Analysis of Practical Backoff Protocols for Contention
Resolution with Multiple Servers*

Leslie Ann Goldberg? Philip D. MacKenzie

January 20, 1998

Abstract

Backoff protocols are probably the most widely used protocols for contention resolution in
multiple access channels. In this paper, we analyze the stochastic behavior of backoff protocols
for contention resolution among a set of clients and servers, each server being a multiple access
channel that deals with contention like an Ethernet channel. We use the standard model in
which each client generates requests for a given server according to a Bernoulli distribution
with a specified mean. The client-server request rate of a system is the maximum over all
client-server pairs (i, j) of the sum of all request rates associated with either client ¢ or server j.
(Having a sub-unit client-server request rate is a necessary condition for stability for single-
server systems.) Our main result is that any superlinear polynomial backoff protocol is stable
for any multiple-server system with a sub-unit client-server request rate. Our result is the first
proof of stability for any backoff protocol for contention resolution with multiple servers. (The
multiple-server problem does not reduce to the single-server problem, because each client can
only send a single message at any step.) Our result is also the first proof that any weakly
acknowledgment based protocol is stable for contention resolution with multiple servers and
such high request rates. Two special cases of our result are of interest. Hastad, Leighton and
Rogoff have shown that for a single-server system with a sub-unit client-server request rate any
modified superlinear polynomial backoff protocol is stable. These modified backoff protocols are
similar to standard backoff protocols but require more random bits to implement. The special
case of our result in which there is only one server extends the result of Hastad, Leighton and
Rogoff to standard (practical) backoff protocols. Finally, our result applies to dynamic routing
in optical networks. Specifically, a special case of our result demonstrates that superlinear
polynomial backoff protocols are stable for dynamic routing in optical networks.

1 Introduction

We study the problem of contention resolution with multiple clients and multiple servers. We
assume that each server handles contention as follows: when multiple clients attempt to access the
server at the same time, none succeed. This is the contention-resolution mechanism that is used
in an Ethernet channel. Specifically, a client attempts to access an ethernet channel by sending a
message to the channel. If no other messages are sent to the channel at the same time then the
client’s message is received and the client receives an acknowledgment. Otherwise, the message is

*Most of this work was performed at Sandia National Laboratories and was supported by the U.S. Department of
Energy under contract DE-AC04-76DP00789.

"Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom.
leslie@dcs.warwick.ac.uk

iDepartment of Math and Computer Science, Boise State University, Boise, ID, 83725. philmac@cs.idbsu.edu.

not received and the client must retransmit the message. The clients in the system use a contention-
resolution protocol to decide when to retransmit. During the time that a client is trying to send
one message, it may generate more messages that it needs to send. These messages are stored in a
buffer. An important feature of a good contention-resolution protocol is that, even when messages
are generated fairly frequently, the size of the buffers that are used remain bounded.

We use the standard model in which each client generates requests for a given server according
to a Bernoulli distribution with a specified mean. Following Hastad, Leighton and Rogoff [3], we
say that a contention-resolution protocol is stable for the specified request rates if the expectation
of the average waiting time incurred by a message before it is successfully delivered is finite and the
expectation of the time that elapses before the system returns to the initial state (in which there
are no messages waiting in the buffers) is also finite. It is easy to see that if a protocol is not stable
then the buffers that it requires to store waiting messages grow larger and larger over time and the
amount of time that it takes to send each message increases without bound.

1.1 Related Previous Work

The most popular protocol that is used for contention-resolution on an Ethernet is the Binary
Ezponential Backoff Protocol of Metcalfe and Boggs [4]. In this protocol each client maintains a
counter, b, which keeps track of the number of times that the client has tried to send its message
and failed. After it unsuccessfully tries to send a message, it chooses ¢ uniformly at random from
the set {1,...,2°} and it retransmits after ¢ steps. (In practice, a truncated Binary Exponential
Backoff Protocol is usually used, in which ¢ is chosen uniformly at random from {1,...,2min{10,b}},
Many works refer to this truncated version as “Binary Exponential Backoff.”)

Most of the previous results on contention-resolution protocols concern systems in which the
number of clients is infinite. As [3] explains, these results have limited relevance to the finite case.
It has not been shown that the Binary Exponential Backoff Protocol is stable for Ethernets with
a finite number of clients. However, there are some related results. In [2], Goodman, Greenberg,
Madras and March modify the protocol as follows. If a client has unsuccessfully tried to send a
message then on each successive step (until the message is successfully delivered), it retransmits the
message with probability 27°. (The decision as to whether to retransmit the message is independent
of all previous decisions.) This Modified Binary Exponential Backoff Protocol is similar to the
original protocol, but it is not implemented in practice because it requires too many random bits
(a random number is required at every time-step). [2] shows that the modified protocol is stable
as long as the sum of the request rates, which we refer to as A, is sufficiently small. (The definition
of stability that is used in [2] is actually slightly weaker than the one that we use above.) [3] shows
that if A > 1/2, the modified protocol is unstable. However, it shows that any Modified Superlinear
Polynomial Backoff Protocol (in which a client re-transmits with probability (b+ 1) %) is stable as
long as @ > 1 and A < 1.

In [5], Raghavan and Upfal consider the problem of contention resolution with multiple servers,
each of which handles contention in the same way as an Ethernet channel. Note that this problem
does not reduce to multiple instances of the single-server problem because each client can send
only one message on each time step. Thus, we cannot obtain a stable protocol for the K-server
problem by combining K copies of a stable single-server protocol because the “combination” could
require a client to send as many as K different messages (to K different servers) during a single
time step, which is not allowed in our model. Raghavan and Upfal describe a contention-resolution
protocol that is stable as long as the sum of the request rates associated with any client or server
is bounded from above by a constant A’ < 1. The expected waiting time of a message in their
protocol is O(log N). This is much smaller than the expected waiting time of messages in any

backoff protocol, which they show to be Q(N). However, their protocol is more complicated than
a backoff protocol and X' may be small compared to 1, so their protocol may not be stable for high
request rates. Furthermore, like the modified backoff protocols, their protocol requires random
number generation on each time step. For these reasons, it seems likely that backoff protocols will
continue to be used in practice for contention resolution with multiple servers.

1.2 Ouwur Results

The client-server request rate of a system is the maximum over all client-server pairs (i, 7) of the
sum of all request rates associated with either client ¢ or server j. Having a sub-unit client-server
request rate is a necessary condition for stability for single-server systems. Our main result is that
any superlinear polynomial backoff protocol is stable for any multiple-server system with a sub-unit
client-server request rate.

Our result extends the previous results in the following ways. First, our result is the first
stability proof that applies to standard (un-modified) backoff protocols. This is important because
the standard protocols are used in practice!. The special case of our result in which there is just
one server extends the result of [3] to standard (practical) backoff protocols. Second, our result is
the first stability proof for any backoff (or modified backoff) protocol for contention resolution with
multiple servers. Thus, our result generalizes the result of [3] to the multiple-server case.

We say that a contention-resolution protocol is weakly acknowledgment based if each client
decides whether to transmit on a given step without knowing anything about the other clients
other than the number of clients in the system and the results of its own previous transmissions.
Our result is the first proof that any weakly acknowledgment based protocol is stable for contention
resolution with multiple servers and such high request rates.

One application of our result is the following: When N processors are connected via a complete
optical network (as in the OCPC model [1, 6]), the resulting communication system consists of
N clients and N servers. Each processor is associated with one client and one server. The servers
handle contention resolution using the same mechanism as in our client-server model: If a single
message is sent to a server during a time step it succeeds. However, if two or more messages are sent
to a server at the same time they do not succeed. For example, the contention-resolution mechanism
could be implemented by assigning a unique wavelength to each server. Thus, the special case of
our result in which the number of clients is equal to the number of servers shows that if the sum of
the request rates associated with a given processor is less than 1 then any superlinear polynomial
backoff protocol can be used to route messages in a complete optical network.

2 The Protocol

There are many ways to generalize the ethernet backoff protocol to a multiple server protocol. We
consider the following generalization, which is natural (and perhaps easiest to analyze).

We have N clients and K servers. For each client ¢ and each server j we have a queue (); ; which
contains the messages that the client 7 has to send to server j. We use the notation ¢; ;; to denote
the length of Q); ; before step t. (¢; ;1 = 0.) We define a backoff counter whose value before step ¢
is b; j+ (bij1 = 0). The protocol at step ¢ is as follows. With probability J; ;, a message arrives at
Qi ; at step t. If a message arrives and ¢; ;; = 0 then @); ; decides to send on step ¢. If g; ;; > 0
then @); ; decides to send on step ¢ only if it previously decided to retransmit on step ¢. If client ¢

L Although standard protocols are used in practice, the system that arises in practice is more complicated than
the one that we study because of issues such as message length, synchronization and so on. See [3] for the details.

has exactly one queue that decides to send, it sends a message from that queue (otherwise, it does
not send any messages). After step ¢, the variables ¢; j ;41 are set to be the new queue lengths. If
Qi,; decided to send on step ¢ but it was not successful (i.e., either client ¢ did not actually send
the message, or more than one message was sent to server j (we refer to either of these events as
a collision at queue Q); ;)), then it sets b; j ;11 to b; j+ + 1 and it chooses an integer £ uniformly at
random from {1,..., [(b; 41 + 1)*]} and it decides to retransmit on step ¢+ £. If Q; ; successfully
sent on step ¢ then it sets b; ;41 to be 0.

In order to simplify the analysis of the above protocol, we use the following equivalent formula-
tion: For each queue Q); j, we also define a step counter whose value before step ¢ is s; ;4 (si;,1 = 1).
Then in the new formulation of the protocol, if ¢; ;; > 0 then @; ; decides to send on step ¢ with
probability s; ;. (This decision is made independently of other decisions.) After step ¢, the step
counters are updated as follows. If g; j; > 0 but @; ; did not decide to send on step ¢ then s; ;11
is set to s;;; — 1. If @Q;; decided to send on step ¢ but it was not successful then it sets s; ;11
to | (bije+1 + 1)*]. If Q; ; successfully sent on step ¢ then it sets s; ;.41 to be 1. (To see that this
formulation is equivalent, note that the probability that @; ; retransmits on a step t' in the range
t+1,..., 0+ [(bij1+1 +1)%] after a collision at step ¢ is 1/|(b; j1+1 + 1)®]. Thus, each step in the
range is equally likely to be chosen.)

3 The Proof of Stability

Following [3], assume that the system starts in the initial state in which there are no messages
waiting in the buffers and let Ti¢; be the number of steps until the system returns to this state.
Let L; be the number of messages in the system after step i, and let Loy, = lim, _,oo(1/n) 327 L;.
Let Way, denote the average waiting time incurred by a message before it is successfully delivered.
Recall that a contention-resolution protocol is stable for a given set of request rates if Ex[W,y]
and Ex|[T .| are finite when the system is run with those request rates. By a result of Stidham [7],
the fact that Ex[Way,] is finite follows from the fact that Ex[L,y,]| is finite.

The main result of our paper is that the protocol described in Section 2 is stable as long as
a > 1 and the system has a sub-unit client-server request rate. The condition that the system
have a sub-unit client-server request rate is necessary in a single-server system. For the worst case
multiple-server system (a system with the same number of clients and servers), the condition may
reduce the usable bandwidth by up to a factor of 2.

The starting point for our proof is the proof of [3], so we begin by briefly describing their proof.
We use the notation of [3] in our proof whenever it is possible to do so.

3.1 The Stability Proof of Hastad, Leighton and Rogoff

The proof of [3] analyzes the behavior of a Markov chain which models the single-server system.
The current state of the chain contains the current queue lengths and backoff counters for all of
the clients. The probabilities of transitions in the chain are defined by the protocol. The authors
define a potential function which assigns a potential to each state in the chain. If the chain is in
state s just before step t, the potential of state s is defined to be

N N

POT(s) = Z Qi + Z (bie + 1)a+1/2 - N.
i=1 i=1

The potential function is used to prove that Ex[Tie;] and Ex[Lay,| are finite.

The proof in [3] has two parts. The bulk of the proof establishes the fact that there are
constants §, d and V such that for any state s with potential at least V', there is a tree of depth
at most d of descendant states over which the decrease in the square of the potential is at least
dPOT(s). The proof of this fact has three cases.

1. If state s contains a queue (Q; that will send and succeed with overwhelming probability, then
the authors consider the complete tree of depth 1, and show that the expected decrease in the
square of the potential is sufficiently large.

2. Otherwise, if state s contains a queue); with a big backoff counter then the tree that they
consider is the complete tree of depth 1 or 2. Since the backoff counter of (); is big, the potential
decreases significantly if (); succeeds in sending a message. They show that this happens
with sufficiently high probability that the expected decrease in the square of the potential is
sufficiently large.

3. In the remaining case, they show that with reasonably high probability, a long queue (which
we call the control queue) takes over and dominates the server for a long time, sending many
messages. Specifically, the tree that they consider consists of long paths in which the control
queue dominates the server (the potential decreases significantly on these paths) and of short
branches off of the long paths in which something goes wrong and the control queue loses control.
The potential may increase on these short branching paths. However, it turns out that it does
not increase too much, so over the tree, the expected decrease in the square of the potential is
sufficiently large.

The second (easier) part of their proof shows that, given the fact that each state with sufficiently
large potential has a tree as described above, Ex[L,,| and Ex[T,¢] are finite.

3.2 Overview of our Stability Proof and Comparison to The Proof of Hastad
et al.

Following [3], we view our protocol as being a Markov chain in which states are 3K N-tuples
containing the queue lengths, backoff counters and step counters associated with each queue. The
transition probabilities between the states are defined by the protocol. This Markov chain is easily
seen to be time invariant, irreducible, and aperiodic. We use a potential function argument to show
that Ex[Tye;] and Ex[Layg] are finite. In order to show that Ex[Layg] is finite we show that the
expected average potential is bounded. According to our potential function, each state just before
step t has the following potential associated with it.

N K
1 11—+
POT, =3 Y [giju+ (bie + 1) — s, /.
i=1 =1

The use of step counters in our potential function is motivated by the following problem (which
we describe in the single server case). Suppose that s is a state with two queues Q1 and Q- that
have step counters equal to 1, but huge backoff counters. In this case, with probability 1, @J; and
Q)2 collide on this step, and increase their backoff counters. If the potential function of [3] were
used, this would cause a massive increase in potential. This is not the case with our potential
function.

Our proof is structurally similar to that of [3] in that we first show that for every state s with
POT(s) > V there is a tree of depth at most V' — 1 rooted at s such that the expected decrease in
the square of the potential over the tree is at least POT(s) and from this we prove that Ex[Tjet]
and Ex[L,yg] are finite. Our proof of the first part is broken up into cases. However, we do not use
the same cases as [3]. For instance, our potential function prevents us from considering the first

case of [3] in which a single queue sends and succeeds with overwhelming probability. The problem
is that this single queue only reduces the potential by 1, whereas the step counters of the other
queues cause a larger increase in potential.

The first case that we consider is the case in which every backoff counter in s is small. Suppose
that Q1,1 is the longest queue in s. (We call Q11 the control queue.) In the single-server case,
(3] finds a tree of depth U rooted at s such that with reasonably high probability, ()1, sends
successfully on most of the U steps. When this occurs, the potential goes down because almost U
messages are sent whereas at most A\U messages are received. (The tree is defined in such a way
that the backoff counters, which start small, do not increase the potential by too much)

In the K-server case this approach does not suffice. First of all, it could be the case that almost
all of the messages start at queue ()1 1, so it is the only queue that can dominate a server during the
U steps. However, even though 1,1 sends a message on most of the U steps, about K AU messages
are received on the U steps, so the potential increases (assuming K > A~!). One possible solution
to this problem involves modifying the potential function to give different “weights” to messages
depending upon the distribution of queue sizes or backoff counters. However, this solution seems
to cause other difficult problems, and thus does not seem to help.

