeatedperiodi
ally to guarantee 
onstant expe
ted message delay.We note here that although we a
hieve 
onstant expe
ted message delay, the
onstant is quite large, and the requirements on starting and stopping times arequite severe (in an n-user system, users must run without stopping for at least 8n71steps after they start). Thus our result for the Unsyn
hronized Finitely-Many UsersModel should be 
onsidered a theoreti
al result, rather than a pra
ti
al result.The idea of the \syn
hronization phase" was inspired by the \reset state" idea of[Raghavan and Upfal 1999℄. The key idea that allowed [Raghavan and Upfal 1999℄to a
hieve low expe
ted delay is to have users dete
t \bad events" and to enter a\reset state" when bad events o

ur. In some sense, the stru
ture of our proto
ol
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ted Delay � 7(normal phases, o

asionally interrupted by syn
hronization phases) is similar tothe stru
ture of [Raghavan and Upfal 1999℄. However, there are major di�eren
esbetween them. One di�eren
e is that, be
ause la
k of syn
hronization 
annot bereliably dete
ted, syn
hronizing phases must be entered periodi
ally even whenno parti
ular bad event is observed. Another di�eren
e is that users in a resetstate are only allowed to send messages with very low probability, and this helpsother users to a

ess the 
hannel. However, our syn
hronization phase is designedto a

omplish the more diÆ
ult task of syn
hronizing the users (this is neededto obtain 
onstant expe
ted delay rather than logarithmi
 expe
ted delay), anda

omplishing this task requires many transmissions to the 
hannel, whi
h preventa

ess to the 
hannel by the other users. Thus, syn
hronization phases are 
ostlyin our proto
ol. A third di�eren
e is that in [Raghavan and Upfal 1999℄ a normalphase always tends towards low expe
ted delay. When bad situations arise, thereis a good probability of them being 
aught, thus 
ausing a reset state to o

ur. Inour proto
ol, a normal phase tends towards even lower (
onstant) expe
ted delayif the users are syn
hronized. However, if they are not syn
hronized, the normalphase does not ne
essarily tend towards low expe
ted delay, and there is no sureway to dete
t that the users are unsyn
hronized. Thus, the bad situation 
an onlybe remedied during the next time the users start a syn
hronizing phase, whi
h maybe after quite a long time! Fortunately, the e�e
ts of this type of behavior 
an bebounded, so we do a
hieve 
onstant expe
ted message delay.The syn
hronizing phase of our proto
ol is somewhat 
ompli
ated, be
ause itmust syn
hronize the users even though 
ommuni
ation between users 
an onlybe performed through a
knowledgments (or la
k thereof) from the multiple-a

ess
hannel. The analysis of our proto
ol is also 
ompli
ated due to the very dynami
nature of the proto
ol, with possibilities of users missing syn
hronizing phases,trying to start a syn
hronizing phase while one is already in progress, and so on.Our syn
hronizing phases are robust, in the sense that they 
an handle these typesof events, and eventually the system will return to a normal syn
hronized state.1.4 OutlineIn Se
tion 2 we 
onsider the Syn
hronized In�nitely-Many Users Model. Sub-se
tion 2.1 gives notation and preliminaries. Subse
tion 2.2 gives our proto
ol.Subse
tions 2.3 and 2.4 bound the expe
ted delay of messages. In Se
tion 3 we
onsider the Syn
hronized Finitely-Many Users Model and show how to simulateour proto
ol on this model, a
hieving bounded expe
ted delay for a large 
lass ofinput distributions. In Se
tion 4 we 
onsider the Unsyn
hronized Finitely-ManyUsers Model. Subse
tion 4.1 gives notation and preliminaries. Subse
tion 4.2 givesour proto
ol. In Se
tion 4.3 we prove the key features of our proto
ol, namely, amessage generated at a step in whi
h no users start or stop soon before or afterwill have 
onstant expe
ted delay, and a message generated at a step in whi
h auser starts soon before or after will have an expe
ted delay of O(n37) steps. InSe
tion 4.4 we show that our proto
ol a
hieves 
onstant expe
ted message delay fora fairly general multiple a

ess 
hannel model, with users starting and stopping.
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Kenzie, M. Paterson, and A. Srinivasan2. THE INFINITELY-MANY USERS PROTOCOL2.1 Notation and PreliminariesFor any ` 2 Z+, we denote the set f1; 2; : : : ; `g by [`℄; logarithms are to the basetwo, unless spe
i�ed otherwise. In any time interval of a proto
ol, we shall say thata message P su

eeded in that interval if it rea
hed the 
hannel su

essfully duringthat interval.Theorem 1 presents the Cherno�-Hoe�ding bounds [Cherno� 1952; Hoe�ding1963℄; see, e.g., Appendix A of [Alon et al. 1992℄ for details.Theorem 1. Let R be a random variable with E[R℄ = � � 0 su
h that either:(a) R is a sum of a �nite number of independent random variables X1; X2; : : :with ea
h Xi taking values in [0; 1℄, or (b) R is Poisson. Then for any � � 1,Pr[R � ��℄ � H(�; �), where H(�; �) := (e��1=��)�:Fa
t 1 is easily veri�ed.Fa
t 1. If � > 1 then H(�; �) � e���=M� , where M� is positive and monotonede
reasing for � > 1.We next re
all the \independent bounded di�eren
es tail inequality" of M
Di-armid [M
Diarmid 1989℄. (The inequality is a development of the \Azuma mar-tingale inequality"; a similar formulation was also derived by Bollob�as [Bollob�as1988℄.)Lemma 1. ([M
Diarmid 1989, Lemma 1.2℄) Let x1; : : : ; xn be independentrandom variables, with xk taking values in a set Ak for ea
h k. Suppose that the(measurable) fun
tion f :QAk ! R (the set of reals) satis�esjf(x)� f(x0)j � 
k whenever the ve
tors x and x0 di�er only in the kth 
oordinate.Let Y be the random variable f(x1; : : : ; xn). Then for any t > 0,Pr �jY � E[Y ℄j � t� � 2 exp �� 2t2ÆPnk=1 
2k�:Remark 1. The proof of Lemma 1 in [M
Diarmid 1989℄ a
tually shows the strongerresult that maxfPr �Y �E[Y ℄ � t℄; Pr �Y � E[Y ℄ � �t℄g � exp �� 2t2ÆPnk=1 
2k�.Suppose (at most) s messages are present in a stati
 system, and that we haves time units within whi
h we would like to send out a \large" number of them tothe 
hannel, with high probability. We give an informal sket
h of our ideas. Anatural s
heme is for ea
h message independently to attempt using the 
hannel ata randomly 
hosen time from [s℄. Sin
e a message is su

essful if and only if noother message 
hose the same time step as it did, the \
ollision" of messages is adominant 
on
ern; the number of su
h 
olliding messages is studied in the followinglemma.Lemma 2. Suppose at most s balls are thrown uniformly and independently atrandom into a set of s bins. Let us say that a ball 
ollides if it is not the only ball inits bin. Then, (i) for any given ball B, Pr[B 
ollides ℄ � 1� (1� 1=s)s�1 < 1�1=e,and (ii) if C denotes the total number of balls that 
ollide then, for any Æ > 0,Pr[C � s(1� 1=(e(1 + Æ)))℄ � F (s; Æ); where F (s; Æ) := e�sÆ2=(2e2(1+Æ)2):
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ted Delay � 9Proof. Part (i) is dire
t. For part (ii), number the balls arbitrarily as 1; 2; : : : .Let Xi denote the random 
hoi
e for ball i, and C = f(X1; X2; : : :) be the numberof 
olliding balls. It is easily seen that, for any pla
ement of the balls and for anymovement of any desired ball (say the ith) from one bin to another, we have 
i � 2,in the notation of Lemma 1. Invoking Lemma 1 and the remark following it, we
on
lude the proof.Lemma 2 suggests an obvious improvement to our �rst s
heme if we have manymore slots than messages. Suppose we have s messages in a stati
 system and `available time slots t1 < t2 < � � � < t`, with s � `=(e(1 + Æ)) for some Æ > 0. Let`i(Æ) := `e(1 + Æ) �1� 1e(1 + Æ)�i�1 for i � 1; (1)thus, s � `1(Æ). The idea is to have ea
h message try using the 
hannel at somerandomly 
hosen time from fti : 1 � i � `1(Æ)g. The number of remaining messagesis at most s(1 � 1e(1+Æ) ) � `2(Æ) with high probability, by Lemma 2(ii). Ea
hremaining message attempts to use the 
hannel at a randomly 
hosen time fromfti : `1(Æ) < i � `1(Æ) + `2(Æ)g; the number of messages remaining is at most `3(Æ)with high probability (for s large). The basi
 \random trial" user of Lemma 2is thus repeated a suÆ
iently large number of times. The total number of timeslots used is at most P1j=1 `j(Æ) = `, whi
h was guaranteed to be available. Infa
t, we will also need a version of su
h a s
enario where some number z of su
hproto
ols are run independently, as 
onsidered by De�nition 1. Although we needa few parameters for this de�nition, the intuition remains simple.De�nition 1. Suppose `, m and z are positive integers, Æ > 0, and we are givensets of messages P1; P2; : : : ; Pz and sets of time slots T1; T2; : : : ; Tz su
h that: (i)Pi \ Pj = � and Ti \ Tj = � if i 6= j, and (ii) jTij = ` for all i. For ea
h i 2 [z℄, letTi = fti;1 < ti;2 < � � � < ti;`g. De�ne `0 = 0, and `i = `i(Æ) as in (1) for i � 1.Then, RT(fPi : i 2 [z℄g; fTi : i 2 [z℄g;m; z; Æ) denotes the performan
e of zindependent proto
ols E1; E2; : : : ; Ez (\RT" stands for \repeated trials"). Ea
h Eihas m iterations, and its jth iteration is as follows: ea
h message in Pi that 
ollidedin all of the �rst (j � 1) iterations pi
ks a random time from fti;p : `0 + `1 + � � �+`j�1 < p � `0 + `1 + � � �+ `jg, and attempts using the 
hannel then.Remark 2. Note that the fa
t that distin
t proto
ols Ei are independent followsdire
tly from the fa
t that the sets Ti are pairwise disjoint.The following useful lemma shows that, for any �xed Æ > 0, two desirable fa
tshold for RT provided jPij � `1(Æ) for ea
h i (where ` = jTij), if ` and the numberof iterations m are 
hosen large enough: (a) the probability of any given messagenot su

eeding at all 
an be made smaller than any given small positive 
onstant,and (b) the probability of there remaining any given 
onstant fa
tor of the originalnumber of messages 
an be made exponentially small in `.Lemma 3. For any given positive �, Æ and � (� � 1=2), there exist �nite positivem(�; Æ; �), `(�; Æ; �) and p(�; Æ; �) su
h that, for any m � m(�; Æ; �), any ` � `(�; Æ; �),any z � 1, and `i = `i(Æ) de�ned as in (1), the following hold if we performRT(fPi : i 2 [z℄g; fTi : i 2 [z℄g;m; z; Æ), provided jPij � `1 for ea
h i.
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Kenzie, M. Paterson, and A. Srinivasan(i) For any message P , Pr[P did not su

eed ℄ � �.(ii) Pr[in total at least `z� messages were unsu

essful℄ � ze�`�p(�;Æ;�).Proof. Let P 2 Pi. Let nj(i) denote the number of unsu

essful elementsof Pi before the performan
e of the jth iteration of proto
ol Ei, in the notationof De�nition 1. Let Aj be the \bad" event that pa
ket P was unsu

essful in thejth iteration of proto
ol Ei, and let Bj be the \bad" event that nj+1 � `j+1. Byassumption, we have n1(i) � `1. Thus, for any j 2 [m℄,Pr[9j0 2 [j℄ : Bj0 ℄ � Xj02[j℄Pr[Bj0 j B1 ^ B2 ^ � � � ^ Bj0�1℄ � Xj02[j℄F (`j0 ; Æ); (2)by part (ii) of Lemma 2.We now upper-bound the probability of P failing throughout as follows:Pr24 ^j2[m℄Aj35 � Pr[9j 2 [m� 1℄ : Bj ℄ + Pr240� ^j2[m�1℄(Aj ^ Bj)1A ^ Am35� Xj2[m�1℄F (`j ; Æ) + Pr240� ^j2[m�1℄(Aj ^ Bj)1A ^ Am35 (by (2))� Xj2[m�1℄F (`j ; Æ) + Yj2[m℄Pr24Aj j ^j02[j�1℄(Aj0 ^ Bj0)35� Xj2[m�1℄F (`j ; Æ) + (1� 1=e)m; (3)sin
e for ea
h j, Pr[Aj j Vj02[j�1℄(Aj0 ^ Bj0)℄ < 1� 1=e by part (i) of Lemma 2.Also, (2) yields Pr[nm+1(i) � `m+1℄ � Xj2[m℄F (`j ; Æ): (4)The bounds (3) and (4) imply that if we pi
km(�; Æ; �) > log(�=2)= log(1� 1=e)and then 
hoose `(�; Æ; �) large enough, we 
an ensure part (i). Also, if we pi
km(�; Æ; �) � log(�e(1 + Æ))= log(1 � 1=(e(1 + Æ))) and then 
hoose `(�; Æ; �) largeenough and p(�; Æ; �) appropriately, we also obtain (ii).A variant. The following small 
hange in RT will arise in Lemmas 7 and 8.Following the notation of De�nition 1, for ea
h i 2 z, there may be one knowntime ti;g(i) 2 Ti whi
h is \marked out": messages in Pi 
annot attempt using the
hannel at time ti;g(i). To a

