*

Randomly Sampling Molecules

Leslie Ann Goldberg? Mark Jerrum?

October 23, 1998

Abstract

We give a polynomial-time algorithm for the following problem: Given a degree sequence
in which each degree is bounded from above by a constant, select, uniformly at random,
an unlabelled connected multigraph with the given degree sequence. We also give a
polynomial-time algorithm for the following related problem: Given a molecular formula,

select, uniformly at random, a structural isomer having the given formula.

Keywords Pdlya theory, random graphs, structural isomers.

1 Introduction

In this paper, we give a polynomial-time algorithm for the following problem: Given a degree
sequence in which each degree is bounded from above by a constant, select, uniformly at
random, an unlabelled connected multigraph with the given degree sequence. We also give
a polynomial-time algorithm for the following related problem: Given a molecular formula,
select, uniformly at random, a structural isomer having the given formula. A molecular
formula [18] simply gives the number of atoms of each kind that occur in a molecule. A
structural formula [17] is a method of representing the way in which the atoms in a molecule
are linked together. A structural isomer is a structural formula, viewed as an unlabelled
multigraph in which the vertices are of several different kinds.

Some of the structural isomers corresponding to a given molecular formula are chemically
irrelevant due to geometric (and other) constraints. Nevertheless, counting all of the struc-
tural isomers corresponding to a given formula is a long-standing open problem for which no

practical general solution has been found [18]. Solutions do exist for certain restricted cases

“This work was partially supported by ESPRIT Project no. 21726 — RAND-II. A preliminary version of
this paper apppeared in Proceedings of the 8th ACM-SIAM Symposium on Discrete Algorithms, January 1997.

fleslie@dcs.warwick.ac.uk. Department of Computer Science, University of Warwick, Coven-
try CV4 TAL, United Kingdom. This work was partially supported by ESPRIT LTR Project no. 20244
— ALCOM-IT

imrj@dcs.ed.ac.uk. Department of Computer Science, University of Edinburgh, Edinburgh EH9 3JZ,
United Kingdom.

of chemical compounds [16, 17, 18]. Kerber et al. [2, 21], Faulon [8] and others (see [2]) have
developed (and coded) algorithms for listing all of the structural isomers corresponding to
a given molecular formula. These programs typically allow the user to prescribe and forbid
substructures and some of the programs deal with geometric constraints. These programs are
useful if the number of structural isomers corresponding to the relevant formula is sufficiently
small, so the isomers can all be listed. Faulon has argued [10] that randomly sampling struc-
tural isomers is useful for structural elucidation and molecular design in cases in which the
number of isomers is too large to list them all. He [9] has developed a program for randomly
sampling structural isomers and has used it for chemical applications such as a statistical
study of the potential energy distribution of the isomers of CgH1y and the structural elucida-
tion of several compounds. Faulon’s program applies to a realistic chemical problem including
3-D simulation of molecules and chemical analysis. However, his methods are heuristic. By
contrast, we study an idealisation of the problem (randomly sampling structural isomers with-
out regard to geometric and other chemical constraints) but we achieve rigorous performance
guarantees — polynomial-time computation and exactly uniform generation. Thus, we de-
scribe the first polynomial-time algorithm that uniformly samples structural isomers given a
molecular formula. Our isomer-sampling algorithm is based on our algorithm for uniformly

sampling unlabelled connected multigraphs with a given degree sequence.

Previous work: Uniformly sampling labelled multigraphs with a given bounded-degree de-
gree sequence can be done in polynomial time by dynamic programming. More sophisticated
techniques exist for a wider class of degree sequences—see, for example, Jerrum and Sin-
clair [13] and McKay and Wormald [14]—but it is not known how to apply these techniques
to the problem of sampling unlabelled multigraphs. Nijenhuis and Wilf [15] showed how to
uniformly sample unlabelled rooted trees with a specified number of vertices. This approach
was extended by Wilf [22], who showed how to uniformly sample free (unrooted) trees. Their
algorithms are based on an inductive definition (i.e., a generating function) for the trees. This
approach has been systematised by Flajolet, Zimmerman and Van Cutsem in an forthcoming
paper [12].

More complicated techniques are required when the graphs to be sampled are not trees.
Dixon and Wilf [7] were the first to give an algorithm for uniformly sampling unlabelled graphs
with a specified number, n, of vertices. Their algorithm is based on Burnside’s Lemma. First,
a permutation of the n vertices is chosen with the appropriate probability and then a graph
is chosen uniformly at random from those graphs which are fixed by the chosen permutation.
The choice of the permutation requires a calculation of the number of unlabelled graphs with
n vertices. Wormald’s algorithm [25] avoids doing this expensive calculation. Instead, it
achieves a uniform distribution by restarting itself when appropriate. Wormald’s method can
also be used to sample r-regular graphs uniformly at random for any fixed degree r > 3. The
method relies on the fact that most unlabelled r-regular graphs are rigid (without non-trivial

symmetries) when r > 3. This is not true for r =1 or r = 2.