Our solution to the problem is approximately as follows. We define a tree of descendant states of
depth U such that with reasonably high probability Q11 successfully sends on most of the U steps,
and the part of the potential that is attributed to client 1 and server 1 goes down. Next, we wish
to prove that the part of the potential that is attributed to the queues that do not have client 1
or server 1 (we refer to these queues as free queues) does not go up too much over the tree. This
problem is complicated by the fact that the free queues interact with the other queues as the
Markov chain runs, so there are dependence issues. In order to deal with the dependence of the
control queue and the other queues with client or server 1 on the free queues, we let M denote
the Markov chain that describes our protocol and we define several Markov chains that are similar
to M but do not depend upon the behavior of the free queues. Next, we define the states in our
tree in terms of the chains that are similar to M rather than in terms of M itself. We prove that
M is related to the other chains, and we use this fact to prove that we still expect the potential
that is attributed to client 1 and server 1 to decrease over the tree. We now wish to prove that
we do not expect the potential of the free queues to go up much over the tree. The definition of
the tree has nothing to do with behavior of the free queues, so the problem is equivalent to finding
an upper bound on the expected potential of the free queues at a given step, ¢. In order to find
such a bound, we have to deal with dependences because the queues that are not free can affect
the behavior of the free queues. If we (temporarily) ignore the dependences by pretending that the
free queues are not disturbed by the other queues, our problem reduces to bounding the expected
potential of a smaller client-server system at step ¢. To deal with the dependence, we define a
stochastic process which is a Markov chain extended by certain “interrupt steps”. We show that
even with the interrupt steps, the expected potential of the free queues does not increase too much
by step t. The details are given in Case 1 of our proof.

Cases 2 and 3 of our proof are similar to cases in the proof of [3]. In both cases, s contains
a backoff counter that is sufficiently large such that, with sufficiently high probability, the queue
with the large backoff counter sends and succeeds and decreases the square of the potential.

Our fourth (and final) case is motivated by a problem that can occur when s has a queue Q; ;
with a big backoff counter. In the single-server case, [3] either finds a queue Qg ; that will suc-
cessfully send with overwhelming probability, or shows that with sufficiently high probability Q; ;
sends successfully within 1 or 2 steps (as in our Cases 2 and 3). As discussed above, even if @ j
sends successfully, the potential may not decrease. However,)y y might prevent (); ; from sending
successfully. Thus, the approach of [3] does not suffice in the multiple-server case. We solve this

problem by showing that unless it is sufficiently likely that Q;; (or some other queue with a big
backoff counter) sends successfully within some reasonable number of steps (in which case we are
in Case 2 or 3), we can identify a control queue that dominates its server as in Case 1. This does
not suffice, however, because there may be free queues with big backoff counters. Although we can
guarantee that at any given step t the expected potential of the free queues does not increase too
much (even if they have large backoff counters), we do not know of a way to guarantee that at any
given step t the expected square of the potential does not increase too much in this case. We solve
this problem by identifying several control queues rather than just one, so that the free queues
never have big backoff counters. Unfortunately, we cannot ensure that all of our control queues
decide to send at the beginning of our tree. In order to make sure that the potential goes down,
we must make sure that with reasonably high probability these delayed control queues succeed
whenever they finally do send. (Otherwise, they may never send again and the potential would
go up.) To ensure this, we identify temporary control queues which dominate their servers for a
while, blocking any queues that may send messages which collide with the messages of the delayed
control queues. After a temporary control queue stops being a control queue it becomes a free
queue. Thus, we also have delayed free queues and we have to argue about the increase in the
square of the potential of the delayed free queues as well as that of the ordinary free queues. This
situation is described in Case 4 of our proof.

3.3 Preliminaries

Fact 3.1 Given r > 1, and given z,y > 0 where |z/y| <1, (z +y)" <y" + [r] Ty 1

Proof: The quantity (;) is defined as follows:

T\ _ %, integer k > 0;
k 0, integer k < 0.

The Binomial theorem says that if [z/y| < 1 then (z +y)" = ¥, (;)z*y"*. We use the following
observations to bound the sum.

L. If k > r then |(})aby"=F| > |(,) 2"y =H+D)].

2. If r is not an integer then for any odd positive integer 4, ((1+ ;) <0and ((|) > 0.

+14+1

Thus, (z 4+ y)" < Zk o (1)z®y"~*. This quantity is at most

. [7] ,
Yy + xy Z (k:)
k=1
which is at most y" + gij_l [7] [r+1] g

3.4 Lemmas about Markov Chains

In the following lemma, o > 1 is a constant, and we assume U is large enough so that the analysis
holds.

Lemma 3.1 Let ¢ be a sufficiently large constant. Consider a Markov chain with states corre-
sponding to pairs of positive integers and transitions from (i,7) to (1,5 — 1) with probability 1 — %
and from (i,7) to (i+1, [(i4+1)%|) with probability % If the initial state is (b1, s1) with s < bf and

t < U steps are taken, then with probability greater than 1 — O((logU)~1) the state (by,s2) reached

. i 1— -+ 1
at step t satisfies bg+2 — 5, (ba+2 —s)< cU' T |
Proof: Note that
a+ti 1- a+i -+ ati att -+ 1-
by =8y ™ —(by =5y)=(by T =b)+ (s; " —sy)

1 1

. . . - 1L
and that when at most U steps are taken, either s; < sy in which case s; ** —s, ** < 0or s; > s9

in which case
1 - 1
(87 * —sy %)< (31 — 32)1 e Ul_ .

So in general, we simply need to show that b2 - b1 3 <oW' TerD).

For a given state (i,7), we say i is the level of the state. We proceed in three cases.
Case 1: by < U/(e+])

For the first %Uaﬁ? steps after one reaches a level of at least Ua+r1, the probability of another
increase in level is at most 20 a+1, Then in U of these steps, the expected number of increases
in level is at most 2U' a1 = oy a, Usmg a Chernoff bound, the probability of over twice that
many is at most 2~V) < O((log U)~Y). Also, the number of increases at other steps after
one reaches a level of at least Ua+1 can be at most 3U' a1 = 3Uﬂ;+1, since there are at least

§Uﬂ+1 steps between any of those steps. Thus with probability 1 —O((logU) 1), by < SUJT, and
thus . . X
by T b2 < o' T),

Case 2: b, > Ul/ logU

If s > %U (logU)%, then the probability of any increase in level at any of U steps is at most
U(4U~(logU)~%) < O((log U)~1). If there is no increase in level, then by = by.

Ifs; < %U(log U)“. then there might be a large possibility of an increase in level. If this increase
occurs, we are essentially in the situation above, so with probability at least 1—O((logU) '), there

will be no further increases in level. Then bo‘H/2 bo‘H/2 is bounded by O(b] 1/2) but

s s > ([+2)°] - U — (U(log D))

1
> (b +)78 = U — (U (log U))'
1 a-t
> 151 !

Thus))))
bt s 07 s) < 0(1),
Finally, if there is no increase in level, then by = b;.
Case 3: U'/(@t) < b < UV logU
Using a Chernoff bound (similar to Case 1), we can show that with probability at least 1 —
O((log U)~1), there will be at most O(max{Ub; ®,loglog U}) increases in levels in at most U steps.

Using Fact 3.1, we see that if Ub]® < loglogU then baH/2 baH/2 is bounded by
O *1oglog U) < O(UL/ @) (1og U)* T2 log log U) < O(U' 1/ (2leth)y
Similarly, if loglog U < Ub;® then b5/* — 5%™/2 is bounded by

OB *Ub) < Ok, ?) < O),

O
Let f be the function defined by f(z) = [z + 1131431,

Lemma 3.2 Consider a Markov chain with states corresponding to pairs of positive integers and

transitions from (i,7) to (i,j — 1) with probability 1 — —. and from (i,7) to (1 + 1, [(i +1)%]) with

probability % If the initial state is (b1, s1) with s1 < bY, and t < ((by + 1)/ f()? steps are taken,
1 1

then any state (by, s2) reached at step t satisfies b;+2 - s; (ba+2 - i 1) < 5.

Proof: Let 2 be the number of transitions that cause an increase in level. If 2 = 0 then b, = by so

the quantity has an upper bound of s;. Otherwise, the quantity is at most

1
(b 4+ 025 — ([(br +1)°) —)15 =277 4 5177,

Now, ([(by + D] — t)l_i is at least ((by +1)* — (b1 + 1)1/8)175 which is at least (b + 1)(0‘71/8)(17ﬁ)
which is at least (b + 1) Y (b, +1)/® . We can use the bound on ¢ in the statement of the
lemma to show that this is at least (b + 1)(0‘_1/2)t[a + %] [a+31,

1
By Fact 3.1, (b1 + t)a+% - b(f+2 is at most b VD ¢[a + 2 [a+31. The bound follows. O

Corollary 3.1 Consider a Markov chain with states corresponding to pairs of positive integers and
transitions from (i,7) to (i,5 — 1) with probability 1 — % and from (i,7) to (1 + 1, (i +1)%]) with
probability % If the initial state is (b1 s1) with s1 < b, and 1 step is taken, then any state (b, s2)

. L 1— 1—-L
reached at step t salisfies bg+2 — 89 (b”‘+z —s @) <5+ f(oz)a+1/2.

Lemma 3.3 Consider a Markov chain with states corresponding to pairs of positive integers and
transitions from (i,7) to (i,5 — 1) with probability 1 — % and from (i,7) to (1 + 1, (i +1)%]) with
probability % If the initial state is (b, 51) with s1 < b, and (ba, s2) denotes the state after one

1 1
step is taken, and BT denotes b;+2 - s; (ba+2 - i) then Ex(B™) < 2f(a)o‘+1/2.

Proof: BT < (b + 1)a+%+b°‘(1__) If (b1 +1) < f(«), this is at most f(a)a+%+f(a)o‘. Otherwise,

we use Lemma 3.2 to show that, when the level increases, BT is at most s;. The probability that
1

the level increases is 1/s1. If the level does not increase, then B is at most —(s1 — 1)17& + sifﬂ
which is at most 1. O

A natural concept about Markov Chains we use is that of a tree of descendent states from a
given state s. Let the root node be ((s),%9). Now for each node ((s,r1,r9,...,7),4) at level i, and
for each transition » — 7' in the Markov chain, let ((s,71,79,...,7,7'),4 + 1) be a child of that
node. When there is no confusion, we often refer to a node simply by the last state in its list of
states. Assuming there is a potential function defined on the states of the Markov chain, we define
the potential of a node to be the potential of the last state in its list.
Definition: We say a Markov Chain with non-negative potentials assigned to each state is V-
good if it satisfies the following properties.

1. If a state s has potential POT(s) > V then there is a tree of depth at most V — 1 rooted
at s such that the expected decrease in the square of the potential over the tree is at least
POT(s).

2. For any state s, every transition from s is to a state with potential at most max{2V,2POT(s)}

3. The number of states with potential less than 2V is at most 2"

4. From each state s with POT(s) < V we can define a canonical path of length at most 2V
to the unique state with potential 0 such that when the chain starts at s the probability that
the path is taken is at least 2-V?

Lemma 3.4 Given a V-good Markov chain, let Tyerv(s) denote the first step during which the
potential is at most V at the start of the step, given that the chain starts at s. (If POT(s) <V
then Tierv(s) = 1.) Then starting at any state s,

TretV(s)
Ex| Y POT,| <2Y(POT(s))?,

t=1

Proof: (We model this proof after that in [3].) As in [3], since Tretv (s) might be infinite, a priori,
we define a modified system that is terminated after T' steps, meaning the system goes to the unique
state of potential 0 at step T and stays there. We then prove

min(T:TretV(s))
E(s,T) = Ex > POT;

t=1

is bounded from above by 2V’ POT(s)? by induction on T

This is true for T' = 1, since POT; = POT(s). This is also true for any s with POT(s) < V,
since then Tyepv(s) = 1.

For the induction step, assume that E(s,7") < 2VPOT(s)? for all T' < T and any s with
POT(s) > V. We then bound E(s,T) as follows.

Let the leaf s’ of the tree of descendent states appear with probability py, have potential
POT(s') and be at depth dy. Let POT'(s') denote the sum of POT; over the dy steps taken to
reach leaf s’. Since the potential can at most double at each step,

dy
POT'(s') < POT(s) Y _ 27 < 2% *'POT(s).
j=0

Then following [3], we can see that

E(s,T) < Y py(2%*'POT(s) + E(s',T — dy))
S’
< 2YPOT(s) +2" > pys(POT(s"))?
< 2YPOT(s) +2"YPOT(s)? — 2V POT(s)
= 2YPOT(s)*.

As in [3], this implies the lemma. O

Lemma 3.5 Given a V-good Markov chain, if we start at state s with POT(s) < V then the
expected potential at step t is at most (2V)?22V.

Proof: For any state s’, consider the partial tree of descendent states from s’ in which, for every
node, all proper ancestors of that node have potential greater than V. Let Sy(s’) be the set of nodes
at level ¢ of this tree. Let E'(s',t) = Y ,cg,(s) PoPOT(v), where p, is the probability of reaching

10

node v from s'. Let E(s') = Ex[Zinfws/) POT;]. Then E(s') = >, E'(s,t). By Lemma 3.4,
E(s') < 2V(POT(s))%. and thus 3, E'(s',t) < 2V(POT(s))2.

Let E(s,t) be the expected potential after ¢ steps when starting in state s. We would like to
prove for all ¢ that when POT(s) < V, E(s,t) < (2V)?22V. Let T be the full depth ¢ tree of
descendent states of s. Note E(s,t) is the sum over leaves of this tree of the probability of reaching
the leaf times the potential of that leaf. For any node v € T, let d, be the depth of v, and let p,
be the probability of reaching node v. Note that if) is a set of nodes in 7" such that each leaf v in
T has an ancestor v’ in @ and every node on the path from v to v’ has potential greater than V,

E(s,t) < > E'(v',t — dy)py-
v ER

Since the root of T has potential at most V', for every leaf v in T there is exactly one node
a(v) which is the closest ancestor to v whose parent has potential at most V. We let Q@ = {a(v) :
v is a leaf of T'}, and note that it satisfies the conditions above.

Now we let py ; be the probability of being in state s’ at level ¢ of . (Note that this is the sum
of probabilities of being in any node at level 7 of T with state s’.) Let S be the set of all states
with potential at most 2V. Then

E(s,t) < Z E' (W't —dy)py
v'eQ
t

= Z Z El(slvt - Z‘)ps’,z‘

1=0s'eS

t
SN E(s 1)

s'eS i=0
t
= Z ZE,(‘S,?Z.)
s'eS i=0
> 2V (2v)?
s'eS
(2v)222Y,

VAN

VAN

IA

O

For the next lemma we extend a Markov chain with interrupt steps, which are steps in which we
externally modify the transition probabilities of the chain. (Each step could modify the chain in a
different way.) The timing and modification of these interrupt steps will be defined independently
of the chain itself.

Lemma 3.6 Consider a V-good Markov chain extended with a set of interrupt steps M, such that
this extended Markov chain has the property that for any state s, the expected increase in potential
in one step is at most z, whether or not the step is an interrupt step. If we start at state s then the
expected potential at step t of this extended Markov chain is at most POT(s)+ (|M|+2)((2V)?22%V 4

Proof: We prove this result for every set M which has the property stated in the lemma, by
induction on |M|. Let E(s,t, M) be the expected potential after ¢ steps when starting in state s
with a set of interrupt steps M. For the base case, let M = (). We prove by induction on ¢ that
E(s,t,0) < POT(s) + (2V)22?V. For t < V, E(s,t,00) < POT(s) + V, and when POT(s) < V,
E(s,t,0) < (2V)?2% by Lemma 3.5.

11

Now we must prove that the result holds for any s and ¢ with POT(s) > V and t > V. We can
assume that the result holds for all ¢ with ¢’ < ¢. Since POT(s) > V, we have a tree T of depth at
most V' — 1 such that the expected change in potential is at most zero. Let S contain each leaf in
T. For a leaf s’ of T, let py be the probability of reaching that leaf, and let dy be the distance of
that leaf from the root. Now we have

E(s,t,0) < Y pyE(s',t—dy,0)
s'es
< Y pe(POT(s) + (2V)*2%Y)
s'eS
< POT(s) + (2V)?2%",

Now that the base case for |[M| = 0 is established, we need to prove the result for |M| > 0
assuming the result to be true for any ¢ given that there are less than | M| interrupt steps. (Note
that we prove a slightly stronger result for the case |[M| = 0 than for [M]| > 0.)

Let ¢; be the time of the first interrupt step in M. Then E(s,t; — 1,0) < POT(s) + (2V)?22V,
and thus E(s,t;,0) < POT(s) +(2V)?2%" + 2, Now we examine the complete tree of states of depth
t1. Call this tree T', and let .S be the set of leaves of T

E(Sat7M) < ZPS’E(SI'/t_tl'/M_{tl})

s'esS

< > pe(POT(s") + (IM| =1+ 2)((2V)*2%" +2))
s'es

< E(s,t,0) + (M| =1+ 2)((2V)22%Y + 2)

< POT(s) + (M| + 2)((2V)222V + 2)

a
Def: POT,y, = lim,oo 2 37 POT;.
The following lemma is similar to one in [3].

Lemma 3.7 Given a V-good Markov chain, Ex(POTyy,) < 22V(2V)? and Ex(Tret) < (2V(2V)? +
2v)2"".

