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of chemical compounds [16, 17, 18]. Kerber et al. [2, 21], Faulon [8] and others (see [2]) havedeveloped (and coded) algorithms for listing all of the structural isomers corresponding toa given molecular formula. These programs typically allow the user to prescribe and forbidsubstructures and some of the programs deal with geometric constraints. These programs areuseful if the number of structural isomers corresponding to the relevant formula is su�cientlysmall, so the isomers can all be listed. Faulon has argued [10] that randomly sampling struc-tural isomers is useful for structural elucidation and molecular design in cases in which thenumber of isomers is too large to list them all. He [9] has developed a program for randomlysampling structural isomers and has used it for chemical applications such as a statisticalstudy of the potential energy distribution of the isomers of C8H10 and the structural elucida-tion of several compounds. Faulon's program applies to a realistic chemical problem including3-D simulation of molecules and chemical analysis. However, his methods are heuristic. Bycontrast, we study an idealisation of the problem (randomly sampling structural isomers with-out regard to geometric and other chemical constraints) but we achieve rigorous performanceguarantees | polynomial-time computation and exactly uniform generation. Thus, we de-scribe the �rst polynomial-time algorithm that uniformly samples structural isomers given amolecular formula. Our isomer-sampling algorithm is based on our algorithm for uniformlysampling unlabelled connected multigraphs with a given degree sequence.Previous work: Uniformly sampling labelled multigraphs with a given bounded-degree de-gree sequence can be done in polynomial time by dynamic programming. More sophisticatedtechniques exist for a wider class of degree sequences|see, for example, Jerrum and Sin-clair [13] and McKay and Wormald [14]|but it is not known how to apply these techniquesto the problem of sampling unlabelled multigraphs. Nijenhuis and Wilf [15] showed how touniformly sample unlabelled rooted trees with a speci�ed number of vertices. This approachwas extended by Wilf [22], who showed how to uniformly sample free (unrooted) trees. Theiralgorithms are based on an inductive de�nition (i.e., a generating function) for the trees. Thisapproach has been systematised by Flajolet, Zimmerman and Van Cutsem in an forthcomingpaper [12].More complicated techniques are required when the graphs to be sampled are not trees.Dixon andWilf [7] were the �rst to give an algorithm for uniformly sampling unlabelled graphswith a speci�ed number, n, of vertices. Their algorithm is based on Burnside's Lemma. First,a permutation of the n vertices is chosen with the appropriate probability and then a graphis chosen uniformly at random from those graphs which are �xed by the chosen permutation.The choice of the permutation requires a calculation of the number of unlabelled graphs withn vertices. Wormald's algorithm [25] avoids doing this expensive calculation. Instead, itachieves a uniform distribution by restarting itself when appropriate. Wormald's method canalso be used to sample r-regular graphs uniformly at random for any �xed degree r � 3. Themethod relies on the fact that most unlabelled r-regular graphs are rigid (without non-trivialsymmetries) when r � 3. This is not true for r = 1 or r = 2.2



Outline of our algorithm Our algorithm for sampling unlabelled connected multigraphswith a given degree sequence combines the above ideas with other ideas from the �eld ofrandom graphs. A natural approach to the problem is the approach of Wormald | �rstgenerate a permutation of the vertices, then generate a random connected multigraph �xedby the permutation, and �nally use rejection/restarting to obtain the correct distribution.However, this approach relies heavily on the fact that many of the desired structures are rigid(so the algorithm will be likely to choose the identity permutation, which leads to a quickresult without restarting). This is not the case for the set of unlabelled connected multigraphswith a given degree sequence, because the degree sequence may have many vertices of degree 1and 2. Thus, we �rst reduce our problem to that of sampling unlabelled connected multigraphswith degree sequences that do not have any vertices of degree 1 or 2. Every multigraph G isassociated with a unique \core" which has no vertices of degree 1 or 2. To generate G, wewill generate the core of G and we will then extend the core by adding trees and chains oftrees to obtain G.For the generation of the core, we work in the con�guration model of Bender and Can-�eld [1], Bollob�as [4] and Wormald [23]. The correctness of our algorithm follows from acareful analysis of unlabelled con�gurations in which all block sizes are at least 3. Thisanalysis extends Bollob�as's analysis of unlabelled regular graphs [3]. Our algorithm rejectsthe generated core if it is not connected. The fact that this does not happen too often fol-lows from a result of Wormald [24]. After generating the core of our random multigraph,we extend the core by adding trees and chains of trees. This part of our algorithm is basedon the generating function approach mentioned earlier. An alternative approach, also basedon generating functions, is to use P�olya's theorem. This approach was used to enumeratemolecules with certain speci�ed \frames" (a frame is somewhat similar to a core) by P�olya,Read and others [16].Outline of this paper Section 2 sets up the machinery that we will use to reduce thegeneral multigraph problem to the problem in which the degree sequence has no vertices ofdegree 1 or 2. Section 3 solves the problem when there are no vertices of degree 1 or 2.Section 4 describes the tools that we will use to lift the solution from Section 3 to a solutionfor general degree sequences. Section 5 gives our sampling algorithm and proves that it iscorrect. Section 6 extends our result to the chemical problem | given a molecular formula,select, uniformly at random, a structural isomer having the given formula.2 Cores and coloured con�gurationsA d-rooted multigraph is a tuple G = (V;E; r0; : : : ; rd�1), in which V is the vertex set of G,E is the edge multiset of G, and r0; : : : ; rd�1 are distinct roots in V . Each element of E isan unordered pair of vertices. The expression E(v; w) denotes the multiplicity of (v; w) in E .A cycle of G is a (closed, simple) path from a vertex v to itself that uses each edge (x; y)3



at most E(x; y) times. (If any edge is used twice then the path is in fact of length two.)We use the term rooted multigraph to refer to any d-rooted multigraph (for any d, includingd = 0) and we use the term multigraph to refer to any 0-rooted multigraph. A rooted treeis a connected rooted multigraph (in fact a graph) with no cycles. The de�nitions implythat a connected unicyclic multigraph is either a connected unicyclic graph, or a multigraphobtained from a tree by doubling one of its edges.The degree of vertex v in a rooted multigraph G = (Vn; E) isd(v) = 2E(v; v) + Xw2V;w 6=vE(v; w):Let � be any �xed constant. In this paper we will be concerned with rooted multigraphswhose vertices have degree at most �. The degree sequence of such a rooted multigraph Gis the sequence n = n0; : : : ; n� , where ni denotes the number of vertices of G with degree i.The integers n0; : : : ; n� are represented in unary, so the input size of the degree sequence n =n0; : : : ; n� is n = n0+ � � �+n�. (Similarly, the input size of degree sequence n0 = n00; : : : ; n0�will be denoted n0 = n00 + � � �+ n0� .) Let Vn be the set fv1; : : : ; vngLet Gn be the set containing� every connected multigraph with degree sequence n and vertex set Vn that has at leasttwo cycles, and� every 1-rooted connected tree with degree sequence n and vertex set Vn , and� every 1-rooted connected unicyclic multigraph with degree sequence n and vertexset Vn , in which the root is part of the cycle.Two d-rooted multigraphs G = (V;E; r0; : : : ; rd�1) and G0 = (V 0; E0; r00; : : : ; r0d�1) aresaid to be isomorphic (written G �= G0) if there is a bijection � from V to V 0 such that,for all unordered pairs (v; w) of vertices in V , E(v; w) = E0(�(v); �(w)), and for all roots rjof G, �(rj) = r0j . Note that if V = V 0 then � can be viewed as a permutation of the verticesin V . Isomorphism induces an equivalence relation on Gn and the equivalence classes arecalled isomorphism classes. We use the notation eGn to denote the set of isomorphism classesof Gn . If a rooted multigraph G is isomorphic to some G0 2 Gn then we use the notation	(G) to denote the isomorphism class of G0 . For any isomorphism class U 2 eGn we use thenotation 	�1(U) to denote the lexicographically least member of U .We consider two non-deterministic transformations which may be applied to a rootedmultigraph G with vertex set V and edge multiset E . Similar transformations were used byZhan in [26].T1 : Choose a degree-1 vertex v other than the root of G. Remove v from V and the edgecontaining v from E . 4