Outline of our algorithm Our algorithm for sampling unlabelled connected multigraphs
with a given degree sequence combines the above ideas with other ideas from the field of
random graphs. A natural approach to the problem is the approach of Wormald — first
generate a permutation of the vertices, then generate a random connected multigraph fixed
by the permutation, and finally use rejection/restarting to obtain the correct distribution.
However, this approach relies heavily on the fact that many of the desired structures are rigid
(so the algorithm will be likely to choose the identity permutation, which leads to a quick
result without restarting). This is not the case for the set of unlabelled connected multigraphs
with a given degree sequence, because the degree sequence may have many vertices of degree 1
and 2. Thus, we first reduce our problem to that of sampling unlabelled connected multigraphs
with degree sequences that do not have any vertices of degree 1 or 2. Every multigraph G is
associated with a unique “core” which has no vertices of degree 1 or 2. To generate G, we
will generate the core of G and we will then extend the core by adding trees and chains of
trees to obtain G.

For the generation of the core, we work in the configuration model of Bender and Can-
field [1], Bollobés [4] and Wormald [23]. The correctness of our algorithm follows from a
careful analysis of unlabelled configurations in which all block sizes are at least 3. This
analysis extends Bollobds’s analysis of unlabelled regular graphs [3]. Our algorithm rejects
the generated core if it is not connected. The fact that this does not happen too often fol-
lows from a result of Wormald [24]. After generating the core of our random multigraph,
we extend the core by adding trees and chains of trees. This part of our algorithm is based
on the generating function approach mentioned earlier. An alternative approach, also based
on generating functions, is to use Pdlya’s theorem. This approach was used to enumerate
molecules with certain specified “frames” (a frame is somewhat similar to a core) by Pdlya,
Read and others [16].

Outline of this paper Section 2 sets up the machinery that we will use to reduce the
general multigraph problem to the problem in which the degree sequence has no vertices of
degree 1 or 2. Section 3 solves the problem when there are no vertices of degree 1 or 2.
Section 4 describes the tools that we will use to lift the solution from Section 3 to a solution
for general degree sequences. Section 5 gives our sampling algorithm and proves that it is
correct. Section 6 extends our result to the chemical problem — given a molecular formula,

select, uniformly at random, a structural isomer having the given formula.

2 Cores and coloured configurations

E is the edge multiset of G, and rg,...,r4_1 are distinct roots in V. Each element of E is
an unordered pair of vertices. The expression F(v,w) denotes the multiplicity of (v, w) in E.

A cycle of G is a (closed, simple) path from a vertex v to itself that uses each edge (z,y)

at most E(z,y) times. (If any edge is used twice then the path is in fact of length two.)
We use the term rooted multigraph to refer to any d-rooted multigraph (for any d, including
d = 0) and we use the term multigraph to refer to any 0-rooted multigraph. A rooted tree
is a connected rooted multigraph (in fact a graph) with no cycles. The definitions imply
that a connected unicyclic multigraph is either a connected unicyclic graph, or a multigraph
obtained from a tree by doubling one of its edges.

The degree of vertex v in a rooted multigraph G = (V,,, E) is

dv) =2E@w,v)+ > E(v,w).
weV,w#v

Let A be any fixed constant. In this paper we will be concerned with rooted multigraphs

whose vertices have degree at most A. The degree sequence of such a rooted multigraph G

is the sequence n = ng,...,na, where n; denotes the number of vertices of G with degree 3.
The integers ng, ..., na are represented in unary, so the input size of the degree sequence n =
no,....nA I8 n =ng+---+na. (Similarly, the input size of degree sequence n’ = ng,...,n'\

will be denoted n’ = nfy + -+ n/y.) Let V, be the set {vy,...,v,}

’

Let G be the set containing

e every connected multigraph with degree sequence n and vertex set V,, that has at least

two cycles, and
e every l-rooted connected tree with degree sequence n and vertex set V,,, and

e every l-rooted connected unicyclic multigraph with degree sequence n and vertex

set V,,, in which the root is part of the cycle.

Two d-rooted multigraphs G = (V, E,ro,...,r¢4—1) and G' = (V',E',r(,...,r,) are
said to be isomorphic (written G = G') if there is a bijection 7 from V to V' such that,
for all unordered pairs (v, w) of vertices in V', E(v,w) = E'(n(v), 7(w)), and for all roots r;
of G, m(r;) = rj. Note that if V' =V" then 7 can be viewed as a permutation of the vertices
in V. Isomorphism induces an equivalence relation on G, and the equivalence classes are
called isomorphism classes. We use the notation QNn to denote the set of isomorphism classes
of Gn. If a rooted multigraph G is isomorphic to some G' € G, then we use the notation
(@) to denote the isomorphism class of G'. For any isomorphism class U € G, we use the
notation ¥~(U) to denote the lexicographically least member of U.