ommodate this, we modify RT slightly: de�ne j = j(i)to be the unique value su
h that `0 + `1 + � � � + `j�1 < g(i) � `0 + `1 + � � � + `j .Then any message in Pi that 
ollided in all of the �rst (j � 1) iterations will,in the jth iteration, attempt using the 
hannel at a time 
hosen randomly fromfti;p : (p 6= g(i)) and `0 + � � �+ `j�1 < p � `0 + � � �+ `jg. All other iterations arethe same as before for messages in Pi, for ea
h i.
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ted Delay � 11We now sket
h why Lemma 3 remains true for this variant, if we take m(�; Æ; �)and `(�; Æ; �) slightly larger and redu
e p(�; Æ; �) to a slightly smaller (but still posi-tive) value. We start by stating the analogue of Lemma 2, whi
h applies to the vari-ant. (The proof that the analogue is 
orre
t is the same as the proof of Lemma 2.)Note that, for s � 2, 1� (1� 1=s)s � 1� 1=e+K0=s, for some absolute 
onstantK0 > 0.Lemma 20 There are positive 
onstantsK0;K1;K2 su
h that the following holds.For s � 2, suppose at most s+ 1 balls are thrown uniformly and independently atrandom into s bins. Then (i) for any given ball B, Pr[B 
ollides℄ = 1�(1� 1=s)s �1 � 1=e +K0=s, and (ii) if C denotes the total number of balls that 
ollide then,for any Æ > 0,Pr[C � s(1� 1=(e(1 + Æ)))℄ � G(s; Æ); where G(s; Æ) := K1e�K2sÆ2=(1+Æ)2 :Now note that the proof of Lemma 3 applies to the variant by using Lemma 20 inpla
e of Lemma 2.2.2 The proto
olWe present the ideas parameterized by several 
onstants. Later we will 
hoosevalues for the parameters to maximize the throughput. There will be a trade-o�between the maximum throughput and the expe
ted waiting time for a message;a di�erent 
hoi
e of parameters 
ould take this into 
onsideration. The 
onstantswe have 
hosen guarantee that our proto
ol is stable in the sense of [H�astad et al.1996℄ for � < 1=e.From now on, we assume that � < 1=e is given. Let � � 3 be any (say, thesmallest) positive integer su
h that� � (1� 2=�)=e: (5)We de�ne Æ0 by 1 + Æ0 = 1e�+ 1=� : (6)Note that Æ0 > 0 by our assumptions on � and �.Three important 
onstants, b; r and k, shape the proto
ol; ea
h of these is apositive integer that is at least 2. At any time during its lifetime in the proto
ol,a message is regarded as residing at some node of an in�nite tree T , whi
h isstru
tured as follows. There are 
ountably in�nitely many leaves ordered left-to-right, with a leftmost leaf. Ea
h non-leaf node of T has exa
tly k 
hildren, wherek > r : (7)As usual, we visualize all leaves as being at the same (lowest) level, their parentsbeing at the next higher level, and so on. (The leaves are at level 0.) As will beseen in P3 below, the parameters b and r give, respe
tively, the \
apa
ity" of ea
hleaf node and the fa
tor by whi
h this size in
reases from ea
h level to the next.Note that the notions of left-to-right ordering and leftmost node are well-de�nedfor every level of the tree. T is not a
tually 
onstru
ted; it is just for exposition.We asso
iate a �nite nonempty set of non-negative integers Trial(v) with ea
h node
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Kenzie, M. Paterson, and A. Srinivasanv. De�ne L(v) := minfTrial(v)g, R(v) := maxfTrial(v)g, and the 
apa
ity 
ap(v) ofv, to be jTrial(v)j. A required set of properties of the Trial sets is the following:P1. If u and v is any pair of distin
t nodes of T , then Trial(u) \ Trial(v) = �;P2. If u is either a proper des
endant of v, or if u and v are at the same level withu to the left of v, then R(u) < L(v).P3. The 
apa
ity of all nodes at the same level is the same. Let ui be a generi
node at level i. Then, 
ap(u0) = b and 
ap(ui) = r � 
ap(ui�1) = bri, for i � 1.Suppose we have su
h a 
onstru
tion of the Trial sets. (Note (P1): in parti
-ular, the Trial set of a node is not the union of the sets of its 
hildren.) Ea
hmessage P inje
ted into the system at some time step t0 will initially enter theleaf node u0(P ) where u0(P ) is the leftmost leaf su
h that L(u0(P )) > t0. ThenP will move up the tree if ne
essary, in the following way. In general, supposeP enters a node ui(P ) at level i, at time ti; we will be guaranteed the invariant\Q: ui(P ) is an an
estor of u0(P ), and ti < L(ui(P ))." P will then run proto-
ol RT(Pui(P );Trial(ui(P ));m; 1; Æ0), where Pui(P ) is the set of messages enteringui(P ) and m is a suitably large integer to be 
hosen later. If it is su

essful, P will(of 
ourse) leave the system, otherwise it will enter the parent ui+1(P ) of ui(P ), atthe last time slot (element of Trial(ui(P ))) at whi
h it tried using the 
hannel andfailed, while running RT(Pui(P );Trial(ui(P ));m; 1; Æ0). (P knows what this timeslot is: it is the mth step at whi
h it attempted using the 
hannel, during thisperforman
e of RT.) Invariant Q is established by a straightforward indu
tion oni, using Property P2. Note that the set of messages Pv entering any given nodev perform proto
ol RT(Pv ;Trial(v);m; 1; Æ0), and, if v is any non-leaf node with
hildren u1; u2; : : : ; uk, then the trials at its k 
hildren 
orrespond to RT(fPu1 ; : : : ;Pukg; fTrial(u1); : : : ;Trial(uk)g;m; k; Æ0); by Properties P1 and P3. Thus, ea
hnode re
eives all the unsu

essful messages from ea
h of its k 
hildren; an unsu
-
essful message is imagined to enter the parent of a node u, immediately after itfound itself unsu

essful at u. Figure 1 illustrates some of these ideas. A fragmentof the tree with (unreasonable) parameters k = 4, r = 1, b = 3, is shown. For ea
hnode u, the set Trial(u) is the set of shaded squares in the 
orresponding re
tangle.In this example, jTrial(u)j = 3 for all u. Pa
ket P enters the sequen
e of nodesu0(P ); u1(P ); u2(P ); : : : .The intuition behind the advantages o�ered by the tree is roughly as follows. Notethat in a multiple-a

ess 
hannel problem, a solution is easy if the arrival rate isalways 
lose to the expe
tation (e.g., if we always get at most one message per step,then the problem is trivial). The problem is that, with probability 1, in�nitely oftenthere will be \bulk arrivals" (bursts of a large number of input messages within ashort amount of time); this is a key problem that any proto
ol must 
onfront. Thetree helps in this by ensuring that su
h bursty arrivals are spread over a few leavesof the tree and are also handled independently, sin
e the 
orresponding Trial setsare pairwise disjoint. One may expe
t that, even if several messages enter one 
hildof a node v, most of the other 
hildren of v will be \well-behaved" in not gettingtoo many input messages. These \good" 
hildren of v are likely to su

essfullytransmit most of their input messages, thus ensuring that, with high probability,not too many messages enter v. Thus, bursty arrivals are likely to be smoothed
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ted Delay � 13out, on
e the 
orresponding messages enter a node at a suitable level in the tree.In short, our assumption on time-agreement plays a symmetry-breaking role.Informally, if the proportion of the total time dedi
ated to nodes at level 0 is 1=s,where s > 1, then the proportion for level i will be approximately (r=k)i=s. (Re
allthe parameters r and k: the 
apa
ity of ea
h tree node at level i is bri, and k is thenumber of 
hildren of ea
h non-leaf node.) Sin
e the sum of these proportions forall i 
an be at most 1, we require s � k=(k � r); we will takes = k=(k � r) : (8)More pre
isely, the Trial sets are 
onstru
ted as follows; it will be immediate thatthey satisfy Properties P1, P2, and P3. First de�nes = �=(�� 1); k = 4�2; and r = 4�: (9)We remark that though we have �xed these 
onstants, we will use the symbolss; k and r (rather than their numeri
al values) wherever possible. Also, ratherthan present the value of b right away, we will 
hoose b at the end of the proof ofTheorem 2; we will require thatb is divisible by �� 1. (10)For i � 0, letFi = fj > 0 : 9h 2 [�� 1℄ su
h that j � h�i (mod �i+1)g: (11)Note that Fi is just the set of all j whi
h, when written in base �, have zeroes intheir i least signi�
ant digits, and have a non-zero in their (i+1)st least signi�
antdigit. Hen
e, the sets Fi form a partition of Z+. For any non-negative integer j,any positive multiple z of �j , and any positive integer x, let �(z; j; x) denote thexth smallest element of Fj that is at least as large as z. We 
an 
he
k that�(z; j; x) = z +�j(x + � x�� 1�� 1) if z is a multiple of �j+1: (12)Suppose z is not a multiple of �j+1; let z + z0�j be the smallest multiple of �j+1that is greater than z. If x � �, then �(z; j; x) = �(z + z0�j ; j; x� z0), whi
h, by(12), is at most the right-hand-side of (12). Thus,�(z; j; x) � z +�j(x+ � x�� 1�� 1) if x � �. (13)Let vi be a generi
 node at level i; if it is not the leftmost node in its level, letui denote the node at level i that is immediately to the left of vi. We will ensurethat all elements of Trial(vi) lie in Fi. (For any large enough interval I in Z+, thefra
tion of I lying in Fi is roughly (� � 1)=�i+1 = (r=k)i=s; this was what wemeant informally above, regarding the proportion of time assigned to level i of thetree being (r=k)i=s.)We now de�ne Trial(vi) by indu
tion on i and from left-to-right within the samelevel, as follows. If i = 0, then if v0 is the leftmost leaf, we set Trial(v0) to be thesmallest 
ap(v0) elements of F0; else we set Trial(v0) to be the 
ap(v0) smallestelements of F0 larger than R(u0). If i � 1, let w be the rightmost 
hild of vi. Ifvi is the leftmost node at level i, we let Trial(vi) be the 
ap(vi) smallest elements
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Kenzie, M. Paterson, and A. SrinivasanTable 1. Main parametersParameter(s) Brief explanation� < 1=e Message arrival rate� � 3 Positive integer su
h that � � (1 � 2=�)=eÆ0 > 0 1 + Æ0 = (e�+ 1=�)�1r = 4�, b Capa
ity of nodes at level i is bri; b is divisible by �� 1k = 4�2 Number of 
hildren of ea
h non-leaf nodes Equals k=(k � r) = �=(�� 1)a = e(1 + Æ0), d > 1 Constants used in analysisof Fi that are larger than R(w); else de�ne Trial(vi) to be the 
ap(vi) smallestelements of Fi that are larger than maxfR(ui); R(w)g. In this 
ase, we 
an showthat R(w) � R(ui), as follows. Suppose for a 
ontradi
tion that R(w) < R(ui);let vi be the leftmost node at its level with this property. Thus, letting w0 be therightmost 
hild of ui, Trial(ui) is the set of bri smallest elements of Fi larger thanR(w0). So, de�ning z to be the smallest multiple of �i that is larger than R(w0),we have R(ui) = �(z; i; bri); hen
e,R(ui) � z +�i(bri + � bri�� 1�� 1): (14)Next, the number of elements of Fi�1 lying in the interval (R(w0); z℄ is at most�� 2; sin
e vi has k 
hildren, ea
h of 
apa
ity bri�1, we see thatR(w) � �(z; i� 1; kbri�1 � (�� 2))= z +�i�1(kbri�1 � (�� 2) + �kbri�1 � (�� 2)�� 1 �� 1); (15)by (12). So, to prove that R(w) � R(ui), it suÆ
es to show that the l.h.s. of (14) isat most the r.h.s. of (15), whi
h redu
es to showing that d(kbri�1 +1)=(�� 1)e �� � dbri=(�� 1)e. This inequality follows from (9) and (10).Sin
e z < R(w0) + �i and b is divisible by � � 1, (14) shows that R(ui) <R(w0) + b�iri ��=(�� 1), whi
h equals R(w0) + sbki. Thus, for all i � 1,R(vi) < R(w) + sbki: (16)Before pro
eeding to analyze the proto
ol, we remind the reader that at any timestep at most one node of the tree is a
tive; some of the messages residing at thisnode at this time are attempting to transmit at this time.2.3 Waiting times of messagesOur main random variable of interest is the time that a generi
 message P willspend in the system, from its arrival. Leta = e(1 + Æ0) (17)and d be a 
onstant greater than 1.The main parameters presented so far 
an be found in Table 1.De�nition 2. For any node v 2 T , the random variable load(v), the load of v, isde�ned to be the number of messages that enter v. For any positive integer t, node
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ted Delay � 15v at level i is de�ned to be t-bad if and only if load(v) > bridt�1=a: Node v is saidto be t-loaded if it is t-bad but not (t + 1)-bad. It is 
alled bad if it is 1-bad, andgood otherwise.It is not hard to verify that, for any given t � 1, the probability of being t-badis the same for any nodes at the same level in T . This is be
ause the Trial setsof di�erent nodes are disjoint, the message arrival distributions at di�erent leavesare i.i.d., and sin
e messages move (if at all) only from tree nodes to their parentnodes. This brings us to the next de�nitions.De�nition 3. For any (generi
) node ui at level i in T and any positive integer t,pi(t) denotes the probability that ui is t-bad.De�nition 4. (i) The failure probability q is the maximum probability that amessage entering a good node will not su

eed during the fun
tioning of that node.(ii) For any message P , let u0(P ); u1(P ); u2(P ); : : : be the nodes of T that ui isallowed to pass through, where the level of ui(P ) is i. Let Ei(P ) be the event thatP enters ui(P ).If a node u at level i is good then, in the notation of Lemma 3, its load is at most`1(Æ0), where ` = 
ap(u); hen
e, Lemma 3(i) shows that, for any �xed q0 > 0,q < q0 
an be a
hieved by making b and the number of iterations m large enough.Note that the distribution of Ei(P ) is independent of its argument. This is be-
ause the arrival distributions at di�erent leaves are i.i.d, and be
ause ea
h non-leafnode treats the messages arriving from its di�erent 
hildren symmetri
ally. (Thus,in parti
ular, Ei(P ) is independent of the leaf node at whi
h P arrived.) Hen
e,for any i � 0, we may de�ne fi := Pr[Ei(P )℄ for a generi
 message P . Suppose Pwas unsu

essful at nodes u0(P ); u1(P ); : : : ; ui(P ). Let A(i) denote the maximumtotal amount of time P 
ould have spent in these (i + 1) nodes. We �rst boundA(0). Sin
e b is a multiple of �� 1, we 
an 
he
k that the xth leaf of the tree fromthe left has its L(�) value equaling (x� 1) � (b=(�� 1)) ��+ 1, and its R(�) valueequaling x � (b=(� � 1)) � � � 1. Thus, if the arrival time of P was an integer ofthe form z�+ z0, where 0 � z0 � �� 1, then P will enter a leaf whose R(�) valueis: (i) (z + 1) � (b=(� � 1)) � � � 1 if z0 = 0, and (ii) (z + 2) � (b=(� � 1)) � � � 1if z0 6= 0. Thus, the maximum time spent by P before leaving the leaf level, is atmost 2b�=(�� 1) = 2sb. So, A(0) � 2sb. For i � 1, A(i) � kA(i� 1)+ (k=r)isbri,using (16). Hen
e, A(i) � (i+ 2)sbki for all i. (18)The simple, but 
ru
ial, Lemma 4 is about the distribution of an importantrandom variable W (P ), the time that P spends in the system.Lemma 4. (i) For any message P , Pr[W (P ) > A(i)℄ � fi+1 for all i � 0, andE[W (P )℄ �P1j=0 A(j)fj . (ii) For all i � 1, fi � qfi�1 + pi�1(1):Proof. Part (i) is immediate, using the fa
t that, for a non-negative integer-valued random variable Z, E[Z℄ =P1i=1 Pr[Z � i℄. For part (ii), note thatfi = fi�1 Pr[Ei j Ei�1℄: (19)Letting 
i = Pr[ui�1(P ) was good j Ei�1℄,Pr[Ei j Ei�1℄ = 
i Pr[Ei j ui�1(P ) was good ^ Ei�1℄ +
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i) Pr[Ei j ui�1(P ) was bad ^ Ei�1℄� Pr[Ei j ui�1(P ) was good ^ Ei�1℄ +Pr[ui�1(P ) was bad j Ei�1℄� q +Pr[ui�1(P ) was bad j Ei�1℄� q +Pr[ui�1(P ) was bad℄=Pr[Ei�1℄:Thus, by (19), fi � fi�1q +Pr[ui�1(P ) was bad℄ = qfi�1 + pi�1(1).2.4 The improbability of high nodes being heavily loadedAs is apparent from Lemma 4, our main interest is in getting a good upper boundon pi(1). However, to do this we will also need some information about pi(t) fort � 2, and hen
e De�nition 3. The basi
 intuition is that if a node is good then,with high probability, it will su