Proof: Let sg be the state with potential zero. Let Tye(s) be the number of steps taken to reach
so when starting from s. Let p;(s) be the probability of not reaching a state with potential at most
V within 7 steps when starting in state s. (For convenience, let p_1(s) = 1.) Then by Lemma 3.4,
for any s with POT(s) < 2V,

Ex[Tretv (sz) < 2V 2V)
120

Let Z = max,.por(s)<v{ExX[Tret(s)]}. We will determine an upper bound for Z.

From each state s with POT(s) < V we can define a canonical path of length at most 2V
to sg such that when the chain starts at s the probability that the path is taken is at least 2-V?,
If the path is not taken then the chain will make a transition from the path, ending in some state
s" where POT(s') < 2V. Let ps_,¢ be the probability that s’ is the first step off the canonical path
from s to sg. Let p be the probability that s goes to sy in the canonical way, and notice that this

12

will take at most V' steps. Then for any s with POT(s) <V,
Ex[Tiet(s)] < 2V 4+) 2V + > (pi(s) + Z(pici(s) — pi(s")]ps—s
s! 1>0
< 2V +2—p)V + D> 0ils') + Zpi-1(s") — pils))]psss
st 1>0

< 2V +2(1—p)V + > [2Y(2V)* + Zlpsos

< 2V+(1-p2Y (V) + 2]

Then we get Z < 2V +(1—p)[2" (2V)2+Z], from which we derive the bound Z < p~![2V +2V(2V)?].
The result for Ex[Tye] follows by noting that p > 2V,

The bound on Ex[T}e] implies that the a V-good Markov chain is stationary. From Lemma 3.5,
when starting from sg, the expected potential at any step ¢ is at most 22V (2V)2. Then we get

Ex[POTay,] = Ex[lim lZPOTZ-]

1 n
= Ex[liminf =) POT)]

n—oc mn “

- 1221
< hnrgngx[E;POTi]
Lo
= linrgng;Ex[POTi]
< 22V (2v)2

The second equality relies on the fact that the limit exists with probability one (and an event
with probability zero doesn’t affect the expectation), which can be shown using the strong ergodic
theorem for stationary processes . The first inequality comes from Fatou’s Lemma since the random
variables are always non-negative. O

3.5 The Proof
Now we are ready to prove stability of the N client, K server system as defined in the introduction.

Theorem 3.1 Suppose that we have an N client, K server system and message bound A < 1.
Then there is a constant V such that the system corresponds to a V-good Markov chain.

From Lemma 3.7 we get the following corollary.

Corollary 3.2 Suppose that we have an N client, K server system and message bound X. Then
there is a constant V. such that Ex(POT,y,) < 22V (2V)? and Ex(Tre) < (2V(2V)% + V)2V’

Proof: [of Theorem 3.1] We proceed by induction on K. The case K = 0 is trivial with V =1 so
assume that the theorem holds for any K’ server N’ client system with K’ < K (more specifically,
with constant Vi nv x). We will show that it holds for a K server N client system. That is, we
must define a constant V' such that the Markov chain is V-good. (Note that we only need to prove
the Theorem holds for large N, since this will imply the Theorem for smaller N, using the same
V)

13

Given large enough V', Conditions 2 and 3 follow directly from the definition of the ethernet
system. Condition 4 also follows directly from the definition. Suppose that s is a state with
POT(s) < V. The canonical path of length at most 2V from s to the unique state with potential 0
is defined as follows. First, no new messages arrive in the system during the walk on the path.
Second, during the first V steps of the path, every non-empty queue decides to send. If there are
still messages in the system after the first V steps then, during the remainder of the path, the
queues take turns sending. (First, Q1 sends until it is out of messages and then () 2, and so on.)
Since the system has at most V messages in state s, the path has at most 2V steps. The probability
that no messages arrive is therefore at least (1 —)\)QKV. Since the backoff counters in state s are
at most 2V — 1 the probability that every non-empty queue decides to send during the first V steps
is at least (4V)_QVKN. The probability that the proper queue sends during the remaining steps is
at least (4V)7C“V. By the end of the first V' steps, the step counter of every non-empty queue is at
least V' (actually, it is larger). Therefore, the probability that the other queues don’t send during
the remaining steps is at least 27 5XNV. Condition 4 follows.

The rest of this subsection proves that Condition 1 holds for a V which will depend on N,
K,)\, and V' = maxg' <, N'<N Vi, N ». That is, we seek to prove that if a state s has potential
POT(s) > V then there is a tree of depth at most V' —1 rooted at s such that the expected decrease
in the square of the potential over the tree is at least POT(s). In order to help the reader follow the
proof, we note that the variables that we will use in the proof will satisfy the following inequality.

ﬁ,a,K,N,V’SZSWﬁRngUgV

We will assume in the proof that each variable is chosen to be sufficiently large with respect to
the smaller variables. We will have W = R/2 and Z = W'/(®) — 2,

Fix a state s with POT(s) > V and suppose that the Markov chain is in state s right before
step 9. We show that Condition 1 holds by splitting the analysis into cases, depending upon which
(if any) of the following properties hold.

1. every backoff counter b; ;4 is less than B,
2. there is a backoff counter b; j;, > Z such that with probability at least

(1—)\)K58—KN4(bi7j’t0 4 5) KN,

queue ; ; succeeds at least once during steps %o, ..., %y + 4 and every other queue @ j decides

to send on step ¢ (for ¢ € {to,...,to + 4}) only if sy, < 8.
3. there is a backoff counter b; ; ;; > B such that with probability at least

(1 _)\)K(4+R)8—KN4(bZ‘]’tU + R+ 4)*QR—20KNR7

queue (); ; succeeds at least once during steps tg,...,tg + R+ 3 and every other queue Q;

decides to send on step t (for t € {tg,...,to + R+ 3}) only if sy j; < R**.

In our analysis we use the following random variables: We let QZT':]- (QZ_ j) denote the increase
(decrease) in potential due to the queue length of @Q;; over a path in the tree of descendent
states. We let B;,rj (B;]) denote the increase (decrease) in potential due to the combination of
backoff counter and step counter for (); ; over a path in the tree of descendent states. Then we let
Q" = Zf\;l ZjK:1 Qifj, and we define Q—, B™, and B~ analogously. We let § denote the change in
potential over a path in the tree of descendant states and we let A denote the change in the square
of the potential over a path in the tree of descendant states.

We will use the following notation. Let p; ;; and pj ; , be random variables which are uniformly
distributed over the unit interval. We can now describe our protocol in terms of these variables.

14

We will say that a message arrives at ; ; at step ¢ if p; j; < ;. If ¢; j; > 0 then @Q;; decides to
send on step ¢ if pj ;, <'s; Jt The progress of the Markov chain describing our protocol (which we
call M) depends only the values of the p and p* variables. Thus, the branching at depth ¢ in our
tree depends on the values of the random variables p; j; and p; ; ;. In three of our cases, the states
that we use for our tree are combinations of the states of Markov chains that are similar to M
rather than states of M itself. (In Cases 2 and 3, all of the chains start in state s at step ¢y and run
with the p and p* values that are associated with the path in the tree. In Case 1, we argue about
step to separately, and the chains then start in a fixed state s’ (dependent on s) at step to + 1.)
In order to define the states that we consider in our tree, we define, for every queue Q; ;, a new
Markov chain M; ;. In the chain M; ;, queue Q; ; follows the protocol, but all of the messages that
it sends collide with messages sent by some external source. None of the other queues participate.
We use the notation q;" it bz'"]t and sz'"]t to denote the queue lengths and counters when M, ; is
run. The progress of M, ; is a function of the random variables p; ;; and p; ; ;. We let B"'f denote
the increase in potential over a path in the tree due to the combination of the backoff counter and
the step counter for @); ; when M, ; is run. (Since B++ denotes an increase in potential when

b+

M; ; is run (rather than when M is run), we use qut it

and s;“jt in place of g; ¢, b;; and
si 4+ in the potential function when we calculate B++ At all other times, when we speak of the
potential function, we mean the original potential functlon which depends upon g; ¢, b;;: and
si41.) For every queue Qgq4, we define a new Markov chain M. In the chain Mg, the queues in
{Qij | i =dor j =d} follow the protocol, but the other queues do not participate. We use the
notation qgj’t, bf{j’t and sg’j’t to denote the queue lengths and counters when M, is run. Note that
if all of the chains are started at step ¢y then qifj,to%»l = Qi jto+1 = q?’j7t0+1. Similarly, each queue
has the same initial counters for all three chains. Recall that in Case 1, we start the individual
chains in a fixed state s’ at step to + 1. Thus, in Case 1 q:j’toﬂ = Qijtotl = qgj’toﬂ. Similarly, at
step £y + 1, each queue has the same counters for all three chains.

3.5.1 Casel

Property 1 holds: When the Markov chain is started in state s right before step tg with POT(s) > V,
every backoff counter b; ;4 is less than B.

Without loss of generality, we assume that ()1, is the largest queue in state s. We call Q11
the control queue and any other queue with client or server 1 a slave queue. We call the other
queues free queues. Recall that our goal is to show that there is a tree of depth at most V' — 1
rooted at s such that the expected decrease in the square of the potential (over the tree) is at least
POT(s). We will let U denote the depth of this tree. (We will choose U such that g1, > U.)
As we stated above, the branching in the tree depends upon the values of the p and p* variables,
so by fixing the values of the variables p; ;; and pf’j’t for all 4 and 7 and all t < {g+U — 1 we
fix a path p of length U. We define o(p) as follows: For every slave queue @Q;;, and every step
t > to +4,if Q;; has b+] < RY® and it decides to send on step ¢ in M, j, then t is in o] J(). Let
o' (p)—{t|QZjlsaslave/\t€0 p)}. Let o(p) =o' (p)U{t+1§t0—|—U—1|tEU()}. Let

ok (p) denote the kth step in o. We say that path p is good if it satisfies the following conditions.

1. At step tp, no message is received at any queue, the control queue decides to send in M, every
other queue @); ; with q;_'j,to > 0 and s;'fj,to < 5 decides to send in M, and no other queue Q; ;
decides to send in M.

2. At step tg + 1, no message is received at the control and slave queues, the control queue
decides to send in My, every slave queue @;; with qz‘—i,—l.to+1 > 0 and S?.—l,t0+1 < 4 decides to
send in M; 1, and no other slave queue (); ; decides to send in M, ;.

15

At step %9 + 2, no message is received at the control and slave queues, the control queue
decides to send in M, every slave queue ()1 ; with q1+,j~,t0+2 > 0 and Sij~,t0+2 < 3 decides to
send in M ;, and no other slave queue @); ; decides to send in M, ;.

At step %9 + 3, no message is received at the control and slave queues, the control queue
decides to send in My, every slave queue @);; with q;’“l.to+3 > 0 and 3;1,t0+3 < 3 decides to
send in M; 1, and no other queue Q; ; decides to send in M; ;.

3. At step ty + 4, no messages are received at the control and slave queues, the control queue
decides to send in M, and every slave queue @; ; does not decide to send in M; ;

4. For each slave ()1 j, and each ¢ € U’Lj (p), t # to mod 2. Also, for each slave Q; 1, and each
t € oi1(p), t =to mod 2.

5. For every step o4(p) € 0(p), p] 1 5, (p) < (B +1)7%

6. If ¢ is in o(p), and Q;; is a slave queue with ij.t > RYe then Qi,; does not decide to send
on step t in M, ;. If ¢ is not in o(p) and Q;; is a slave queue with bz'»'.'j,t > RY“ which decides
to send on step ¢ in M, ; then, for any t' in the range ¢ — 2% — 1,...,¢, there is no slave

queue Q; j» with bj,',j,,t, > RY/@ that decides to send on step ¢ in M .
7. If Qi is a slave or control queue then for every ¢ in the range &9 <t < o+ U, p;;;, >
2(UM*1og(U)) "

1
8. For every slave queue Q; ; and any ¢ in the range g < ¢ < ¢y + U, we have (ij.t +1)%2 —

I_L 1 1_L 1_—1 . .
sz'»':j,t do ((bz—'l,_j,to + 1)a+2 — s;':j’to fa) < 2¢U %@+ where ¢ is the constant defined in
Lemma 3.1

9. For any ¢ in the range tg + 5 <t < tg + U, the number of messages received by the control
and slave queues during steps g + 5, ...,¢ is at most A(t —tg — 4) + Ul/2 logU.

The tree that we consider will be the tree consisting of every good path of length U plus every
child of every internal node of such a path. We will show that for this tree Ex[A] < —POTy,. The
key to showing this will be to prove that with sufficient probability a good path is taken when the
chain is run. The properties in the definition of “good” deal with the Markov Chains Mg and M, ;.
However, we will prove that in the internal nodes of our tree, the state of M is related to the states
of Mg and M, ;. Thus, we will be able to show that for this tree Ex[A] < —POTy,.

We start by proving a lemma which establishes some of the relationships between M, M; and

M; ;.

Claim 3.1 If n is a node in the tree at level t > to + 1 (i.e., step t is just about to take place) and
the parent of n is in good path p, then

1. For any slave queue Q;j, q;jit = qifj’t = q},j7t, bijt = bifj./t = bil,j_/t and ;1 = sifj./t = 3117]-,t.
2' qlal',t S q%,l,lﬂ blal-,t S b%,l,t and Sl',lat S S%,l,t'
3. If t > to+4 then bj 1, <140’ (p) N{to,...,t —1}].

3

Proof: The proof is by induction on . First note that the actions of every queue is forced at step
to, and thus there is only one node s’ at step ¢ty + 1 in any good path. Then the base case includes
the five steps ¢ € {tg + 1,...,t9 + 5} The case t = ty + 1 is clear because the queue lengths and
counters have the same values before step ¢y + 1 in all of the chains. To see that Item 1 holds for
steps g+ 2 to tg + 4, note that any slave queue that decides to send collides with the control queue.

16

Specifically, in step tg + 2, only queues that client-conflict with ()1 ; decide to send, and in steps
to+1 and #9 + 3 only queues that server-conflict with ()1 ; decide to send, and in steps to + 1, tg + 2
and tg + 3, Q1,1 decides to send. To see that Item 1 holds for ¢ = ¢y + 5 note that the slave queues
do not decide to send on step ty + 4.

To see that Ttem 2 holds for steps ty + 2 through ¢y + 5 we consider the possible cases. In
defining the cases, we observe that for any ¢, if Item 2 has been established for step ¢t — 1, then if
(1,1 decides to send on step ¢ in My, Q1,1 also decides to send on step ¢ in M. Also, if Item 1 and
Item 2 have been established for step ¢ — 1, then if ()1 ; sends and succeeds at step ¢ in M then
Q1,1 sends and succeeds at step ¢ in M. (Note that Item 2 was established for step 9 + 1.) The
cases are:

a. 1,1 sends and succeeds in M.

b. Q1,1 decides to send in M and fails and does not decide to send in M;.

c. Q1,1 decides to send and fails in M and M;.

d. Q1,1 does not decide to send in M or M;.

It is clear that Item 2 holds in Cases a, ¢, and d. Finally, we note that Case b cannot occur on
steps to + 1 through ¢ + 4 since Q1,1 decides to send on those steps in My, and inductively Item 2
can be established for steps to + 2 through #o + 5. To see that Item 3 holds for ¢ = ¢y + 5, we note
that b%’l’t0+5 is 0.

We now do the induction step. In order to establish Item 1, we want to show that if a slave
queue @; ; sends on step ¢ (for ¢ > to +4) then it collides in M and in M;. We consider two cases.
If t € o(p) (suppose that ¢t = oy (p)), then, by property 4 and property 6, if j = 1, then no slave
queue ()1, decides to send on step ¢{. Whether or not j = 1, by property 5, pj;; < (k+1)"%
Also, (by Item 3, inductively), b%,l.t <k, so 3%,1.t < (k+1)“. By Item 2, inductively, 511+ < 5%,1,#/
so the control queue decides to send on step t in M and M;. Thus, Q;; has a collision. Now
suppose ¢ & o(p). We will show that b} ; , = 0. (To do this, we can assume inductively that for
t' <t if ' € o(p), then b%_l’t, = 0.) Consider the maximum ¢’ < t where either ¢’ € o(p), some
slave sent at step ', or ¢/ = to+5. If ¢ € o(p), then t' +1 & o(p), so no slave queue sends at step ¢/,
but by property 5 and the argument used above, ;1 sends and succeeds at step ¢ in M;. Thus
bh’t =0. If ¢/ = to + 5, then Q1,1 sends and succeeds at step ¢’ in M, and therefore bh’t = 0.
Otherwise, by property 6, t' < t — 2%, and inductively b%,l,t' =0, so b%,l,t’+1 = 1. But then Q1
sends and succeeds by step t — 1, so b%,l,t = 0. Thus, (since the queue size of the control queue is
at least U), it decides to send on step ¢ and ; ; has a collision.