T2 : If T1 cannot be applied to G, choose a degree-2 vertex v other than the root of G suchthat for vertices w 6= v and x 6= v, (v; w) and (v; x) are in E . (We allow w = x, butnaturally insist that (v; w) and (v; x) are taken to be distinct elements from the edgemultiset.) Remove v from V . Remove (v; w) and (v; x) from E and add (w; x) to E .Note that the transformations T1 and T2 do not change the labels of vertices. A rootedmultigraph G 2 Gn is irreducible if neither transformation T1 nor T2 can be applied to it.Observation 2.1 If G 2 Gn and G can be transformed into G0 by T1 or T2 then, for somen0 with n0 < n, 	(G0) 2 eGn0 .Informally, Observation 2.1 says that the transformations T1 and T2 preserve the propertiesof being connected, and of having at least two cycles.Observation 2.2 If G 2 Gn and some sequence of T1 and T2 transforms G into G0 thenthe sequence is of length less than n.We say that a degree sequence n is irreducible if any of the following applies, and that itis degenerate if one of the �rst two possibilities applies.1. n describes the single-vertex multigraph. That is, n0 = 1 and ni = 0 for i 6= 0.2. n describes the single-self-loop multigraph. That is, n2 = 1 and ni = 0 for i 6= 2.3. n describes multigraphs without low-degree vertices. That is, n0 = n1 = n2 = 0 andni > 0 for some i 2 [3; : : : ;�].We say that a rooted multigraph is degenerate if its degree sequence is degenerate.Observation 2.3 G 2 Gn is irreducible i� its degree sequence is irreducible.Lemma 2.4 If G 2 Gn and G can be transformed into irreducible rooted multigraphs G1and G2 using a sequence of transformations T1 and T2 then G1 = G2.Proof: Suppose G has vertex set V and edge multiset E . We will show that if G can betransformed into distinct rooted multigraphs G1 and G2 by a single transformation then thereis a rooted multigraph G3 such that a (possibly empty) sequence of transformations trans-forms G1 into G3 and another (possibly empty) sequence of transformations transforms G2into G3 . Thus, the transformation process is locally con
uent [20]. As the process terminatesin �nite time (see Observation 2.2), it is con
uent, which implies the result [20].Suppose that T1 with choice v transforms G into G1 and T1 with choice w 6= v transformsG into G2 . Note that (v; w) 62 E (otherwise, one of v and w would be the root of G). LetG3 be the result of applying T1 to G1 with choice w. Then T1 with choice v transforms G2into G3 . 5



Suppose that T2 with choice v transforms G into G1 and T2 with choice w 6= v transformsG into G2 . Note that (v; w) does not appear twice in E (otherwise, one of v and w wouldbe the root of G). Let G3 be the result of applying T2 to G1 with choice w. Then T2 withchoice v transforms G2 into G3 . 2Note that the proof of Lemma 2.4 would have failed if we had included unrooted treesand unicyclic graphs in Gn . It is for this reason that the de�nition of Gn is slightly morecomplicated that might be expected. As we observed in Observation 2.2, a rooted multigraphG can only be transformed a �nite number of times before an irreducible rooted multigraphG0 is reached. G0 is called the core of G and is denoted by Core (G). Core (G) is uniquelyde�ned, by Lemma 2.4.Lemma 2.5 If G1 and G2 are in Gn and �(G1) = G2 then �(Core (G1)) = Core (G2).Proof: Consider a sequence of transformations that transforms G1 into Core (G1). Nowapply this sequence of transformations to G2 , but choose �(v) instead of v for each vertex vthat is chosen. Clearly, the result is Core (G2). Thus, v 62 Core (G1) exactly when �(v) 62Core (G2). 2Lemma 2.5 implies that if G1 �= G2 then Core (G1) �= Core (G2). (This property was alsoused by Zhan [26].) We use the notation eGn;n0 to denote the set fU 2 eGn j 	(Core (	�1(U))) 2eGn0g; loosely, eGn;n0 is the set of unlabelled connected multigraphs with degree sequence nwhose cores have degree sequence n0 . We will need the following de�nitions. Let B be an(in�nite) set containing one representative from each isomorphism class of the set of 1-rootedtrees. A tree-chain with two roots is constructed from any sequence T1; : : : ; Tk of 1-rootedtrees as follows: If the sequence is empty, then the tree-chain consists of r0 and r1 andan edge between them. Otherwise, the tree-chain graph is constructed as follows: Choosedistinct labels for the vertices of T1; : : : ; Tk . Let r01; : : : ; r0k be the roots of T1; : : : ; Tk . Fori 2 [1; : : : ; k � 1], add edge (r0i; r0i+1). Add the new roots r0 and r1 and edges (r0; r01) and(r0k; r1). For every tree-chain G, we use the notation R(G) to denote the tree-chain con-structed from G by swapping r0 and r1 . Let P be a set containing one representative fromeach isomorphism class of tree-chains. (Note that the two roots of a tree-chain are distin-guishable, and any isomorphism of tree-chains must respect this distinction.)In the following de�nition of \colouring", colours will encode information that is lost whileforming the core. We will use colourings to recover an original rooted multigraph from itscore. A colouring of a rooted multigraph G is a function � that maps each vertex in thevertex set of G to an element of B and each edge in the edge multiset of G to an elementof P .We will describe a function � that maps each coloured rooted multigraph (G;�) to anisomorphism class. �(G;�) is constructed as follows, where V denotes the vertex set of Gand E denotes the edge multiset of G: Start with the collection of rooted trees f�(v) j v 26