essfully s
hedule \most" of its messages; this isformalized by Lemma 3(ii). In fa
t, Lemma 3(ii) shows that, for any node u inthe tree, the good 
hildren of u will, with high probability, pass on a total of \notmany" messages to u, sin
e the fun
tioning of ea
h of these 
hildren is independentof the other 
hildren.To estimate pi(t), we �rst handle the easy 
ase of i = 0. Re
all that if X1 andX2 are independent Poisson random variables with means �1 and �2 respe
tively,then X1 + X2 is Poisson with mean �1 + �2. Thus, u0 being t-bad is a simplelarge-deviation event for a Poisson random variable with mean sb�. If, for everyt � 1, we de�ne �t := dt�1=(sa�) and ensure that �t > 1 by guaranteeingsa� < 1; (20)then Theorem 1 shows thatp0(t) = Pr[u0 is t-bad℄ � H(sb�; �t) : (21)Our 
hoi
es for s and a validate (20): see (6), (17), (9) and (5).We now 
onsider how a generi
 node ui at level i � 1 
ould have be
ome t-bad,for any given t. The resulting re
urren
e yields a proof of an upper bound for pi(t)by indu
tion on i. The two 
ases t � 2 and t = 1 are 
overed by Lemmas 5 and 6respe
tively. We require d2 + k � 1 � dr ; (22)this is satis�ed by de�ning d = 2�:Lemma 5. For i � 1 and t � 2, if a node ui at level i in T is t-bad, then at leastone of the following two 
onditions holds for ui's set of 
hildren: (i) at least one
hild is (t+ 1)-bad, or (ii) at least two 
hildren are (t� 1)-bad. Thus,pi(t) � kpi�1(t+ 1) +�k2� (pi�1(t� 1))2 :Proof. Suppose that ui is t-bad but that neither (i) nor (ii) holds. Then uihas at most one 
hild v that is either t-loaded or (t � 1)-loaded, and none ofthe other 
hildren of ui is (t � 1)-bad. Node v 
an 
ontribute a load of at mostbri�1dt=a messages to ui; the other 
hildren 
ontribute a total load of at most
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ted Delay � 17(k � 1)bri�1dt�2=a. Thus the 
hildren of ui 
ontribute a total load of at mostbri�1dt�2(d2 + k � 1)=a, whi
h 
ontradi
ts the fa
t that ui is t-bad, sin
e (22)holds.In the 
ase t = 1, a key role is played by the intuition that the good 
hildren ofui 
an be expe
ted to transmit mu
h of their load su

essfully. We now �x q andm, and pla
e a lower bound on our 
hoi
e of b. Note that (22) implies r > d. De�ne�1; �2 > 0 by �1 = minf r � da(k � 1) ; 12g and �2 = minf rak ; 12g :For q, we treat it as a parameter that satis�es0 < q < 1=k: (23)(Lemmas 7 and 8 will require that q be suÆ
iently small.) In the notation ofLemma 3, we de�ne m = maxfm(q; Æ0; �1);m(q; Æ0; �2)g (24)and require b � maxf`(q; Æ0; �1); `(q; Æ0; �2)g: (25)Lemma 6. For any i � 1, pi(1) is at mostkpi�1(2) +�k2� (pi�1(1))2 + k(k � 1)pi�1(1)e�bri�1p(q;Æ0;�1) + ke�bri�1p(q;Æ0;�2):Proof. Suppose that ui is 1-bad. There are two possibilities: that at least one
hild of ui is 2-bad or that at least two 
hildren are 1-bad. If neither of these
onditions holds, then either (A) ui has exa
tly one 
hild whi
h is 1-loaded with noother 
hild being bad, or (B) all 
hildren are good.In 
ase (A), the k � 1 good 
hildren must 
ontribute a total of at least
ap(ui)a � 
ap(ui�1)da = bri�1(r � d)a � bri�1(k � 1)�1messages to ui. In the notation of Lemma 3, z = k�1, ` = bri�1 and � = �1. Sin
ethere are k 
hoi
es for the 1-loaded 
hild, Lemma 3(ii) shows that the probabilityof o

urren
e of 
ase (A) is at mostk(k � 1)pi�1(1)e�bri�1p(q;Æ0;�1):In 
ase (B), the k good 
hildren 
ontribute at least 
ap(ui)=a = bri=a. By a similarargument, the probability of o

urren
e of 
ase (B) is at mostke�bri�1p(q;Æ0;�2):The inequality in the lemma follows.Next is a key theorem that proves an upper bound for pi(t), by indu
tion on i.We assume that our 
onstants satisfy the 
onditions (7, 8, 17, 20, 22, 23, 24, 25).
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Kenzie, M. Paterson, and A. SrinivasanTheorem 2. For any �xed � < 1=e and any q 2 (0; 1=k), there is a suÆ
ientlylarge value of b su
h that the following holds. There are positive 
onstants �; � and
, with �; � > 1, su
h that8i � 0 8t � 1; pi(t) � e�
�i�t�1 :Before proving Theorem 2, let us see why this shows the required propertythat E[W (P )℄, the expe
ted waiting time of a generi
 message P , is �nite. Theo-rem 2 shows that, for large i, pi�1(1) is negligible 
ompared to qi and hen
e, byLemma 4(ii), fi = O(qi). Hen
e, Lemma 4(i) 
ombined with the bound (18) showsthat, for any 
hoi
e q < 1=k, E[W (P )℄ is �nite (and good upper tail bounds 
anbe proven for the distribution of W (P )). Thus (23) guarantees the �niteness ofE[W (P )℄.Proof. (Of Theorem 2.) This is by indu
tion on i. If i = 0, we use inequal-ity (21) and require that H(sb�; �t) � e�
�t�1 : (26)From (20), we see that �t > 1; thus by Fa
t 1, there is some M = M�t su
h thatH(sb�; �t) � e��tsb�=M : Therefore to satisfy inequality (26), it suÆ
es to ensurethat dt�1b=(aM) � 
�t�1:We will do this by 
hoosing our 
onstants so as to satisfyd � � and b � 
aM : (27)We will 
hoose � and � to be fairly 
lose to (but larger than) 1, and so the �rstinequality will be satis�ed. Although 
 will have to be quite large, we are free to
hoose b suÆ
iently large to satisfy the se
ond inequality.We pro
eed to the indu
tion for i � 1. We �rst handle the 
ase t � 2, and thenthe 
ase t = 1.Case I: t � 2. By Lemma 5, it suÆ
es to show thatke�
�i�1�t +�k2�e�2
�i�1�t�2 � e�
�i�t�1 :It is straightforward to verify that this holds for some suÆ
iently large 
, provided� > � and 2 > �� : (28)We 
an pi
k � = 1 + � and � = 1 + 2� for some small positive �, � < 1, to satisfy(28).Case II: t = 1. The �rst term in the inequality for pi(1) given by Lemma 6 is thesame as for Case I with t = 1; thus, as above, an appropriate 
hoi
e of 
onstantswill make it mu
h smaller than e�
�i . Similarly, the se
ond term in the inequalityfor pi(1) 
an be handled by assuming that � < 2 and that 
 is large enough. The�nal two terms given by Lemma 6 sum tok(k � 1)pi�1(1)e�bri�1p(q;Æ0;�1) + ke�bri�1p(q;Æ0;�2): (29)We wish to make ea
h summand in (29) at most, say, e�
�i=4. We just need toensure thatbri�1p(q; Æ0; �1) � 
�i + ln(4k2) and bri�1p(q; Æ0; �2) � 
�i + ln(4k) : (30)



Contention Resolution with Constant Expe
ted Delay � 19Sin
e r > �, both of these are true for suÆ
iently large i. To satisfy these in-equalities for small i, we 
hoose b a suÆ
iently large multiple of � � 1 to satisfy(10,25,27,30), 
ompleting the proof of Theorem 2.It is now easily veri�ed that 
onditions (7,8,20,22,27,28) are all satis�ed. Thus,we have presented stable proto
ols for � < 1=e.Theorem 3. Fix any � < 1=e. In the Syn
hronized In�nitely-Many UsersModel, our proto
ol guarantees an expe
ted waiting time of O(1) for every mes-sage.We also get a tail bound as a 
orollary of Theorem 2:Corollary 1. Let `0 be a suÆ
iently large 
onstant. Fix any � < 1=e and
1 > 1. We 
an then design our proto
ol su
h that, for any message P , in additionto having E[W (P )℄ = O(1), we also have for all ` � `0 that Pr[W (P ) � `℄ � `�
1.Proof. Using (18), we see that if W (P ) � ` then P enters j levels wherePji=1(i+ 2)ki > `=(2sb), so j(j + 2)kj � `=(2sb). This implies thatj � � logk � `2sb�� 2 logk logk � `2sb��:As we mentioned in the paragraph pre
eding the proof of Theorem 2, fj = O(qj).Thus, Pr[W (P ) � `℄ = O(qlogk(`=(2sb))�2 logk logk(`=(2sb))):The result follows by designing the proto
ol with q � k�
2
1 for a suÆ
iently largepositive 
onstant 
2.Remark 3. In pra
ti
e, the goal is often simply to ensure that the probability thatany given pa
ket is delivered to the 
hannel is at least 1 � � for some 
onstant �.By the 
orollary, we 
an a
hieve this goal by trun
ating ea
h pa
ket after (1=�)1=
1steps, or equivalently by trun
ating the in�nite tree after O(logk(1=�)) levels.3. THE SYNCHRONIZED FINITELY-MANY USERS PROTOCOLWe transfer to the Syn
hronized Finitely-Many Users Model (see Se
tion 1.1). Here,we shall let � =Pi �i be any 
onstant smaller than 1=e, and show how to simulatethe In�nitely-Many Users Proto
ol on n syn
hronized users. Suppose for the mo-ment that ea
h message 
an do its own pro
essing independently (this assumptionwill be removed shortly). With this assumption, the di�eren
e between the syn
hro-nized in�nitely-many users model whi
h we have been 
onsidering and the syn
hro-nized �nitely-many users model is that, instead of being a Poisson distribution withparameter �, the input arrival distribution 
an be any f�ig1�i�n-dominated distri-bution (see Se
tion 1.1). Although the arrivals may not be independent, the strong
ondition in the de�nition of \f�ig1�i�n-dominated distribution" allows us to ap-ply Theorem 1(a) to the message arrivals (using sto
hasti
 domination). Therefore,(21) still holds in the syn
hronized �nitely-many users model.We need to avoid the assumption that ea
h message is pro
essed separately. ThediÆ
ulty is that ea
h user must be responsible for a potentially unbounded numberof messages and must manage them in 
onstant time at ea
h step. We �rst sket
h
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Kenzie, M. Paterson, and A. Srinivasanhow to manage the messages and then give further details. Ea
h user f maintains,for ea
h i � 0, a linked list L(f; i) of the messages belonging to it that are at level iof the tree. If it is the turn of messages at level i of the tree to try in the 
urrent timestep t, then ea
h user f will 
ompute the probability pf;t of exa
tly one messagein L(f; i) attempting to use the 
hannel in our Syn
hronized In�nitely-Many UsersProto
ol. Then, ea
h f will independently send the message at the head of L(f; i)to the 
hannel with probability pf;t. (The reader may have noti
ed that, in orderto simulate faithfully our in�nitely-many users proto
ol, f should also 
al
ulate theprobability rf;t that more than one message in L(f; i) attempts to use the 
hannel.It should send a dummy message to the 
hannel with probability rf;t. This solutionworks, but we will show at the end of this se
tion that dummy messages are notne
essary.)We now present the details of this message-management s
heme. Let all theparameters su
h as k;�, et
., be as de�ned in Se
tion 2. For ea
h t 2 Z+, de�nea
tive(t) to be the index of the least signi�
ant digit of t that is nonzero, if t iswritten in base �. Re
all from (11) that if the 
urrent time is t then the messagesin L(fj ; a
tive(t)), taken over all users fj , are pre
isely those that may attemptusing the 
hannel at the 
urrent step. Thus, if a
tive(t) = i, ea
h user f �rst needsa

ess to the head-pointer of L(f; i) in O(1) time. For this, it suÆ
es if f 
ountstime in base � and has an in�nite array whose ith element is the head-pointer ofL(f; i). However, su
h stati
 in�nite storage is not required: f 
an 
ount time inbase � using a linked list, where the ith element of the list additionally 
ontainsthe head-pointer of L(f; i). This list 
an be augmented with pointers to jump oversubstrings (of the base-� representation of t) that are 
omposed of only � � 1,so that f 
an maintain t and a
tive(t) in O(1) time. We leave the tedious butstraightforward details of this to the reader. (Alternatively, as mentioned in theremark following Corollary 1, we may simply trun
ate the tree to a 
ertain �niteheight, if we only desire that ea
h message rea
hes the 
hannel with suÆ
ientlyhigh probability. Then, of 
ourse, f may simply have a �nite array that 
ontainshead-pointers to the L(f; i).) Thus, we assume that f 
an a

ess the head-pointerto L(f; a
tive(t)) in O(1) time.Ea
h user f also maintains two other types of lists. List L0(f; t) 
ontains messagesthat arrive at f at time t, and whi
h are waiting to enter the next leaf of the tree.Ea
h user f will also maintain lists L̂(f; i; j), for ea
h positive integer i and forj = 1; 2; : : : ; k; the use of these lists is as follows. Suppose v is the node of leveli that has an L(�) value greater than the 
urrent time by the smallest positiveamount. (That is, v is the node of level i that will be
ome a
tive soonest inthe future.) Then, L̂(f; i; j) 
ontains messages of f that were unsu

essful at thejth 
hild of v. In slight varian
e with the In�nitely-Many Users Proto
ol, whena message is unsu