In order to establish Item 2, we want to rule out Case b, in which ()1 ; decides to send at step ¢
in M and fails and does not decide to send in M. We have already shown, in the analysis in the
preceding paragraph, that Q11 sends in M; on every step in o(p). So suppose that ¢ € o(p). By
the same argument as in the preceding paragraph, we can show that b%,l,t = 0 unless there is some
t' < t, where some slave sends on step t' & o(p) and ¢’ >t — 2%. So either no slave sends at step
t, in which case Q1,1 will succeed if it decides to send, or else some slave sends at step ¢, and by
property 6, bil’t =0 (and thus Q1,1 decides to send in M;). Thus, Case b does not occur.

In order to establish Item 3, we note that we have already shown that)1 sends in M; on
every step in o(p), and that it succeeds on the last step of every consecutive block of steps in o(p).
Furthermore, ()1, succeeds on step ¢y + 4. By property 6 (and, inductively, by Item 1), @11 can
have at most 1 collision in M; just before the consecutive block of steps from o(p). Item 3 follows.
O

As in [3], we will use the equality

Ex[A] = 2POTy, - Ex[d] + Ex[0?).

17

Thus it is sufficient to show that Ex[§] < —1 and Ex[6?] < POTy,. Let E be the event that a
good path is taken when the chains are run. (That is, F is the event that all the conditions in the
definition of “good” hold for U steps.) Let E; be the event that condition 7 holds for U steps. Let
U' = max{U"2log U,U"/*log U, U'~"/(4et+1)) 71=1/(40) 1og2=1/4 7}, and note U’ = o(U).

Call two paths in the tree equivalent if and only if every queue has the same p and p* values at
step tp, and every control and slave queue has the same sequence of p and p* values over the the
remaining transitions in the paths. This notion of equivalence is clearly an equivalence relation.
Furthermore, if one path in the tree ends at level ¢ (i.e., if t < ¢y + U, there is no good path
continuing on from the node at level ¢, but there is a good path continuing on from the node at
level t — 1), then every equivalent path also ends at level t.

Let M’ denote the Markov chain in which the free queues run the protocol (after step tg), and
no other queues participate. By induction, there is a constant V' such that M’ is V'-good. Now
suppose that we fix a sequence of p and p* values for the control and slave queues and we run M.
If we just look at the free queues during this run, we can think of this as being a run of M’, in
which M’ is extended by the set of interrupt steps I which is determined by the sequence of p
and p* values for the control and slave queues (and the p and p* values of the queues at step tg).
Lemma 3.3 shows that when M’ is extended by I, the expected increase in potential in any one
step (other than step tg) is at most 3KNf(a)O‘+1/2. (The expected increase due to each backoff
and step counter is at most 2f(oz)o‘+1/2 and the expected increase due to each queue is at most 1.)
If the fixed sequence of p and p* values is such that the path taken is in the tree (i.e, all of the
properties continue to hold (except possibly after the last step)), then the number of interrupt steps
in I is at most KNUYlog(U). (To see this, note that, by Claim 3.1, every slave queue collides
every time it sends (except possibly the last time it sends). Furthermore, since Property 7 holds, a
slave queue does not send once its backoff counter is U/ log(U) — 1 (except possibly on the last
step). Therefore, the slave queues provide at most KN Utle log(U) interruptions.)

Claim 3.2 Suppose that we fixz a particular equivalence class of paths of length at least t, and we
condition on the event that when M is run fort steps, starting with step to, one of the paths from this
equivalence class is taken. Then the expected potential of the free queues, after the t steps, is at most
the potential of the free queues at step to+1 plus (KNUY® log U) 4+ 3K N f(a)*+t/2)((2V")222V +
3KNf(a)*T1/?).

Proof: We view the free queues as forming a Markov chain M’ which is extended by the set of
interrupts I that is determined by the set of p and p* values associated with the equivalence class.
We now apply Lemma 3.6 using the facts that the expected increase in potential in any one step is
at most 3KNf(oz)O‘+1/2 and the number of interruptions is at most (K NUY®*logU). O

Claim 3.3 There is a function fi such that
Ex[§ | E]<—-(1-ANU+U"- fi(a, K,N,V',R).
Proof: Given E and Claim 3.1, there are at most
(K + N —1)UY"log U]2%

steps on which the control queue does not broadcast successfully. (Each of the K + N — 1 slave
queues provides at most U/ log U interrupts. For any run of interrupts in o(p), the control queue
sends successfully after the last step of that run (which is still in o(p)). For any interrupts not in
o(p), the control queue sends within 2% steps. Therefore, at least

U—[(K+N-1U""log(U)]2

18

messages are sent successfully. By Property 9, the number of messages that are received by the
control and slave queues is at most AU + U'/?log U. By Property 8 and Claim 3.1, the increase in

1
potential due to the backoff counters and step counters of the slave queues is at most 2¢ Ul e,
By Claim 3.1, the backoff counter of the control queue is at most (K + N — 1)(RY® +1) + 1,
so the increase in potential due to the backoff counter and step counter of the control queue

is at most ((K + N —1)(RY® 4+ 1) + 2)a+1/2. Claim 3.2 shows that for each equivalence class
of paths, the expected potential of the free queues increases by at most (KNUYlogU) +
3KNf(a)*2)((2V")222V + 3K N f()**Y/?) during steps to+1, ..., ¢+ U — 1. By Corollary 3.1,
it increases by at most KN(5 + f()*"'/2) on step to. O

Claim 3.4

Pr(E) > 2((1 — X)/3)>HE+N-D(R/*+D)5=5(KN=1)(p | 5)=5a((2(K + N — 1)(RY* + 1) + 1)!)

—Q

Proof: We can divide the calculation as follows.
4 9 5
Pr(E) = Pr(E)Pr(E; | Ei)Pr(Es | By A Ey)Pr(Ey | Ey A Ey AE3)Pr(Bs | \ E)Pr(\ E; | \ Ey).
i=1 j=6 i=1

Now we analyze each probability in turn. Clearly, Pr(E;) > (1 — \)%(B + 1)~*5-(EN=1)_ Note
that every slave Q1 ; with ¢1 ;41 > 0 has s14,4+1 > 1 and every slave @Q;1 with g; 1442 > 0
has si 1,442 > 1 and every slave Q1 ; with g1 443 > 0 has sy 443 > 1. Thus, Pr(Ey | Ey) >
(1=X)3(B+4) 7324 3(K+N=1)_Note that every slave Q; ; has s; js,+4 > 1. Thus, Pr(E3 | By AEy) >
(1 = M)(B 4 5)~2-(K+N=1),

The next probability essentially requires two separate arguments, one to lower bound the prob-
ability of each slave queue receiving its first message at either an odd or even step, and one to lower
bound the probability of it attempting each send (until its backoff counter exceeds RY @) at either
an odd or even step.

In the first argument, note that we must show that (); ; receives its first message at either an
odd or even step. (If \;; = 0, then Q; ; never receives any messages and we can disregard it.) If
Aij > %, then it receives a message at step top + 5 (an odd step) with probability at least %, and it
receives its first message at step ¢y + 6 with probability at least %(1 —Xij) > %(1 —-A). It N < %,
let = be the probability that a message is first received on an odd step (noting that the first step
possible is £y + 5, an odd step). Then it can be easily shown that a message is first received on an
even step with probability (1 — A; ;)m. Thus m + (1 — X; ;)7 = 1, implying 7 = (2 — X; ;)~'. Since
O<Aj<tandi<m<i3 (1-Xj r> 1

In the second argument, we must show that slave queue @); ; attempts each send (until its backoff
counter exceeds RY/ @) at either an odd or even step, assuming that if it is empty, it attempts its first
send at the correct step. First, we deal with the first step of the slave queues Q); ; with g; ;4,15 > 0.
If Q1,5 is a slave queue with ¢1 ;4,45 > 0 and sy ;4,45 = 1 then it sends on step £y + 5, which is
fine. Every other slave queue Q; ; with g; ;45 > 0 has s; 1,45 > 2. Since $; j 1,45 > 2, there is
a step of the correct parity in the range to + 5,...,%0 + sij+5 + 4. Let ¢’ be the last such step.
The probability that Q; ; does not send before step t' is at least 1/sijt,+5 and the probability
that it sends on step t', given that it did not send earlier, is at least 1/3. We now consider steps
after to +5. If Q; ; collides at step t — 1, we have s; ;4 = [(b; ¢+ +1)*|. By Claim 3.1, a slave queue
never succeeds, so s; j; > 2 and we can use the same argument that we used for the first step.

Thus, since the relevant step counters are at most (R/® + 1)a, we have

1

(K4+N—1)(RY*>41)
(R + 1)a>

1
PI‘(E4 | E1 /\E2 /\Eg) Z (Z(l -)\)

19

Using Claim 3.1, we see that for any good path p, |0’ (p)| < (K+N—1)(RY*+1). Thus, |o(p)| <
2(K 4+ N —1)(RY*+1). We conclude that Pr(Es | AL, E;) > ((2(K + N —1)(RY* +1) + 1))
Next, we note that Pr(/\?:(j E; | Nii E;) is at least

5 5 5 5
1 — Pr(Es | /\ E;) — Pr(E7 | /\ E;) — Pr(Eg | /\ E;) — Pr(Eq | /\ E;)
i=1 i=1 i=1 i=1

We calculate Pr(Eg | Ai_; Fi), by considering the following game. Suppose that we have U — 2
boxes, which are labeled ty+5, ..., +U —1. Each box will represent one time-step. Note that o(p)
is completely determined by the values of the variables pj ; , for slave queues @); ; with b;fj’t < Rl/e,
We look at these variables, and place a blank pebble in each box that represents a time-step in o(p).
If slave queue (); ; had sz,t0+5 > RY® then we choose a random number ¢ between 1 and Si.j,t0+5
and we put pebble P;; in box ty + 4 + £. (This choice of the random number is dependent upon
the values p; ;15,07 ;4 16, --) Otherwise, we use the values of the same p* variables that we used

to identify o(p) and we identify the integer ¢ such that b;fj’t > RY® and bifj./tfl < R'® and we put
pebble P; ; in box ¢ — 1. To play the game we now consider the boxes in order. When we consider
box t we check whether it contains a pebble, P; ;. If so, we choose a random number Z between 1
and | (bj ;41 + 1)) and we put P; ; in box ¢ + £. (This choice of the random number is dependent
upon the values p} ;. 1,07 112, .) We lose the game if any box other than box #9+5 ever contains
more than one pebble, or if any two boxes ¢ # ¢y + 5 and ' # £y + 5 ever contain pebbles and have
|t —t'| < 2% Otherwise, we win. One can see that winning this game corresponds exactly to having
condition Fy hold. Note that the p* values that we use to play the game are independent of the
p* values that we used to show that the probabilities that Ei—FE5 hold. The probability that P; ;

causes a loss is at most the sum of

2(K + N — 1)(RY* +1) + (2T + 1)(K + N — 1)
R

(this is an upper bound on the probability that P;; hits another pebble on its initial placement),
and
5 2(K + N —1)(RY* +1) + (2T + 1)(K + N — 1)
L(b+1)] '

b>RY/a4+1

The sum is O((K + N — 1)R(/®)~1), Since there are at most K + N — 1 pebbles, the probability
of losing is O((K + N — 1)?R(/@)=1),

Let H = min(1/6, (B 4+ 4)"*, (2(K + N — 1)(R"* +1) + 1)~). During the proof that E1-E5
hold with sufficiently high probability we sometimes forced p; j; values to be large. The only times
that we forced p; ;; values to be small, we only forced them to be as small as H. Thus,

5
Pr(Br | N E) < (K+N-1)U2(UY*1ogU)"*/H
i=1

< 2(K+N-1)(logU) “/H.

The portion of

at+i -1 ati -1
(O + D77 = sy ™ = (b + D7 =i ™)

20

that is caused by backoff counters before they exceed R'/® is at most K N(RY® + 1)a+1/2. For the

remaining portion, we use Lemma 3.1, to conclude that the the probability that the portion due to

1
any one quete exceeds ¢ U~ 7@+ is O((logU)™1). Thus,

5
Pr(Es | \ Ei) < O((K + N —1)(logU)™").
i=1
For the last calculation, note that the conditioning in the calculation of F4 only affects the
arrival of the first K + N — 1 messages. For the remaining messages, let M; be the number of other

messages received at control and slave queues during steps to + 5,...,t. The expected value of M;
is at most At — ¢y — 4. By a Chernoff bound

Pr(M; > Mt —to+4) + U2 log U | Ey A By A Es) < 2exp(—2(UY2 logU)?/U) < 2exp(—21og? U).

Thus
5

Pr(Eq | /\ E;) < 2U exp(—21log? U).
=1

Assuming that U and R are sufficiently large compared to N and K we have shown

9 5

Pr(A\ Ej | A\ Ei) >

j=6 i=1

DN | =

The claim follows. O

Claim 3.5 There is a positive function fo such that Ex[d | E] < U’ - fy(a, K, N,V' , R).

Proof: Let ¢ denote the change in potential over all but the last step of a path in the tree of
descendant states and let 4" denote the change in potential during the last step of a path in the
tree of descendant states. Clearly, § = &' + ¢".

The proof of Claim 3.3 shows that Ex[¢' | E] < U’ - fi(a, K, N,V',R).

Suppose that p is a path of length ¢ that doesn’t satisfy £. We will calculate an upper bound on
the amount that the potential could increase on step tg+¢— 1. (Thus, we are upper bounding 4" for
this path.) The increase due to messages arriving at slave and control queues is at most K + N — 1.
The increase due to the backoff counter and step counter of queue @); ; is at most

(bijstott—1 +2)° T2 = (bijaore1 + D2 4 (b jggpes +1)* M

Using Fact 3.1, this is at most
[+ /21120 by 4y +1)7 7

Since the parent of the last node in p is part of a good path, by 1 45+—1 < (K + N — 1)(RY/® +1) + 1
and for every slave queue Q; ;, b jioti—1 < Ut/ log(U) — 1. Thus, as long as U is big enough
compared to K, N and R, the increase in potential due to the backoff counters and step counters
of control and slave queues is at most [a + 1/2]/@+3/212K NU'.

Finally, we use the fact (from Lemma 3.3) that the expected increase in potential of the free

queues in any one step is at most 3K N f(a)T/2. O

Claim 3.6 Ex[J] < —1.

21

Proof: Ex[0] < Ex[0 | E|Pr[E] + Ex[d | E]. The claim follows from Claims 3.3, 3.4, and 3.5
provided that U is sufficiently large compared to o, K, N, V', R, B, and 1/(1 —). O

Claim 3.7 Ex[6%] < POTy,.

Proof: Since each queue);; can gain at most U messages and has b;;, < B, 6 < KN(U +
(B+U+ 1)a+1/2). Thus, as long as V is sufficiently large compared to a, K, N, B, and U,
Ex[6?] <V < POTy,. O

3.5.2 Case 2

Property 2 holds: When the Markov chain is started in state s right before step tg with POT(s) > V,
there is a backoff counter b; ;;, > Z such that with probability at least

(1 o >\)K587KN4(bi.,j,t0 + 4)—0&27KN’

queue @; ; succeeds at least once during steps t,...,tq + 4 and every other queue () ; decides to
send on step t (for t € {to,...,to +4}) only if s ;4 < 8.