We consider two non-deterministic transformations which may be applied to a rooted

multigraph G with vertex set V' and edge multiset £. Similar transformations were used by
Zhan in [26].

T;: Choose a degree-1 vertex v other than the root of G. Remove v from V and the edge

containing v from FE.

Ty: If T7 cannot be applied to GG, choose a degree-2 vertex v other than the root of G such
that for vertices w # v and = # v, (v,w) and (v,z) are in E. (We allow w = z, but
naturally insist that (v, w) and (v,z) are taken to be distinct elements from the edge

multiset.) Remove v from V. Remove (v,w) and (v,z) from E and add (w,z) to E.

Note that the transformations 77 and T, do not change the labels of vertices. A rooted

multigraph G € G, is irreducible if neither transformation 77 nor Ty can be applied to it.

Observation 2.1 If G € G, and G can be transformed into G' by T\ or T then, for some
n' with n' <n, U(G') € G .

Informally, Observation 2.1 says that the transformations 77 and T5 preserve the properties

of being connected, and of having at least two cycles.

Observation 2.2 If G € G, and some sequence of Ty and Ty transforms G into G' then

the sequence is of length less than n.

We say that a degree sequence n is irreducible if any of the following applies, and that it

is degenerate if one of the first two possibilities applies.
1. n describes the single-vertex multigraph. That is, ng = 1 and n; = 0 for 7 # 0.
2. n describes the single-self-loop multigraph. That is, ne = 1 and n; = 0 for i # 2.

3. n describes multigraphs without low-degree vertices. That is, ng = n; = no = 0 and
n; > 0 for some i € [3,...,A].

We say that a rooted multigraph is degenerate if its degree sequence is degenerate.
Observation 2.3 G € G, is irreducible iff its degree sequence is irreducible.

Lemma 2.4 If G € G, and G can be transformed into irreducible rooted multigraphs G

and Go using a sequence of transformations T1 and Ty then G = G.

Proof: Suppose GG has vertex set V and edge multiset £. We will show that if G can be
transformed into distinct rooted multigraphs G and G5 by a single transformation then there
is a rooted multigraph G5 such that a (possibly empty) sequence of transformations trans-
forms G into G3 and another (possibly empty) sequence of transformations transforms Go
into G3. Thus, the transformation process is locally confluent [20]. As the process terminates
in finite time (see Observation 2.2), it is confluent, which implies the result [20].

Suppose that T} with choice v transforms G into G and T} with choice w # v transforms
G into G2. Note that (v,w) ¢ E (otherwise, one of v and w would be the root of G). Let
G5 be the result of applying 71 to G1 with choice w. Then T} with choice v transforms Go
into G3.

Suppose that Ty with choice v transforms G into G; and T with choice w # v transforms
G into G5. Note that (v,w) does not appear twice in F (otherwise, one of v and w would
be the root of G). Let G5 be the result of applying T5 to Gy with choice w. Then T with

choice v transforms G5 into G3. O

Note that the proof of Lemma 2.4 would have failed if we had included unrooted trees
and unicyclic graphs in G,. It is for this reason that the definition of G, is slightly more
complicated that might be expected. As we observed in Observation 2.2, a rooted multigraph
G can only be transformed a finite number of times before an irreducible rooted multigraph
G’ is reached. G’ is called the core of G and is denoted by Core (G). Core (G) is uniquely
defined, by Lemma 2.4.

Lemma 2.5 If Gi and G3 are in G, and w(G1) = G2 then n(Core (G1)) = Core (G3).

Proof: Consider a sequence of transformations that transforms G; into Core (G1). Now
apply this sequence of transformations to Go, but choose m(v) instead of v for each vertex v
that is chosen. Clearly, the result is Core (G3). Thus, v & Core (G1) exactly when 7(v) &
Core (G2). O

Lemma 2.5 implies that if G; = G2 then Core (G1) = Core (G2). (This property was also
used by Zhan [26].) We use the notation QNn,n/ to denote the set {U € Gy | ¥(Core (¥~H(U))) €
QNHI}; loosely, §n,nf is the set of unlabelled connected multigraphs with degree sequence n
whose cores have degree sequence n’. We will need the following definitions. Let B be an
(infinite) set containing one representative from each isomorphism class of the set of 1-rooted
trees. A tree-chain with two roots is constructed from any sequence T1,...,T} of 1-rooted
trees as follows: If the sequence is empty, then the tree-chain consists of ry and r; and
an edge between them. Otherwise, the tree-chain graph is constructed as follows: Choose
distinct labels for the vertices of T4,...,Ty. Let ri,...,r} be the roots of T1,...,T}. For
i€[l,....,k—1], add edge (r;,7;, ;). Add the new roots ro and r; and edges (rp,r]) and
(r,71). For every tree-chain G, we use the notation R(G) to denote the tree-chain con-
structed from G by swapping rg and r;. Let P be a set containing one representative from
each isomorphism class of tree-chains. (Note that the two roots of a tree-chain are distin-
guishable, and any isomorphism of tree-chains must respect this distinction.)