essful at a node u at some level i, it does not immediatelymove to its parent; instead, when we rea
h time R(u), the list L(f; i) is renamedL̂(f; i+ 1; j), where j is su
h that u is the jth 
hild of its parent.Ea
h list L;L0; L̂ will also have its 
ardinality at its head. In addition, it will havea pointer to its last element, so that 
on
atenating two su
h lists 
an be done inO(1) time. The lists L0 and L will also have the important property that the rankof any message P in the list order is uniformly distributed. For ea
h f , we maintainthese properties as follows. To establish this property for L0(f; t), we shall require
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ted Delay � 21the following assumption on the message arrivals: in ea
h step t, the messagesarriving at user f arrive in random order (among ea
h other) and, when arriving,they in
rement jL0(f; t)j and get appended to the head of L0(f; t). Next, we showthe \random ordering" property for the lists L(f; i) by indu
tion on i. For the base
ase i = 0, the dis
ussion pre
eding (18) shows that any message waits at mostthe 
onstant amount b0 = b�=(� � 1) of time before entering a leaf. Thus, whenthe 
urrent time equals L(u) for some leaf u, f must de�ne L(f; 0) to be the unionof at most b0 lists L0(f; t). The user f 
an just generate a random permutation of[b0℄ and 
on
atenate the lists L0(f; t) in the permuted order; sin
e ea
h L0(f; t) israndomly ordered, so is the 
omputed L(f; 0). Similarly, suppose by indu
tion thatthe lists L(f; i) are randomly ordered for some i; this implies that so are the listsL̂(f; i+ 1; j), for all f and j. When the 
urrent time equals L(u) for some node uat level i+1, f 
an just generate a random permutation of [k℄ and 
on
atenate thelists L̂(f; i+ 1; j) (j = 1; 2; : : : ; k) in the permuted order to produ
e L(f; i+ 1).We need to show the probability 
omputations to be done by f . Re
all that theset of messages Pv entering a node v perform proto
ol RT(Pv ;Trial(v);m; 1; Æ0).Suppose f is managing its messages at node v in level i of the tree at time step t.Let Trial(v) = ft1 < t2 < � � � < t`g. Re
all from De�nition 1 that the messages inPv pro
eed in m iterations. Suppose f is 
ondu
ting the jth iteration at time t;thus, t 2 S := ftp : `0 + `1 + � � �+ `j�1 < p � `0 + `1 + � � �+ `jg:User f needs to 
ompute the probability pf;t of exa
tly one message in L(f; i)attempting to use the 
hannel. We show how to do this, for ea
h tp su
h that(Pj�1h=0 `h) < p � (Pjh=0 `h). Re
all that f knows the value of N := jL(f; i)j = jPv j:this is present at the head of L(f; i). At time step tq where q = 1 + b(Pj�1h=0 `h)
,f generates a random integer r1 2 f0g [ [N ℄, wherePr[r1 = j℄ = �Nj �� 1jSj�j �1� 1jSj�N�j :Note that r1 has the same distribution as the number of messages in L(f; i) thatwould have attempted using the 
hannel at step tq in our Syn
hronized In�nitely-Many Users Proto
ol. At time step tq, if r1 = 1, f will send the message at thehead of L(f; i) to the 
hannel. Similarly, if t = tq+1, f will generate a randominteger r2 2 f0g [ [N � r1℄ su
h thatPr[r2 = j℄ = �N � r1j �� 1jSj � 1�j �1� 1jSj � 1�N�r1�j :On
e again, r2 has the same distribution as the number of messages in L(f; i) thatwould have attempted using the 
hannel at step tq+1; as before, f will send themessage at the head of L(f; i) to the 
hannel at time step tq+1 if and only if r2 = 1.It is immediate that, at ea
h step, f 
orre
tly 
omputes the probability of a \uniquesend".At this point, it is 
lear that the in�nitely-many users proto
ol 
an be simulatedby �nitely-many users provided that the users send \dummy messages" as explainedpreviously. We now argue that sending dummy messages is unne
essary be
ause theproto
ol is \deletion resilient" in the sense that if an adversary deletes a message
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Kenzie, M. Paterson, and A. Srinivasan(for example, one that would have 
ollided with a dummy), the expe
ted lifetimeof other messages 
an only shorten. Formally, we must show that the simulatedsystem without dummy messages evolves with no worse probabilities than in thein�nite 
ase. We observe from our proof (for the Syn
hronized In�nitely-ManyUsers Model) that it suÆ
es to show the following analogue of Lemma 2. We needto show that if the number of available time slots (elements of the set S) is at leastas high as Pj jL(fj ; i)j (the sum taken over all users fj), then: (a) for any f andany message P 2 L(f; i), the probability that P su

eeds in the jSj time slots aboveis greater than 1=e, and (b) the total number of 
olliding messages C satis�es thetail bound in part (ii) of Lemma 2.It is not hard to see that the probability of a 
ollision in any one of the timesteps above is at most 1=e. Thus (b) follows by the same proof as for part (ii)of Lemma 2. So, let us show (a) now. Let jL(f; i)j = N , and let M 2 [N; jSj℄denote Pj jL(fj ; i)j. In any given step among the jSj steps, the probability that fsu

essfully transmitted a message, is at leastNjSj �1� 1jSj�M�1 � NjSj �1� 1jSj�jSj�1 > NejSj :Thus, by linearity of expe
tation, the expe
ted number of su

essful transmissionsby f is more than N=e. On
e again by linearity of expe
tation, this equals the sumof the su

ess probabilities of the messages in L(f; i), ea
h of whi
h is the same bysymmetry. Thus, for any given message P 2 L(f; i), P su

eeds with probabilitymore than 1=e.This 
ompletes the proof for the Syn
hronized Finitely-Many Users Model.3.1 A VariantWe will take n to be suÆ
iently large (if n is smaller than a 
ertain 
onstant, we 
anuse the proto
ol of [H�astad et al. 1996℄, whi
h 
an handle any arrival rate � < 1).We will assume without loss of generality that n is even; if n is odd, just add adummy user whi
h gets no messages and does nothing.Let P be a proto
ol (with 
onstants to be determined in order to meet ourrequirements below) running on n 
ompletely syn
hronized users whi
h simulatesthe Syn
hronized In�nitely-Many Users Proto
ol from Se
tion 2 for n2 � 1 stepsthen skips a step and 
ontinues; this \skip" happens at every step of the formjn2 � 1, where j 2 Z+. Inputs might, however, arrive during the skipped step. Tosimplify P , note from (5) that we 
an take � to be even. Now (11) shows that, forall i � 1, all elements of Fi will be even; thus, sin
e all skipped steps (whi
h areof the form jn2 � 1) are odd sin
e n is even, we see that no skipped step o

urs inthe Trial set of nodes at level i � 1. Thus, the skipped steps o

ur only during thetime slots assigned to the nodes at the leaf level. Sin
e the Trial sets of the leaveshave 
ardinality b and as we may take n > pb, we have that su
h \marked out"(skipped) steps o

ur at most on
e in the Trial set of any leaf. Thus, as long as bis suÆ
iently large (and n is 
hosen larger), the \variant" dis
ussed after Lemma 3shows that P is essentially the same as the Syn
hronized In�nitely-Many UsersProto
ol as far as our analysis is 
on
erned.We prove the following two useful lemmas about P . In both lemmas, P is runfor at most n40 steps.
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ted Delay � 23Lemma 7. Suppose � < 1=e and that P is run with a f�ig1�i�n-dominatedarrival distribution for � � n40 steps. Then the expe
ted delay of any message thatarrives is O(1). Furthermore, the probability that any of the messages that arriveduring the � steps has delay more than n7=2 is at most n�60.Proof. As dis
ussed above, we 
an handle P just as if it were the Syn
hronizedIn�nitely-Many Users Proto
ol. Then by Corollary 1, we 
an 
hoose the 
onstantsfor the proto
ol so that the probability that any given message has a delay ex
eedingn7=2 is at most (2=n7)
1 (when n is large) for any desired 
1. There are at most n�messages generated, so the probability that there exists su
h a message is at mostn�(2=n7)
1 , whi
h is suÆ
iently small if 
1 is suÆ
iently large (say, at least 18).Lemma 8. Suppose � < 1=e and that P is run with a f�ig1�i�n-dominatedarrival distribution for � � n40 steps. Suppose further that a message arrives atuser p at step t0 � � . Then the expe
ted delay of any message that arrives is O(1).Furthermore, the probability that any message has delay more than n7=2 is at mostn�60.Proof. The only pla
e where the proof in Se
tion 2 uses the arrival distributionis in bound (21). We argued at the beginning of this se
tion that (21) still holdsfor any f�ig1�i�n-dominated arrival distribution. We now show that a similarbound holds even if the arrival distribution is 
onditioned on a message arrivingat user p at step t0 � � . Re
all that a leaf u0 is t-bad if and only if its load(the number of arrivals in the relevant period of sb steps) ex
eeds bdt�1=a. Thenumber of arrivals in sb steps is at most 1 plus the sum of nsb random variablesXi;j where, for 1 � i � n and 1 � j � sb, Xi;j is a random variable that hasvalue 1 with probability at most �i (even 
onditioned on other arrivals) and value 0otherwise. Using sto
hasti
 domination, we 
an apply Theorem 1. We let �0t =(bdt�1 � a)=(asb�). Sin
e sa� < 1 (20), b 
an be 
hosen suÆ
iently large to make�0t > 1. By Theorem 1, the probability that the sum of the random variables ex
eeds((dbt�1)=a)�1 = (sb�)�0t is at most H(sb�; �0t). Thus, in pla
e of (21), we now have\Pr[u0 is t-bad℄ � H(sb�; �0t)". A small further 
hange to be made to our proof forthe Syn
hronized In�nitely-Many Users Proto
ol is, in the senten
e following (26),to de�ne M =M�0t . The whole proof goes through now.4. THE UNSYNCHRONIZED FINITELY-MANY USERS PROTOCOL4.1 Notation and PreliminariesIn our basi
 model, we have n users whi
h 
an start and stop at arbitrary steps,with the 
onstraint that ea
h time a user starts, it runs for at least a 
ertainpolynomial number of steps. (For the 
onstant expe
ted message delay results inSe
tion 4.4, we require this polynomial to be 8n71; however, n33 is suÆ
ient for allproofs in Se
tion 4.3. No attempt has been made to optimize these polynomials.)The starting and stopping times are not allowed to depend upon the progress ofthe proto
ol. Thus, these starting and stopping times 
an be viewed as beingdetermined in advan
e of the running of the proto
ol.2 Re
all that n is taken to2Spe
i�
ally, this models \normal" faults, and disallows \adversarial" faults, in whi
h startingand stopping times are adaptively 
hosen (depending on the history of the system) in order to
ause delays.



24 � L. A. Goldberg, P. D. Ma
Kenzie, M. Paterson, and A. Srinivasanbe suÆ
iently large and that � =Pi �i < 1=e.4.2 The Proto
olThe users typi
ally simulate proto
ol P from Se
tion 3. However, the starting andstopping of users 
auses the system to be
ome unsyn
hronized, so the proto
olsyn
hronizes itself from time to time.Here is an informal des
ription of our proto
ol. In the normal state a user main-tains a bu�er B of size n7 and an unbounded queue Q, ea
h 
ontaining messagesto be sent. When a message is generated it is put into B. For ea
h message m 2 Bthe user maintains a variable trial(m) whi
h 
ontains the next step on whi
h theuser will attempt to send m. The step trial(m) will be 
hosen using proto
ol P .When P is \skipping a step" our proto
ol will take the opportunity to try to sendsome messages from Q: at su
h steps, with probability 1=(3n), the user attemptsto send the �rst message in Q. Ea
h user also maintains a list L whi
h keeps tra
kof the results (either \failure" or \su

ess") of the (up to n2) most re
ent messagesending attempts from Q.A user goes into a syn
hronizing state if any message has remained in the bu�erfor n7 steps or if L is full (
ontains n2 results) and only 
ontains failures. It alsogoes into a syn
hronizing state from time to time even when these events do noto

ur. (It syn
hronizes if it has been simulating P for at least n40 steps, and itsyn
hronizes with probability n�30 on any given step.) If the user does go into asyn
hronizing state, it transfers all messages from B to the end of Q.In the syn
hronizing state, a user 
ould be in one of many possible stages, and itsa
tions depend on the stage that it is in. It will always put any generated messagesinto the queue. Also, it sends only dummy messages in the syn
hronizing state.(The dummy messages are used for syn
hronizing. Real messages that arrive duringthe syn
hronization phase must wait until the next normal phase to be sent.3) Thesequen
e of syn
hronization stages whi
h a user goes through is as follows.De�nition: Let W = 12n4.JAMMING The user starting the syn
hronization jams the 
hannel by sendingmessages at every step. In this way, it signals other users to start syn
hronizingalso.FINDING LEADER Ea
h user sends to the 
hannel with probability 1=n onea
h step. The �rst user to su

eed is the leader.ESTABLISHING LEADER In this stage, a user has de
ided it is the leader,and it jams the 
hannel so no other user will de
ide to be the leader.SETTING CLOCK In this stage, a user has established itself as the leader,and it jams the 
hannel on
e every 4W steps, giving other users a 
han
e tosyn
hronize with it.COPYING CLOCK In this stage, a user has de
ided it is not the leader, andit attempts to 
opy the leader's 
lo
k by polling the 
hannel repeatedly to �ndthe syn
hronization signal (namely, the jamming of the 
hannel every 4W steps3Of 
ourse, there is no harm in using real messages for syn
hronizing, but this does not improvethe provable results, so we prefer to use dummy messages for syn
hronizing in order to keep theexposition 
lear.



Contention Resolution with Constant Expe
ted Delay � 25by the leader). Spe
i�
ally, it sends to the 
hannel with probability 1=(3n) onea
h step and, if it su

eeds, it knows that the 
urrent step (mod 4W ) does not
orrespond to the leader's 
lo
k. After many attempts, it should be left withonly one step (mod 4W ) that 
ould 
orrespond to the leader's 
lo
k. At theend of this stage, it syn
hronizes its 
lo
k to the leader's 
lo
k.WAITING This stage is used by a user after COPYING CLOCK in order tosyn
hronize with the leader's 
lo
k. The user idles during this stage.POLLING A user in this stage is simply \biding its time" until it swit
hes to anormal stage. While doing so, it attempts to send to the 
hannel o

asionally(with probability 1=(3n) on ea
h step) in order to dete
t new users whi
h mightbe joining the system and re-starting a syn
hronization phase. If new users aredete
ted, the user re-starts the syn
hronization phase. Otherwise, it begins thenormal phase of the proto
ol.The length of ea
h of these stages is very important in terms of a
hieving both ahigh probability of syn
hronization and a high level of robustness. The high proba-bility of syn
hronization is a
hieved by making the \preliminary" stages (i.e., JAM-MING, FINDING LEADER, and ESTABLISHING LEADER) of length �(W ) (thisis long enough to guarantee all users in a normal state will dete
t a syn
hronization),and the \syn
hronizing" stages (i.e., SETTING CLOCK, COPYING CLOCK, andWAITING) of length �(Wn2) (this gives users enough time to determine theleader's 
lo
k modulo 4W with high probability). The high level of robustnessis a
hieved by the following properties:(1) the lengths of the \preliminary" and \syn
hronizing" stages are as above,(2) only the preliminary stages 
an 
ause the 
hannel to be jammed,(3) the \syn
hronizing" stages 
annot dete
t a new syn
hronization o

urring,(4) the POLLING stage is of length �(Wn3) (longer than all of the other stages
ombined), and(5) the POLLING stage is able to dete
t new syn
hronizations.The di�ering lengths of time for the \preliminary", \syn
hronizing" and POLLINGstages, and the fa
t that only the POLLING stage 
ould 
ause another syn
hro-nization to o

ur, guarantee that bad events as des
ribed at the end of Se
tion 1.3
annot o

ur, even when up to n users are starting at di�erent times (and stoppingperiodi
ally).Whenever a user joins the multiple-a

