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path 
oupling is not enough to prove rapid mixing. We run the path 
oupling formultiple steps and use the expe
ted behaviour of the 
oupling at a 
ertain stopping timeto bound the expe
ted behaviour of the 
oupling after a �xed number of steps. Standardpath 
oupling is a worst-
ase analysis, in that it 
onsiders the the expe
ted 
hange inthe distan
e between the worst possible pair of states over a single step. However, in amultiple-step analysis, the 
hoi
e of the initial pair of states is mitigated by the random
hoi
es made by the 
oupling over several steps. Hen
e, with some 
onstant probability,we are not in the worst 
ase. This is how a multiple-step analysis 
an improve uponone-step path 
oupling.The approa
h of analyzing the behavior of a Markov 
hain over several steps hasproved worthwhile in other settings. For example, it has been used to prove the stabilityof randomized bin-pa
king algorithms [7, 16, 1℄ and 
ontention resolution proto
ols [14,13℄. Hen
e this approa
h appears to be a natural dire
tion for 
oupling arguments aswell.Czumaj et al. [8℄ introdu
ed a framework for multiple-step 
ouplings based on path
oupling, whi
h they 
all delayed path 
oupling. Their \delayed path 
oupling lemma" [8,Lemma 4.2℄ (reprodu
ed below as Lemma 2.1) shows how the mixing time of a Markov
hain 
an be bounded above in terms of the behaviour of a 
oupling over a �xed numberof steps. However, the way in whi
h the 
oupling is analysed over the �xed time intervalis not spe
i�ed, and Czumaj et al. give a few di�erent appli
ations. In some appli
ations,they expli
itly 
onstru
t a non-Markovian 
oupling over the full time interval. The
onstru
tion and analysis of su
h a 
oupling 
an be very 
ompli
ated. However, we usestraightforward path 
oupling to drive our multiple-step 
oupling, performing most ofour analysis at a spe
ially de�ned stopping time. The next se
tion 
ontains a des
riptionof this new method.We then apply our method to the problem of analysing the mixing time of theGlauber dynami
s for graph 
olourings. A proper k-
olouring of a graph G = (V;E)is a labelling of the verti
es from a set of 
olours C = f1; : : : ; kg su
h that no twoneighboring verti
es have the same 
olour. We 
onsider the problem of sampling nearlyuniformly from the set of all proper k-
olourings of a graph of maximum degree �.Note that eÆ
iently sampling k-
olourings nearly uniformly allows one to approximately
ount su
h 
olourings [15℄. This problem is interesting as a fundamental 
ombinatorialproblem, and it also relates to several problems in statisti
al physi
s; see [15, 23℄, formore details.A standard approa
h to the sampling problem is to design a Markov 
hain whosestationary distribution is uniform over all proper k-
olourings. We 
an then samplenearly uniformly from all proper k-
olourings by running the Markov 
hain until thedistribution of the state is suÆ
iently near the stationary distribution. For this approa
hto be eÆ
ient, the number of steps for whi
h we must run the Markov 
hain must besuÆ
iently small. The number of steps for whi
h we must run the Markov 
hain isgenerally 
alled the mixing time, and a Markov 
hain for sampling proper k-
olouringsis rapidly mixing if the mixing time is bounded above by some polynomial in jV j = n.Jerrum [15℄ (and independently Salas and Sokal [21℄, using di�erent methods) showedthat when k � 2�, a simple Markov 
hain is rapidly mixing. This Markov 
hain is easily2