In the following definition of “colouring”, colours will encode information that is lost while
forming the core. We will use colourings to recover an original rooted multigraph from its
core. A colouring of a rooted multigraph G is a function A that maps each vertex in the
vertex set of G to an element of B and each edge in the edge multiset of G to an element
of P.

We will describe a function I' that maps each coloured rooted multigraph (G,) to an
isomorphism class. I'(G, \) is constructed as follows, where V' denotes the vertex set of G
and E denotes the edge multiset of G: Start with the collection of rooted trees {A(v) | v €

VIU{A(e) | e € E}. Let the roots of the resulting forest be the roots of those trees that
correspond to the roots of G. For each edge (u,w) € E with u < w, identify root r¢ of
Au, w) with the root of the tree A(u) and root r1 of A(u,w) with the root of the tree A(w).
Relabel to avoid name clashes. Let I'(G, \) be the isomorphism class of the resulting rooted
multigraph.

Given a degree sequence n, let m = %Zzznz and let B, be the lexicographically least
partition of the point set R, = {1,...,2m} into blocks (subsets) such that, for each i, there
are n; blocks of size i. A d-rooted configuration C with degree sequence n [1, 4] is a tuple
(Rn, Bn, P,rg,...,74—1) where P is a partition of the points in Ry, into pairings, which are
unordered pairs of points and r¢,...,74—1 are distinct blocks (roots). We use the phrase
configuration to mean a 0-rooted configuration and the phrase rooted configuration to mean
a d-rooted configuration for any d (including d = 0). We let Multigraph (C) denote the
rooted multigraph obtained from C by identifying the points in each block. We say that C' is
connected if Multigraph (C) is connected. If n is degenerate, let C,, be the set containing the
1-rooted configuration with degree sequence n. For all other irreducible degree sequences n,
let Cy, be the set containing all connected unrooted configurations with degree sequence n.

A colouring of a rooted configuration C' = (R, B, P) is a function A that maps each
block b € B to an element of B and each pairing p € P to an element of P. The function I is
defined in terms of the corresponding function for rooted multigraphs. In particular, I'(C, \)
is defined to be equal to I'(Multigraph (C), A). We use the notation Cy n to denote the set
{(C,)\) | C € Cyy and T(C,A) € G }-

For degree sequence n' let K, denote the Kranz group [6] operating on the points in R,y .
Each permutation 7 in K, is associated with a tuple (m,... ,W‘Bn,‘) where 7y is a permu-
tation of blocks and m; for ¢ > 0 is a permutation of the points within block ¢. To apply w

to Ry, one first permutes the blocks using 7, and then permutes the points within block i

(for each) using 7;. A rooted configuration Cy = (Rn/, By, P1,70,1,--.,7d—1,1) is said to be
isomorphic to a rooted configuration Co = (Ry, By, P2, 102,...,74-12) if there is a permu-
tation m = (mo,...,mp_,|) € Ky such that for all pairings (u,v) € P1 we have (7 (u),7(v))

in P, and for all j € [0,d — 1] we have my(r;1) = 7j2. The coloured rooted configuration
C] = (C1, 1) is said to be isomorphic to the coloured rooted configuration C) = (Cy, Ag)
b € By, A1(b) = Xa(mg(b)) and for all pairings (u,v) € Py, A1(u,v) = Xa(n(u), w(v)). Note
that if (C1,1) = (Co, A2) and (C1, A1) € Cp then (Cy,A2) € Cp . We use the notation

Cn,n to denote the set of isomorphism classes in Cy, n/. The automorphism group of rooted

if there is an isomorphism 7 = (m,...,mp_,|) between C; and Cy such that for all blocks

configuration C' (denoted Aut(C)) is the group of isomorphisms between C' and itself. The
coloured automorphism group of rooted coloured configuration (C,A) (denoted Aut(C,\)) is

the group of isomorphisms between (C, A) and itself.

Lemma 2.6 If G € G, and C is a rooted configuration such that Multigraph (C) = Core (G)

then there is a colouring X such that V(G) =I'(C, \).