Without loss of generality, let (1,1 be the queue Q; ; described in Property 2 and let E be the
event that queue (1,1 succeeds at least once during steps %, ...,%o + 4 and every other queue Q; ;
decides to send on step ¢ (for t € {tg,...,to +4}) only if s; ;; < 8. Recall that our goal is to show
that there is a tree of depth at most V' —1 rooted at s such that the expected decrease in the square
of potential (over the tree) is at least POT(s). The tree that we will consider is the complete tree
of depth 5. We consider steps ty through g + 4 and analyze POT?O+5 — POT%O. Clearly

Ex[POT} ,; —POT;] = Ex[POT},;— POT}|E]Pr[E] + Ex[POT} 5 — POT; |E] Pr[E]

We start by computing a lower bound for the decrease in potential in the event that E occurs.
8
Let g(a) denote (5[c+ 1/2] m+3m) First, we show that for every queue @Q;; except @11, when
1
E occurs, ij < (g(@) 4+ 6)*"2. This is easy to see in the case that b; ;1 < g(a). If b 15 > g(c)
then either @); ; doesn’t send (in which case Bij = 0) or Q;; sends and succeeds (in which case
BZ'"J < 5F1/2 or Qi,; decides to send and collides, in which case it never decides to send again and

Bi‘"j is at most

(biito +2)°T% = (bijao + DT = ([(bijao +2)| —)70 4 57/
Using Fact 3.1, this is at most
T+ 1720132 by + 1) 2 — ([(B +)] —)71 0
which is at most s; j ¢, since b; ;¢ > g().
For Q1,1, when E occurs, By y > (bi14 + 1)2%3 — (b 14y + 1)1 —59+1/2, Q+ < KN5. Thus,
when E occurs, since b114, > Z and Z is sufficiently large compared to o, K and N, the potential

decreases by at least %(bl,l-,to + 1)a+%.
Thus, POT}, ,; — POT}, is at most

1 1
—(bi14, + 1)*TZPOT(s) + 0L + 1)20H+ < —5 b1+ 1)*tsPOT(s)

22

since POT(s) > (3/4)(b1,1,4, + 1)‘”'%. Using the lower bound on the probability of E from the
statement of Property 2 and the fact that b; 14, > Z and that Z is sufficiently large compared to a,
K, N and 1/(1 — X), we find that

1 L
Ex[POT}, ;5 — POT}, [E] Pr(E) < — 2 (biis + 1)7POT(s).

Using the facts QT < 5KN, Q~ >0, and B~ > 0, we see that

Ex[POT} ,; — POT}, | E]Pr[E] < Ex[(POTy, + 5KN + BT)”> — POT}, | E]Pr[E].

Clearly, this is at most

[(BKN)? +10KN - POTy, + 2(POTy, + 5K N)Ex[B* | E] + Ex[(BT)? | E]] - Pr[E].

We can bound the last two expectations by noting that Ex[Y|E] Pr[E] < Ex[Y].

Recall that we defined B* to be ¥, Y5, Bjf;. Thus, Ex[BT] = ¥, ,Ex[B;;]. Similarly,
Ex[(BT)*] =X, Ex[(B+ 1+ 23 (i a1y EX[B:]-B;: ,]. We will now proceed to bound Ex[B
Ex[(B;7;)?] and EX[B;"JBZ,7 o] when b g (or by g1 4,) is large.

il

Claim 3.8 Fiz any sequence of values for the p and p* variables. Then, for every queue Q;; such
that b; i, > 100, when M and M, ; are run with these p and p* values, ij < Bff.

Proof: Until the first successful transmission by @Q; ; in M, b; ;; = b i and sijp = sj'jt (Thus
if Q; ; does not have any successful transmissions in M, then the claim holds.) Assumlng the first
successful transmission in M is at step ', b; jy41 = 0 and s; 441 = 1, but b > 100 and

> 100%. In the next 5 — ¢’ steps, b”t < 5 but bjjt > 100. Then

i,7,t+1
Zj t'+1
1 _ 1 1 1 _1
(b t0rs + D7 = (57 1005) T30 2100 > 5%%2 > (by 45 + 1)T2 — (si1945) 5.
O
Claim 3.9 Ex[Bj\] < Z5/(KN).

Proof: If by j;, < (100)'%*, then B}, < ((100)'%* 4 6)2+1/2 < (200)**" < Z% /(KN). Otherwise,
we use Claim 3.8 to show that EX[BZJ“J] < EX[B;;“} and we bound EX[B;“Jﬂ as follows. If Q; ; doesn’t
send during the 5 steps then B;“j < 5. Otherwise, we know by Lemma 3.2 that B;“j < Sijito-
The probability that @;; sends during the 5 steps is min(1,5/s; j+,). Therefore, Ex[Bi"'Jﬂ <
54 (5/8i.40)8i400 < 10 < ZY8/(KN). O

Claim 3.10 Ex[(B;,)?] < (POT(s) + Z7)/(KN)

Proof: If b; j;, < (102) 1%, then we follow the proof of claim 3.9 to show that (B;'j)2 < Z%/(KN)
Otherwise, we use Claim 3.8 to show that EX[(B{D)Q} < EX[(BTH')Q] and we bound Ex[(B:j'")Q} as

in claim 3.9 to get 25 + 5s; 4. Since s; s < (bijs +1)% and 10a < b%(gfo‘), Ex[(BZ.J“j)Q] is at

most (b ;4 + 1)%*1/16 Which is at most POT((s)/KN. O

Claim 3.11 Ex[B],Bjf ;) < Z1/(KN)?

23

Proof: If b; j+, < (10a)'®* then we follow the proof of Claim 3.9 to show that B:/'j < Zé/(KN)

We conclude that EX[B:]-B;—.]./} < [Zé/(KN)}Ex[Bjj,] so the result follows from Claim 3.9. On

the other hand, if b; 4, > (102)'%* and by j 4, > (102)'%, then we use Claim 3.8 to show that
B, < Bf and Bj, < B Thus, Ex[B]; B+ # < Ex[BFBiY]. But Bij" and Bj are
1ndependent so the result follows from Clalm 3 90

Recall that our goal was to bound Ex[POT} , 5 — POT}] and that we have shown that this is
at most

—%(bl,uo +1)1POT(s) + (5K N)2 + 10K N - POT(s) + 2(POT(s) + 5K N)Ex[BT] + Ex[(B1)2].

Claim 3.9 shows that Ex[B*] < 7% and Claims 3.10 and 3.11 show that Ex[(BT)?] < POT(s)+
71 + 271, Using the facts that POT(s) > Z3/8 that bi,14, > Z and that Z is large compared
to N and K we find that Ex[POT}, , 5 — POT}] is at most —POT(s).

3.5.3 Case 3

Property 3 holds: When the Markov chain is started in state s right before step tg with POT(s) > V,
there is a backoff counter b; ;;, > B such that with probability at least

(1—)\)K(4+R)87KN4(bi7j,tO + R+ 4) R 20KNE
queue Q; ; succeeds at least once during steps tg,...,% + R + 3 and every other queue Qy j» decides
to send on step t (for ¢t € {to,...,to + R+ 3}) only if sy j1 4 < R?®.

Without loss of generality, let Q)11 be the queue @);; described in Property 3 and let E be
the event that queue Q1,1 succeeds at least once during steps %o,...,%o + R + 3 and every other
queue Q;; decides to send on step ¢ (for t € {t,...,to + R+ 3}) only if s;;; < R?**. Recall
that our goal is to show that there is a tree of depth at most V — 1 rooted at s such that the
expected decrease in the square of potential (over the tree) is at least POT(s). The tree that we
will consider is the complete tree of depth R + 4. We consider steps tg through ¢g + R — 3 and
analyze POTt20+R+4 — POT%O. Clearly

Ex[POT} , gy — POT;] = Ex[POT}, .y — POT} |E]Pr[E] + Ex[POT} | g,y — POT; |E] Pr[E]

We start by computing a lower bound for the decrease in potential in the event that E occurs.
1
First, we show that for every queue Q; ; except 1,1, when E occurs, Bi":j <(R?+R+ 4)a+2. This

is easy to see in the case that b; ;;, < R?. If bijto > R? then either Qi; doesn’t send (in which
case Bi":j =0) or ();; sends and succeeds (in which case B:'j < R*H1/2 op Q;,j decides to send and

collides, in which case it never decides to send again and B;“j is at most

« o o — « — 4o
(Biio +2)° T2 = (Bigitg + D)2 = ([(bijuo +2)%) — (R+3) 10 4 g} /0

Using Fact 3.1, this is at most
_ - 1—1/(4
- 1/21 192 by +)72 = (b +2)7) = (R43)) 70 730
which is at most s; j +, since b; ;¢ > R? and R is sufficiently large.
For Qi,1, when E occurs, Bil > (bi,ig + 1)04"'% — (b1, + 1)0_% — (R—|—4)a+1/2. QT <
KN(R +4). Thus, when E occurs, since B < b; 14, and B is sufficiently large compared to R, K,
and IV, the potential decreases by at least %(bl,lio + 1)“*5

24

Thus, POT? , g, 4 — POT}, is at most

1 1
—(bi,1,50 + 1)*FTPOT(s) + FLGEE 12ett < —5 (L1 + 1)*F3POT(s)

since POT(s) > (3/4)(b1,1,4, + 1)‘”'%. Using the lower bound on the probability of E from the
statement of Property 2 and the fact that B < by 1 4, and B is sufficiently large compared to R, K,
and N, we find that

1 1
Ex[POT}, , pyy — POT} |E] Pr[E] < —5 (b1, + 1)FPOT(s).

Using the facts Q7 < (R+4)KN, Q~ >0, and B~ > 0, we see that

Ex[POT} | p.4 — POT, | E]Pr[E] < Ex[(POTy, + (R+4)KN + BT)”> — POT}, | E]Pr[E).

Clearly, this is at most

[((R+4)KN)?+2(R+4)KN -POTy, +2(POTy, + (R+4)KN)Ex[B* | E]+Ex[(B")? | E]]-P1[E].

We can bound the last two expectations by noting that Ex[Y|E]Pr[E] < Ex[Y].

Recall that we defined BT to be ¥, Y%, Bj,. Thus, Ex[B'] = ¥, ;Ex[B};]. Similarly,
Ex[(BT)*] =%, Ex[(B:j)Q} + 230 A) EX[B:]-B;“7].,}. We will now proceed to bound EX[B;;.],
Ex|[(B;;)?] and Ex[B;;Bj] when b js, (or by jr 4,) is large.

Claim 3.12 Fiz any sequence of values for the p and p* variables. Then, for every queue Q; ; such
that b; j 4o > (2R)?, when M and M ; are run with these p and p* values, Bi""j < Bi‘"j.

Proof: Until the first successful transmission by @;; in M, b; ;; = bz'»'.'j,t and s; j; = SZj.t' (Thus

if Q; ; does not have any successful transmissions in M, then the claim holds.) Assuming the first

successful transmission in M is at step t', b; jy11 = 0 and s; 41 = 1, but b;:j,t'+1 > (2R)? and

siiv1 > (2R)*. In the next R+ 4 — ' steps, b j; < R but b, > (2R)*. Then

1

1 _ 1 1 1 _ 1
bt ma + 1T = (85 101 mea) @ > (2R)* > RYT2 > (byjgs rea+ 1)1 7 = (i ot rea)' 5o

O
Claim 3.13 Ex[B;;] < B5/(KN).

Proof: If by, < (2aR)'%, then B, < ((2aR)'® 4+ R+ 1)*+1/2 < (4aR)3° < Bs/(KN).
Otherwise, we use Claim 3.12 to show that EX[BZJ“J] < EX[B;“Jﬂ and we bound EX[BZT;“] as follows.
If Q;,; doesn’t send during the R + 4 steps then B:j"' < R+ 4. Otherwise, we know by Lemma 3.2
that B:j'" < 8 4t,- The probability that Q; ; sends during the R + 4 steps is min(1, (R +4)/s; jt)-
Therefore, EX[B;T} SRA4+((R+4)/8ij140)8i510 < 2(R+4) < BY8/(KN). O

Claim 3.14 Ex|[(B};)?] < (POT(s) + B7)/(KN)

Proof: If b;;;,, < (2aR)'®®, then we follow the proof of claim 3.13 to show that (ij)2 <
B%/(KN) Otherwise, we use Claim 3.12 to show that Ex[(BZJ“J)Q] < Ex[(BZTjJ“)Q} and we bound
Ex[(BZ-J“j)Q] as in claim 3.13 to get (R+4)2 + (R + 4)sijt. Since sijiy < (bijt, +1)* and
2aR < b%gﬂﬁa), Ex[(BZTjJ“)Q} is at most (b; ;¢ + 1)**1/16 Which is at most POT(s)/KN. O

25

Claim 3.15 Ex[B},;B;] < B1/(KN)’

Proof:
If b i1, < (2aR)1%® then we follow the proof of Claim 3.13 to show that BZ*_J- < Bé/(KN)

We conclude that EX[BZJ'B;:]-/] < [Bé/(KN)]EX[B;:j,} so the result follows from Claim 3.13. On
the other hand, if b” to > (2aR)' and by j1 4, > (2aR)'%, then we use Claim 3.12 to show that
B}, < Bjjt and Bj, < Bjf. Thus, EX[B+ By i1 < Ex[Bf;"B;j%]. But B and B, are
1ndependent so the result follows from Claim 3 13 EI

Recall that our goal was to bound Ex[POTtO+R+4 POT%U] and that we have shown that this
is at most

—%(bmoﬂ)%POT(5)+((R+4)KN)2+2(R+4)KN-P0T(5)+2(POT(S)+(R+4)KN)EX[B+}+Ex[(B+)2}.

Claim 3.13 shows that Ex[B*] < B% and Claims 3.14 and 3.15 show that Ex[(B¥)?] < POT(s)+
Bi + 2B1. Using the facts that POT(s) > B3/ that bi1,4, > B and that B is large compared
to N, K and R we find that EX[POT?0+(R+4) — POT}] is at most —POT(s).

3.5.4 Case 4

None of Properties 1-3 hold. In order to define the terms that we need for this case, we consider
a run of the chain for steps tg,...,%o + 3 in which no messages arrive and @); ; decides to send on
step tifq; ;; > 0and s; j; < 8—t+1y. Note that if ¢; j;,+4 > 0 and s; ;4,44 = 1 then Q; ; succeeded
in sending on step ty + 3 (SO bi,j,t0+4 = 0). If Qi jto+4 > 0 and Si,jtot+d > 1 then Si,jto+d > 4.

We use the following definitions. We say that queue Q;; is forced on step t if g; j; > 0 and
sij+ = 1. We say that it is almost forced if ¢; ;; > 0 and s; ;; < 2. We say that queue Q;; is
short if g; j1o+4 < R/2. Otherwise, we say that it is long. If j # j' we say that Q; ; client-conflicts
with queue Q; . If i # ' we say that Q;; server-conflicts with queue Qy ; If Q; ; client-conflicts
or server-conflicts with @ j; then we say that @Q;; conflicts with queue Qy . A queue Q;; is
a potentially active queue if g; jio4a = 0 and X;; > 1/R% A queue Qi j is a working queue if
Qi jtot+s > 0 and s; ;4044 < R?*. A queue is called a potentially working queue if it is a potentially
active queue or a working queue. A queue Q;; is a blocking queue if it is potentially active or it
has gi jora > 0 and b j o pa < R2/® — 2.

In the appendix we will show that we can split the queues into categories so that the following
conditions (which we call the Case 4 conditions) are satisfied.

1. There will be three categories of control queues: solid control queues, delayed control queues,
and temporary control queues. No two control queues will conflict. Every queue that conflicts
with a control queue is called a slave of that control queue. (A queue can be the slave of up to
two control queues.) Every queue that is not a control queue or a slave is a free queue.

2. Slaves are not blocking queues. If a slave); ; has b; j 4,44 > B then (); ; is a slave of a solid or
delayed control queue.

3. Every solid control queue @; ; is long and has b; ;4,44 = 0 and s; j ;.44 = 1.

4. Every delayed control queue @; ; is long and has b; j 1,44 < Z. If Qg ; is a working slave of Q; ;,
then either gy ; ;14 = 1 and Ay ; < 1/R2, or there is a temporary or solid control queue Qi j
with g jr 1914 > min(R/2,5; 51044 — 2,8 jo+a — 1). If Q5 is a working slave of Q; ;, then
either ¢; ji 1,44 = 1 and A; j < 1/R2, or there is a temporary or solid control queue Q. j with
@it j to+4 = MIN(R/2,5i 51014 — 2, 8540 144 — 1)-

6. If); ; is a temporary control queue then b; ;.14 = 0, 8; jto+4 = 1 and ¢; j 1044 > 2.

7. Every free queue Q;; has b; j 4,14 < B.

26

We now show that if the Case 4 conditions are satisfied, there is a tree of depth at most V' —1
rooted at s such that the expected decrease in the square of the potential over the tree is at least
POT(s). We will let W denote the depth of this tree.

In our proof, we use the following terminology. We refer to solid and delayed control queues
as permanent control queues and we refer to slaves of these control queues as permanent slaves.
All other slaves are called temporary slaves. We refer to temporary slaves and temporary control
queue as delayed free queues. Without loss of generality, we assume that the permanent control
queues are queues (1,1 through @), ,, and that the temporary control queues are queues Q41,1
through @, ,/, ordered by ¢4 4¢+4 in decreasing order (i.e., ¢,/ 1944 < @rogir+140+4). I Qi j is a
slave queue and m = min{i, j} then we refer to Q. m as the primary control queue of Q; ;. We
associate a threshold value h; ; with each queue @); ; as follows. If Q); ; is a permanent control queue
then h; ; = to+ W. If it is a temporary control queue then h; ; = to +4 + min(Wl/Q, Qi jiota). 1Eit
is a free queue then h; ; = to + 4. The threshold value of each slave is equal to the threshold value
of its primary control queue. If h; ; < tg + W then we will say that @Q; ; is a free queue at the start
of step h; ;.