des
ribed as follows: 
hoose a vertex v uniformly at random and a 
olour 
 uniformly atrandom; re
olour v to 
olour 
 if doing so yields a proper 
olouring. This Markov 
hainis generally referred to as the Glauber dynami
s in the statisti
al physi
s literature.Jerrum proved that the Glauber dynami
s has O(n log(n)) mixing time for k > 2�,while for k = 2� the best known upper bound was O(n3). We use our new method toshow that, for � � 14, the Glauber dynami
s 
hain has O(n log(n)) mixing time fork � (2� �)� whenever the graph is triangle-free and �-regular, where � is some small,positive 
onstant. It seems to be widely believed that 
(n logn) is a lower bound on themixing time of the Glauber dynami
s; however, we do not know of an existing proof.We present a simple proof of this fa
t in Theorem 3.1, for the spe
ial 
ase of graphswith no edges. Therefore our O(n logn) bound on the mixing time is optimal. Our mainresult is the �rst proof of an optimal upper bound for the mixing time of the Glauberdynami
s for some values of k in the range k � 2�.The 2� barrier has been broken using more 
ompli
ated 
hains, but as far as weknow this is the �rst proof that involves dire
t analysis of the simple Glauber dynami
s
hain. In [?℄, a rapidly mixing Markov 
hain was presented for the 
ase � = 3, k = 5(and for � = 4, k = 7 when the graph is triangle-free and 4-regular). The proof involvesthe analysis of several (in the hundreds for the � = 3 
ase) linear programming problemsrelated to the 
hain. Using a 
omparison te
hnique su
h as [9℄ one 
an 
on
lude that theGlauber dynami
s is also rapidly mixing for these values of k, �. However, applying a
omparison te
hnique generally in
reases the upper bound on the mixing time by severalfa
tors of n.In re
ent work, Vigoda [23℄ has proven that k � 11�=6 is suÆ
ient for rapid mixing,using an entirely di�erent Markov 
hain (similar to the well-known Swendsen-Wangalgorithm [22℄). Again, his result implies rapid mixing of the Glauber dynami
s fork � 11�=6, but with an O(n2 logn) bound on the mixing time. His result 
learlydominates ours in terms of the range of k for whi
h rapid mixing is established. However,be
ause our analysis is based dire
tly on the Glauber dynami
s 
hain and a
hieves anoptimal bound, and be
ause we use a new te
hnique based on analysing this 
hain overmultiple steps, our result is of independent interest.2 Path 
oupling using stopping timesBefore des
ribing the new method we present some standard de�nitions and notation.Let 
 be a �nite set and let M be a Markov 
hain with state spa
e 
, transition matrixP and unique stationary distribution �. If the initial state of the Markov 
hain is x thenthe distribution of the 
hain at time t is given by P tx(y) = P t(x; y). The total variationdistan
e of the Markov 
hain from � at time t, with initial state x, is de�ned bydTV(P tx; �) = 12Xy2
 jP t(x; y)� �(y)j:Following Aldous [3℄, let �x(") denote the least value T su
h that dTV(P tx; �) � " for allt � T . The mixing time ofM, denoted by �("), is de�ned by �(") = max f�x(") : x 2 
g.3



A Markov 
hain is be said to be rapidly mixing if the mixing time is bounded above bysome polynomial in n and log("�1), where n is a measure of the size of the elements of
. Throughout this paper all logarithms are to base e.There are relatively few methods available to prove that a Markov 
hain is rapidlymixing. One su
h method is 
oupling. A 
oupling for M is a sto
hasti
 pro
ess (Xt; Yt)on 
 � 
 su
h that ea
h of (Xt), (Yt), 
onsidered marginally, is a faithful 
opy of M.The moves of the 
oupling are 
orrelated to en
ourage the two 
opies of the Markov
hain to 
ouple: i.e. to a
hieve Xt = Yt. This gives a bound on the total variationdistan
e using the Coupling Lemma (see for example, Aldous [3℄), whi
h states thatdTV(P tx; �) � Prob[Xt 6= Yt℄where X0 = x and Y0 is drawn from the stationary distribution �. The following standardresult is used to obtain an upper bound on this probability and hen
e an upper boundfor the mixing time (the proof is omitted).Theorem 2.1 Let (Xt; Yt) be a 
oupling for the Markov 
hain M and let � be anyinteger valued metri
 de�ned on 
 � 
. Suppose that there exists � � 1 su
h thatE[�(Xt+1; Yt+1)℄ � � �(Xt; Yt) for all t, and all (Xt; Yt) 2 
�
. Let D be the maximumvalue that � a
hieves on 
 � 
. If � < 1 then the mixing time �(") of M satis�es�(") � log(D"�1)=(1� �). If � = 1 and there exists � > 0 su
h thatProb[�(Xt+1; Yt+1) 6= �(Xt; Yt)℄ � �for all t, and all (Xt; Yt) 2 
 � 
, then �(") � deD2=�edlog("�1)e.From now on, assume that all 
ouplings are Markovian unless expli
itly stated. Thepath 
oupling method, introdu
ed in [4℄, is a variation of traditional 
oupling whi
hallows us to restri
t our attention to a 
ertain subset S of 
 � 
, where 
 is the statespa
e of a given Markov 
hain. If we view S as a relation, the transitive 
losure ofS must equal 
. The rate of 
onvergen
e of the 
hain is measured with respe
t to a(quasi)metri
 � on 
� 
, whi
h 
an be de�ned by lifting a proximity fun
tion on S tothe whole of 
 � 
 (see [12℄ for details).In this se
tion we present a modi�
ation of path 
oupling whi
h involves stoppingtimes. Let (X; Y ) be any element of 
� 
. As for ordinary path 
oupling, we de�ne apath, or sequen
e X = Z0; Z1; : : : ; Zr = Ybetween X and Y , where (Z`; Z`+1) 2 S for 0 � ` < r, andr�1X̀=0 �(Z`; Z`+1) = �(X; Y ):In ordinary path 
oupling we allow the 
oupling to evolve for one step, giving a newpath Z00; Z10; : : : ; Zr 04