ess 
hannel, it starts the proto
ol withstate = SYNCHRONIZING, syn
 stage = JAMMING, 
lo
k = 0, and L empty.We now give the details of the proto
ol.Proto
olAt ea
h step doIf (state = NORMAL) 
all Pro
edure NormalElse 
all Pro
edure Syn
hronizing
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Kenzie, M. Paterson, and A. SrinivasanPro
edure NormalIf a message m is generatedPut m in BChoose trial(m) by 
ontinuing the simulation of PIf ((
lo
k mod n2) = n2 � 1) 
all Pro
edure Queue StepElse 
all Pro
edure Normal StepPro
edure Begin Syn
Move all of the messages in B to QEmpty Lstate SYNCHRONIZING, syn
 stage JAMMING, 
lo
k 0Pro
edure Normal StepIf (
lo
k � n40 or any message in B has waited more than n7 steps)Call Pro
edure Begin Syn
Else With Probability n�30, 
all Pro
edure Begin Syn
OtherwiseIf more than one message m in B has trial(m) = 
lo
kFor ea
h m 2 B with trial(m) = 
lo
kChoose a new trial(m) by 
ontinuing the simulation of PIf exa
tly one message m in B has trial(m) = 
lo
kSend mIf m su

eeds, remove it from BElse 
hoose a new trial(m) by 
ontinuing the simulation of P
lo
k 
lo
k + 1Pro
edure Queue StepWith probability 1=(3n)If (Q is empty) send a dummy messageElse Send the �rst message in QIf the out
ome is \su

ess", remove the message from QAdd the out
ome of the send to LOtherwise add \failure" to LIf (jLj = n2 and all of the entries of L are \failure")Call Pro
edure Begin Syn
Else 
lo
k 
lo
k + 1Pro
edure Syn
hronizingIf a message arrives, put it in QIf (syn
 stage = JAMMING) 
all Pro
edure JamElse If (syn
 stage = FLEADER) 
all Pro
edure Find LeaderElse If (syn
 stage = ESTABLISHING LEADER) 
all Pro
edure Establish LeaderElse If (syn
 stage = SETTING CLOCK) 
all Pro
edure Set Clo
kElse If (syn
 stage = COPYING CLOCK) 
all Pro
edure Copy Clo
kElse If (syn
 stage = WAITING) 
all Pro
edure WaitElse If (syn
 stage = POLLING) 
all Pro
edure Poll
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edure JamSend a dummy messageIf (
lo
k < W=2� 1), 
lo
k 
lo
k + 1Else syn
 stage FLEADER, 
lo
k 0Pro
edure Find LeaderWith probability 1=nSend a dummy messageIf it su

eedssyn
 stage ESTABLISHING LEADER, 
lo
k 0If (
lo
k < W � 1) 
lo
k 
lo
k + 1Else for i = 0 to 4W � 1possibletime[i℄ Yessyn
 stage COPYING CLOCK, 
lo
k 0Pro
edure Establish LeaderSend a dummy messageIf (
lo
k < 2W � 1) 
lo
k 
lo
k + 1Else syn
 stage SETTING CLOCK, 
lo
k 0Pro
edure Set Clo
kIf (
lo
k = 0 mod 4W )Send a dummy messageIf (
lo
k < 20Wn2 � 1) 
lo
k 
lo
k + 1Else syn
 stage POLLING, 
lo
k 0Pro
edure Copy Clo
kWith probability 1=(3n)Send a dummy messageIf it su

eedspossibletime[
lo
k mod 4W ℄ NoIf (
lo
k < 20Wn2 � 1) 
lo
k 
lo
k + 1Else If possibletime[j℄ = Yes for exa
tly one j,
lo
k �jIf (j = 0) syn
 stage POLLINGElse syn
 stage WAITINGElse syn
 stage POLLING, 
lo
k 0Pro
edure Wait
lo
k 
lo
k + 1If (
lo
k = 0), syn
 stage POLLING
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Kenzie, M. Paterson, and A. SrinivasanPro
edure PollWith Probability 1=(3n)Send a dummy messageAdd the out
ome of this send to the end of LOtherwise Add \failure" to LIf (jLj = n2 and all of the entries of L are \fail")Empty Lsyn
 stage JAMMING, 
lo
k 0Else If (
lo
k < Wn3 � 1), 
lo
k 
lo
k + 1Else Empty Lstate NORMAL, 
lo
k 04.3 The Main ProofStep 0 will be the step in whi
h the �rst user starts the proto
ol. Users will start andstop (perhaps repeatedly) at 
ertain predetermined times throughout the proto
ol.We say that the sequen
e of times at whi
h users start and stop is allowed if everyuser runs for at least n33 steps ea
h time it starts. Just before any step, t, we willrefer to the users that are running the proto
ol as live users. We will say that thestate of the system is normal if all of these users are in state NORMAL. We willsay that it is good if(1) it is normal, and(2) for some C < n40 � n7, every user has 
lo
k = C, and(3) every user with jLj � n2=2 has a su

ess in the last n2=2 elements of L, and(4) no message in any user's bu�er has been in that bu�er for more than n7=2steps.We say that the state is a starting state if the state is good and every 
lo
k = 0.We say that it is syn
hronizing if|every user has state = NORMAL, or has state = SYNCHRONIZING with eithersyn
 stage = JAMMING or syn
 stage = POLLING, and|some user has state = SYNCHRONIZING with syn
 stage = JAMMING and
lo
k = 0.We say that the system syn
hronizes at step t if it is in a normal state just beforestep t and in a syn
hronizing state just after step t. We say that the syn
hronizationis arbitrary if every user with state = SYNCHRONIZING, syn
 stage = JAMMINGand 
lo
k = 0 just after step t had its 
lo
k < n40, had no message waiting morethan n7 steps in its bu�er, and either had jLj < n2 or had a su

ess in L, justbefore step t.De�nition: The interval starting at any step t is de�ned to be the period [t; : : : ; t+n33 � 1℄.De�nition: An interval is said to be produ
tive for a given user if at least n29=2messages are sent from the user's queue during the interval, or the queue is emptyat some time during the interval.
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ted Delay � 29De�nition: An interval is said to be light for a given user if at most n17 messagesare pla
ed in the user's queue during the interval.De�nition: Step t is said to be an out-of-syn
 step if either the state is normaljust before step t, but two users have di�erent 
lo
ks, or the state was not normaljust before any step in [t� 13n7 + 1; : : : ; t℄. (Intuitively, an out-of-syn
 step is theresult of an \unsu

essful" syn
hronizing phase.)Pro
edure Normal Step simulates proto
ol P from Se
tion 3. Thus, from anystarting state until a syn
hronization, our system simulates P . This implies that oursystem stops simulating P when a user starts up, sin
e that user will immediatelystart a syn
hronization. Then P is simulated again on
e a starting state is rea
hed.We will use the following lemma.Lemma 9. Given a random variable X taking on non-negative values, and anytwo events A and B, E[X j A ^B℄ � E[X j B℄=Pr[A j B℄.Proof. E[X j B℄ = E[X j A ^ B℄ Pr[A j B℄ + E[X j A ^ B℄ Pr[A j B℄.Lemmas 10 to 14 outline the analysis of the normal operation of the syn
hroniza-tion phase of our proto
ol.Lemma 10. Suppose that the proto
ol is run with a sequen
e of user start/stoptimes in whi
h no user starts or stops between steps t and t+W . If the system isin a syn
hronizing state just before step t, then every live user sets syn
 stage toFLEADER just before some step in [t; : : : ; t+W ℄.Proof. A user 
an have state = SYNCHRONIZING and syn
 stage = JAMMINGfor onlyW=2 steps. Also, every user with state = SYNCHRONIZING, syn
 stage =POLLING, and 
lo
k < Wn3 � n2 will set syn
 stage to JAMMING after at mostn2 steps; every user with state = SYNCHRONIZING, syn
 stage = POLLING,and 
lo
k � Wn3 � n2 will either set syn
 stage to JAMMING within n2 steps,or swit
h to state = NORMAL within n2 steps, and set syn
 stage to JAMMINGafter at most an additional n4 steps (sin
e when state = NORMAL, a queue stepis taken only on
e every n2 steps); and every user with state = NORMAL willset syn
 stage to JAMMING after at most n4 steps. The lemma follows by notingthat n2 + n4 < W=2, and that a user remains in syn
 stage = JAMMING for W=2steps.Lemma 11. Suppose that the proto
ol is run with a sequen
e of user start/stoptimes in whi
h no users start or stop between steps t and t+4W . If every user setssyn
 stage = FLEADER before some step in [t; : : : ; t+W ℄ then, with probability atleast 1 � e�n3 , exa
tly one user sets syn
 stage = SETTING CLOCK just beforesome step in [t + 2W + 1; : : : ; t + 4W ℄ and every other user sets syn
 stage =COPYING CLOCK just before some step in [t+W; : : : ; t+ 2W ℄.Proof. At most one leader is ele
ted sin
e, after being ele
ted it does not allowany users to a

ess the 
hannel for 2W steps. Also no user will have syn
 stage =FLEADER just before step t+ 2W , sin
e syn
 stage = FLEADER for at most Wsteps.Suppose P is the last user to set syn
 stage = FLEADER. Then as long as noleader has been ele
ted, the probability that P is ele
ted at a given step is at least(1=n)(1� (1=n))n�1 � 1=(en). Thus the probability that no leader is ele
ted is
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Kenzie, M. Paterson, and A. Srinivasanat most (1� 1=(en))W , whi
h is at most e�n3 . Then the leader will spend 2Wsteps with syn
 stage = ESTABLISHING LEADER before setting syn
 stage toSETTING CLOCK, while ea
h of the other users will dire
tly set syn
 stage toCOPYING CLOCK.Lemma 12. Suppose that the proto
ol is run with a sequen
e of user start/stoptimes in whi
h no user starts or stops between steps � � 3W and � + 20Wn2. Ifexa
tly one user sets syn
 stage = SETTING CLOCK just before step � in [t +2W; : : : ; t + 4W ℄ and every other user sets syn
 stage = COPYING CLOCK justbefore some step in [� � 3W; : : : ; � ℄, then, with probability at least 1� 4Wne�n, allusers set syn
 stage = POLLING with 
lo
k = 0 just before step � + 20Wn2.Proof. The statement in the lemma is 
learly true for the user that sets syn
 stage =SETTING CLOCK. Suppose that P is some other user. For ea
h i in the range0 � i < 4W , if P 's 
lo
k = i mod 4W when the leader's 
lo
k = 0 mod 4W ,possibletime[i℄ will be Yes. If not, P has at least b(20Wn2 � 3W )=(4W )
 
han
esto set possibletime[i℄ to No, i.e., it has that many 
han
es to poll when its 
lo
k =i mod 4W and the leader has already set syn
 stage = SETTING CLOCK. Now,5n2� 1 = b(20Wn2� 3W )=(4W )
. The probability that P is su

essful on a givenstep is at least 23 ( 13n ), and so the probability that it is unsu

essful in 5n2� 1 stepsis at most (1� 29n )5n2�1 � e�n. The lemma follows by summing failure probabilitiesover all users and moduli of 4W .Lemma 13. Suppose that the proto
ol is run with a sequen
e of user start/stoptimes in whi
h no users start or stop between steps � and � +Wn3. If all users setsyn
 stage = POLLING with 
lo
k = 0 just before step � then, with probability atleast 1�Wn4e�n=10, all users set state = NORMAL and 
lo
k = 0 just before step� +Wn3.Proof. Say a sequen
e of n2=2 steps is bad for user P if P does not have asu

essful transmission on any step in the sequen
e. Then the probability that agiven user P is the �rst to set syn
 stage = JAMMING is at most the probabil-ity that it has a bad sequen
e of n2=2 steps, assuming all other users still havesyn
 stage = POLLING. This is at most the probability that it either does notsend, or is blo
ked on ea
h step of the sequen
e, whi
h is at most�1� 13n + 13n �13��n2=2 = �1� 29n�n2=2 � e�n=10:The lemma follows from summing over all steps (a
tually this over
ounts the num-ber of sequen
es of n2=2 steps) and all users.Lemma 14. Suppose that the proto
ol is run with a sequen
e of user start/stoptimes in whi
h no user starts or stops between steps t and t+13n7. If the system is ina syn
hronizing state just before step t then, with probability at least 1�2Wn4e�n=10,there is a t0 in [t+12n7; : : : ; t+13n7℄ su
h that it is in the starting state just beforestep t0.Proof. The lemma follows from Lemmas 10, 11, 12 and 13.Lemmas 15 to 19 outline the analysis of the robustness of the syn
hronizationphase. Lemma 15 shows that no matter what state the system is in (i.e., pos-
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ted Delay � 31sibly normal, possibly in the middle of a syn
hronization), if some user starts asyn
hronization (possibly be
ause it just started) then, within W=2 steps, everyuser will be in an early part of the syn
hronization phase. Then Lemma 16 showsthat with high probability, within a reasonable amount of time, all users will bebeyond the stages where they would jam the 
hannel, and furthermore there is alow probability of any going ba
k to those stages (i.e., a low probability of anysyn
hronization starting). Finally, Lemma 17 shows that soon all users will be inthe polling stage. At this point, as shown in Lemma 18, they will either all pro
eedinto the normal state, or if a syn
hronization is started, they will all dete
t it andwith high probability pro
eed into a good state as in Lemma 14.Note that these lemmas require the assumption that no users start or stop. Thisis be
ause they are used for showing that the system returns to a normal state fromany situation, even from a bad situation su
h as a user just having started in themiddle of a syn
hronization phase. If another user starts before the system returnsto normal, then we would again use these lemmas to show that the system willreturn to normal within a reasonable amount of time after that user started.Lemma 15. If the proto
ol is run and some user sets syn
 stage = JAMMINGjust before step t, and that user does not stop for W=2 steps, then there is a t0 in[t; : : : ; t+ (W=2)℄ su
h that just before step t0 no user has state = NORMAL, andevery user that has syn
 stage = POLLING has 
lo
k �W=2.Proof. Every user P that has state = NORMAL or syn
 stage = POLLINGjust before step twill dete
t the 
hannel being jammed and set state = SYNCHRONIZINGand syn
 stage = JAMMING just before some step in [t + 1; : : : ; t + (W=2)℄. Thelemma follows.Lemma 16. Suppose that the proto
ol is run with a sequen
e of user start/stoptimes in whi
h no user starts or stops between steps t and t + 5nW . If, justbefore step t, no user has state = NORMAL and every user with syn
 stage =POLLING has 
lo
k �W=2, then, with probability at least 1� 5Wn2e�n=10, thereis a t0 in [t; : : : ; t + 5nW ℄ su
h that, just before step t0, ea
h user has state =SYNCHRONIZING with syn
 stage set to SETTING CLOCK, COPYING CLOCK,WAITING, or POLLING. Furthermore, if a user has syn
 stage = POLLING, ithas 
lo
k � 5nW +W=2 and either it has 
lo
k � n2=2 or it has had a su