Proof: The process of forming core Core(G) with vertex set V and edge multiset £
can be viewed as deleting a tree h(v) for each node v € V and a tree-chain h(u,v) for
each edge (u,v) € E. Suppose that m(Multigraph (C')) = Core(G). Let A be a colouring
of Multigraph (C) defined by A(v) = h(n(v)) and

h(m(u), 7 (v)) if m(u) < w(v),

Mu,v) = {R(h(ﬂ(u)’ﬁ(v))) otherwise,

where we assume the endpoints of the edge (u,v) are normalised so that u < v. Then
G € T'(Multigraph (C), A) so G € T'(C, \). O

Lemma 2.7 Suppose that Cy and Co are rooted configurations with irreducible degree se-
quence n'. If F(Cl./)\l) = F(CQ,)\Q) then (Cl,Al) = (CQ,)\Q).

Proof: Let G; be the multigraph obtained in the construction of T'(Cy, A;). Make sure
that the relabelling that occurs in the construction of G; does not change the labels of the
vertices of Multigraph (C7). Similarly, let G5 be the multigraph obtained in the construction
of I'(Ca, A2) in which the labels of the vertices of Multigraph (C2) are unchanged. Now, by the
definition of T, Core (G1) = Multigraph (C7) and Core (G2) = Multigraph (Cs). Suppose that
7(G1) = G. By Lemma 2.5, m(Multigraph (C1)) = Multigraph (C3). Thus, for any vertex v
in the vertex set of Multigraph(C1), Ai(v) = Xo(w(v)). Furthermore, for any unordered
pair (u,v) of vertices, and any colour ¢, the number of copies of (u,v) in the edge multiset
of Multigraph (C7) that are coloured £ by A; is equal to the number of copies of (7(u),w(v))
in the edge multiset of Multigraph (C5) that are coloured £ by Ao. Hence, 7 can be extended
to an isomorphism mapping (C1, A1) to (Ca, A2). O

Corollary 2.8 There is a bijection between Q~n,n/ and CNn,n/.

Proof: The corollary follows from Lemma 2.6 and Lemma 2.7. O

Lemma 2.9 FEach isomorphism class in C~n7n/ comes up |Kyn| times in
{(C, A7) | (C,A) €Cpy and m € Aut(C, \)}.

Proof: This is a straightforward application of Burnside’s Lemma [6]. O

3 Sampling irreducible multigraphs

The goal of this section is a polynomial-time algorithm that takes as input an irreducible
degree sequence, n, and samples, uniformly at random (u.a.r.), a pair (C,r), where C' € Cy
is a rooted connected configuration with degree sequence n, and m € Ky, is an automorphism
of C'. This is straightforward if n is degenerate, so we focus on the non-degenerate case in
which ny = n; = ng = 0 and n; > 0 for some i € [3,...,A]. In this case, C, is the set of
connected unrooted configurations with degree sequence n. (The configurations are unrooted
because every connected multigraph in which each vertex has degree at least 3 has more
than one cycle.) Thus, our goal is equivalent to generating, u.a.r., an unlabelled connected
multigraph (possibly with self-loops) with degree sequence n. So we obtain a solution to our
basic problem in the special case in which all vertex degrees are at least 3. The techniques
described in Section 2 provide a reduction from the case of general degrees sequences to the
restricted ones considered here, as we shall see in Section 5.

Our approach borrows freely from Bollobés’s treatment of unlabelled regular graphs [3],
though we find it more convenient to work throughout with configurations in place of (multi)graphs.
Recall that 2m =) .in;. We say that a triple (s, s2,s3) of non-negative integers is legal if
2594 3s3 < s < 2m. For every legal triple (s, s2, 83), let Ky(s, s2,3) denote the set of permu-
tations in K, that contain exactly ss transpositions, s3 3-cycles, and move exactly s points
in all. For convenience, we introduce s4 = (s — 2s9 — 3s3)/4; note that s4 is not necessarily
an integer. Of course, only three of the four parameters need to be specified in any situation,
but the freedom to move between different triples according to context is convenient.

To generate the pair (C,7) we first select a legal triple (s, s, s3), then a permutation
m = Kn(s, $9,53), and finally a configuration C' € Fixw, where Fixm denotes the set of
configurations with degree sequence n that are fixed by w. In the unlikely event that C' is
not connected, we return — (see Figure 1 and Theorem 3.3). (Informally, we say that the
algorithm “rejects” if — is returned, and that it “accepts” otherwise.) For every legal triple

(s, 89, 83), define

B (2m)! [659\ (353 %3/ [2154\ */?
Fu(s,52,85) = {“mmmx mz) \ws) Gt) | (1)

The significance of Fy, (s, s2, s3), as we shall see presently, is that it is a uniform upper bound

on |Fixn| over all m € Ky(s, s2,s3). Note that in equation (1), and throughout the proof of