(for a pre
ise de�nition of the probability distribution of this new path, see [12℄). Wethen de�ne (X 0; Y 0) = (Z00; Zr0). The path 
oupling lemma says the following. Let(X; Y ) 7! (X 0; Y 0) be a 
oupling de�ned on all pairs in S. Suppose there exists a
onstant � su
h that 0 < � � 1 and for all (X; Y ) 2 S we haveE [�(X 0; Y 0)℄ � � �(X; Y ): (1)Then we 
an 
on
lude that (1) holds for all (X; Y ) 2 
 � 
, and apply Theorem 2.1.Suppose however that the smallest value of � for whi
h (1) holds for all (X; Y ) 2 Ssatis�es � > 1. Then path 
oupling is not good enough to allow us to apply Theorem 2.1.However, if � is not mu
h larger than 1, and there are some \good" initial pairs (X; Y ) 2S where the distan
e de
reases after one step (in expe
ted value), then we 
an try thefollowing approa
h.The following lemma is the \delayed path 
oupling lemma" [8, Lemma 4.2℄ of Czumajet al., whi
h shows how the mixing time of a Markov 
hain may be related to thebehaviour of a t-step path 
oupling (whi
h may be non-Markovian). For 
ompleteness,we present a proof.Lemma 2.1 Let S � 
�
 be su
h that the transitive 
losure of S is the whole of 
�
.Let � be an integer-valued metri
 on 
 � 
 whi
h takes values in f0; : : : ; Dg. Given(X0; Y0) 2 S, let (X0; Y0), (X1; Y1); : : : ; (Xt; Yt) be the t-step evolution of a (possiblynon-Markovian) 
oupling starting from (X0; Y0). Suppose that there exists a 
onstant 
su
h that 0 < 
 < 1 and E [�(Xt; Yt)℄ � 
�(X0; Y0) (2)for all (X0; Y0) 2 S. Then the mixing time �(") of M satis�es�(") � log(D"�1)1� 
 � t:Proof. Using the same argument as the path 
oupling lemma, we know that (2) holdsfor all (X0; Y0) 2 
 � 
. Run the 
oupling in epo
hs of length t. After r epo
hs, wehave E [�(Xrt; Yrt)℄ � 
r �(X0; Y0) � 
rD:If r � log(D"�1)=(1 � 
) then E [�(Xrt; Yrt)℄ � ". This gives an upper bound for thenumber of epo
hs required to ensure that the distribution of the 
hain is at most " awayfrom stationarity, in terms of total variation distan
e. Multiplying this number by t,the number of steps per epo
h, gives the mixing time of the 
hain.Therefore it suÆ
es to show that E [�(Xt; Yt)℄ � 
 �(X0; Y0) for all (X0; Y0) 2 S,where 
 is some positive 
onstant less than 1. The main 
ontribution of this paperis to provide a new approa
h to bounding E [�(Xt; Yt)℄, whi
h we now des
ribe. Let(X; Y ) 7! (X 0; Y 0) be a (one-step, Markovian) 
oupling for M de�ned on all initialpairs in S; that is, (X; Y ) 2 S and (X 0; Y 0) 2 
 � 
. We will apply this 
oupling for t5