V g [ f�(e) j e 2 Eg. Let the roots of the resulting forest be the roots of those trees thatcorrespond to the roots of G. For each edge (u;w) 2 E with u � w, identify root r0 of�(u;w) with the root of the tree �(u) and root r1 of �(u;w) with the root of the tree �(w).Relabel to avoid name clashes. Let �(G;�) be the isomorphism class of the resulting rootedmultigraph.Given a degree sequence n, let m = 12Pi i ni and let Bn be the lexicographically leastpartition of the point set Rn = f1; : : : ; 2mg into blocks (subsets) such that, for each i, thereare ni blocks of size i. A d-rooted con�guration C with degree sequence n [1, 4] is a tuple(Rn; Bn; P; r0; : : : ; rd�1) where P is a partition of the points in Rn into pairings, which areunordered pairs of points and r0; : : : ; rd�1 are distinct blocks (roots). We use the phrasecon�guration to mean a 0-rooted con�guration and the phrase rooted con�guration to meana d-rooted con�guration for any d (including d = 0). We let Multigraph (C) denote therooted multigraph obtained from C by identifying the points in each block. We say that C isconnected if Multigraph (C) is connected. If n is degenerate, let Cn be the set containing the1-rooted con�guration with degree sequence n. For all other irreducible degree sequences n,let Cn be the set containing all connected unrooted con�gurations with degree sequence n.A colouring of a rooted con�guration C = (R;B; P ) is a function � that maps eachblock b 2 B to an element of B and each pairing p 2 P to an element of P . The function � isde�ned in terms of the corresponding function for rooted multigraphs. In particular, �(C; �)is de�ned to be equal to �(Multigraph (C); �). We use the notation Cn;n0 to denote the setf(C; �) j C 2 Cn0 and �(C; �) 2 eGn;n0g.For degree sequence n0 let Kn0 denote the Kranz group [6] operating on the points in Rn0 .Each permutation � in Kn0 is associated with a tuple (�0; : : : ; �jBn0 j) where �0 is a permu-tation of blocks and �i for i > 0 is a permutation of the points within block i. To apply �to Rn0 , one �rst permutes the blocks using �0 , and then permutes the points within block i(for each i) using �i . A rooted con�guration C1 = (Rn0 ; Bn0 ; P1; r0;1; : : : ; rd�1;1) is said to beisomorphic to a rooted con�guration C2 = (Rn0 ; Bn0 ; P2; r0;2; : : : ; rd�1;2) if there is a permu-tation � = (�0; : : : ; �jBn0 j) 2 Kn0 such that for all pairings (u; v) 2 P1 we have (�(u); �(v))in P2 and for all j 2 [0; d � 1] we have �0(rj;1) = rj;2. The coloured rooted con�gurationC 01 = (C1; �1) is said to be isomorphic to the coloured rooted con�guration C 02 = (C2; �2)if there is an isomorphism � = (�0; : : : ; �jBn0 j) between C1 and C2 such that for all blocksb 2 Bn0 , �1(b) = �2(�0(b)) and for all pairings (u; v) 2 P1 , �1(u; v) = �2(�(u); �(v)). Notethat if (C1; �1) �= (C2; �2) and (C1; �1) 2 Cn;n0 then (C2; �2) 2 Cn;n0 . We use the notationeCn;n0 to denote the set of isomorphism classes in Cn;n0 . The automorphism group of rootedcon�guration C (denoted Aut(C)) is the group of isomorphisms between C and itself. Thecoloured automorphism group of rooted coloured con�guration (C; �) (denoted Aut(C; �)) isthe group of isomorphisms between (C; �) and itself.Lemma 2.6 If G 2 Gn and C is a rooted con�guration such that Multigraph (C) �= Core (G)7



then there is a colouring � such that 	(G) = �(C; �).Proof: The process of forming core Core (G) with vertex set V and edge multiset Ecan be viewed as deleting a tree h(v) for each node v 2 V and a tree-chain h(u; v) foreach edge (u; v) 2 E . Suppose that �(Multigraph (C)) = Core (G). Let � be a colouringof Multigraph (C) de�ned by �(v) = h(�(v)) and�(u; v) = �h(�(u); �(v)) if �(u) < �(v),R(h(�(u); �(v))) otherwise,where we assume the endpoints of the edge (u; v) are normalised so that u < v. ThenG 2 �(Multigraph (C); �) so G 2 �(C; �). 2Lemma 2.7 Suppose that C1 and C2 are rooted con�gurations with irreducible degree se-quence n0 . If �(C1; �1) = �(C2; �2) then (C1; �1) �= (C2; �2).Proof: Let G1 be the multigraph obtained in the construction of �(C1; �1). Make surethat the relabelling that occurs in the construction of G1 does not change the labels of thevertices of Multigraph (C1). Similarly, let G2 be the multigraph obtained in the constructionof �(C2; �2) in which the labels of the vertices of Multigraph (C2) are unchanged. Now, by thede�nition of �, Core (G1) = Multigraph (C1) and Core (G2) = Multigraph (C2). Suppose that�(G1) = G2 . By Lemma 2.5, �(Multigraph (C1)) = Multigraph (C2). Thus, for any vertex vin the vertex set of Multigraph (C1), �1(v) = �2(�(v)). Furthermore, for any unorderedpair (u; v) of vertices, and any colour `, the number of copies of (u; v) in the edge multisetof Multigraph (C1) that are coloured ` by �1 is equal to the number of copies of (�(u); �(v))in the edge multiset of Multigraph (C2) that are coloured ` by �2 . Hence, � can be extendedto an isomorphism mapping (C1; �1) to (C2; �2). 2Corollary 2.8 There is a bijection between eGn;n0 and eCn;n0 .Proof: The corollary follows from Lemma 2.6 and Lemma 2.7. 2Lemma 2.9 Each isomorphism class in eCn;n0 comes up jKn0 j times inf(C; �; �) j (C; �) 2 Cn;n0 and � 2 Aut(C; �)g:Proof: This is a straightforward application of Burnside's Lemma [6]. 28



3 Sampling irreducible multigraphsThe goal of this section is a polynomial-time algorithm that takes as input an irreducibledegree sequence, n, and samples, uniformly at random (u.a.r.), a pair (C; �), where C 2 Cnis a rooted connected con�guration with degree sequence n, and � 2 Kn is an automorphismof C . This is straightforward if n is degenerate, so we focus on the non-degenerate case inwhich n0 = n1 = n2 = 0 and ni > 0 for some i 2 [3; : : : ;�]. In this case, Cn is the set ofconnected unrooted con�gurations with degree sequence n. (The con�gurations are unrootedbecause every connected multigraph in which each vertex has degree at least 3 has morethan one cycle.) Thus, our goal is equivalent to generating, u.a.r., an unlabelled connectedmultigraph (possibly with self-loops) with degree sequence n. So we obtain a solution to ourbasic problem in the special case in which all vertex degrees are at least 3. The techniquesdescribed in Section 2 provide a reduction from the case of general degrees sequences to therestricted ones considered here, as we shall see in Section 5.Our approach borrows freely from Bollob�as's treatment of unlabelled regular graphs [3],though we �nd it more convenient to work throughout with con�gurations in place of (multi)graphs.Recall that 2m = Pi ini . We say that a triple (s; s2; s3) of non-negative integers is legal if2s2+3s3 � s � 2m. For every legal triple (s; s2; s3), let Kn(s; s2; s3) denote the set of permu-tations in Kn that contain exactly s2 transpositions, s3 3-cycles, and move exactly s pointsin all. For convenience, we introduce s4 = (s� 2s2 � 3s3)=4; note that s4 is not necessarilyan integer. Of course, only three of the four parameters need to be speci�ed in any situation,but the freedom to move between di�erent triples according to context is convenient.To generate the pair (C; �) we �rst select a legal triple (s; s2; s3), then a permutation� = Kn(s; s2; s3), and �nally a con�guration C 2 Fix�, where Fix� denotes the set ofcon�gurations with degree sequence n that are �xed by �. In the unlikely event that C isnot connected, we return ? (see Figure 1 and Theorem 3.3). (Informally, we say that thealgorithm \rejects" if ? is returned, and that it \accepts" otherwise.) For every legal triple(s; s2; s3), de�neFn(s; s2; s3) = &4� (2m)!m! 2m ��6s2m2�s2=2�3s3m3�s3=2�21s4m4 �s4=2' : (1)The signi�cance of Fn(s; s2; s3), as we shall see presently, is that it is a uniform upper boundon jFix�j over all � 2 Kn(s; s2; s3). Note that in equation (1), and throughout the proof ofLemma 3.1 (below), we shall encounter expressions such as�6s2m2�s2=2that are formally unde�ned when s2 (or s3 or s4 or s) is equal to 0. The intended meaning isthe limit as the variable in question (here s2) tends to 0 from above. In all cases the upshot is9