Lemma 3.1 (below), we shall encounter expressions such as

632 52/2
()

that are formally undefined when sy (or s3 or s4 or s) is equal to 0. The intended meaning is

the limit as the variable in question (here s5) tends to 0 from above. In all cases the upshot is

that the factor concerned is 1 when the variable is 0. Note that Fy,(s, s2, s3) is the square-root
of a rational number, rounded up, and hence can be computed exactly in polynomial time.
Define

Wn(5752753) = ‘Kn(5752753)‘ XFH(S752753)7 (2)
and let
Wa =Y Wals,s2,53), (3)
5,52,53

where the sum is over all legal triples (s, s, s3). Observe that Wy, is a bound on the size of
the set of pairs (C,w) we wish to sample from.
The proposed sampling procedure is conceptually very simple, and is presented in Figure 1

towards the end of the section. Its analysis rests on the following technical lemma.
Lemma 3.1 With Fy(s, s2,53), Wn(s, 8o, 83) and Wy defined as above:

1. |Fix()| = 1Fn(0,0,0), where () denotes the identity permutation in Ky;

2. |Fixn| < Fu(s, s9,83), for all m € Ky (s, s9,53);

3. Wn < AWy(0,0,0), where A depends only on A.

Proof: The total number of configurations with degree sequence n is equal to the number
of ways of choosing m pairings in a set of size 2m. All configurations are fixed by the identity

permutation, so we have

(2m)!
m!2m’

|Fix()| = (2m — 1)(2m —3)---3-1 =

Comparing the above expression with the definition of Fy,(s, s9, s3) already gives us part (1)
of the lemma.

An asymptotic expression for the number of configurations can be obtained using the
usual Stirling’s approximation. For our purposes, it is convenient to have absolute upper and
lower bounds, which can be obtained using a more refined version of Stirling’s approximation
due to Robbins [19] (or see [5, p. 4]):

()" < Lo (2m)” "

e ml 2m

While we are on the subject of Stirling’s formula, let us note for future reference the following

slight strengthening of a familiar bound on binomial coefficients:

> (1)< (7).

To verify this inequality, first observe that the right-hand side is monotonically increasing

(viewed as a real function) for ¢ € (0,1), and is greater than 2" for ¢ > n/3. In the case

10

t < n/3, the ratio between successive terms on the left-hand side exceeds 2, so the sum is

bounded by the sum of a geometric series with common ratio % Thus

t t t
Z n n 2n e
I\ t t! t

again using a sufficiently strong form of Stirling’s approximation.

Consider C € Fixm, with 7 € Ky (s, s2,s3). Each point in a 3-cycle of 7 must be paired
with a point in a different three cycle, and the other two pairings of C incident at the first
cycle are then forced. Thus |Fix 7| = 0 unless s3 is even, in which case C induces a set of
“higher level pairings” on the 3-cycles of w. Given these higher level pairings, there are 3%3/2

ways to choose the pairings themselves. In all there are

19s3/2 53/2
sat3%T ﬂ(%)

(s3/2)1288/2 — e

ways to choose the restriction of C' to the 3-cycles of w. For transpositions, the calculation is
similar, except we must now allow for the pairing to join the two points in single transposition.

But this new freedom can only blow up the number of choices by (crudely) a factor 22, so

Az

that there are at most

€

ways to choose the restriction of C' to the transpositions of 7. An optimisation over the
distribution of cycle lengths greater than 3 confirms that the number of ways of choosing the

restriction of C' to those cycles is at most

54/2
\/5(1654) 7

€

the bound we would obtain by assuming all the remaining cycles have length exactly 4. The

number of ways of extending C' to the fixed points of 7 is clearly bounded by
(2m—s)/2] —s/2
A) T e ()

where we have used the other part of inequality (4). Multiplying these four bounds together,

recalling s = 2s9 + 3s3 + 4s4, yields the following upper bound on | Fix 7|:

. (2m)! 2es9 52/2 3e?s5 53/2 e3sy 54/2'
\F1X7r|§4><m!2m>< m? 8m3 mi ’

comparing this expression with equation (1) defining Fy, (s, s2, s3) gives us the second part of

the lemma.

11

For the third part, we introduce a more refined partitioning of the group K, according
to cycle structure. For each cycle of a permutation 7 € K, we distinguish whether the cycle
touches more than one block of R, (type 1), or whether its action is entirely confined to a
single block (type 2). We write, for example, s9 = s, + s, where s} is the number of type 1
transpositions, and s§ the number of type 2 transpositions. The prime and double prime
convention is applied consistently, so that we write s = s’ + s”, where s’ is the total number
of points contained in all type 1 cycles, and s” the number in all type 2 cycles. Naturally, s/
and s)f are defined by s’ = 25, + 3s4 + 45} and s” = 2s] + 354 + 4s/{. Denote by

/ / " " " / " / n / "
Kn(s,89,83;8",89,85) C Kn(s' + 8", 55 + 59,85 + s3)

the set of permutations with s/, type 1 transpositions, s§ type 2 transpositions, and so on.