steps, using the path 
oupling ma
hinery to drive the 
oupling if the traje
tory of the
oupling leaves the set S. This gives a multiple-step 
oupling f(Xs; Ys)gs�0. Let T be astopping time for this 
oupling, de�ned in su
h a way that�(Xs; Ys) = �(X0; Y0) for 0 � s < T:Then T is a random variable whi
h depends only on the history of the 
oupling up tothe present time. For example, we 
ould de�ne T to be the �rst time at whi
h the valueof � 
hanges.If T > t then we know that �(Xt; Yt) = �(X0; Y0). Otherwise, we 
onsider (XT ; YT ),the state of the 
oupling at the stopping time T . (The pair (XT ; YT ) need no longerbelong to the set S, but the path 
oupling ma
hinery drives the 
oupling for all pairs in
� 
.) The analysis gives an upper bound for the quantityE [�(XT ; YT ) j T � t℄ :We hope that this quantity will be smaller than E [�(X1; Y1)℄, with the following heuristi
justi�
ation. The analysis of one-step 
oupling is a worst-
ase analysis. However, afterrunning the Markov 
hain for T steps, the e�e
t of the 
hosen starting state is mitigatedto some extent by the random 
hoi
es made during the running of the 
oupling. In otherwords, with some positive probability we are not in the worst 
ase. It is here that we
an improve on one-step 
oupling.We now show how to relate E [�(XT ; YT ) j T � t℄ and E [�(Xt; Yt)℄.Theorem 2.2 Let M be a Markov 
hain with state spa
e 
. Let � be a metri
 on 
�
and let S be some subset of 
�
 su
h that the transitive 
losure of S is 
�
. Supposethat we have a (one-step, Markovian) 
oupling (X; Y ) 7! (X 0; Y 0), de�ned on pairs inS su
h that E [�(X 0; Y 0)℄ � � �(X; Y )for some 
onstant � su
h that � � 1. Let t > 0 be a �xed integer. Apply the 
oupling fort steps from initial state (X0; Y0) 2 S, using the path 
oupling lemma. Let T be somestopping time for f(Xs; Ys)gs�0 su
h that�(Xs; Ys) = �(X0; Y0)whenenever 0 � s < T . ThenE [�(Xt; Yt)℄ � Prob [T > t℄ � �(X0; Y0) + Prob [T � t℄ � �t �E [�(XT ; YT ) j T � t℄for all (X0; Y0) 2 S.Proof. The 
oupling de�ned on the set S gives rise to a 
oupling (X; Y ) 7! (X 0; Y 0) onthe entire set 
� 
 su
h that E [�(X 0; Y 0)℄ � � �(X; Y ) for all (X; Y ) 2 
 � 
, by thepath 
oupling lemma [4℄. Let (X0; Y0), (X1; Y1); : : : ; (Xt; Yt) be the t-step evolution ofthis 
oupling from the starting state (X0; Y0) 2 S.6



If T > t then �(Xt; Yt) = �(X0; Y0). Next suppose that T � t. ThenE [�(Xt; Yt) j T � t℄ � �E [�(Xt�1; Yt�1) j T � t℄� E ��t�T �(XT ; YT ) j T � t�� �tE [�(XT ; YT ) j T � t℄ :(By repla
ing t�T by t we are, in e�e
t, assuming that the stopping time o

urs at thevery beginning of the interval.) This proves the theorem.Suppose that S is the set of all pairs (X; Y ) with �(X; Y ) = 1. In this 
ase, Theo-rem 2.2 
an be rewritten to assert thatE [�(Xt; Yt)� 1℄ � Prob [T � t℄ ��t �E [�(XT ; YT ) j T � t℄ � 1� :Combining Lemma 2.1 and Theorem 2.2, we see that 
 
an be de�ned to be the maximumof the values 1� Prob [T � t℄ �1� �t �E [�(XT ; YT ) j T � t℄� (3)over all (X0; Y0) 2 S. In order to obtain a good bound on the mixing time of the 
hain,we aim to show that 
 < 1. Clearly 
 < 1 if�tE [�(XT ; YT ) j T � t℄ < 1for all (X0; Y0) 2 S.3 Applying the new method to the Glauber dynam-i
s for graph 
olouringsIn this se
tion we illustrate the new method by using it to analyse the mixing time ofthe Glauber dynami
s for graph 
olourings.Let G = (V;E) be a given graph and let 
k(G) be the set of all proper k-
olouringsof G, where C is the set of 
olours. The Glauber dynami
s is a Markov 
hain on 
k(G)with transitions from the 
urrent state a

ording to the following pro
edure:� 
hoose (v; i) 2 V � C uniformly at random,� re
olour v with i if this results in v being properly re
oloured.This 
hain was analysed by Jerrum [15℄ and independently by Salas and Sokal [21℄.They proved that the 
hain is rapidly mixing for graphs with maximum degree � whenk > 2�. The fa
t that the 
hain is also rapidly mixing for k = 2� 
an be found in [4℄.Jerrum showed that the Glauber dynami
s has O(n log(n)) mixing time for k > 2�,and the best known upper bound when k = 2� was O(n3).In Se
tion 3.1 we des
ribe the standard path 
oupling for this 
hain. Se
tion 3.2
ontains the de�nition of the stopping time for this 
oupling, and gives a ne
essary7