that the factor concerned is 1 when the variable is 0. Note that Fn(s; s2; s3) is the square-rootof a rational number, rounded up, and hence can be computed exactly in polynomial time.De�ne Wn(s; s2; s3) = jKn(s; s2; s3)j � Fn(s; s2; s3); (2)and let Wn = Xs;s2;s3Wn(s; s2; s3); (3)where the sum is over all legal triples (s; s2; s3). Observe that Wn is a bound on the size ofthe set of pairs (C; �) we wish to sample from.The proposed sampling procedure is conceptually very simple, and is presented in Figure 1towards the end of the section. Its analysis rests on the following technical lemma.Lemma 3.1 With Fn(s; s2; s3), Wn(s; s2; s3) and Wn de�ned as above:1. jFix()j = 14Fn(0; 0; 0), where () denotes the identity permutation in Kn;2. jFix �j � Fn(s; s2; s3), for all � 2 Kn(s; s2; s3);3. Wn � AWn(0; 0; 0), where A depends only on �.Proof: The total number of con�gurations with degree sequence n is equal to the numberof ways of choosing m pairings in a set of size 2m. All con�gurations are �xed by the identitypermutation, so we havejFix()j = (2m� 1)(2m � 3) � � � 3 � 1 = (2m)!m! 2m :Comparing the above expression with the de�nition of Fn(s; s2; s3) already gives us part (1)of the lemma.An asymptotic expression for the number of con�gurations can be obtained using theusual Stirling's approximation. For our purposes, it is convenient to have absolute upper andlower bounds, which can be obtained using a more re�ned version of Stirling's approximationdue to Robbins [19] (or see [5, p. 4]):�2me �m � (2m)!m! 2m � p2�2me �m: (4)While we are on the subject of Stirling's formula, let us note for future reference the followingslight strengthening of a familiar bound on binomial coe�cients:tXi=0 �ni � � �ent �t: (5)To verify this inequality, �rst observe that the right-hand side is monotonically increasing(viewed as a real function) for t 2 (0; 1), and is greater than 2n for t � n=3. In the case10



t < n=3, the ratio between successive terms on the left-hand side exceeds 2, so the sum isbounded by the sum of a geometric series with common ratio 12 . ThustXi=0 �ni � � 2�nt � � 2ntt! � nt�et�t;again using a su�ciently strong form of Stirling's approximation.Consider C 2 Fix�, with � 2 Kn(s; s2; s3). Each point in a 3-cycle of � must be pairedwith a point in a di�erent three cycle, and the other two pairings of C incident at the �rstcycle are then forced. Thus jFix�j = 0 unless s3 is even, in which case C induces a set of\higher level pairings" on the 3-cycles of �. Given these higher level pairings, there are 3s3=2ways to choose the pairings themselves. In all there ares3! 3s3=2(s3=2)! 2s3=2 � p2�3s3e �s3=2ways to choose the restriction of C to the 3-cycles of �. For transpositions, the calculation issimilar, except we must now allow for the pairing to join the two points in single transposition.But this new freedom can only blow up the number of choices by (crudely) a factor 2s2 , sothat there are at most p2�8s2e �s2=2ways to choose the restriction of C to the transpositions of �. An optimisation over thedistribution of cycle lengths greater than 3 con�rms that the number of ways of choosing therestriction of C to those cycles is at mostp2�16s4e �s4=2;the bound we would obtain by assuming all the remaining cycles have length exactly 4. Thenumber of ways of extending C to the �xed points of � is clearly bounded byp2�2me �(2m�s)=2 � p2� (2m)!m! 2m ��2me ��s=2;where we have used the other part of inequality (4). Multiplying these four bounds together,recalling s = 2s2 + 3s3 + 4s4 , yields the following upper bound on jFix�j:jFix�j � 4� (2m)!m! 2m ��2es2m2 �s2=2�3e2s38m3 �s3=2�e3s4m4 �s4=2;comparing this expression with equation (1) de�ning Fn(s; s2; s3) gives us the second part ofthe lemma. 11



For the third part, we introduce a more re�ned partitioning of the group Kn accordingto cycle structure. For each cycle of a permutation � 2 Kn , we distinguish whether the cycletouches more than one block of Rn (type 1), or whether its action is entirely con�ned to asingle block (type 2). We write, for example, s2 = s02 + s002 , where s02 is the number of type 1transpositions, and s002 the number of type 2 transpositions. The prime and double primeconvention is applied consistently, so that we write s = s0 + s00 , where s0 is the total numberof points contained in all type 1 cycles, and s00 the number in all type 2 cycles. Naturally, s04and s004 are de�ned by s0 = 2s02 + 3s03 + 4s04 and s00 = 2s002 + 3s003 + 4s004 . Denote byKn(s; s02; s03; s00; s002; s003) � Kn(s0 + s00; s02 + s002; s03 + s003)the set of permutations with s02 type 1 transpositions, s002 type 2 transpositions, and so on.The strategy for establishing the �nal part of the lemma is: (i) compute an upper boundon jKn(s0; s02; s03; s00; s002; s003)j, (ii) optimise over the feasible region to obtain an upper boundon jKn(s; s2; s3)j and hence on Wn(s; s2; s3), and (iii) sum over feasible s; s2; s3 to obtain anupper bound on Wn . Our upper bound for (i) will be of the form �0(s02; s03; s04)��00(s002; s003 ; s004),where �0 and �00 are bounds on the number of ways of choosing the type 1 cycles and type 2cycles, respectively. The latter is more tractable, so we deal with it �rst.Let � 2 Kn(s0; s02; s03; s00; s002 ; s003). The number of ways of choosing the i � s002 blockscontaining the s002 type 2 transpositions in � is at mosts002Xi=0 �ni � � �ens002 �s002 ;using inequality (5), and so the total number of ways of choosing the transpositions themselvesis at most �ecns002 �s002 ;where c = �!. Similar bounds hold for the longer cycles, yielding an overall bound of�00(s002; s003 ; s004) = �ecns002 �s002�ecns003 �s003�ecns004 �s004 (6)on the number of ways of choosing all the type 2 cycles.We now consider the type 1 cycles of �. Denote by B = B(s0; s02; s03) the set of integertriples (b; b2; b3) satisfyingb2; b3 � 0; 2b2 + 3b3 � b; 3b+ [2s02 � 6b2] + [3s03 � 9b3] � s0; (7)where [x] = maxfx; 0g. The intended interpretation of (b; b2; b3) is as follows: b is the totalnumber of blocks moved by �, b2 is the number of transpositions of blocks induced by �, and12