ess inthe last n2=2 steps.Proof. Say a user is 
alm at a given step if it has state = SYNCHRONIZING,and syn
 stage set to SETTING CLOCK, COPYING CLOCK, WAITING, or POLLING,and if syn
 stage = POLLING then its 
lo
k is at most W=2 + 5nW . Note thatea
h user is un
alm for at most 4W steps in t; : : : ; t+ 5nW , so there is a sequen
eof W steps in t; : : : ; t + 5nW in whi
h every user is 
alm. Let t0 be the randomvariable denoting the (n2=2 + 1)st step in this sequen
e.Say a sequen
e of n2=2 steps is bad for a user P if P has syn
 stage = POLLINGjust before every step in the sequen
e, and all of its transmissions during the se-quen
e are blo
ked by other 
alm users. The probability that a user with syn
 stage =POLLING adds a failure to L on a given step, either due to not transmitting or dueto being blo
ked by a 
alm user, is at most 1�1=(3n)+(1=(3n))(1=3) = 1�2=(9n).Thus, the probability that a given sequen
e of n2=2 steps is bad for a given user is at
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Kenzie, M. Paterson, and A. Srinivasanmost (1� 2=(9n))n2=2 � e�n=10. Thus, with probability at least 1� 5Wn2e�n=10,no sequen
e of n2=2 steps in t; : : : ; t+ 5nW is bad for any user. In parti
ular, thesequen
e of n2=2 steps pre
eding t0 is not bad for any user, so any user that hassyn
 stage = POLLING just before step t0 with 
lo
k > n2=2 has a su

ess in thesequen
e of n2=2 steps pre
eding t0.Lemma 17. Suppose that the proto
ol is run with a sequen
e of user start/stoptimes in whi
h no user starts or stops between steps t and t+5nW+(W=2)+20Wn2.If some user sets syn
 stage = JAMMING just before step t then, with probabilityat least 1� 21Wn3e�n=10, there is a t0 in [t; : : : ; t+ 5nW + (W=2) + 20Wn2℄ su
hthat, just before step t0, ea
h user has syn
 stage = POLLING.Proof. We know by Lemmas 15 and 16 that, with probability at least 1 �5Wn2e�n=10, there is a � in [t; : : : ; t+5nW + (W=2)℄ su
h that, just before step � ,ea
h user has state = SYNCHRONIZING and syn
 stage set to SETTING CLOCK,COPYING CLOCK, WAITING, or POLLING. Furthermore, if a user has syn
 stage= POLLING, it has 
lo
k � 5nW +W=2, and either it has 
lo
k � n2=2 or it hashad a su

essful poll in the last n2=2 polls.Unless a user sets syn
 stage = JAMMING in the next 20Wn2 steps, therewill be a step t0 su
h that ea
h user has syn
 stage = POLLING. But to setsyn
 stage = JAMMING, a user with syn
 stage = POLLINGmust be unsu

essfulin all transmission attempts during some n2=2 
onse
utive steps. For a single userand a single set of n2=2 
onse
utive steps, the probability of this is at most e�n=10(as in the proof of Lemma 13). For all users and all possible sets of n2=2 
onse
utivesteps in �; : : : ; �+20Wn2, this probability is bounded by 20Wn3e�n=10. The lemmafollows.Lemma 18. Suppose that the proto
ol is run with a sequen
e of user start/stoptimes in whi
h no user starts or stops between steps t and t+Wn3 + 13n7. If thesystem is in a state in whi
h every user has state = NORMAL or syn
 stage =POLLING just before step t then, with probability at least 1�2Wn4e�n=10, there isa t0 in [t; : : : ; t+Wn3 +13n7℄ su
h that the system is in a normal state just beforestep t0.Proof. If no user sets syn
 stage = JAMMING during steps [t; : : : ; t+Wn3�1℄then the system rea
hes a normal state before step t +Wn3. Otherwise, supposethat some user sets syn
 stage = JAMMING just before step t00 � t +Wn3 � 1.By Lemma 14, with probability at least 1 � 2Wn4e�n=10, the system will enter astarting state by step t00 + 13n7.Observation 1. Suppose that the proto
ol is run with a sequen
e of user start/stoptimes in whi
h no user starts between steps t and t+21Wn2� 1. Suppose that nouser sets syn
 stage = JAMMING during steps t; : : : ; t + 21Wn2 � 1. Then everyuser has state = NORMAL or syn
 stage = POLLING just before step t+21Wn2.To see why this observation is true, 
onsider the interval of steps t; : : : ; t+21Wn2�1. Note that on
e a user has state = NORMAL or syn
 stage = POLLING(during this interval) it won't 
hange state or syn
 stage (sin
e that would 
ausesyn
 stage = JAMMING). The observation then follows from the fa
t that the
umulative amount of time that any user 
an spend in any syn
 stage besides
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ted Delay � 33POLLING is less than 21Wn2. (JAMMING takes at most W=2 steps, FLEADERtakes at mostW steps, ESTABLISHING LEADER takes at most 2W steps, SETTING CLOCKor COPYING CLOCK takes at most 20Wn2 steps, and WAITING takes at most4W steps.)Lemma 19. Suppose that the proto
ol is run with a sequen
e of user start/stoptimes in whi
h no user starts or stops between steps t and t+n8. Given any systemstate just before step t, with probability at least 1 � 3Wn4e�n=10, there is a t0 in[t; : : : ; t+ n8℄ su
h that the system is in a normal state just before step t0.Proof. The lemma follows from Lemmas 17 and 18, and Observation 1.Lemmas 20{23 and Theorem 4 show that if the proto
ol is run with a f�ig1�i�n-dominated message arrivals distribution then the system is usually in a good state(i.e., syn
hronized and running the P proto
ol), and thus the expe
ted time thatmessages wait in the bu�er is 
onstant.Lemma 20. Suppose that the proto
ol is run with a sequen
e of user start/stoptimes in whi
h no user starts or stops during steps t; : : : ; t+ n31=4� 1. Given anysystem state just before step t, with probability at least 1� 6Wn4e�n=10, there is at0 in [t; : : : ; t+ n31=4℄ su
h that the system is in a starting state just before step t0.Proof. By Lemma 19, no matter what state the system is in at step t, withprobability at least 1 � 3Wn4e�n=10 it will be in a normal state within n8 steps.Then the probability that it does not enter a syn
hronizing state within n31=8 stepsis at most (1 � n�30)(n31=8)�(n29=8) � e�n=10. Then by Lemma 14, on
e it entersa syn
hronizing state, with probability at least 1 � 2Wn4e�n=10 it will be in astarting state within 13n7 steps. The lemma follows dire
tly from summing failureprobabilities.Lemma 21. Suppose that the proto
ol is run with a sequen
e of user start/stoptimes in whi
h no user starts or stops between steps t and t + n31 � 2n8. Givenany system state just before step t, with probability at least 1 � 4Wn4e�n=10 thereis a t0 in [t; : : : ; t+ n31 � 2n8℄ su
h that the system is in a syn
hronizing state justbefore step t0.Proof. From Lemma 19, with probability at least 1� 3Wn4e�n=10, the systemwill be in a normal state at some time steps in [t; : : : t+ n8℄. On
e the system is ina normal state, on every step ex
ept one out of every n2 steps, with probability atleast n�30 a user will swit
h to a syn
hronizing state. The probability of this nothappening in the next n31 � 3n8 steps is at most (1� n�30)(n31�3n8�n29) � e�n=2.The lemma follows from summing the failure probabilities.Arrival distribution. For the remainder of this subse
tion, we will assume (with-out further mention) that the arrival distribution is f�ig1�i�n-dominated distribu-tion.Lemma 22. Let � be a non-negative integer less than n40�n7. Suppose that nouser starts or stops between steps t and t + � . If the system is in a starting statejust before step t then, with probability at least 1 � (13:5)n�22, the system is in agood state just before step t+ � .



34 � L. A. Goldberg, P. D. Ma
Kenzie, M. Paterson, and A. SrinivasanProof. Consider the following experiment, in whi
h the proto
ol is started in astarting state just before step t and run a

ording to the experiment.i tresyn
ing  falseDo foreverSimulate a step of the proto
olIf (resyn
ing = false)If some message has waited more than n7=2 stepsFAIL2If some user with jLj � n2=2 has no su

ess in the last n2=2 elements of LFAIL1If the new state of the system is syn
hronizingIf (i � t+ � � 13n7), FAIL3Elseresyn
ing  truej  0ElseIf (the new state of the system is a starting state)resyn
ing  falsej  j + 1If ((j � 13n7) and (resyn
ing = true)), FAIL4i = i+ 1If (i � t+ �), SUCCEEDFrom the de�nition of a good state (see the beginning of Se
tion 4.3), if none offFAIL1; : : : ;FAIL4g o

urs then the system is in a good state just before step t+� .As in the proof of Lemma 12, the probability that a given element of L is \su

ess"is at least 2=(9n), so the probability that FAIL1 o

urs is at most �ne�n=9. ByLemma 7, and the fa
t that at most n40=W starting states o

ur in the experiment(so P is started at most n40=W times), the probability that FAIL2 o

urs is at most(n40=W )n�60 < n�24. In the experiment, the 
lo
ks of the users never rea
h n40.If the state is normal, all users have the same value of 
, every user with jLj �n2=2 has a su

ess in the last n2=2 elements of L, and every user has no messagethat has waited more than n7=2 steps, then the probability that a given user setsstate = SYNCHRONIZING on a given step is at most n�30. Thus, the probabilitythat FAIL3 o

urs is at most 13n�22. By Lemma 14, the probability of failingto su

essfully restart after a given syn
hronization state is at most 2Wn4e�n=10.Hen
e, the probability of FAIL4 o

urring is at most 2�Wn4e�n=10.De�nition: Let T = n31.Lemma 23. Suppose that no user starts or stops between steps t and t+T . Givenany system state just before step t, with probability at least 1� 14n�22, the systemis in a good state just before step t+ T .Proof. The lemma follows from Lemma 21, Lemma 14, and Lemma 22.



Contention Resolution with Constant Expe
ted Delay � 35Theorem 4. Suppose that no user starts or stops during steps [t�T; : : : ; t+n7℄.Given any system state just before step t� T , suppose that a message is generatedat step t. The expe
ted time that the message spends in the bu�er is O(1).Proof. Let X be the time that the message spends in the bu�er and let G bethe event that the state just before step t is good and has 
lo
k less than T . Sin
eX is always at most n7, E[X ℄ � n7 Pr[G℄ + E[X j G℄. Now, Pr[G℄ is at most theprobability that the state just before step t is not good plus the probability that thestate just before step t has 
lo
k at least T . By Lemma 20, the latter probability isat most 6Wn4e�n=10, and, by Lemma 23, the former probability is at most 14n�22.Thus, E[X ℄ � O(1) + E[X j G℄. Then E[X j G℄ = Pt0 E[X j Gt0 ℄ Pr[Gt0 j G℄,where Gt0 is the event that the good state just before step t has 
lo
k t0 < T .Let At0 be the event that a message p0 is born in step t0 of the P proto
ol. LetB be the event that, prior to that step t0 (in the P proto
ol), no message haswaited more than n7 steps, and at step t0 no message in the bu�er has waitedmore than n7=2 steps. Let Y be the random variable denoting the number ofsteps required to transmit p0 (in P). Then E[X j Gt0 ℄ � E[Y j At0 ^ B℄. (Itwould be equal ex
ept that in our proto
ol, it is possible for a message to betransferred to the queue before it is su

essfully sent from the bu�er.) So byLemma 9, E[X j Gt0 ℄ � E[Y j At0 ^ B℄ � E[Y j At0 ℄=Pr[B j At0 ℄. Then byLemma 8, E[X j Gt0 ℄ � 2E[Y j At0 ℄ � O(1), 8t0 < T . Thus E[X j G℄ = O(1).The remaining results in Subse
tion 4.3 show that the probability of a messageentering a queue is low, the probability of a queue being very full is low, and therate at whi
h the messages are sent from the queue is high enough that the expe
tedtime any given message spends in the queue is low. (Note that most messages willspend no time in the queue.)Lemma 24. Suppose that the proto
ol is run with an allowed sequen
e of userstart/stop times. The probability that there is a t0 in [t; : : : ; t + n32℄ su
h that thesystem is in a starting state just before step t0 is at least 1 � 6Wn4e�n=10, givenany system state just before step t.Proof. Divide the interval of n32 steps into subintervals of n31=4 steps ea
h.Sin
e at most n users 
an start or stop during the interval, and those that start
ontinue for the remainder of the interval, there must be a subinterval in whi
h nousers start or stop. The result follows from Lemma 20.Lemma 25. Suppose that the proto
ol is run with a given allowed sequen
e ofuser start/stop times in whi
h no user starts or stops between steps t � T andt + n7=2. Given any system state just before step t � T , suppose that a messageR arrives at user P at step t. The probability that R enters the queue is at most16n�22.Proof. Let X be the event that R enters the queue. Let G be the event thatjust before step t the state is good and has 
lo
k less than T . Then by Lemma 23and Lemma 20, Pr[X ℄ � 1Pr[G℄ + Pr[X j G℄ � 14n�22+6Wn4e�n=10 +Pr[X j G℄.Note that Pr[X j G℄ = Pt0 Pr[X j Gt0 ℄ Pr[Gt0 j G℄, where Gt0 is the event thatthe good state just before step t has 
lo
k t0. Consider the following experiment(the 
orresponding intuition and analysis are presented after its des
ription; so



36 � L. A. Goldberg, P. D. Ma
Kenzie, M. Paterson, and A. Srinivasanthe reader is asked to �rst skip to the end of the des
ription and then study thedes
ription as needed):i 0Do foreverIf i = t0Add a message R to user PSimulate a step of the proto
ol (ex
ept for the arbitrary syn
hronizations)If some message has been in a bu�er more than n7=2 stepsFAIL1If some user with jLj � n2=2 has no su

ess in the last n2=2 elements of LFAIL1ElseSimulate a step of the proto
ol (ex
ept for the arbitrary syn
hronizations)If (i < t0) and some message has waited more than n7 stepsFAIL1If (i > t0) and some message has waited more than n7 stepsFAIL3If some user with jLj � n2 has no su

ess in the last n2 elements of LFAIL1i = i+ 1If (i � t0 + n7=2)If message Q has been sent, SUCCEEDElse FAIL2This experiment models the system beginning at a start state, and going fort0+n7=2 � T+n7=2 steps, but assumes that there are no arbitrary syn
hronizations,and that there is a message R generated at P at 
lo
k t0. The experiment fails atstep i = t0 if the system enters a state whi
h is not good at that point. It fails at astep i < t0 or t0 < i < t0 + n7=2 if the system does a non-arbitrary syn
hronizationat that point. It fails at step i = t0 + n7=2 if the message R has not been sentsu

essfully. Let A be the event that FAIL1 o

urs, B be the event that FAIL2o

urs, C be the event that FAIL3 o

urs, and S be the event that the experimentdoes not fail during steps 1; : : : ; t0. The probability that R is still in the bu�erafter step t + n7=2 + 1, or the real system syn
hronizes before step t + n7=2 + 1,
onditioned on the fa
t that the state just before step t is good and has 
lo
k t0and on the fa
t that message R is generated at P at step t0, is at most the sumof (1) Pr[C j S℄, (2) Pr[A j S℄, (3) Pr[B j S℄, and (4) the probability that there isan arbitrary syn
hronization during steps t; : : : ; t+ n7=2� 1. Probability (4) is atmost n(n7=2)(n�30) = n�22=2. Now note that Pr[A j S℄ � Pr[A℄=Pr[S℄. By theproof of Lemma 22 (using Lemma 8),Pr[S℄ � 1� [n40(ne�n=9) + n�60℄ � 12and Pr[A℄ � n40(ne�n=9) + n�60:Thus Pr[A j S℄ � 3n�60.