ondition for the su

ess of the new method. In Se
tion 3.3 we perform the 
al
ulationsneeded to establish the ne
essary 
ondition. All 
al
ulations are 
ombined in Se
tion 3.4to provide an O(n log(n)) upper bound for the mixing time of the Glauber dynami
s for�-regular, triangle-free graphs, when (2 � �)� � k � 2�, where � is a small positive
onstant.Before we pro
eed, we present a proof of the \folklore" result that the mixing timeof the Glauber dynami
s is bounded below by 
(n logn). Our proof 
on
erns graphswith no edges.Theorem 3.1 Let G be the empty graph with n verti
es, and let k � 2. Then�((2e)�1) = 
(n logn):Proof. A stopping rule � (see [17℄) is a map that asso
iates every initial sequen
e w ofMarkov 
hain states with a number �[w℄ 2 [0; 1℄, whi
h is taken to be the probabilitythat the sequen
e should 
ontinue. We 
an also think of � as a random variable takingvalues in f0; 1; 2; : : :g, whose distribution only depends on w0; : : : ; w� (and w� is thestate where we stop). If w0 is drawn from the distribution � and E[�℄ is �nite, and thedistribution of �nal states is � , then the rule is 
alled a stopping rule from � to � . Itis said to be optimal for � and � if E[�℄ is minimal. For ea
h x 2 
k(G) let �x be thedistribution 
on
entrated on the state x. De�ne �2 to be the maximum, over all initialstates x, of the expe
ted length of an optimal stopping rule from �x to �. Sin
e theGlauber dynami
s is time-reversible, a result of Aldous' [2, Lemma 12℄ applies, showingthat �((2e)�1) � 
�2where 
 = (1� e�1)2=2. Now let � be the stopping rule whi
h says \stop when you havevisited every vertex of G at least on
e". (It may not be immediately apparent that thisrule satis�es the de�nition of a stopping rule given in [17℄, sin
e it uses information noten
oded in the states of the 
hain. However, it is routine to formulate an equivalentrandomized stopping rule whi
h does �t the de�nition, see [18, p.89℄.) Sin
e G has noedges and every vertex has been randomly re
oloured, the 
olouring obtained at time �is distributed a

ording to �. Hen
e � is a stopping rule from �x to �, for all x 2 
k(G).Let y 2 
k(G) be any 
olouring of G su
h that y(v) 6= x(v) for all v 2 V . Then y is ahalting state for this stopping rule (that is, the probability that the pro
ess will halt ifit rea
hes y is 1). Sin
e � has a halting state it is an optimal stopping rule, using [17,Theorem 5.1℄. This shows that �2 = E[�℄. Therefore �((2e)�1) is bounded below bya 
onstant times the expe
ted number of steps required to visit every vertex at leaston
e, and the latter is �(n logn) by the well-known 
oupon 
olle
tor's lemma (see, forexample [19, Se
tion 3.6℄).
8



3.1 Path 
oupling for the Glauber dynami
sWe now give the standard path 
oupling analysis of the Glauber dynami
s. The prox-imity fun
tion is given by Hamming distan
e, and we let S be the set of all pairs withHamming distan
e 1. The state spa
e of the Markov 
hain must be extended to the setof all 
olourings (in
luding non-proper 
olourings), in order to be able to form a path oflength H(X; Y ) between any two 
olourings (X; Y ) 2 
k(G). (This approa
h is stan-dard, and does not 
ause any problems, sin
e the non-proper 
olourings are transientstates. The stationary distribution is uniform over all proper 
olourings, and zero else-where. Although the extended 
hain is no longer reversible, the path 
oupling lemmastill applies. Moreover, the mixing time of the 
hain on the original state spa
e isbounded above by the mixing time of the 
hain on the extended state spa
e.)Consider (X; Y ) 2 S, so X and Y di�er just at a single vertex v. Let N(v) denote theset of neighbours of v in G. We 
an 
ouple at (X; Y ) as follows: 
hoose (u; i) uniformlyat random from V � C. If u = v then attempt to re
olour v with i in both X andY . This will either su

eed in both, or fail in both. If it su

eeds then the Hammingdistan
e de
reases by 1. The only other moves whi
h 
an a�e
t the Hamming distan
eare when u = w where w 2 N(v). In this 
ase, if i 62 fX(v); Y (v)g then attempt tore
olour w with i in both X and Y . This will either su

eed in both or fail in both,and the Hamming distan
e is una�e
ted. If i = X(v) then attempt to re
olour w withX(v) in X and attempt to re
olour w with Y (v) in Y . This will fail in both X and Y ,so the Hamming distan
e is una�e
ted. Finally, if i = Y (v) then attempt to re
olour wwith Y (v) in X, and attempt to re
olour w with X(v) in Y . This may su