b3 is the number of 3-cycles on blocks induced by �. The signi�cance of B is that it contains,as we shall demonstrate, all feasible choices for (b; b2; b3) consistent with (s0; s02; s03).Only the �nal inequality of (7) requires explanation. The weaker inequality 3b � s0 is easyenough to justify, as each block contains at least 3 points, so we just have to account for theother two terms. If a block contains p � 4 points, regard p� 3 of the points as constitutingan \excess." All s02 type 1 transpositions in � must be contained within the 2b2 blocks thatare transposed by �. If 2s02 > 6b2 , then 2s02 � 6b2 points in type 1 cycles must be in theexcess. Similarly, if 3s03 > 9b3 , then 3s03 � 9b3 further points in type 1 cycles must be in theexcess. This justi�es the �nal inequality in (7).Applying a crude bound on the number of ways of choosing the type 1 cycles, given(b; b2; b3), we have X(b;b2;b3)2B (cn)bb2! b3! � (s0 + 1)3max� (cn)bb2! b3! : (b; b2; b3) 2 B� (8)as a bound on the number of ways of choosing the type 1 cycles. The right hand sideof (8) presents a small optimisation problem. We claim that at the maximum, b2 � bs02=3c(otherwise b2  b2 + 1 and b b+ 2 leads to an improvement), and b3 � bs03=3c (otherwiseb3  b3 + 1 and b b+ 3 does), and in any case b � s0=3. So, from (8), and using the lowerbound b! � (b=e)b , the number of ways of choosing the type 1 cycles is at most �0(s02; s03; s04),where �0(s02; s03; s04) = (s0 + 1)5(cn)s0=3�3es02�s02=3�3es03�s03=3 (9)= (s0 + 1)5�3ec2n2s02 �s02=3�3ec3n3s03 �s03=3(cn)4s04=3: (10)The extra factor (s0 + 1)2 in (9) takes account of the 
oor functions. Our upper bound forjKn(s0; s02; s03; s00; s002 ; s003)j is thusjKn(s0; s02; s03; s00; s002 ; s003)j � �0(s02; s03; s04)� �00(s002 ; s003; s004);where �0(s02; s03; s04) and �00(s002; s003; s004) are as de�ned in (6) and (10).The next stage is to bound jKn(s; s2; s3)j. Clearly we havejKn(s; s2; s3)j � XS �0(s02; s03; s04)� �00(s002; s003; s004)� (s+ 1)3maxS n�0(s02; s03; s04)� �00(s002; s003; s004)o; (11)13



where S is the regionS = n(s02; s03; s04; s002 ; s003; s004) 2 (R+)6 :s02 + s002 = s2; s03 + s003 = s3; and s04 + s004 = s4oIf we bound the (s0 + 1)5 factor in �0 simply by (s+ 1)5 , then the factors in s02; s002 , in s03; s003 ,and in s04; s004 appearing in the objective function of (11) separate out, and we can optimiseover each pair separately.� The s4 factor is (cn)4s04=3�cens004 �s004 � (cn)4s4=3; (12)since the maximum is achieved at s04 = s4 and s004 = 0.� The s3 factor is�3ec3n3s03 �s03=3�e3c3n3(s003)3 �s003=3 � 2�e3c3n3s03 �s03=3�e3c3n3s003 �s003=3 (13)� 2�2e3c3n3s3 �s3=3: (14)Inequality (13) uses the fact that x�x � 2x�x=3 for all positive x, and inequality (14)follows from symmetry and unimodality.� The s2 factor is�3ec2n2s02 �s02=3�e3c3n3(s002)3 �s002=3 � 2�e3c3n3(s02)2 �s02=3�e3c3n3(s002)2 �s003=3� 2�4e3c3n3s22 �s2=3; (15)by similar considerations to the previous case.Plugging (12), (14) and (15) into (11) givesjKn(s; s2; s3)j � 4(s+ 1)8�4e3c3n3s22 �s2=3�2e3c3n3s3 �s3=3(cn)4s4=3;which, on recalling the de�nitions (1) and (2) of Fn(s; s2; s3) and Wn(s; s2; s3), leads to:Wn(s; s2; s3) � 32(s + 1)8 � (2m)!m! 2m �� c2s2�s2=6�c3s3n3 �s3=6�c4s34n4 �s4=6; (16)where c2 , c3 and c4 are constants depending only on c and hence only on �. (The multiplica-14



Step 1 If n is degenerate, let C be the sole member of Cn , choose � 2 Aut(C)u.a.r., and output (C; �). Otherwise, perform Steps 2{6.Step 2 Choose the triple (s; s2; s3) with probability Wn(s; s2; s3)=Wn .Step 3 Choose � 2 Kn(s; s2; s3), u.a.r.Step 4 Choose C 2 Fix�, u.a.r.Step 5 If C is not connected, output ? and halt.Step 6 With probability jFix �j=Fn(s; s2; s3) output (C; �); otherwise output ?.Figure 1: Procedure ConfigSample for sampling a pair (C; �)tive factor has been boosted from 16 to 32 to allow for the ceiling function in the de�nitionof Fn(s; s2; s3).)To �nish o� the proof of the �nal part of the lemma, we just need to sum (16) over alllegal triples (s; s2; s3):Wn = Xs;s2;s3Wn(s; s2; s3)� 32 � (2m)!m! 2m �Xs2 � c2s2�s2=6 Xs3;s4(2s2 + 3s3 + 4s4 + 1)8�c3�3n2 �s3=6�c4�364n �s4=6� 32 � (2m)!m! 2m �Xs2 � c2s2�s2=6(2s2 + 1)8� 4c0 � (2m)!m! 2m = c0Wn(0; 0; 0);where c0 depends only on c2 , and hence only on �. 2Lemma 3.2 There is a polynomial-time algorithm for computing jKn(s; s2; s3)j, and hencefor computing Wn(s; s2; s3) and Wn. There is also a polynomial-time algorithm for sampling,uniformly at random, a permutation from Kn(s; s2; s3).Proof: By partitioning jKn(s; s2; s3)j, �rst according to the length of the �rst inducedcycle on blocks, and then on the exact pattern of cycles within those blocks (at most �! pos-sibilities), we obtain an inductive formula for jKn(s; s2; s3)j. Only polynomially many distinctassignments to the parameters n, s, s2 , and s3 arise during the induction, so jKn(s; s2; s3)jcan be computed in time polynomial in n by dynamic programming. 2Theorem 3.3 The procedure ConfigSample presented in Figure 1 is correct: (a) the prob-ability that the algorithm returns a value other than ? is bounded away from 0; (b) for anycon�guration C 2 Cn with degree sequence n, and any automorphism � 2 Aut(C) of C , the15