Contention Resolution with Constant Expe
ted Delay � 37Note also that Pr[B j S℄ � Pr[B℄=Pr[S℄. By Lemma 8, Pr[B℄ � n�60. (This 
anonly be de
reased by a queue step 
ausing a syn
hronization.) Then Pr[B j S℄ �2n�60.Finally, Pr[C j S℄ = 0, sin
e all messages at step t0 have waited for at most n7=2steps, and the experiment stops at step t0 + n7=2.Thus, Pr[X j G℄ � n�22, whi
h 
ompletes the proof.Lemma 26. Let j be an integer in [0; : : : ; 14℄. Suppose that no user starts orstops during steps t; : : : ; t+n14+j�1. If the system is in a starting state just beforestep t then the probability that the system enters a syn
hronizing state during stepst; : : : ; t+ n14+j � 1 is at most 2n�15+j.Proof. The probability that an arbitrary syn
hronization o

urs during stepst; : : : ; t + n14+j � 1 is at most n � n�30 � n14+j = n�15+j . Following the proof ofLemma 22, we see that the probability that a non-arbitrary syn
hronization o

ursduring these steps is at most n�60 + n15+je�n=9. (The probability that a messagewaits in a bu�er more than n7 steps is at most n�60 by Lemma 7 and the probabilitythat some user gets n2 failures on L is at most n14+j � n � e�n=9.)Lemma 27. Suppose that no user starts or stops during the interval [t; : : : ; t +n33 � 1℄. If the system is in a starting state just before step t then the probabilitythat either some step in the interval is an out-of-syn
 step or that the system is in astarting state just before more than n7 steps in the interval is at most 3Wn11e�n=10.Proof. If the system is in a starting state x times, where x > n7, then at leastx�n7=2 of these must be followed by fewer than 2n26 steps before the next syn
hro-nization phase. By Lemma 26, the probability of fewer than 2n26 steps o

urringbetween a starting state and the next syn
hronization phases is at most 2n�2. Thus,the probability of this happening after at least x� n7=2 of the x starting states isat most 2x(2n�2)x�n7=2 whi
h is at most 2�n7=2.If the system is in a starting state just before at most n7 steps in the interval, thenthe only time that the system 
ould have an out-of-syn
 step during the interval isduring at most n7�1 subintervals whi
h start with a syn
hronizing state and end ina starting state. By the proof of Lemma 14, the probability that a given subinterval
ontains an out-of-syn
 step is at most 2Wn4e�n=10. Thus, the probability that anout-of-syn
 step o

urs in the interval is at most n7(2Wn4e�n=10).Lemma 28. Suppose that the proto
ol is run with a given allowed sequen
e of userstart/stop times after step t, and a given system state just before step t. Divide theinterval starting at step t into blo
ks of n4 steps. The probability that the intervalhas more than 27n11 blo
ks 
ontaining non-normal steps is at most 7Wn12e�n=10.Proof. Re
all that the interval starting at step t is de�ned to be the period[t; : : : ; t+n33� 1℄, and that we are assuming that ea
h user runs at least n33 stepsea
h time it starts. Let S 
ontain the �rst step of the interval and ea
h step duringthe interval in whi
h a user starts or stops. Then jSj � 2n+1. Let S0 
ontain S plusfor ea
h step s 2 S, all steps after s until the system returns to a normal state. ByLemma 19, with probability at least 1� (2n+ 1)(3Wn4e�n=10), S0 
an be 
overedby 2n+1 sequen
es of at most n8 steps ea
h. Then the set S0 partitions the othersteps in the interval into at most 2n+1 subintervals, su
h that the state is normal



38 � L. A. Goldberg, P. D. Ma
Kenzie, M. Paterson, and A. Srinivasanjust before ea
h subinterval, and no users start or stop during any subinterval. Weperform the following analysis for ea
h of these subintervals.By Lemma 14, on
e the system enters a syn
hronizing state, with probability atleast 1� 2Wn4e�n=10 it will be in a starting state within 13n7 steps. On
e the sys-tem is in a starting state, by Lemma 27 with probability at least 1� 3Wn11e�n=10,it will enter a syn
hronizing state at most n7 + 1 times, and ea
h syn
hronizingphase will last at most 13n7 steps.In total, the probability of not performing as stated above is at most(2n+ 1)(3Wn4e�n=10 + 2Wn4e�n=10 + 3Wn11e�n=10) � 7Wn12e�n=10:Finally, the set S0 
an interse
t at most (2n+1)((n8=n4)+1) blo
ks of size n4. Then,in ea
h of the 2n + 1 subintervals of steps between those of S0, there are at mostn7 + 2 syn
hronizing phases, ea
h of whi
h 
an interse
t at most ((13n7=n4) + 1)blo
ks of size n4. Altogether, at most 27n11 blo
ks of size n4 will 
ontain non-normal steps.Corollary 2. Let x be an integer in the range 0 � x � n29 � 54n11. Supposethat the proto
ol is run with a given allowed sequen
e of user start/stop times afterstep t, and a given system state just before step t. Fo
us on a parti
ular non-empty queue at step t. The probability that the queue remains non-empty for thenext xn4+54n15 steps, but fewer than x messages are delivered from it during thisperiod, is at most 7Wn12e�n=10.Proof. Divide the next xn4 + 54n15 � n33 steps into blo
ks of size n4. ByLemma 28, with probability at least 1 � 7Wn12e�n=10, at most 54n11 of theseblo
ks will either 
ontain a non-normal step, or pre
ede a blo
k whi
h 
ontains anon-normal step. The 
orollary follows by noting that if blo
k i 
ontains all normalsteps and no syn
hronization is started in blo
k i + 1, then a message must havebeen sent from the queue during blo
k i.Lemma 29. Suppose that the proto
ol is run with a given allowed sequen
e ofuser start/stop times after step t, and a given system state just before step t. Thenthe probability that the interval starting at t is light for a given user is at least1� 8Wn12e�n=10.Proof. As in the proof of Lemma 28, with probability at least 1�7Wn12e�n=10,the non-normal steps 
ould be 
overed by at most (2n + 1) + (2n + 1)(n7 + 2)subintervals of at most n8 steps ea
h, and ea
h of the subintervals would 
ontributeat most n8 + n7 messages to the queue (in
luding the at most n7 that 
ould betransferred from the user's bu�er). If this were the 
ase, at most 3n16 messageswould be pla
ed in the queue during the interval.Lemma 30. Suppose that the proto
ol is run with a given allowed sequen
e ofuser start/stop times after step t, and a given system state just before step t. Theprobability that the interval starting at t is produ
tive for a given user is at least1� 7Wn12e�n=10.Proof. Follows from Corollary 2.Lemma 31. Suppose that the proto
ol is run with a given allowed sequen
e ofuser start/stop times before step t. The probability that more than n17+j(n33+n7)



Contention Resolution with Constant Expe
ted Delay � 39messages are in a queue just before step t is at most e�jn=30 for j � 1 and at moste�n=30 for j = 0.Proof. For every non-negative integer j, we will refer to the interval [t � (j +1)n33+1; : : : ; t�jn33℄ as \interval j". Choose k su
h that the queue was empty justbefore some step in interval k, but was not empty just before any steps in intervals 0to (k� 1). We say that interval j is \bad" if it is not both produ
tive and light forthe user. The size of the queue in
reases by at most n33 + n7 during any interval,sin
e the user generates at most one message during ea
h step. If interval k is notbad, then the queue size in
reases by at most n17 during interval k. If interval jis not bad for j < k, then the queue size de
reases by at least n29=2� n17 duringinterval k. Thus, if b of intervals 0 to k are bad, then the size of the queue justbefore step t is at most(k + 1)(n33 + n7)� (k + 1� b)(n33 + n7 + n29=2� n17) + n17:This quantity is at most n17 + i(n33 + n7) unless b > i=2 + k=(8n4). Thus, theprobability that the queue has more than n17 + i(n33 + n7) messages just beforestep t is at most the probability that, for some non-negative integer k, more than(i=2)+(k=(8n4)) of intervals 0 to k are bad. By Lemmas 29 and 30, the probabilitythat a given interval is bad is at most 16Wn12e�n=10. Let X = 16Wn12e�n=10.Then, for i � 1, the failure probability is at mostXk�0� kb(i=2) + (k=(8n4))
+ 1�Xb(i=2)+(k=(8n4))
+1� Xk�0(16en4X)b(i=2)+(k=(8n4))
+1� Xk�0(16en4X)(i=2)+(k=(8n4))� (16en4X)i=2Xk�0(16en4X)k=(8n4)� (16en4X)i=28n4Xk�0(16en4X)k� 2(8n4)(16en4X)i=2 � e�in=30:For i = 0, this probability is at mostXk�0� kbk=(8n4)
+ 1�Xbk=(8n4)
+1 � Xk�0(16en4X)bk=(8n4)
+1� (16en4X)Xk�0(16en4X)bk=(8n4)
� 2(8n4)(16en4X) � e�n=30:Lemma 32. Suppose that the proto
ol is run with a given allowed sequen
e ofuser start/stop times after step t+ n32. Suppose that no users start or stop duringsteps [t � T; : : : ; t + n32℄ and that the system state just before step t � T is given.



40 � L. A. Goldberg, P. D. Ma
Kenzie, M. Paterson, and A. SrinivasanThe probability that an out-of-syn
 step o

urs before a starting step after t is atmost 4Wn11e�n=10.Proof. By Lemma 20, the probability of not having a start state just beforeany step in the subinterval [t � T; : : : ; t � T=2℄ is at most 6Wn4e�n=10. Then by(the proof of) Lemma 27, the probability of having an out-of-syn
 step before stept + n32 is at most 3Wn11e�n=10. Finally, by Lemma 20, the probability of nothaving a start state in the subinterval [t; : : : ; t+ T=2℄ is at most 6Wn4e�n=10. Thelemma follows by summing the failure probabilities.Lemma 33. Suppose that the proto
ol is run with a given allowed sequen
e ofuser start/stop times after step t, and a given system state just before step t inwhi
h queue Q 
ontains at least x messages. Then the expe
ted time until at leastx messages have been sent from Q is O(xn4 + n15).Proof. Our �rst 
ase is when x � n29=2. Let A be the event that at leastx messages are sent in steps t; : : : ; t + xn4 + 54n15 � 1. We refer to the interval[t+ xn4 + 54n15 + (k � 1)n33; : : : ; t+ xn4 + 54n15 + kn33 � 1℄ as \interval k". LetCk be the event that interval k is produ
tive. Let Ex be the expe
ted time to sendthe x messages. Using Corollary 2 and Lemma 30,Ex � (xn4 + 54n15) + n33 Pr[A℄ +Xk>1 n33 Pr[ ^1�i�k�1Ci℄� xn4 + 54n15 +Xk�1n33(7Wn12e�n=10)k= O(xn4 + n15):Our se
ond and last 
ase is when x > n29=2. Let r = d2x=n29e. Note that afterr produ
tive intervals, at least x messages will be sent. Let Dk be the event thatintervals 1 to k do not 
ontain at least r produ
tive intervals, but that intervals 1to (k + 1) do 
ontain r produ
tive intervals.Ex � Xk�r(k + 1)n33Pr[Dk℄� n33(2r + Xk�2r(k + 1)Pr[Dk℄)� n33(2r + Xk�2r(k + 1)� kk � r�(7Wn12e�n=10)k�r)� n33(2r + Xk�2r(k + 1)2k(7Wn12e�n=10)k�r)= O(n33r) = O(xn4):Theorem 5. Suppose that the proto
ol is run with a f�ig1�i�n-dominated ar-rival distribution, a given allowed sequen
e of user start/stop times in whi
h nousers start or stop during steps [t � n33; : : : ; t + n33℄. Suppose that a message isgenerated at step t. The expe
ted time that the message spends in the queue is O(1).



Contention Resolution with Constant Expe
ted Delay � 41Proof. Let I` be the interval [t � `n33 + 1; : : : ; t � (` � 1)n33℄. Let A0 be theevent that the size of the queue is at most n17� 1 just before step t�n33+1, and,for i � 1, let Ai be the event that the size of the queue just before step t� n33 +1is in the range [n17+ (i� 1)(n33+n7); n17+ i(n33+n7)� 1℄. Let B the event thatinterval I1 is light. Let C be the event that the message enters the queue. Let t0be the random variable denoting the smallest integer su
h that t0 � t and the stateof the system just before step t0 is a starting state. Let t00 be the random variabledenoting the smallest integer su
h that t00 � t and step t00 is out-of-syn
. Let Fbe the event that t0 < t00. Let X be the random variable denoting the amount oftime that the message spends in the queue. All probabilities in this proof will be
onditioned on the fa
t that no users start or stop during steps [t�n33; : : : ; t+n33℄.We start by bounding Pi�1 E[X j Ai ^ C℄ Pr[Ai ^ C℄. By Lemma 31, Pr[Ai℄ �e�(maxfi�1;1g)n=30 so Pr[Ai ^ C℄ � e�(maxfi�1;1g)n=30. By Lemma 33,E[X j Ai ^ C℄ � E[t0 � t j Ai ^ C℄ + O(n4(n17 + (i+ 1)(n33 + n7))):(This inequality holds be
ause, given that Ai holds, there are at most n17+ i(n33+n7) messages in the queue before interval I1 and at most n33+n7 get added duringinterval I1.) By Lemma 24, E[t0�t j Ai^C℄ is at mostPj�1 n32(6Wn4e�n=10)j�1 =O(n32). Thus, E[X j Ai ^ C℄ = (i+ 1)O(n37). Thus,Xi�1 E[X j Ai ^ C℄ Pr[Ai ^ C℄ �Xi�1 e�(maxfi�1;1g)n=30(i+ 1)O(n37) = O(1):We now bound E[X j A0 ^ B ^ C℄ Pr[A0 ^ B ^ C℄. By Lemma 29, Pr[B℄ �8Wn12e�n=10, so Pr[A0 ^ B ^ C℄ � 8Wn12e�n=10. As above, E[X j A0 ^ B ^ C℄ =O(n37), soE[X j A0 ^B ^ C℄ Pr[A0 ^ B ^ C℄ � (8Wn12e�n=10)O(n37) = O(1):Next, we bound E[X j A0^F ^C℄ Pr[A0^F ^C℄. By Lemma 32, the probabilityof F is at most 4Wn11e�n=10, so Pr[A0 ^ F ^ C℄ � 4Wn11e�n=10. As above,E[X j A0 ^ F ^ C℄ is at most E[t0 � t j A0 ^ F ^ C℄ + O(n37). Sin
e C o

urs,the system is in a syn
hronization state just before some state in [t; : : : ; t + n7℄.Sin
e F o

urs, there is an out-of-syn
 step in [t; : : : ; t+14n7℄. By Lemma 24, theexpe
ted time from this out-of-syn
 step until a starting state o