eed or failin either, so the Hamming distan
e 
ould in
rease by 1 here. Thus the expe
ted 
hangein the Hamming distan
e is at most�(k � j fX(w) : w 2 N(v)g j)kn + �kn:In general, we have j fX(w) : w 2 N(v)g j � �, so that the expe
ted 
hange in theHamming distan
e is at most �(k � 2�)=(kn). This gives nonin
reasing Hammingdistan
e for k � 2�. The aim of the new approa
h is to show that, with 
onstantpositive probability, there are fewer than � distin
t 
olours around v, just before thestopping time. This gives nonin
reasing Hamming distan
e for a wider range of k.3.2 A stopping time for the Glauber dynami
s on 
olouringsFor simpli
ity, assume that the given graph G is �-regular and triangle-free. Let � bea small positive 
onstant whi
h we �x later, and suppose that (2� �)� � k � 2�. Weanalyse the mixing time of the Glauber dynami
s using our new method, to show thatthe Glauber dynami
s has O(n log(n)) mixing time for this range of k.Let (X0; Y0) 2 S be given, so that X0, Y0 di�er just at a single vertex v 2 V . Performthe 
oupling des
ribed in Se
tion 3.1 with starting point (X0; Y0). Let Q(X0; Y0) be theset of all moves whi
h involve v or in
rease the Hamming distan
e; that is,Q(X0; Y0) = f(v; i) : i 2 Cg [ f(w; Y0(v)) : w 2 N(v)g :9



Then Q(X0; Y0) 
ontains all the 
hoi
es whi
h may a�e
t the Hamming distan
e, butalso some whi
h will not. De�ne the random variable T to be the �rst step at whi
h apair in Q(X0; Y0) is 
hosen by the 
oupling. Then T is a stopping time sin
e it dependsonly on the 
oupling up to the present time. Now (XT ; YT ) is the state of the 
ouplingafter the T th step, whi
h we refer to as the state of the 
oupling at the stopping time.Note that H(Xs; Ys) = H(X0; Y0) = 1 for 0 � s < T , by the analysis of Se
tion 3.1.Clearly jQ(X0; Y0)j = k + � for all pairs (X0; Y0) 2 S. Let Æ be a positive 
onstant,and assume that Æn is an integer. (Sin
e n 
an grow arbitrarily large, there is not mu
hharm in making this assumption.) An (approximately) optimal value of Æ will be �xedlater, whi
h will satisfy Æ < (2� �)=3. We run the 
oupling for t steps, where t = Æn.Let C be a random variable whi
h denotes the number of 
olours whi
h o

ur morethan on
e around v just before the stopping time T (that is, after step T � 1). In thenext se
tion we prove that, when n and � are \big enough" and � is \small enough",we have E [C j T � Æn℄ � ��for some 
onstant � su
h that � � 2�. We now show why this is suÆ
ient.The arguments of Se
tion 3.1 show that the expe
ted value of the Hamming distan
eafter one step of normal path 
oupling from (X; Y ) 2 S is at most1� k � 2�kn � 1 + ��kn ;sin
e (2� �)� � k � 2�. Next, noti
e thatE [H(XT ; YT )� 1 j T � Æn℄ � �k � (�� E [C j T � Æn℄)k + � + �k + �� �k � (1� 2�)�k + � + �k + �� ��3 :Therefore, using Theorem 2.2 (and in parti
ular the remarks following the theorem),E [H(XÆn; YÆn)� 1℄ � Prob [T � Æn℄ ��Æn �E [H(XT ; YT ) j T � Æn℄� 1�� Prob [T � Æn℄ �1 + ��kn�Æn �1� �3�� 1!� Prob [T � Æn℄ �e�Æ=(2��)e��=3 � 1� : (4)This quantity is nonpositive whenever�Æ2� � � �3 � 0;and this holds for Æ � (2� �)=3.We now 
al
ulate a lower bound for E [T j T � Æn℄, whi
h is needed in Se
tion 3.3.10