As in Case 1, the branching in our tree depends on the values of the p and p* variables, so by
fixing the values of the variables p; ; ; and p;k’j’t for all 7 and 7 and all t <ty + W — 1, we fix a path
p of length U. We make the following definitions for path p: For every slave queue QZ j» let 25
denote the first step after o + 3 on which Q;; decides to send. If ¢;; < h; ; then let o] (p) =t
and put #;; in o'(p). Otherwise, let o; ;(p) = oco. Let o(p) =o' U{t +1 <lo + W — 1 \tEa(p)}
Let o (p) denote the kth step in o(p). Let ¢4 denote the first step after step ¢ + 3 at which control
queue Qg4 decides to send. If ¢4 < to +4 + W1/2 then let 74(p) = t4. Otherwise, let 74(p) = co.
We say that path p is good if it satisfies the following properties.

1. On each step ¢, (tg <t < t9+ 3), no messages arrive and (); ; decides to send iff ¢; j; > 0 and
siju < 8—t+1p.

2. For each delayed control queue Qgg, if s4a4,+4 < (KN)? then 74(p) = to + 4. Otherwise,
T4(p) < to + Sd,dto+a + 2.

3. For each slave queue @);], if Q; ; client-conflicts with a solid or temporary control queue and
Sijitotd < (KN)? then o](p) =to+4. If 551044 < (KN)? but Qi,; doesn’t client-conflicts
with a solid or temporary control queue then U”(p) =t +5 If sijt+a > (KN)® and

0; ;(p) < hij then tg +6 < o} ;(p) < to + Sijtg+a + 3.

4. Consider two slave queues @; ; and () j such that g; ;, t0+4 > 0 and gy jr jo+4 > 0. If 027]. (p) =
oy i(p) then either o7 ;(p) = to + 4, 07 ;(p) = to + 5, or o7 ;(p) = co.

For each delayed control queue Q4 4 and each slave Q); ;, either 74(p) = to+4 or 74(p) # 027]. (p).

If for a control queue Qqq, 74(p) < 0k (p) < hyq, then Padon(p) < (k+1)@
If Q;,; is a slave queue and g; j ;o4 > 0 then for all ¢ (tg+4 <t < h;j), Pijr> 2(W log W)~1
If Q; ; is a slave queue and g; jto+4 = 0 then for all ¢ (to+4 <t < h;j), pij+ > 2(W logW)~!

L % N = o

During the first ¢ steps, the number of messages received by the permanent control and
permanent slave queues is at most (At + W /2 log W).

The tree that we consider will be the tree consisting of every good path of length W plus every
child of every internal node of such a path. We will show that for this tree, Ex[A] < —POTy,. The
key to showing this will be to prove that with sufficient probability a good path is taken when the
chain is run.

First, we prove some claims about good paths.

27

Claim 3.16 On any good path p, each delayed control queue Qg4 succeeds the first time that it
decides to send after step tg + 3.

Proof: This follows from Property 5 unless 74(p) = t9 + 4. By Property 3, the only slaves that
send on step tg + 4 client-conflict with a solid or temporary control queue, so they cannot collide
with Qd,d- O

Claim 3.17 On any good path p, every slave queue Q); j decides to send at most once during steps
to+4,...,hi; — 1. Every control queue Qg4 decides to send on steps 74,...,hqq— 1.

Proof: We start by observing that, if a slave @); ; is not working, then, by Property 7 and Prop-
erty 8, it will not decide to send at all during steps tg +4,...,h;; — 1. If a working slave Q; ;
has g; ji, = 1 and);; < (2W)72, then, by Properties 7 and 8, after it decides to send once, it
will not decide to send again. Every remaining slave conflicts with a temporary control queue or a
solid control queue. If one of the remaining slaves decides to send and does not succeed, then by
Property 7, it will not decide to send again.

We will prove by induction on ¢ that if a remaining slave @); ; first decides to send on step
min{t, h; ; — 1} it has a collision. Furthermore, every control queue ()4 4 decides to send on steps
Tdy - ,min{t, hd,d - 1}

The base case is t = ty + 4, which holds by the definition of 74, the fact that each solid and
temporary control queue Qg4 has qq,q44,+4 > 0 and s4,4,4,+4 = 1, and Property 3.

For the inductive case, consider step ¢ + 1. Suppose that for control queue Qg 4, t +1 < hgq4.
Then g44¢41 > 0. If t +1 = 74 then Qg4 decides to on step ¢ + 1 by definition. Suppose that
t+ 1 > 74. By induction, Q4,4 decides to send on step t. If t ¢ o(p) or ¢ is the last step in a
consecutive block of steps in o(p), then Qg 4 succeeded on step ¢ s0 544441 = 1 and Qg 4 decides to
send on step t+ 1. Otherwise, we use Claim 3.16 to show that every delayed control queue succeeds
the first time that it decides to send after step g+ 3. Therefore, for any control queue Qq4, bg.a,1+1
is at most the number of collisions that it had during steps tq + 4,...,t. Thus, by induction,
bagirr < lo'(p) N {to +4,...,t}| and, therefore, sqqiy1 < (|o’(p) N{to +4,...,¢}|+1)% By
Property 6, (4,4 decides to send on step ¢ + 1.

We now show that if (); ; is a remaining slave and it first decides to send on step t +1 < h; ;,
it has a collision.

The first case that we consider is the case ¢ + 1 = #; + 5. In this case @);; collides with the
solid or temporary control queue that it server-conflicts with. (If Q; ; client-conflicts with a solid
or temporary or solid control queue it will instead send on step £y + 4. Note that the control queue
decides to send on step tg + 5 since hqq > to + 6. Furthermore, nothing that client-conflicts with
it sends.)

The other case that we consider is the case in which ¢t + 1 > #5 + 5. By Property 4, @); ; does
not send at the same step as any other slave queue. If Q; ; conflicts with a solid control queue (4,4,
then since no other slave queue sends at the same step as (); j, it will be blocked by Qg 4. If Q; ;
conflicts with a temporary control queue Q44 and sends before step hgq then since no other slave
queue sends at the same step as @); ;, it will be blocked by (44. The remaining case to consider
is when the primary control queue of (); ; is a delayed control queue Qg 4, Q;; also conflicts with
temporary control queue Qg 4, but Q; ; sends after hy »#. Now, by the definition of delayed control
queue, qq @ty > Sddig+4 — 2 SO ha' @' 1o > to + Sa.d,to+4 + 2. Thus, the step on which @); ; sends is
at least step tog + 54,4,40+4 + 2. By Property 2, Q44 sends by this step, so (); ; has a collision. O

Claim 3.18 On any good path p, every control queue decides to send by step to + 3 + W/2.

28

Proof: Every solid or temporary control queue decides to send on step tg + 4. If Qg4 is a delayed
control queue then by 44,44 < Z = Wii2e _ 2 g0 Sddto+a < wi2 o
As in [3], we will use the equality

Ex[A] = 2POT(s) - Ex[6] + Ex[6%].

Thus it is sufficient to show that Ex[§] < —1 and Ex[62] < POT(s). Let Ej be the event that
a good path is taken when the chain is run. (That is, E; is the event that all conditions in the
definition of “good” hold for W steps.) Let D; be the event that condition 7 holds for U steps.
For each queue @Q; j, let Ey; ; be the event that Q;; decides to send at step t (to +4 < ¢ < h; ;)
with b; ;4 > (W log W)l/a —1and s; ;¢ > (bije+ 1)*/2. Let By = Ui j Fa,ij- Let E3 be the event
BV By, Let W' = max{W2log W, W1/21og2 W, WL 1/(alet1)) (W log W)~/ and note
that W' = o(W).

Call two paths in the tree equivalent iff every queue @);; has the same p and p* values from
step to through step #g + h; ; — 1. This notion of equivalence is clearly an equivalence relation.
Furthermore, if one path in the tree ends at step ¢ (i.e., if ¢ < tg + W, there is no good path
continuing on from the node at level ¢, but there is a good path continuing on from the node at
level t — 1), then every equivalent path also ends at step ¢. (This is because the p and p* values of
a queue @); ; on or after step h; ; are not considered in any of the properties.)

Let v be the set of h; ; values for all queues @; ;. By the definition of the h; ; values, [v| < K.
Assume v is ordered, and let v, be the kth element of v. During steps vy, ..., v 1 — 1, there will
be a certain set of queues Q;; (dy < i < N, dj < j < K) for some dj, which are the free queues.
Let M’ denote the Markov chain in which these free queues run the protocol and no other queues
participate. By induction, there is a constant V' such that M’ is V'-good. Now suppose that we
fix the sequence of p and p* values for the control and slave queues and we first run M for steps
to,...,vr—1 and we then run M for steps vg, ..., vx1 — 1. If we just look at the free queues during
steps Vg, ...,k 11 — 1, we can think of this as being a run of M’, starting at step v, in which M’
is extended by the set of interrupt steps I which is determined by the sequence of p and p* values
for the control and slave queues. Lemma 3.3 shows that when M’ is extended by I, the expected
increase in potential in any one step is O(KN). If the fixed sequence of p and p* values is such
that all of the properties continue to hold (except possibly after the last step) then the number of
interrupt steps in I is at most KN + 1. (To see this, note that each slave sends at most once in a
good path.) Let F; denote the set of free queues at the start of step ¢.

Claim 3.19 Suppose that we fix a particular equivalence class of paths of length at least t, and we
condition on the event that when M is run for t steps, starting with step tg, one of the paths from
this equivalence class is taken. Then the expected potential of the queues in Fy after the t steps is
at most the original potential of the queues in Fy plus O(KN) 4+ O(K?N)((2V')?2%V' + O(KN)) +
(O(KN)*H3/2)wi/2,

Proof: Note that each queue @;; in F; satisfies all of the properties in the definition of good
during steps to,...,h;j — 1. (Otherwise, the paths would end before step h; ;, so Q;; would not
become free.)

By Lemma 3.3, the expected increase in the potential of the queues in F; during steps tg through
to + 3 is at most O(K N).

Suppose that ¢’ >ty + 3 and that Q; ; is a queue in F; that is not free at the start of step ¢'. If
Q:,j is a control queue then its potential goes up by at most 2 + (KN + 1)0‘“/2 on step t'. (This
follows from Claim 3.17, since each slave sends at most once prior to step t'.) If Q;; is a slave

29

queue then b; ;4 > R%*® — 2. If it sends on step ¢, then since it does not violate property 7,
540 < (WlogW)/2. By definition, the change in its potential is at most

Lot (b + 202 = (b +2)°) 70 = (b 4+ 1) s O,

By Fact 3.1, this is at most

1 fa+ 17211532 (b 4+ 1) (g 4+ 2)° 170)71/,

Since b; ;¢ is sufficiently large with respect to «, this is at most

1= (1/2) (i + 1) = s /0
Clearly, this is negative, so the potential goes down.

There are at most KN queues in F;, and (by Claim 3.18) at most W'/2 steps after step to + 3
before a delayed free queue becomes a free queue.

To finish the proof of the claim, we will prove that during steps vg,...,vx+1 — 1, the poten-
tial of the current free queues (those queues that are free at the start of step 1) increases by
O(KN)((2V")?22V" + O(KN)). Since |v| < K, this will prove the claim.

We view the current free queues as forming a Markov chain M’ which is extended by the set of
interrupts I’ that is determined by the set of p and p* values associated with the equivalence class.
We now apply Lemma 3.6 using the facts that the expected increase in potential in any one step is
O(KN) and the number of interruptions is at most KN + 1. O

Claim 3.20 There is a function fi such that
EX[(S‘EI} < —’l”[(l - A)W - Wl ' fl(Na Ka Vl)}

Proof: Given E;, we use Claims 3.18 and 3.17 to show that each permanent control queue suc-
cessfully broadcasts for all but at most KN + W1'/2 4 4 steps. Thus, we send at least r(W —
(KN + W12 4 4)) messages. By Property 9, we receive at most (AW + W/2log W) messages in
the permanent control and permanent slave queues. By Claim 3.17, the increase in potential due
to the backoff and step counter of a permanent control queue is at most (KN + 1)a+1/ 2. We can
follow the proof of Claim 3.19 to show that if a permanent slave decides to send, its potential goes
down. Thus, the increase in potential due to the backoff and step counter of a permanent slave
is at most W'~1/(4®) Thus for each path the potential attributed to the permanent control and
permanent slave queues decreases by at least

(1= NW — (WY21ogW + KN + W2 4 4) + O(NW! /4y,

Last, from Claim 3.19, for each possible equivalence class, the expected potential of the free and de-
layed free queues increases by at most O(KN)+O(K2N)((2V")222Y' +O(K N))+(O(KN)*H3/2)yw1/2,
O

Claim 3.21 There is a positive function fo such that

1

Prf) 2 TR RN

30

Proof: We can divide the calculation as follows

9 i—1

Pr(B) = [[Pr(Di| A Dy).
i=1 j=1

Now we analyze each probability in turn. We know Pr(D;) > (1 — M\)*Eg=1KN,

Since for each delayed control queue Qg 4, 4 < S4.4,49+4 < w2, Pr(Dy|Dy) > (KN) 3.

Note that the number of slaves is at most KN, and for each slave @; ;, s;j4+4 > 4. Then the
probability that a slave Q; ; with s; ;¢ +4 < (KN)? sends at the appropriate step (to + 4 or to + 5)
is at least (KN) 3, and that a slave Q; j with s; jso14 > (KN)? sends by step to + i jt+4 + 3 is
at least . Thus Pr(Ds | D1 A Dy) > (2KN)73KN,

Given Property 3, for each slave Q; ; with s; j;,+4 > (K N)?, the probability of conflicting with
any of the other slaves is at most (K N)~2. Thus Pr(Dy | Dy ADy AD3) >1— (KN)™%.

Given Properties 1 through 4, the probability that no delayed control queue sends at step tg+ 5
is at least 1 — K(KN)~3. Then the probability that some slave queue first sends at a step in which
one of the at most K delayed control queues first send (except for steps tg + 4 and ¢y + 5) is at
most (KN)(K/((KN)* — KN)). Thus,

Pr(Ds|Dy A Dy A D3 ADy) > (1 — K(KN)™3)(1 — (KN)(K/(KN)® — KN)) >

DN | =

Since |o(p)] < 2KN, and the number of control queues is at most K, Pr(Dg| A2_; D;) >
(2KN +1)1) K,

It is easily seen that Pr(D;| AL, D;) > 1 - 2KNW (W logW) ! > :.

In the proofs that D; through D7 hold with sufficiently high probability we forced some of the
pi ;. values to be large. The only times that we forced p; ;; values to be small, we only forced them to
be as small as (KN)73. Thus, the probability that a given queue fails to satisfy Property 8 on a given
step is at most 2(KN)®/(W log W) and Pr(Ds| A, D;) > 1 — KNW (2(KN)*(W logW)™!) > L.

For the last calculation, let M; be the number of messages received by the permanent control
and permanent slave queues by step ¢. The conditioning on D7 only helps, so the expected value
of Mr is at most rAt. By a Chernoff bound

8
Pr(M; > rAT + W2 log W| /\ D;) < 2exp(=2(rW 2 1og W)?/(rW)) < 2exp(—2rlog? W).
i=1

Thus
8

Pr(Dg| A\ Di) > 1 —2W exp(—2rlog” W) >
i=1

DO | —

The claim follows. O
Claim 3.22 There is a positive function f4 such that Ex[§ | Es] < W' f4(N,K,V").

Proof: Consider a group of equivalent paths G that satisfy F3. Let ¢’ denote the change in
potential over all but the last step, and let §” denote the change in potential of the last step.
Clearly = §’' 4+ 0". The proof of Claim 3.20 shows that Ex[¢' | B3] < W' f1(N, K,V'). To bound
0", note that in the last step in the path, the expected increase in potential of the free queues
is at most O(K'N). Also note that the increase in potential due to messages arriving is at most
KN. Now we bound the increase in potential due to backoff counters and step counters of the
non-free queues. Assuming that a queue does not fail in a send, the potential increase associated

31

with the backoff and step counters of that queue is bounded by 1 (i.e., the step counter decreases
by 1). Since E does not hold, a queue that sends and fails must have either s; ;; < %(bm,t + 1)
or b; j; < (W log I/V)l/ct -1 If b0 < (Wlog I/V)l/ct — 1 then the potential increases by at most
(W log W)lfl/(m). Otherwise, since s; j; < %(bi,j7t+1)a and b; j; > (W log VV)l/Ct —1, the potential
actually decreases on a failed send. Thus the potential increase of the last step due to queues that
send and fail is at most O(KN(W log W)Y/ o

Claim 3.23 There is a positive function fs such that Ex[0|Es] Pr[Eqy] < W' f3(K,N,V’).