urs is at mostPj�1 n32(6Wn4e�n=10)j�1 = O(n32). Thus, E[t0 � t j A0 ^ F ^ C℄ = O(n32) andE[X j A0 ^ F ^ C℄ = O(n37). Thus,E[X j A0 ^ F ^ C℄ Pr[A0 ^ F ^ C℄ � (4Wn11e�n=10)O(n37) = O(1):Finally, we bound E[X j A0 ^ B ^ F ^ C℄ Pr[A0 ^ B ^ F ^ C℄. By Lemma 25,the probability of C is at most 16n�22, so Pr[A0 ^ B ^ F ^ C℄ � 16n�22. We nowwish to bound E[X j A0 ^ B ^ F ^ C℄. Sin
e A0 and B hold, the size of the queuejust before step t is at most 2n17. Suppose that t0 > t+ 2n21 + 13n7. Then, sin
eF holds, no step in t; : : : ; t+2n21+13n7 is out-of-syn
. Suppose �rst that no stepin t; : : : ; t + 2n21 + 13n7 is out-of-syn
 and that the state is normal before ea
hstep in t; : : : ; t + 2n21. Then all of the 
lo
ks will be the same, so at least 2n17messages will be sent from the queue during this period. Suppose se
ond that nostep in t; : : : ; t + 2n21 + 13n7 is out-of-syn
, but that the state is not normal just
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e no state in t; : : : ; t + 2n21 + 13n7is out-of-syn
, t0 � t+ 2n21 +13n7. Finally, suppose that t0 � t+ 2n21 +13n7. ByLemma 33, E[X j A0 ^B ^C ^ F ℄ is at most t0 � t+O(n4 � 2n17) = O(n21). Thus,E[X j A0 ^ B ^ F ^ C℄ Pr[A0 ^B ^ F ^ C℄ � 16n�22O(n21) = O(1):Observation 2. When the proto
ol is run, every message spends at most n7 stepsin the bu�er.Theorem 6. Suppose that the proto
ol is run with a f�ig1�i�n-dominated ar-rival distribution and a given allowed sequen
e of user start/stop times. Supposethat a message is generated at step t. Then the expe
ted time that the messagespends in the queue is O(n37).Proof. Let X be the random variable denoting the size of the queue just beforestep t. By Lemma 31, for i � 1, the probability that X > n17 + i(n33 + n7) is atmost e�in=30. Given a parti
ular value of X , Lemma 33 shows that the expe
tedtime to send the message is O(Xn4+n15). Thus, the overall expe
ted time to sendthe message isO(n4(n17+n33+n7)+n15)+Xi�2 O(n4(n17+i(n33+n7))+n15)e�(i�1)n=30 = O(n37):4.4 Final ResultsFor v 2 [n℄, let Tv be the set of steps in whi
h user v is running.Theorem 7. Suppose that the proto
ol is run with a f�ig1�i�n-Bernoulli arrivaldistribution and a given sequen
e of user start/stop times in whi
h ea
h user runsfor at least 8n71 steps every time it starts. Then E[Wavg℄ = O(1).Proof. First note that the sequen
e of user start/stop times is allowed. LetR be the set of steps within n33 steps of the time that a user starts or stops.Lemma 34 proves that if the f�ig1�i�n-Bernoulli arrival distribution is 
onditionedon having at most m messages arrive by time t, the resulting arrival distributionis a f�ig1�i�n-dominated distribution. Therefore, the system des
ribed in thestatement of the theorem satis�es the 
onditions of Lemma 35 with (from Theorem 4and Theorem 5) C 0 = O(1) and (from Theorem 6 and Observation 2) C = O(n37).From the 
ondition given in the statement of this theorem, we 
an see thatS = maxv2V lim supt!1 jR \ Tv \ [t℄jjTv \ [t℄j � n�37:(The worst 
ase for S is when a user runs for 8n71 + 6(n� 1)n33 + 2n33 steps, andthe other n� 1 users have [ending, starting, ending, starting℄ times[2in33; 2(n� 1)n33 +2in33; 2(n� 1)n33 +2in33 +8n71; 4(n� 1)n33 +2in33+8n71℄;for 1 � i � n� 1. Then jRj = 8(n� 1)n33+2n33, in
luding the n33 steps just afterthe user starts and the n33 steps just before the user stops.) The theorem thenfollows from Lemma 35. (Note that C and C 0 are a
tually fun
tions of �, but � isa 
onstant.)
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ted Delay � 43Lemma 34. Consider the distribution obtained from the f�ig1�i�n-Bernoulli ar-rivals distribution by adding the 
ondition that at most m messages arrive by step t.The resulting arrival distribution is a f�ig1�i�n-dominated distribution.Proof. Let Av;t0 denote the probability that a message arrives at user v attime t0 (under the f�ig1�i�n-Bernoulli arrivals distribution). Let E be any event
on
erning the arrival of messages at steps other than t0 or at users other than v.Let C be the event that at most m messages arrive during steps 1; : : : ; t. We wishto show that Pr[Av;t0 j C ^ E℄ � �v . If t0 > t then Pr[Av;t0 j C ^ E℄ = �v bythe independen
e of the f�ig1�i�n-Bernoulli arrivals distribution, so suppose thatt0 � t. Let E0 denote the part of event E 
on
erning arrivals at steps 1; : : : ; t. By theindependen
e of the f�ig1�i�n-Bernoulli arrivals distribution, Pr[Av;t0 j C ^ E℄ =Pr[Av;t0 j C ^E0℄. Let W be the set 
ontaining every possible sequen
e of messagearrivals during steps 1; : : : ; t with the arrival at user v and step t0 omitted. Let W 0be the set of elements of W whi
h satisfy E0 and have fewer than m arrivals andlet W 00 be the set of elements of W whi
h satisfy E0 and have exa
tly m arrivals.Pr[Av;t0 j C ^ E0℄ = Xw2W Pr[Av;t0 j w ^ C ^E0℄ Pr[w j C ^ E0℄= Xw2W 0 Pr[Av;t0 j w ^ C℄ Pr[w j C ^ E0℄+ Xw2W 00 Pr[Av;t0 j w ^ C℄ Pr[w j C ^ E0℄= Xw2W 0 Pr[Av;t0 j w℄ Pr[w j C ^E0℄= �v Xw2W 0 Pr[w j C ^ E0℄ � �v :Lemma 35. Suppose that, for every m and t, a proto
ol running on n users hasthe property: for all users v, if a message P is generated at user v at step t 2 R andis one of the �rst m messages generated, then the expe
ted time before message P issent is at most C, and if a message P is generated at user v at step t 2 R and is oneof the �rst m messages generated, then the expe
ted time before message P is sent isat most C 0. Then E[Wavg℄ � 2(SC+C 0), where S = maxv2V lim supt!1 jR\Tv\[t℄jjTv\[t℄j .Proof. Re
all that � = Pv2V �v , that �v > 0 for all v 2 V and that Wavg =limm!1 1mPmi=1Wi, where Wi is the delay of the ith message generated in thesystem.E[Wavg℄ = E" limm!1 1m mXi=1Wi# � E"lim supm!1 1m mXi=1 Wi# = lim supm!1 1m mXi=1 E[Wi℄:Now let Ai;v;t be the event that the ith message is generated at user v at step t.Then mXi=1 E[Wi℄ = mXi=1Xt�0 Xv2V E[Wi j Ai;v;t℄ Pr[Ai;v;t℄
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Kenzie, M. Paterson, and A. Srinivasan= Xv2V Xt2Tv mXi=1 E[Wi j Ai;v;t℄ Pr[Ai;v;t℄:Let Bm;v;t be the event that one of the �rst m messages is generated at user v atstep t. Now, the properties of the proto
ol given in the lemma are equivalent tothe following: for any v 2 V , m and t 2 Tv,mXi=1 E[Wi j Ai;v;t℄ Pr[Ai;v;t j Bm;v;t℄ � C; if t 2 R, andmXi=1 E[Wi j Ai;v;t℄ Pr[Ai;v;t j Bm;v;t℄ � C 0; if t 2 R.Sin
e, for i � m, Pr[Ai;v;t℄ = Pr[Ai;v;t ^Bm;v;t℄ = Pr[Ai;v;t j Bm;v;t℄ Pr[Bm;v;t℄,mXi=1 E[Wi℄ = Xv2V Xt2Tv mXi=1 E[Wi j Ai;v;t℄ Pr[Ai;v;t℄= Xv2V Xt2Tv mXi=1 E[Wi j Ai;v;t℄ Pr[Ai;v;t j Bm;v;t℄ Pr[Bm;v;t℄= Xv2V Xt2Tv Pr[Bm;v;t℄ mXi=1 E[Wi j Ai;v;t℄ Pr[Ai;v;t j Bm;v;t℄� Xv2V 0� Xt2R\Tv Pr[Bm;v;t℄C + Xt2R\Tv Pr[Bm;v;t℄C 01A :Let �t =Pv02V �v0 jTv0 \ [t℄j, i.e. the expe
ted number of messages generated in thesystem through time t. Note that Pr[Bm;v;t℄ � �v, and, for m < �t, Pr[Bm;v;t℄ ��v expf�(�t �m)2=(2�t)g, by a Cherno� bound. Then for any T � � Tv,Xt2T�Pr[Bm;v;t℄ � Xt2T�;�t<2m�v + Xt2T�;�t�2m�v expf�(�t �m)2=(2�t)g� �v jT � \ ft : �t < 2mgj+ �v Xt2T�;�t�2m expf�(�t �m)=4g� �v jT � \ ft : �t < 2mgj+ �vXi�0 expf�(m+ i�v)=4g� �v jT � \ ft : �t < 2mgj+ �ve�m=4Xi�0(e��v=4)i� �v jT � \ ft : �t < 2mgj+O(1):Consequently,E[Wavg℄ � lim supm!1 1m mXi=1 E[Wi℄� lim supm!1 1m Xv2V [C(�v jR \ Tv \ ft : �t < 2mgj+O(1))
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ted Delay � 45+C 0(�v jR \ Tv \ ft : �t < 2mgj+O(1))℄� C(lim supm!1 1m Xv2V �v jR \ Tv \ ft : �t < 2mgj)+C 0(lim supm!1 1m Xv2V �v jR \ Tv \ ft : �t < 2mgj):We bound the fa
tor multiplied by C as follows.lim supm!1 1m Xv2V (�v jR \ Tv \ ft : �t < 2mgj)= lim supm!1 Xv2V �v jTv \ ft : �t < 2mgjm � jR \ Tv \ ft : �t < 2mgjjTv \ ft : �t < 2mgj �� lim supm!1 �maxv2V jR \ Tv \ ft : �t < 2mgjjTv \ ft : �t < 2mgj �Xv2V �v jTv \ ft : �t < 2mgjm� �lim supm!1 maxv2V jR \ Tv \ ft : �t < 2mgjjTv \ ft : �t < 2mgj � lim supm!1 Xv2V �v jTv \ ft : �t < 2mgjm !� �maxv2V lim supm!1 jR \ Tv \ ft : �t < 2mgjjTv \ ft : �t < 2mgj ��lim supm!1 2mm �� maxv2V lim supt!1 jR \ Tv \ [t℄jjTv \ [t℄j � 2 = 2S:We bound the fa
tor multiplied by C 0 as follows.lim supm!1 1m Xv2V (�v jR \ Tv \ ft : �t < 2mgj) � lim supm!1 Xv2V �v jTv \ ft : �t < 2mgjm� lim supm!1 2mm = 2:5. CONCLUSIONS AND OPEN PROBLEMSWe have given a proto
ol whi
h a
hieves 
onstant expe
ted delay for ea
h messagein the Syn
hronized In�nitely-Many Users Model with � < 1=e. We have also givena proto
ol whi
h a
hieves 
onstant expe
ted average delay in the Unsyn
hronizedFinitely-Many Users Model for any f�ig1�i�n-Bernoulli message-arrivals distribu-tion in whi
h Pi �i < 1=e. Several open questions remain:|Can we get good delay versus arrival rate tradeo�s in our models? Are there�ne-tunings of the proto
ols or 
onstants whi
h ensure short delays for \small"values of �?|In the in�nitely-many senders models 
onsidered, is there a proto
ol whi
h isstable in the sense of [H�astad et al. 1996℄ for all � < 1? If not, then what is thesupremum of the allowable values for �, and how 
an we design a stable proto
olfor all allowed values of �? We have shown proto
ols that guarantee stability forall � < 1=e. Here is a heuristi
 argument as to why this may indeed be a limit.
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 system with some h users (messages), where eventhe value of h is known to all users. If all users follow the same proto
ol, theoptimal probability of \su

ess" (exa
tly one message attempting the 
hannel)in one time step is a
hieved if ea
h message attempts using the 
hannel withprobability 1=h: in this 
ase, the su

ess probability is h�(1=h)�(1�1=h)h�1 � 1=efor large h. Thus, even if the users are given the additional information on theexa
t number of messages, it may be that 1=e is the best probability of su

esspossible. This seems to suggest that if the arrival rate � is more than 1=e, thenthe system 
annot be stable (sin
e the average arrival rate will be more thanthe average rate of departure). Is this intuition 
orre
t? What is a \minimal"assumption that will ensure a stable proto
ol for all � < 1? (As des
ribed in theintrodu
tion, some suÆ
ient 
onditions are des
ribed in [Pippenger 1981; H�astadet al. 1996℄ for 
ertain models in
luding �nitely-many users models.)|For whi
h arrivals distributions are our proto
ols stable? We have shown that ourUnsyn
hronized Finitely-Many Users Model proto
ol is stable for any f�ig1�i�n-Bernoulli message-arrivals distribution in whi
h Pi �i < 1=e, that our Syn
hro-nized Finitely-Many Users Model proto
ol is stable for any f�ig1�i�n-dominatedarrivals distribution with Pi �i < 1=e, and that our Syn
hronized In�nitely-Many Users Model proto
ol is stable for Poisson arrivals with � < 1=e. Webelieve that our Syn
hronized In�nitely-Many Users Model proto
ol is also sta-ble for other input distributions.For example, suppose that the distribution of in
oming messages to the systemhas substantially weaker random properties than the independent Poisson dis-tribution. Our proto
ol 
an still a
hieve E[Wave℄ = O(1). From the paragraphimmediately following the statement of Theorem 2, we see that pi(1) = O(qi)will suÆ
e to maintain the property that E[Wave℄ = O(1); the strong (doublyexponential) de
ay of pi(1) as i in
reases is unne
essary. In turn, by analyzingthe re
urren
es presented by Lemmas 5 and 6, we 
an show that rather than thestrong bound of (26), it suÆ
es ifPr[u0 is t-bad℄ � k�3(2k2)�t: (31)We 
an then pro
eed to show that pi(1) = O(qi) by showing, via indu
tion oni as above, that pi(t) � k�(i+3)(2k2)�t; the proof 
an then be 
on
luded asbefore. The bound in (31) just de
ays singly exponentially in t, as opposed tothe doubly-exponential de
ay we had for Poisson arrivals. Thus, our approa
hwill work with message-arrival distributions that have substantially weaker tailproperties than independent Poisson.ACKNOWLEDGMENTSWe thank Mi
hael Kalantar for explaining the pra
ti
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