Lemma 3.1 Suppose that n � Æ�1 and (2 � �)� � k � 2�, where 0 < � < 2. Let� = 3=(2� �). Then E [T j T � Æn℄ � Æn2 (1� �Æ):Proof. Let q = 1 � (k + �)=(kn), and let ps denote the probability that T = s. Thenps = Prob [T = s℄ = (1� q)qs�1 and Prob [T � Æn℄ = 1� qÆn. Now qÆn � 1� (k+ �)Æ=ksin
e n � Æ�1. ThereforeE [T j T � Æn℄ = �1� qÆn��1 ÆnXs=0 sps� pÆn Æ2 n22 (1� qÆn)> (1� q) qÆn Æ2 n22 (1� qÆn)� (1� q) �1� k+�k Æ�2k+�k Æ Æ2 n2� (1� �Æ) Æn2 ;as 
laimed.3.3 The expe
ted number of repeated 
olours just before thestopping timeLet (X0; Y0) be a given pair in S and let v be the vertex whi
h is 
oloured di�erently inX and Y . Let T be the stopping time for the 
oupling when started at (X0; Y0). Denoteby C the number of 
olours whi
h o

ur at least twi
e around v just before the stoppingtime T . That is, C = j fi 2 C : j fw 2 N(v) : XT�1(w) = ig j � 2g j:In this se
tion we obtain a lower bound for E [C j T � Æn℄ whi
h holds when � and nare both \large enough" and � is \small enough". Spe
i�
ally, take � � 14, n � 120and � < 1=210.Let Aw be de�ned byAw = C n (fX0(u) : fu; wg 2 Eg [ fY0(v)g)for w 2 N(v). Then Aw is the set of 
olours whi
h are a

eptable at w in both X0 andY0. Note that jAwj � k � �� 1 for all w 2 N(v). Next, letBi = fw 2 N(v) : i 2 Awg11



and let bi = jBij for ea
h i 2 C. So Bi is the set of verti
es w 2 N(v) at whi
h i isa

eptable in both X0 and Y0.Lemma 3.2 Assume that � < 1=210 and � � 14. Let k satisfy (2 � �)� � k � 2�.Then there are at least dk=5e 
olours i su
h that bi � �=3.Proof. Let Z = jf(i; w) : i 2 Awgj. Now Z � �(k � � � 1). For a 
ontradi
tion,suppose that fewer than dk=5e 
olours i have bi � �=3. If k is a multiple of 5 thenZ � �k5 � 1�� + �4k5 + 1� �3� �1� � 115 � 13����2 � �< �(k � �� 1);giving the desired 
ontradi
tion. Next, suppose that k = 5` + r where r 2 f1; 2; 3; 4g.Then Z � `� + (k � `)�3� �1� � 115 � 15� 2r15� ���2 ��< �(k �� � 1);sin
e � < 1=210 and � � 14. Again, this is a 
ontradi
tion.Using this information we 
an prove a lower bound for the expe
ted number ofrepeated 
olours around v just before the stopping time, given that the stopping timeo

urs in the �rst Æn steps.Theorem 3.2 Suppose that n � 120, � � 14, � < 1=210 and Æ < (2 � �)=3. Alsoassume that (2� �)� � k � 2�. ThenE [C j T � Æn℄ � 13840 � Æ2 (1� �Æ)2 � e�4Æ ��;where � = 3=(2� �).Proof. By Lemma 3.2, there are at least dk=5e 
olours i su
h that bi � �=3. Considerways in whi
h su
h a 
olour i 
an o

ur at least twi
e around v just before the stoppingtime T . One way in whi
h this 
an o

ur is as follows. Suppose that there are exa
tlytwo distin
t elements u, w 2 Bi whi
h were 
hosen with the 
olour i during the 
oupling.That is, (u; i) and (w; i) were both 
hosen but (q; i) was not 
hosen for any q 2 Binfu; wg.Also suppose that u and w are never 
hosen at any other time, with any 
olour, andthat no neighbour of u or w is ever 
hosen with 
olour i. In this situation, both u and12