Proof: First, we observe that if Fy;; is satisfied then b;;;, > (W log W)l/a — 2. (To see
this, suppose instead that b;;; < (W log I/V)l/ct — 2. Then if Ey;; holds, for some ¢ we have
(W log W)Y —2 > biji > (W log W)Y/® — 3 (either this is true for t = t; or there is a collision at
step t —1). Then s;;; > |((W log w)te — 2)aj. So if Q; ; sends after step ¢ then Property 7 will
be violated so the path will end.)

Let B be the set of queues Q; ; with b; ;;, > (W log W)l/o‘ - 2.

Let ¢’ denote the change in potential over all but the last step and ¢” denote the change in
potential of the last step. Clearly 6 = ¢’ + ¢”. As in the proof of Claim 3.22, Ex[¢§' | F3] <
W' fi(N,K,V'), at most KN messages arrive on the last step, and the potential due to backoff
counters and step counters of queues that are not in B go up by at most O(K N (W log W)~ 1/4a))
on the last step. Let 6" denote the increase on in potential on the last step due to the backoff

counters and step counters of queues in 5.
We wish to bound Ex[6" | E»] Pr[Es]. We do this as follows. For each queue Q; ; in B, let

b*(Q) _ bi,j-,tm if bzg/]‘,to > (W log W)l/a —1 and Si,jto = (bi~,j,to + 1)0/2;
" biji, +1, otherwise.

(Note that Es; ; will occur if @; ; sends with backoff counter at least b*(Q; ;) but that it will not
occur because of @; ; sending with a smaller backoff counter. Also note that ; ; will never sound
with backoff counter bigger than b*(Q; ;) because it will violate Property 7 when it sends with
backoff counter b*(Q; ;), so the path will end.) Let the queues in B be Q1,...,Q,, ordered such
that b*(Q1) > -+ > b*(Qn). Let S; be the event that); attempts to send once it has attained a
backoff counter of b*(Q;). Then

m i—1 i—1
Ex[6"|By) Pr[Eo] < > Ex[0"|S; A N §j]Pr[Sin \ S
i=1 j=1 j=1

m i—1
< > Ex[§"[Sin N S5 Pr[Si]
i=1 j=1

If Q; attempts to send once it has attained backoff counter b*(Q;) then its potential increases
by at most

(b(Q1) + 2T = (67(Qi) + 1)+ (b57(Q) + 1)* .

Using Fact 3.1, we find that if S; A A;-;lS_j then 6" = O(KN(b*(Q;) + 1) /). Once Q; has
reached backoff counter b*(Q;), its step counter will be at least £ (b*(Q;)+1)® for the next W steps,
and thus Pr[S;] <4AW(b*(Q;) +1) “.

32

Plugging this into the equations above, we obtain

Ex[6"|Bs] <

VAN

VANPA

a

Claim 3.24 Ex[§] < —1.

m

S ORNE Q) + 1))W E™(Q) + 1)~

20 (b*(Qs) + 1))
2(W (W log W)/ — 1)

)

Proof: Using the previous claims we have

Ex|[4]

IN

VAN

VAN

—1,
assuming W is large enough. O

Claim 3.25 Ex|[(6)?] < POT.

EX[(S‘Eﬂ Pl“[El] + EX[&‘EQ} PI[EQ} + EX[(S|E3] PI‘[Eg]
[—r(1 = W +rW'. fl]% +W(fs + f1)

- —A)W% CW i+ fa+ f)

f

Proof: If (); ; is a free queue or a delayed free queue then b; ;;, < B. Therefore, the potential due
to Q;; increases by at most O((B + W)a+1/2),

Suppose that @); ; is a permanent control queue or a permanent slave, but that Es ; ; does not
hold. Using the proofs of Claims 3.20 and 3.22, we see that the potential due to queue (); ; increases

by at most O(W'- f1(N, K,V")).

Thus, as long as V is sufficiently large compared to N, K, V', B and W, Ex[6? | By V E3] < V.
To bound Ex[(6)? | B3] Pr(E3) we follow the proof of Claim 3.23.

Ex[(6)?|E] Pr(Ey) <

m i—1 i—1

> Ex[(6)%]Si A A S;1Pr[Si A\ S
i=1 j=1 j=1

m i—1

> Ex[(6)Si A\ Sj]Pr[S]

i—1 j=1

VAN

As before, Pr[S;] < 4W (b*(Q:) +1)~*. Given that S; A AjZ}'S),

§ < O((B+ W)t L O(W' - f1(N, K, V') + O(KN(b*(Q;) + 1)°).

Thus,

NE

Ex[(6)?|Es] Pr(Ey) <
1

-.
Il

O((B + W)a+1/2 + W' f1(N, K, V') + (0*(Q;) + 1)@—1/4)

< f(B,WaNaK)(b*(Ql) + 1)04.

}2

Wb (Qi) +1)7°

The claim follows since POTy, = Q((b*(Q1))**"/?) and V is sufficiently large with respect to

B,W, N, and K. O

This Concludes the proof of Theorem 3.1. O

33

Acknowledgments: We thank Tom Leighton for proposing the problem of dynamic routing in
optical networks and John DeLaurentis for useful discussions related to this paper.

References

[1] R. J. Anderson and G. L. Miller, Optical Communication for Pointer Based Algorithms, Tech-
nical Report CRI 88-14, Computer Science Department, University of Southern California, Los
Angeles, CA 90089-0782 USA, 1988.

[2] J. Goodman, A. G. Greenberg, N. Madras, and P. March. Stability of binary exponential
backoff. J. Assoc. Comput. Mach., 35(3):579-602, 1988. A preliminary version appeared in
STOC 85.

[3] J. Hastad, T. Leighton, and B. Rogoff. Analysis of backoff protocols for multiple access channels.
SIAM J. on Computing, 25(4):740-774, 1996. A preliminary version appeared in STOC 87.

[4] R. Metcalfe and D. Boggs. Distributed packet switching for local computer networks. Comm.
ACM, 19:395-404, 1976.

[5] P. Raghavan and E. Upfal. Stochastic contention resolution with short delays. In Proc. 24th
ACM Symp. on Theory of Computing, pages 229-237, 1995.

[6] S. Rao and T. Tsantilas. Optical Interprocessor Communication Protocols. In Proc. 1st Symp.
on Massively Para. Proc. Using Optical Interconnects, 1994.

[7] S. Stidham, The Last Word on L = AW. In Operations Research, 22:417-421, 1974.

34

A Establishing the Case 4 Conditions

In the following case analysis, we show that if we are in Case 4 then we can split the queues into
categories so that the Case 4 conditions are satisfied.

First, we note that since we are in Case 4, none of properties 1-3 hold. That is, when the
Markov chain is started in state s right before step o with POT(s) > V, there is not a backoff
counter b; j;, > Z such that with probability at least

(1 _)\)K587KN4(bz],tO + 5)—0427KN’

queue @; ; succeeds at least once during steps tg,...,tg + 4 and every other queue () ; decides to
send on step t (for ¢t € {to,...,to +4}) only if s;7 ; , < 8. There is a backoff counter b; j;, > B, but
for every such backoff counter, it is not the case that with probability at least

(1 _)\)K(4+R)8_KN4(bZ],tO + R+4)_QR_QQKNR,

queue (); ; succeeds at least once during steps %o, ..., tg + I + 3 and every other queue @y ; decides
to send on step ¢ (for ¢ € {to,...,t0 + R+ 3}) only if sy ;v ; < R,

Suppose that b; j, > B. We will show that unless we are in Case 2 or Case 3, we can identify a
solid or delayed control queue that conflicts with (); ;. In order to do so, we need some definitions.
We will say that a queue @y j which conflicts with Q;; is a solid candidate if q; jr 4544 > 0,
i i to+4 = 1, and (therefore) by ji ;0414 = 0. We will say that Qy ; is a delayed candidate if it
is long and has no conflicting blocking queues and has by j/ 4,44 < Z, and satisfies the following
conditions.

L. If Q;» j is a working queue then either g jr;14 = 1 and Ay < 1/R?%, or there is a
queue (Q;» j» which does not conflict with a blocking queue and has s j» 4,44 = 1 and

Qi g to+4 2> MIN(R/2, 8ir g to14 — 2,8 ji tg+a — 1).

2. If Qy j» is a working queue then either gy jv 14 = 1 and Ay jv < 1/R2, or there is a
queue @, j» which does not conflict with a blocking queue and has s; j» 4,14 = 1 and

Qi " to+-4 = MIN(R/2, 8ir o 114 = 2, 80 jo 114 — 1)

We say that a solid candidate is clear if it has no conflicting blocking queues and we say that it is
unclear otherwise. Note that each client and each server has at most one candidate, so if candidates
are made into control queues then these control queues will not conflict. (To see this, note that each
solid candidate succeeded on step tg + 3, so solid candidates cannot conflict with each other. Solid
candidates and delayed candidates are blocking, so they cannot conflict with delayed candidates.)
Note that clear solid candidates and delayed candidates do not conflict with blocking queues.

We now consider the possible cases (split by the number and type of solid candidates that exist):

1. If there is no solid candidate then we are in Case 3. Consider the run of the chain for steps
to,...,to + 3 that we described earlier. Suppose that on step #g + 4, no message arrives, Q; ;
decides to send if ¢; ;1,44 > 0, and every other queue decides to send only if it is forced. The
probability of this event is at least (1 —)\)K(5)(8)7KN4(bi,j:t0 +5)"*27KEN_ Since there are
no solid candidates, @); ; succeeds if it decides to send on step to + 4. Furthermore, every
queue Qy jr other than Q; ; only decides to send on step ¢ with s; ; ;, < R2e,

2. If Qi j is a long clear solid candidate then we can make j» a solid control queue.

35

3. If Qi ; is an unclear solid candidate and there is no other solid candidate then we are in Case 3.
Consider the run of the chain for step tg,...,%o + 3 that we described earlier. Suppose that
no messages arrive on steps tg +4,...,tg + 6. If gy jo ;014 = 1, then no other queues that
conflict with either Q; ;» or Q; ; decide to send on steps tg + 4 through ¢y + 6 and after one
step gy j' 1,45 = 0. Therefore, (); ; can decide to send on step g + 6, and it will succeed.
Therefore, suppose that g; ;i ;o+4 > 1. If there is a blocking queue Q) j» then Qy j and Qg j»
decide to send on steps 9 + 4 and tg + 5. Otherwise, there is a blocking queue Qv ;. If
there is a blocking queue that client-conflicts with ();# j» then on step tg +4 Q;» j» decides to
send and every blocking queue that client-conflicts with Q;» ;» decides to send. On step Z9+5
Qi j» and Q jr decide to send. Otherwise, Qi 7 and Q) j» decide to send on steps tg + 4
and t9 + 5. On step to + 6, @Q;; decides to send if ¢; j;,+6 > 0. On each of the steps, every
other queue decides to send only if it is forced. The probability of this event is at least
(1-)\)K(7)(8)_KN4(bi7j,t0 +7)"*R™20KNG) Note that (; j succeeds if it decides to send on
step to + 6. Furthermore, every queue Q; j» other than @; ; only decides to send on step ¢
with S g < R?,

4. If there are two unclear solid candidates, (); j» and Q) ;, then we are in Case 3. Consider the
run of the chain for step tg,...,ty + 3 that we described earlier. Suppose that no messages
arrive on steps to +4,...,t0 + 6. If g; jr 4,44 = 1 or gy j 4,44 = 1 then we can treat Q; ; and
Q)i .; separately, using the analysis of the previous case. Also, if Q; ;7 conflicts with blocking
queue Qv j» and Qy ; conflicts with blocking queue Qg jm, with """ # 4, 4" #i" and "' # ',
then again we can treat (); ; and @y ; separately, using the analysis of the previous case.

Otherwise, note that "’ # i, since @); ; cannot be a blocking queue (because b; j 1,14 > B).
Thus, for every blocking queue @ j» that conflicts with Q; ; and every blocking queue Q;» ;»
that conflicts with Q; ;, either " =" or i = ¢'. Note that no blocking queue client-conflicts
with @; j in this case.

If there is a blocking queue @); ;/, then suppose no messages arrive on steps g +4,...,%0+9.
On step tg + 4, Q; 5, Qi j, Qi ;v decide to send, along with any working queues that client-
conflict with Q; ;7 or Qy ;. On step o + 5, Qy ; decides to send, along with any working
queues that server-conflict with @y ;. (Note that after step g9 4+ 5, any working queue Q- ;
that server-conflicts with @y ; has s;« ;46 > 5.) On step tg+ 6 and to + 7, Qy ; and Qy j
decide to send, along with any blocking queues that client-conflict with @y ;. On step £o + 8,
Qi and Qy j» decide to send, along with any forced queues, unless g; ;i 1,48 = 0, in which
case just Qg j decides to send. On step tg+ 9, Q;; decides to send if g; j;o4+9 > 0. (Note
that no queue conflicting with @; ; is forced at step 9 +9. On each of the steps, every other
queue decides to send only if it is forced.

The remaining possibility is that @; ;; conflicts with blocking queue Q;» ;» and Q) ; conflicts
with blocking queue @ ; such that ¢/ # i and ¢’ # /. (Note that there are no other
blocking queues that conflict with Q; ;7 or @y ;, or the situation could have been handled
previously.) Suppose that no messages arrive on steps tg + 4,...,ty + 10. For ¢ in the range
to+4 <t <ty+6, Q; and Q;» j» decide to send on step t. Q); ;» decides to send on step ¢ if
gij7 ¢ > 0 and Qy ; decides to send on step t if g j;, > 0. On step to + 4 any working queue
that client conflicts with @Q; ;, Qy ; or Q; ; decides to send. On step £y + 5 any working
queues that server-conflict with @); j» or Qy ; decide to send. On steps to + 5 and #g + 6, any
blocking queues that client-conflict with @;» ; decide to send. If gy ;4,47 = 0 then we proceed
as follows. if gy j 1,47 > 0 then Qy ; and Q; ; decide to send on step tg + 7. On step 2o + 8,
Qi,j decides to send if ¢; j ;.48 > 0. On each of the steps, every other queue decides to send

36

only if it is forced. (Note that no queue that conflicts with @); ; is forced at step to 4 8.) If
it jto+7 > 0 then Qp ; and Qv ; decide to send on steps 9 + 7 and to + 8. If gy j 4549 > 0
then Q) ; and Qv j» decide to send on step tg + 9. On step to + 10, Q; ; decides to send if
Gijto+10 > 0. On each of the steps, every other queue decides to send only if it is forced.
(Note that no queue that conflicts with Q; ; is forced at step ¢y + 10.)

The probability of this event is at least (1 —)\)K(ll)(S)_KN4(bi,j7t0 +11)"*R22KN(T) Note
that every queue @~ j» other than (); ; only decides to send on step ¢ with s;» j» ; < R?x,

. If @y j» is an unclear solid candidate and Q; ;» is a short clear solid candidate then we are in
Case 3. Consider the run of the chain for steps g, . ..,y +3 that we described earlier. Suppose
that on steps tg+4,...,t0+ [(R —1)/2] + 8 no messages arrive. Suppose that on step ¢y + 4,
every working queue that client-conflicts with @Q;~ ;» decides to send. On step tg + 5, Q j»
decides to send and every working queue that server-conflicts with ();» ;» decides to send. For
t in the range {to +6,...,%0+ [(R—1)/2] + 6}, Qu j» decides to send on step t if g;» ju ; > 0.
(Thus Qg j» will empty its queue by step to + (R —1)/2] + 6}.)