probability that the pair (C; �) is returned by ConfigSample is a constant, namely W�1n ,independent of C and �; and (c) the procedure ConfigSample runs in time polynomial in n,provided the maximum degree � is bounded. Indeed, we have the following strengthening ofthe �rst part: (d) the probability that a pair with � = () is returned is bounded away from 0.Proof: By the second part of Lemma 3.1, the acceptance probability in Step 6 is wellde�ned. By the third part of Lemma 3.1, the particular triple (0; 0; 0) is selected in Step 2 withprobability at least A�1 , which is bounded away from 0. This forces the identity permutationto be selected in Step 3. In this case, the probability of acceptance in Step 5 is bounded awayfrom 0. (By Bollob�as and Bender and Can�eld (See [5], page 48), the probability that arandom con�guration with degree sequence n corresponds to a simple graph is boundedaway from 0. Each simple graph corresponds to an equal number of con�gurations, and byWormald [24], the probability that a simple graph with degree sequence n is connected isbounded away from 0.) By the �rst part of Lemma 3.1, we know that the pair (C; ()) survivesStep 6 with probability 14 . This deals with (a) and its strengthening (d).Now consider an arbitrary pair (C; �) satisfying C 2 Fix�, and suppose � 2 Kn(s; s2; s3).For (C; �) to be generated, a certain well de�ned event must occur at each step of thealgorithm. The probability that (C; �) is generated is simply the product of these fourprobabilities: Wn(s; s2; s3)Wn � 1jKn(s; s2; s3)j � 1Fix� � Fix�Fn(s; s2; s3) = 1Wn ;which is clearly independent of C and �, as asserted in (b).According to Lemma 3.2 the procedure can be implemented to run in polynomial time.24 Sampling unlabelled treesThe previous section showed how to sample, u.a.r., an unlabelled connected multigraph witha speci�ed irreducible non-degenerate degree sequence. In Section 5 we will show how tosample, u.a.r., an unlabelled connected multigraph with any speci�ed degree sequence n.Our basic strategy will be to select an irreducible degree sequence n0 such that n0 � n withthe \appropriate" probability, sample u.a.r. an unlabelled connected multigraph G0 withdegree sequence n0 , and �nally colour G0 to obtain a multigraph G with degree sequence n.(G0 will be the core of G as de�ned in Section 2.) Instead of constructing G0 directly, we willselect a pair (C 0; �) as described in section 3 such that C 0 2 Cn0 and � 2 Aut(C 0). Then wewill choose a colouring � such that �(C 0; �) 2 eGn . The process of choosing n0 and � involvescounting and sampling unlabelled rooted trees. We provide the relevant tree results in thissection. 16



The basic framework in which we will work is as follows: We will consider \structures"(trees with one or more root), each of which has a \weight" (a (�+2)-tuple of integers) Theweight of a d-rooted n-vertex tree G (which is denoted �(G)) is the tuple (n� d; i0; : : : ; i�),where ir is the number of vertices of degree r, excluding the roots. We let T1 denote the1-rooted tree consisting of a single vertex and T2 denote the 2-rooted tree consisting of asingle edge. We de�ne the following operations on trees. If G is a 1-rooted tree, we let [d]Gdenote the 1-rooted tree obtained by taking d copies of G, identifying the roots of the dcopies, and then relabelling the remaining vertices of trees 2; : : : ; d to avoid name clashes. IfG and G0 are 1-rooted trees, we let G�G0 denote the tree obtained by identifying their rootsand relabelling the remaining vertices of G0 to avoid name clashes. If G is a tree-chain andG0 is a 1-rooted tree then we let G � G0 denote the tree-chain constructed from G and G0as follows. Root r1 of G is is disconnected from its neighbour, v, in G, and is connected tothe root of G0 . The root of G0 is connected to v. The vertices in G0 are then relabelled goavoid name clashes. If G is a d-rooted tree and G0 is a d0-rooted tree, we let G+G0 be the(d+d0)-rooted tree obtained by relabelling the vertices and roots of G0 to avoid name clashes.Following Flajolet, Zimmerman and Van Cutsem [11], we form sets of structures induc-tively from fT1g and fT2g using the following constructors.� S + S0 : The disjoint union of S and S0� For d > 1, [d]S : f[d]G j G 2 Sg� S � S0 : fG�G0 j G 2 S;G0 2 S0g� If all structures in S0 have a single root of a given degree, S �S0 : fG�G0 j G 2 S;G0 2S0g� S � S0 : fG+G0 j G 2 S;G0 2 S0gThe constructors + and � are from [11], which also considers other constructors. We use thenotation m �S as an abbreviation for the disjoint union of m copies of S , S+ � � �+S , and weuse the notation Sm as an abbreviation for the Cartesian product of m copies of S , S � � �S .A speci�cation of sets S0; : : : ; Sr (which is sometimes referred to as a speci�cation of Sr)is de�ned to be a sequence of equationsm0 � S0 = 	0() ; m1 � S1 = 	1(S0) ; : : : ; mr � Sr = 	r(S0; : : : ; Sr�1) ;where m0; : : : ;mr are positive integers and, for i 2 [0; : : : ; r], 	i is a term built from fT1g,fT2g, and S0; : : : ; Si�1 using the constructors. An `-speci�cation is a speci�cation using` constructors.1 For every set S of structures, we use the notation S(i0; : : : ; ij) to denote the1For this, we count the constructor [d] in [d]S as d constructors.17