The strategy for establishing the final part of the lemma is: (i) compute an upper bound
on |Kn(s',sh,sh;s",s5,s4)|, (ii) optimise over the feasible region to obtain an upper bound
on |Ky(s, s2,s3)| and hence on Wy(s, s2, s3), and (iii) sum over feasible s, s9, s3 to obtain an
upper bound on Wy,. Our upper bound for (i) will be of the form «'(sh, s4, sy) x &" (s, s4, s),
where ' and k" are bounds on the number of ways of choosing the type 1 cycles and type 2
cycles, respectively. The latter is more tractable, so we deal with it first.

Let m € Kn(s',s),54;8",sh,55). The number of ways of choosing the i < s blocks

containing the s§ type 2 transpositions in 7 is at most
sy

. S T 3
o\ s

using inequality (5), and so the total number of ways of choosing the transpositions themselves

is at most .

(ecn) %2
" 3
89

where ¢ = Al. Similar bounds hold for the longer cycles, yielding an overall bound of

sy sy sy
ecn ecn ecn
e ooy
K (3253353)_ " n " (6)

on the number of ways of choosing all the type 2 cycles.

We now consider the type 1 cycles of 7. Denote by B = B(s', s}, s) the set of integer
triples (b, by, b3) satisfying

bg, bg Z 0, 2b2 + 3b3 S b, 3b + [28’2 - 6()2} + [38& — 9()3} S S’, (7)

where [z] = max{z,0}. The intended interpretation of (b,bs,bs) is as follows: b is the total

number of blocks moved by 7, by is the number of transpositions of blocks induced by 7, and

12

bs is the number of 3-cycles on blocks induced by 7. The significance of B is that it contains,

as we shall demonstrate, all feasible choices for (b, be, b3) consistent with (s, s, s5).

Only the final inequality of (7) requires explanation. The weaker inequality 3b < s’ is easy
enough to justify, as each block contains at least 3 points, so we just have to account for the
other two terms. If a block contains p > 4 points, regard p — 3 of the points as constituting
an “excess.” All s}, type 1 transpositions in 7 must be contained within the 2by blocks that
are transposed by m. If 2s), > 6bg, then 2s), — 6by points in type 1 cycles must be in the
excess. Similarly, if 3s§ > 9b3, then 3s} — 9bs further points in type 1 cycles must be in the
excess. This justifies the final inequality in (7).

Applying a crude bound on the number of ways of choosing the type 1 cycles, given
(b, ba, b3), we have
b
Z (cn) < (s' +1)3max (cn) : (b,be,b3) € B (8)
bo! bs! bo! bs!
(b,b2,b3)EB

as a bound on the number of ways of choosing the type 1 cycles. The right hand side
of (8) presents a small optimisation problem. We claim that at the maximum, by > [s/3]
(otherwise by < by + 1 and b < b+ 2 leads to an improvement), and by > [s5/3] (otherwise
by < b3+ 1 and b + b+ 3 does), and in any case b < s'/3. So, from (8), and using the lower
bound b! > (b/e)?, the number of ways of choosing the type 1 cycles is at most &'(sh, s5, 54),

where

. sh/3 3’3/3
W (s sy, 5h) = (s'+1>5<cn>s/3(3—?) (3—) 9)

S2 s
2,2\ 55/3 3, 3\ 55/3
_ (s'+1)5(3ec,”) : <3ec,”) ")13, (10)
89 53

The extra factor (s’ + 1)? in (9) takes account of the floor functions. Our upper bound for
Kn(s',sh,sh; 8", 88, s4)| is thus

/ / I, " " " 1o ! / / e n " 1
[Kn(s', 59,8338, 89, 53)] < K (89,583, 54) X K" (3, 53, 54),

where k'(sh, s5,5)) and k" (s, s, s}]) are as defined in (6) and (10).

The next stage is to bound |Ky(s, s9,s3)|. Clearly we have

|Kn(5752753)| < ZHI(SIQ'/SgaSiL)XH,I(SIQlaSg'/SZ)
S

< (s 1) max W/ (sh, 5, 4) x (s, 54,51 |, (11)

13

where S is the region
S = {(shosho st sf o) € (BF)
sh + sh = s9, 84 + 85 = s3, and 32—1—32{234}
If we bound the (s’ +1)5 factor in &’ simply by (s + 1)5, then the factors in s}, s}, in s}, s,

and in s), s} appearing in the objective function of (11) separate out, and we can optimise

over each pair separately.

e The s4 factor is

"

7 S4
CORE <—”) < (en)ytss/3, (12)
Sy

since the maximum is achieved at sjy = s4 and s} = 0.

e The s3 factor is

Jecdn3\ *8/3 /63633 %5/3 e3c3n3\ %5/3 [333\ 55/3
) () <(09) () w
S3 (s3) S3 53

3.3,.3\ 53/3
< 2<2ecn) . (14)
53

Inequality (13) uses the fact that =% < 2z=%/3 for all positive z, and inequality (14)

follows from symmetry and unimodality.

e The s factor is

3ecn? $2/3 e3c3n3 53/3 e3cdn’ $5/3 e3cdn’ s5/3
< 2
) (o) =< (o) (o)

4e3 303 52/3
< 2(—”) | (15)

53

by similar considerations to the previous case.