w end up 
oloured i. We now analyse the probability that this event o

urs, for a givenvalue of T .We know that T is the �rst stopping time, so there are T�1 steps before the stoppingtime step. We do not have kn possible 
hoi
es at ea
h of these T � 1 steps, but ratherkn � (k + �) possibilities. With this in mind, the probability that, say, w is 
hosenwith 
olour i is given by 1=(kn� (k + �)) � 1=(kn). There are at least �2=24 
hoi
esfor the unordered pair fu; wg � Bi, sin
e bi � �=3 and � � 14. The probability thatboth (u; i) and (w; i) are 
hosen at two distin
t times in the �rst T � 1 steps is at least�T�12 � � 1=(k2n2). There are also 
hoi
es whi
h we have ruled out for all other steps,
orresponding to the vertex-
olour pairs from the setf(q; i) : q 2 (N(u) [N(w) n fvg) [ (Bi n fu; wg)g[ f(u; j); (w; j) : j 2 C n fY (v)gg(note that the sele
tion of j = Y (v) is ruled out be
ause s is not a stopping time for0 � s < T ). We have ruled out at most 3� + 2k � 6 
hoi
es at ea
h of T � 3 steps.Thus we see thatProb �i is repeated j T; bi � �3 � � �224 � �T � 12 � � 1k2n2 � �1� 3� + 2k � 6kn� (k + �)�T�3 :Let x = 3� + 2k � 6 and y = kn� (k + �). Then�1� xy�T�3 = exp �(T � 3) 1Xi=1 1i �xy�i!= exp �Txy + 1Xi=1 �3i � Tx(i + 1)y��xy�i!� e�Tx=y� e�4Æ:The �rst inequality follows sin
e 3=i � Tx=((i + 1)y for all i � 1, and the se
ondinequality follows sin
e 4y � nx (using the de�nition of x, y and the assumptions of thetheorem.) Plugging this ba
k into our 
al
ulations, we obtainProb �i is repeated j T; bi � �3 � � �224 � �T � 12 � � 1k2n2 � e�4Æ:Now we shall take expe
tation with respe
t to T , 
onditional on T � Æn. UsingLemma 3.1 and the fa
t that n � 120, we �nd that�E [T j T � Æn℄� 12 � � Æ2 n2 (1� �Æ)216 :Applying Jensen's inequality, we obtainProb �i is repeated j T � Æn; bi � �3 � � �2384 � Æ2 n2 (1� �Æ)2 � 1k2n2 � e�4Æ� 1768 � Æ2 (1� �Æ)2 � e�4Æ � �k : (5)13



By summing (5) over the dk=5e most popular 
olours, the theorem is proved.3.4 The mixing time of the Glauber dynami
sWe now 
al
ulate an upper bound for the mixing time of the Glauber dynami
s, usingLemma 2.1 and Theorem 2.2. Let � be de�ned by�(Æ; �) = 13840 � Æ2 (1� �Æ)2 � e�4Æ= 13840 � Æ2 �1� 3Æ2� ��2 � e�4Æ:Theorem 3.2 shows that E [C j T � Æn℄ � ��. Note that � is a de
reasing fun
tionof �. Take Æ = 1=8 and � = 8 � 10�7. Then �(Æ; �) � 2�. (These values of Æ, � areapproximately optimal.) The dis
ussion of Se
tion 3.2 suggested that this 
ondition wassuÆ
ient to ensure rapid mixing of the Glauber dynami
s. We now give the details.Theorem 3.3 Let n � 120 and � � 14. Suppose that (2 � �)� � k � 2�, where� = 8 � 10�7. The mixing time of the Glauber dynami
s for graph 
olourings of �-regular, triangle-free graphs is bounded above by�(") � 4� 106 n log(n"�1):Proof. Let Æ = 1=8, as in the previous se
tion. We bound the mixing time by �ndingan upper bound on the quantity 
 su
h thatH(XÆn; YÆn) � 
over all initial pairs (X0; Y0) 2 S. Using the remark following Theorem 2.2, we 
ande�ne 
 by (3). Let q = 1� (k + �)=(kn), as in Lemma 3.1. ThenProb [T � Æn℄ = 1� qÆn� 1� exp��k + �k Æ� � 1� e�4Æ=3:Using this, with the 
al
ulations of (4), we obtain
 � 1� �1� e�4Æ=3��1� exp� �Æ2� � � �3��� 1� 3:3� 10�8;
14



substituting Æ = 1=8 and � = 8 � 10�7. Now applying Lemma 2.1 we �nd that themixing time of the Glauber dynami
s is bounded above by�(") � Æn � log(n"�1)1� 
� 10826:4 n log(n"�1)< 4� 106 n log(n"�1):This bound holds for (2 � �)� � k � 2�, where � = 8 � 10�7, assuming that � � 14and n � 120.Vigoda [23℄ des
ribed a new Markov 
hain for graph 
olourings whi
h alters the
olouring of up to six verti
es at ea
h transition. He showed using path 
oupling thatthis 
hain is rapidly mixing for k � 11�=6. The mixing time of this 
hain is boundedabove by kk � 116 � n log(n"�1)for k > 11�=6. Vigoda also applies the 
omparison te
hnique of Dia
onis and Salo�-Coste [9℄ to show that the mixing time of the Glauber dynami
s is at mostO �k log(k)n2 log(n)�when k > 11�=6. In parti
ular, this gives an upper bound of O(n2 logn) when k =2�. It seems unlikely that any 
omparison te
hnique 
ould yield the optimal bound ofO(n logn).Referen
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