set fs 2 S j for some ij+1; : : : ; i�+1 , �(s) = (i0; : : : ; i�+1)g:The generating function for the set S is a function s(x0; : : : ; x�+1) such that the coe�cientof xi00 � � � xi�+1�+1 in s(x0; : : : ; x�+1), which is denoted[xi00 � � � xi�+1�+1 ] s(x0; : : : ; x�+1);is equal to jS(i0; : : : ; i�+1)j. The following is a straightforward extension of a theorem ofFlajolet et al. [11]Theorem 4.1 Given an `-speci�cation for sets S0; : : : ; Sr , a set of equations for the corre-sponding generating functions is obtained automatically by the following translation rules:m � S = S0 + S00 ) s(x0; : : : ; x�+1) = (1=m)(s0(x0; : : : ; x�+1) + s00(x0; : : : ; x�+1));m � S = [d]S0 ) s(x0; : : : ; x�+1) = (1=m)s0(xd0; : : : ; xd�+1);m � S = S0 � S00 ) s(x0; : : : ; x�+1) = (1=m)(s0(x0; : : : ; x�+1) � s00(x0; : : : ; x�+1));m � S = S0 � S00 ) s(x0; : : : ; x�+1) = (xr+2=m)(s0(x0; : : : ; x�+1)� s00(x0; : : : ; x�+1));where r is the degree of the roots of the structures in S00,m � S = S0 � S00 ) s(x0; : : : ; x�+1) = (1=m)(s0(x0; : : : ; x�+1)� s00(x0; : : : ; x�+1)):Furthermore, there is a polynomial p such that all coe�cients[xi000 : : : xi0�+1�+1 ]Sj(x0; : : : ; x�+1)for which j 2 [0; : : : ; r] and every i0
 is at most i
 can be computed in at most p(i0; : : : ; i�+1; r; `)steps and a member of Sj(i0; : : : ; i�+1) can be sampled u.a.r. in p(i0; : : : ; i�+1; r; `) steps.Proof: The coe�cients of S0; : : : ; Sr can be computed in order and stored in a table.Sampling u.a.r. from Sj(i0; : : : ; i�+1) is accomplished as follows. If m �Sj = fT1g or m �Sj =fT2g, this is straightforward. If m � Sj = Sa + Sb , sample u.a.r. from Sa(i0; : : : ; i�+1) withprobability jSa(i0; : : : ; i�+1)j=jSj(i0; : : : ; i�+1)j;and from Sb(i0; : : : ; i�+1) with the remaining probability. If m � Sj = [d]Sa then recursivelysample from Sa(i0=d; : : : ; i�+1=d) and make d copies of the resulting structure. If m � Sj =Sc � Sd , evaluate Ni0 = jSc(i00; : : : ; i0�+1)j � jSd(i0 � i00; : : : ; i�+1 � i0�+1)jfor all tuples i0 = (i00; : : : ; i0�+1) (other than i0 = (0; : : : ; 0) and i0 = (i0; : : : ; i�+1)) in whichevery i0
 satis�es 0 � i0
 � i
 . Choose i0 with probability Ni0=Pj0 Nj0 . Recursively samplestructures from Sc(i00; : : : ; i0�+1) and Sd(i0� i00; : : : ; i�+1� i0�+1) and combine the structures.18



The cases in which m � Sj = Sc � Sd and m � Sj = Sc � Sd are handled similarly, except that inthe case m � Sj = Sc � Sd we replace ir+2 with ir+2 � 1. 2We will now use the above framework to show how to count and sample unlabelled rootedtrees. Let Sr be the set containing one representative from each isomorphism class in theset of 1-rooted trees with degree-r roots. We will �rst give a sequence of equations to de�nethe sets Sr(n) in terms of the constructors and we will then argue that the de�nition is aspeci�cation (that is, the equations can be ordered in such a way that each equation dependsonly on sets previously de�ned). The set of equations is adapted from Nijenhuis and Wilf [15].First, note that S0(0) = fT1g and S0(n) = ; for n 6= 0. Furthermore, Sr(0) = ;, for r 6= 0.For n > 0, we haveS1(n) = X0�r���1i0+���+i�=n�1Sr(n� 1; i0; : : : ; ir; ir+1 � 1; ir+2; : : : ; i�); andn � Sr(n) = X1�s�r1�sd�nd � ([s]S1(d+ 1)� Sr�s(n� sd)) ; for r > 1.The �rst equation expresses the correspondence between n + 1-vertex trees rooted at avertex of degree 1, and n-vertex trees with unrestricted root degree. The second equationexpresses a construction for trees which has the property that each unlabelled n + 1-vertextree is represented n times: choose numbers s; d satisfying 1 � s � r and 1 � sd � n; choosea tree � 0 with n+1� sd vertices, rooted at a vertex of degree r� s, and a tree � 00 with d+1vertices rooted at a vertex of degree 1; take s copies of � 0 and one copy of � 00 and identifyall the roots (the identi�ed vertices constitute the new root). Make d copies of the resultingrooted tree. Nijenhuis and Wilf [15, p. 274] give a combinatorial proof of the equation byestablishing an explicit bijection between the �gures enumerated by the left and right sides.To see that the sequence of equations given is a speci�cation, consider a 2-dimensionaltable. The �rst r + 1 entries of column n correspond to sets S0(n); : : : ; Sr(n) (in the givenorder). The remaining entries correspond to the sets [s]S1(n=s + 1), where s > 1 dividesn. Note that the equation corresponding to each table entry only uses sets corresponding tosmaller rows or columns of the table. Thus, we have a speci�cation for the sets Sr(n).As we described in the beginning of this section, our algorithm in Section 5 will sampleu.a.r. a colouring � of a con�guration C = (Rn0 ; Bn0 ; P ) such that �(C; �) 2 eGn . Recallthat a colouring � of C is a mapping from Bn0 to B (the set of block-colours), and fromP to P (the set of pairing-colours). The blocks in Bn0 are ordered and the pairings in Pcan be ordered according to the ordering of the blocks, so a colouring may be speci�ed as asequence of n0 block-colours followed by a sequence of m0 = 12Pi in0i pairing colours. Thus,the set of available colourings depends only on n and n0 . Let �n;n0 denote the set of availablecolourings. Given the speci�cation for the set Sr(n), we can derive speci�cations for B , P ,19



and therefore, �n;n0 . We start by observing that B = S0 + � � � + S�. Let P ` denote theset containing one representative from each isomorphism class of length-` tree-chains (thus,P = P 0 + P 1 + P 2 + � � �). A speci�cation for P is as follows:P0 = fT2g:P` = (P`�1 � S0) + � � � + (P`�1 � S��2):Let Ln0;r0;:::;rn0 denote the set of colourings of a con�guration with degree sequence n0 inwhich the block-colouring for the ith block is a tree whose root has degree ri . Then the setLn0;r0;:::;rn0 can be speci�ed using the equationLn0;r0;:::;rn0 = Pm0 � Sr0 � � � Srn0 :Finally, note that �n;n0 is the disjoint union, over all (polynomially many) choices of r0; : : : ; rn0of Ln0;r0;:::;rn0 (n� n00; n0 � n000; : : : ; n� � n00�), wheren00i = ���j : 1 � j � n0 and vj + rj = i	��;where vi denotes the size of the ith block in Bn0 .Thus, we have a speci�cation for �n;n0 . While some of the sets used in the speci�cationsuch as P and S0 ,. . . ,S� are in�nite, these sets are made up by taking the disjoint unionof �nite subsets. Accordingly, there is a polynomial-sized speci�cation for �n;n0 and thefollowing is a corollary of Theorem 4.1.Corollary 4.2 There is a polynomial p such that computing j�n;n0 j and sampling u.a.r. from�n;n0 take at most p(n) steps.5 Sampling unlabelled multigraphsLet Hn be the set of connected multigraphs with degree sequence n and vertex set Vn andlet eHn be the set of isomorphism classes of Hn . In this section, we will describe a procedureMultiSample that samples u.a.r. from eHn . The procedure will �rst (see Steps 1{4 ofFigure 2) sample u.a.r. from eGn and will then use rejection to obtain a uniform distributionon eHn .All the components of MultiSample are now ready: Section 2 introduced the machinerythat we will use to reduce the general problem to the special case in which n is irreducible,Section 3 solved the irreducible case, and Section 4 described the tools that we will use tolift the solution for the irreducible case up to a solution for general degree sequences. It onlyremains to assemble the pieces. 20