If Qy j» client-conflicts with @); ; and with another blocking queue @; j» then Q) ; and Q; j»
decide to send on steps tg +4,...,% + [(R — 1)/2] + 6 and so do any queues that client-
conflict with them and are almost forced. Q; ; decides to send on step to + (R —1)/2] + 7 if
Qijto+|(R=1)/2)+7 > 0. If Qy j» server-conflicts with @;; and client-conflicts with a blocking
queue Qg ;» then on steps to +4,...,t0 + [(R—1)/2] + 5, Qs 5 and Qy j» decide to send
and so does any other queue that client-conflicts with them and is almost forced. On step
to+ [(R—1)/2] +6, Qy ;o decides to send and so does any queue that server-conflicts with Q; ;

and is almost forced. On step tg 4+ [(R — 1)/2] + 7 Qy j» decides to send and so does Q; ; if
Qi jto+|(R-1)/2)+7 > 0

If Qi j» does not client-conflict with a blocking queue then it server-conflicts with a blocking
queue Q; ji. If Q;n i does not client-conflict with a blocking queue then on step o +4 Q ;v
and (); j» decide to send and nothing that client-conflicts with either of them decides to send.
If there is a working queue that client-conflicts with @y ;s then Qy ; decides to send on step
to + 5 and so does any working queue that client-conflicts with it. Otherwise, Q) ;» does
not decide to send on step tg + 5. Similarly, if there is a working queue that client-conflicts
with Qg ji then Q; ;i decides to send on step o + 5 and so does any working queue that
client-conflicts with it. Otherwise, Q;» j does not decide to send on step 9 + 5. On steps
to+6,....,00+ [(R—1)/2] +6 Qy j and Q; j decide to send and so does any queue that
server-conflicts with them and is almost forced. On step o+ [(R —1)/2] +7 Q; ; decides to
send if Qto+|(R-1)/2)+7 > 0.

If there is a blocking queue Q; ;» that client-conflicts with Q;» ;» then for even £ in the range
0</¢<|[(R—1)/2]+4, onstep to+4+¢, Qi j» and Q;» j» decide to send and any queue that
client-conflicts with them and is almost forced decides to send. On step ¢y + 4 any working
queue that conflicts with @ j» decides to send. If gy ji 4,45 > 0 then for any odd £ in the
range 0 </ < [(R—1)/2] +4, Qy j and Q j decide to send. On step o+ [(R—1)/2] +7
or to + | (R —1)/2] + 8 (whichever is of the same parity as o + 4), Q; ; decides to send if its
queue is non-empty. Every other queue only sends if it is forced. The probability of this event
is at least (1 —)\)K(L(R_l)/gﬁs)(8)_KN4(bi:j,t0 + (R —1)/2] 4+ 8) R 2eKN((E-1)/2]+4) " On
steps to +6,...,t0 + [(R —1)/2] + 7 nothing that conflicts with @Q;» j» decides to send, so it
successfully sends its last message by step o + [(R —1)/2] 4+ 6. If Qy jr 4047 > 0 then Qy j
doesn’t decide to send on both of steps | (R —1)/2| + 7 and ¢ + [(R —1)/2] + 8. Therefore,
if ();; decides to send on one of these steps it succeeds. Furthermore, every queue Q; ;i

37

other than @); ; only decides to send on step t with s i 4 < R?,

. If Q; 5 and Qy; are short clear solid candidates then we are in Case 3. Consider the
run of the chain for steps #g,...,%o + 3 that we described earlier. Suppose that on steps
to+4,...,t0+ [(R—1)/2| +7 no messages arrive. Suppose that on step to +4, every working
queue that client-conflicts with Q; j» or Q) ; decides to send. On step to + 5,); 5 and Qy ;
decide to send and every working queue that server-conflicts with one of them decides to send.
For ¢ in the range {to+6,...,t0+ [(R—1)/2| +6}, Q; ; decides to send on step t if g; jo+ > 0
and Qy ; decides to send on step ¢ if g ;; > 0. On step to+ | (R—1)/2]+7 Q; ; decides to send
if g 540+ (R-1)/2)+7 > 0. Every other queue only sends if it is forced. The probability of this
event is at least (1 —) (LIE=1)/2]+7) (8) "N by j 4o + (R —1)/2] 4+ 7)"*R20KNUE-1)/2]+3)
On steps tg +6,...,t0 + [(R — 1)/2] 4 7 nothing that conflicts with @Q; j» or Qy ; decides to
send, so they successfully sends their last messages by step to+ [(R —1)/2]| 4+ 6. Therefore, if
Qi,; decides to send on step to + [(R —1)/2] + 7 it succeeds. Furthermore, every queue Q; j»
other than @); ; only decides to send on step t with s;r ;v ; < R?@,

. If Qi j is a short clear solid candidate and there is no other solid candidate, then there are
many cases. In each case, we will say that a queue other-conflicts with @); ; if it conflicts
with @; ; but not with queue () ;7. The cases follow.

7a. No blocking queue other-conflicts with @; ;. We split this case up as follows.

7al. No working queue other-conflicts with @); j. In this case, we are in Case 3. Consider
the run of the chain for steps tp,...,ts + 3 that we described earlier. Suppose
that on steps t9 +4,...,% + |(R — 1)/2] + 7 no messages arrive. Suppose that on
step 2o + 4, every working queue that client-conflicts with Q) j» decides to send. On
step tg + 5, Qy ;» decides to send and every working queue that server-conflicts with
Qi j» decides to send. For ¢ in the range {to +6,...,%0 + [(R — 1)/2] + 6}, Qu ;v
decides to send on step t if g; 7, > 0. On step {9 + [(R —1)/2] + 7 Q;; decides
to send if g; j 104 |(R—1)/2/+7 > 0. Every other queue only sends if it is forced. The
probability of this event is at least

(1 N A)K(_(R—l)/?j—‘rﬂ (8)_KN4(bi,j,t0 + L(R N 1)/2J + 7)—04R—20J(N(|_(R—1)/2J+3).

On steps tg+6,...,t0+ | (R —1)/2] 4+ 7 nothing that conflicts with @ ;» decides to
send, so it successfully sends its last messages by step to+ | (R—1)/2] +6. Therefore,
if Q); ; decides to send on step ¢y + [(R — 1)/2] + 7 it succeeds. Furthermore, every
queue @, jn other than Q;; only decides to send on step ¢ with s;» j»; < R?®,

7a2. There is a working queue that other-conflicts with @); ;. Every working queue that
other-conflicts with (); ; client-conflicts with another potentially working queue. In
this case, we are in Case 3. The proof is the same as that of Case 7al except that
on step tg + 4 every working queue () j» that other-conflicts with @; ; decides to
send, and every potentially working queue that client-conflicts with Q; ;» decides
to send.

7a3. There are two working queues, Q;» j and @y ; that other-conflict (and in particular,
server-conflict) with @Q; ;. Neither of them client-conflicts with a forcing queue. In
this case we are in Case 3. The proof is the same as that of Case 7al except that
on step tg + 4 every working queue that other-conflicts with @; ; decides to send.

7a4. There is a working queue ();» ; that other-conflicts (and in particular, server-conflicts)
with @); ; and does not client-conflict with a potentially working queue. Every other
working queue that other-conflicts with @; ; client-conflicts with a forcing queue. In

38

7ab.

7a6.

this Case we are in Case 2. Note that by ;4,14 > Z (otherwise Q;# ; would be block-
ing). Consider the run of the chain for steps g, ..., %o+ 3 that we described earlier.
Suppose that on step tg + 4 no messages arrive and ();» ; decides to send. No other
queue decides to send unless it is forced. The probability of this event is at least
(1 -)\)K58*KN4(bi_j,t0 +5)"*27 KN Q;n j succeeds on step o + 5 and every other
queue Q;w jm decides to send on step t (for ¢t € {to,...,to +4}) only if spm jm , <8.
If there is a working queue @); ;v that other-conflicts (and in particular, client-
conflicts) with @;; and does not client-conflict with a potentially working queue
but server-conflicts with a forcing queue then we are in Case 3. The proof is the
same as that of Case 7al except that on step 9+4, (); j» decides to send and nothing
that client-conflicts with the forcing queue decides to send.

If there is a working queue @; ;v that other-conflicts (and in particular, client-
conflicts) with @;; and does not client-conflict with a potentially working queue
and does not server-conflict with a forcing queue then we are in Case 2. The proof
similar to that of Case 7a4.

7b. There is a blocking queue which other-conflicts with ; ;. We split this case up as follows.

7bl.

7b2.

7b3.

7b4.

7bb.

There are two blocking queues, (); ;7 and Q; j» that other-conflict (and in particular,
client-conflict) with Q; ;. In this case, we are in Case 3. The proof is the same as
that of Case 7al except that on steps tg+4,...,%0+ [(R—1)/2] +6, Q; ; and Q; j»
decide to send, colliding with each other and with any other queues that send that
other-conflict with (; ;. On step to+ | (R—1)/2|+6, every queue that other-conflicts
with @; ; and is almost forced decides to send.

There are two blocking queues, Qy ; and Q; ; that other-conflict (and in particular,
server-conflict) with @); ;. There is no blocking queue that client-conflicts with either
of these queues. In this case, we are in Case 3. The proof is the same as that of
Case Tal except that, if there is a working queue that client-conflicts with Q) ;
then it sends on step tg + 4 and)y ; sends on step 2y + 4. Otherwise, @y ; doesn’t
send on step ty + 4. Similarly, if there is a working queue that client-conflicts with
Qi ; then it sends on step to + 4 and @Q;» ; sends on step g + 4. Otherwise, Q;» ;
doesn’t send on step tg+4. On steps to+5,...,to+ [(R—1)/2] +6, Q; j and Q; j»
decide to send, colliding with each other and with any other queues that decide to
send that other-conflict with Q; ;. On step to + [(R — 1)/2] + 6, every queue that
other-conflicts with @); ; and is almost forced decides to send.

There is a blocking queue @y ; which other-conflicts (and in particular, server-
conflicts) with @); ; and there is a blocking queue @y ;. In this case, we are in Case 3.
The proof is the same as that of Case 7al except that on steps tg+4,...,t0+ [(R—
1)/2]+5 Qy j and Qy j decide to send. On step to+ [(R—1)/2]| +5 any queue Q; j»
which is almost forced decides to send. On step to + [(R —1)/2] +6 Qy ; decides
to send and any queue @;~ ; which is almost forced decides to send and no other
queue Q; j» decides to send. On step to + [(R —1)/2] 4+ 7, Qy ; decides to send.
There is a blocking queue @;j; which other-conflicts (and in particular, client-
conflicts) with @Q; ;. It does not client-conflict with any other blocking queue. It
server-conflicts with the blocking queue Q) ;. Qg jo does not client-conflict with
any other blocking queue. In this case, we are in Case 3. The proof is similar to the
proof of Case 7b2.

There is a blocking queue @Q;; which other-conflicts (and in particular, client-
conflicts) with @; ;. It does not client-conflict with any other blocking queue. It

39

7b6.

7b7.

7b8.

7b9.

server-conflicts with the blocking queue Q) ;. Qg j client-conflicts with blocking
queue Qy ;. In this case, we are in Case 3. The proof is the same as that of Case 7al
except that if there is a working queue that client-conflicts with @); j» then it sends
on step to + 4 and (); » sends on step step to + 4. Otherwise, (); ;; does not send on
step tog + 4. For even £ in the range 0 < £ < [(R —1)/2] + 2, Qu ;» and Qg j» both
send, and so does any queue Qi j» which is almost forced. For odd £ in the range
0<{¢<|(R—-1)/2] +2, onstep tg + 4 + ¢, nothing that client-conflicts with @ j
sends. @ j» and @); j» both send.
There is a short blocking queue @ ; that other-conflicts with @Q; ;. @y j; does not
conflict with any blocking queues. In this Case, we are in Case 3. The proof is the
same as the proof of Case 6, because queue @y ;» can be treated as a short clear
solid candidate.
There is a long blocking queue @y j» that other-conflicts with Q; ;. Qy ; does not
conflict with any blocking queues. by j/ 1,14 > Z. In this case we are in Case 2. The
proof is similar to that of Case 7a4.
There is a long blocking queue Q) ; that other-conflicts with Q;;. Qi ; does
not conflict with any blocking queues. by jr 4 44 < Z. Qg j» satisfies the following
conditions:

1. If Q4 is a working queue then either g;» ji ;.44 = 1 and A j < 1/R?%, or

there is a queue @;» j» which does not conflict with a blocking queue and has
Si”,j”,to+4 =1 and

Qi”,j”,t0+4 2 min(R/27 Si/7j/7t0+4 - 2’ Si//7j/7t0+4 - 1)'

2. If Qy j» is a working queue then either gy j» 014 = 1 and Ay jn < 1/R?%, or
there is a queue Q; ;» which does not conflict with a blocking queue and has
Si”,j”,t0+4 =1 and

Gir jor to+a > MIN(R/2, 87 jr 1010 — 2, 8t ji o4 — 1).

We conclude that @y j is a delayed candidate. Note that if there is a delayed
candidate @y j» then we can make @y j a delayed control queue. If Q;» ; is work-
ing and qir ji to+4 > 1 or Az’”,j’,to+4 > 1/R2 then, there is a queue Qi”,j” which
does not conflict with a blocking queue and has s ju 44 = 1 and g ji jo44 >
min(R/2, sy jt to+4 — 2,8 jt to44 — 1). We make Qg j» a solid control queue if it
is long, and a temporary control queue otherwise. (Note that (Q;» j» is blocking,
so it doesn’t conflict with a candidate.) If Q; j» is working and gy j» 444 > 1 or
it 1 to+4 > 1/R? then, there is a queue Qi j» which does not conflict with a blocking
queue and has sy ju o414 = 1 and g ju g 14 > min(R/2, sy jr 1044 — 2, S j» tg44 — 1).
As before, we make @~ j» a solid control queue if it is long, and a temporary control
queue otherwise.

There is a long blocking queue Qi ;» that other-conflicts with Q; ;. @y j does not
conflict with any blocking queues. Q;» j is a working queue such that (g jr 1,44 > 1
or A\yr; > 1/R?) and there is no forced queue Qv j». (Or, similarly, Qy j» is a
working queue such that (g jv 44 > 1 or Ay j» > 1/R?) and there is no forced
queue @y j».) Then we are in Case 3. The proof is the same as that of Case 7al
except that on step #g + 4, Q;» ; decides to send and nothing that conflicts with it
decides to send. As of step tg + 5, () j is a blocking queue. Thus, we are in one of
the cases 7Tb1-7b5. (As in Cases 7b2, 7b4 and 7bb, if there is a working queue that

40

client-conflicts with Qy j» then it sends on step to + 4 (while Q;» ;i is succeeding)
and Qy ; sends on step o + 4. Otherwise, Q; ;» doesn’t send on step #g + 4. Now if
there is a working queue that client-conflicts with ;» ; then we start at step o +4
of those cases. Otherwise, we start at step o + 5.)

7b10. There is a long blocking queue @y ; that other-conflicts with @); ;. Qi j does not
conflict with any blocking queues. Q; j is a working queue such that (g jr so4+4 > 1
or \iwj > 1/R?) and Qv j» has sy ju, a4 = 1 but it conflicts with a blocking
queue @'. (Similarly, Qy j» is a working queue such that (gy jo 1,44 > 1 or Ay ju >
1/R?) and Qi jn has sy ju 414 = 1 but it conflicts with a blocking queue Q'.)
Then we are in Case 3. The proof is the same as that of Case 7al except that on
step to+4, Q' decides to send (and collides with Q; j). On step to+5 Q; j» decides
to send and nothing that conflicts with it decides to send. As of step o + 6, Q;»
is a blocking queue. Thus, we are in one of the cases 7b1-7bb as in case 7b9.

7b11. There is a long blocking queue @)y ; that other-conflicts with @Q; ;. @y j does
not conflict with any blocking queues. For every working queue Q; ; such that
Qi j to+4 > 1 or A ji > 1/R? (there is at least one such Qi j1), there is a forced
queue Q; j» that does not collide with any blocking queue and has g j» 1,44 <
min(R/2, sy ji yo+4 — 2, Sit j 1944 — 1). (Similarly, For every working queue @y j»
such that g jn 444 > 1 or Ay ju > 1/R? (there is at least one such Qg), there
is a forced queue Qv j» that does not collide with any blocking queue and has
Qi " to+4 < MIN(R/2, 8 i1 10+4 — 2, 8t j7 4o+4 — 1).) Then we are in Case 3. The
proof is similar to that of Case 7al except that on step tg +4 all workers Q;» ; with
gim jt to+4 = 1 and Ay ji < 1/R? decide to send. On every step all of the forced
queues that are described above decide to send and every working queue that client-
conflicts with one of the forced queues and is almost forced decides to send. If one
of the forced queues, Q;~ j» has a collision on a step, then, on the next step, Q;»
decides to send and none of the queues that conflict with Q;» ;; decides to send.
Otherwise, one of the forced queues, ();» j» exhausts its queue and on the next step
Qir j decides to send and none of the queues that conflict with @Q;~ j» decides to
send. @ j is then a blocking queue and so we are in one of the cases 7b1-7b5 as
in Case 7b9.

If none of the big backoff counters put us into Case 2 or Case 3, then the control queues that we
identify by considering the above cases do not conflict and therefore we can divide the queues into
categories such that all of the Case 4 conditions are satisfied.

41