Step 1 Select a degree sequence n0 such that n0 � n according to the probabilitydistribution pn .Step 2 Select a pair (C; �) using the procedure ConfigSample developed inSection 3 (see Figure 1), with parameter n0 . If that procedure returns ?,then output ? and halt; otherwise the result is a pair selected u.a.r. fromthe set of pairs (C; �), with C 2 Cn0 and � 2 Aut(C).Step 3 Select a colouring � u.a.r. from �n;n0 .Step 4 If � 2 Aut(C; �) then let G be any rooted multigraph in �(C; �); other-wise output ? and halt.Step 5 If G has at least two cycles then output 	(G). Otherwise, let k be thenumber of non-isomorphic 1-rooted multigraphs with the same vertex andedge set as G. (The choice of root is arbitrary in the case of trees, but mustbe on the cycle in the case of unicyclic multigraphs.) With probability k�1output 	(G); otherwise output ?.Figure 2: Procedure MultiSample for sampling u.a.r. from eHn .Given a degree sequence n, let the probability distribution pn assign probabilitypn(n0) = Wn0 j�n;n0 jM jKn0 j : (17)to irreducible degree sequences satisfying n0 � n, and zero probability to the others. Here,M =Xn0 Wn0 j�n;n0 jjKn0 jis the normalising factor required to form a probability distribution. (The sum is over ir-reducible degree sequences n0 such that n0 � n. The fact that this is the right summationfollows from Observation 2.3.) The signi�cance of pn is that it is the \correct" distributionfrom which to sample the degree sequence of the core. This is the �nal ingredient in thesampling procedure MultiSample, which is presented in Figure 2.Lemma 5.1 The procedure MultiSample presented in Figure 2 is correct: (a) the probabil-ity that the algorithm produces an output other than ? is 
(n�1); (b) for each isomorphismclass U 2 eHn , the probability that U is returned by MultiSample is a constant, namelyM�1 , independent of U ; and (c) the procedure MultiSample runs in time polynomial in n,assuming the maximum degree � is bounded.Proof: The procedure successfully completes Step 2 precisely if some value other than ? isreturned by procedure ConfigSample; the probability of this event is bounded away from 0,by part (a) of Theorem 3.3. Indeed, part (d) of that theorem tells us more: namely that the21



automorphism � 2 Aut(C) returned by ConfigSample is the identity with probabilitybounded away from 0. But if � = (), Step 4 is guaranteed to be successful. The probabilitythat Step 5 is successful it at least 1=n. This completes the proof of (a).We now proceed to compute the probability that a certain isomorphism class U 2 eHnappears as output. We start by showing that, after Step 4, the probability that G is in anygiven class in eGn is M�1 . Let U be a class in eGn . By Lemma 2.4, U has a uniquely de�nedcore with degree sequence n0 , say. By Lemma 2.7, A condition for U to be returned in Step 4is that the degree sequence n0 is selected in Step 1, an event which occurs with the probabilitypn(n0), given in equation (17). Now �x attention on a particular triple (C; �; �), satisfyingC 2 Cn0 and � 2 Aut(C; �). By Theorem 3.3, the probability that (C; �; �) is selected inSteps 2 and 3, conditioned on the particular choice of degree sequence n0 , is (Wn0 j�n;n0 j)�1 .By Corollaries 2.8 and 2.9, exactly jKn0 j of these triples correspond to the desired output U .Thus, again conditioned on the choice of n0 , the probability that U is returned isjKn0 jWn0 j�n;n0 j :Multiplying this expression by the probability (17) that degree sequence n0 is selected inStep 1, we see that the overall probability that U is returned at the end of Step 4 is aconstant, in fact M�1 . If U 2 eHn has at least 2 cycles, it comes up once in eGn . Otherwise, itappears k times in eGn , where k is as in Figure 2. By accepting U only with probability k�1 ,the output distribution after Step 5 is uniform on eHn .Step 1 is polynomial time by Lemma 3.2 and Corollary 4.2; Step 2 is polynomial timeby Theorem 3.3; and Step 3 by Corollary 4.2. Step 4 is clearly polynomial time. Step 5 isreducible to isomorphism of 1-rooted trees, which can conveniently be decided by a recursivecanonical labelling scheme: if the root is the only vertex assign it label (); otherwise letl1; l2; : : : ; lt be the labels of the t subtrees of the root, ordered lexicographically, and assignlabel (l1l2 : : : lt) to the root. By induction, two 1-rooted trees are isomorphic i� their rootlabels are equal. Thus, we have established (c). 26 Sampling moleculesIn this section we extend our results to the chemical problem | given a molecular formula,select, uniformly at random, a structural isomer having the given formula. We start byextending the algorithm in section 5 so that it can be used to uniformly sample unlabelledconnected self-loop-less multigraphs with a given degree sequence. For this we use procedureMultiSample, except that if the output has a self-loop, it is rejected. If the degree sequenceof the core is non-degenerate then the core will be a simple graph with probability boundedaway from 0 (see section 3) so the probability of rejection is not too high. If the degreesequence of the core is degenerate then the rejection probability will also be low, provided22



that n is su�ciently large.The modi�ed version of procedure MultiSample, which uniformly samples unlabelledconnected self-loop-less multigraphs with a given degree sequence, solves the following prob-lem: Given a molecular formula in which each atom has a distinct valence, select, uniformlyat random, a structural isomer having the given formula2. We can further modify procedureMultiSample so that it can be used to uniformly sample structural isomers even when themolecular formula has di�erent atoms with the same valence. Formally, we �x t types ofvertices and we interpret a typed degree sequencen0;1; : : : ; n0;t; : : : ; n�;1; : : : ; n�;tas a requirement that a multigraph have ni;j degree-i vertices of type j . An isomorphismbetween typed multigraphs must map each vertex to a vertex of the same type. ProcedureMultiSample can be extended in a straightforward way to give a polynomial-time algorithmthat takes as input a typed degree sequence and selects, uniformly at random, an unlabelledconnected multigraph with the given degree sequence. The generation of the core is as before,except that the de�nition of the group Kn changes since blocks can only be mapped to otherblocks of the same type. The inductive speci�cations in Section 4 must be modi�ed slightly toaccount for the types, so the choice of n0 is modi�ed accordingly. The choice of the colouring �is also modi�ed slightly. The colouring of each block must have a root that has the same typeas the block and a colouring of a pairing between blocks of types i and j must have roots oftypes i and j , respectively. Everything else is as before.Acknowledgements: We thank Jean-Loup Faulon for proposing the problem and explain-ing the chemical applications. We also thank Alan Frieze for suggesting the use of the core.References[1] E.A. Bender and E.R. Can�eld, The asymptotic number of labelled graphs with givendegree sequences, Journal of Combinatorial Theory, Series A 24 (1978) 296{307.[2] C. Benecke, R. Grund, R. Hohberger, A. Kerber, R. Laue and T. Wieland, MOLGEN+,a generator of connectivity isomers and stereoisomers for molecule structure elucidation.Anal. Chem. Acta. 314 (1995) 141{147.[3] B. Bollob�as, The asymptotic number of unlabelled regular graphs, Journal of the LondonMathematical Society 26 (1982) 201{206.2For some chemical applications, such as applications in which valences are variable, it may be appropriateto modify the rejection phase so that some self-loops are allowed in the �nal output.23
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