Plugging (12), (14) and (15) into (11) gives

3

de3c3nd 52/3 903 33 s3/3
|Kn(3: 592, 33)‘ < 4(8 + 1)8< 2 > (- > (Cn)4s4/3’
2

which, on recalling the definitions (1) and (2) of Fy(s, s2,s3) and Wy(s, s2, s3), leads to:

9 ! 82/6 s3/6 3\ 54/6
Wn(3:32783) < 32(3 + 1)8 x (m) % (c_2> (csss) <C484) ’ (16)

ml2m S n3 nt

where ¢, ¢3 and ¢4 are constants depending only on ¢ and hence only on A. (The multiplica-

14

Step 1 If n is degenerate, let C be the sole member of Cy, choose m € Aut(C)
u.a.r., and output (C, 7). Otherwise, perform Steps 2-6.

Step 2 Choose the triple (s, s9,s3) with probability Wy (s, sq, s3)/Wha.

Step 3 Choose m € Ky (s, 9, 83), u.a.r.

Step 4 Choose C € Fix 7, u.a.r.

Step 5 If C is not connected, output — and halt.

Step 6 With probability | Fix |/ Fy(s, s2, s3) output (C, 7); otherwise output —.

Figure 1: Procedure CONFIGSAMPLE for sampling a pair (C,)

tive factor has been boosted from 16 to 32 to allow for the ceiling function in the definition
of Fu(s,s2,83).)
To finish off the proof of the final part of the lemma, we just need to sum (16) over all

legal triples (s, s9, $3):

Wn = Z Wn(8532:33)
$,82,53
(Zm)! Co 82/6] CgA 53/6 C4A3 54/6
S 32 x m‘ om X Z 5 Z (232 —+ 383 + 434 + 1) W 64n
52 53,54
- (2m)! co 52/6 8
~ 32><m!2m><z ” (252 + 1)
52
(2m)!
~ 4c x om = ¢ Wa(0,0,0),
where ¢’ depends only on ¢y, and hence only on A. O

Lemma 3.2 There is a polynomial-time algorithm for computing |Ky(s, s2,s3)|, and hence
for computing Wy (s, s2,83) and Wy. There is also a polynomial-time algorithm for sampling,

uniformly at random, a permutation from Ky(s,s2,S3).

Proof: By partitioning |Ky (s, s9, s3)|, first according to the length of the first induced
cycle on blocks, and then on the exact pattern of cycles within those blocks (at most A! pos-
sibilities), we obtain an inductive formula for | K, (s, s2, s3)|. Only polynomially many distinct
assignments to the parameters n, s, s9, and s3 arise during the induction, so |Ky(s, s2, s3)|

can be computed in time polynomial in n by dynamic programming. O

Theorem 3.3 The procedure CONFIGSAMPLE presented in Figure 1 is correct: (a) the prob-
ability that the algorithm returns a value other than — is bounded away from 0; (b) for any
configuration C € Cn with degree sequence n, and any automorphism © € Aut(C) of C, the

15

probability that the pair (C,7) is returned by CONFIGSAMPLE is a constant, namely W,
independent of C' and m; and (c) the procedure CONFIGSAMPLE runs in time polynomial in n,
provided the mazimum degree A is bounded. Indeed, we have the following strengthening of

the first part: (d) the probability that a pair with m = () is returned is bounded away from 0.

Proof: By the second part of Lemma 3.1, the acceptance probability in Step 6 is well
defined. By the third part of Lemma 3.1, the particular triple (0,0, 0) is selected in Step 2 with
probability at least A~!, which is bounded away from 0. This forces the identity permutation
to be selected in Step 3. In this case, the probability of acceptance in Step 5 is bounded away
from 0. (By Bollobds and Bender and Canfield (See [5], page 48), the probability that a
random configuration with degree sequence n corresponds to a simple graph is bounded
away from 0. Each simple graph corresponds to an equal number of configurations, and by
Wormald [24], the probability that a simple graph with degree sequence n is connected is
bounded away from 0.) By the first part of Lemma 3.1, we know that the pair (C, ()) survives
Step 6 with probability +. This deals with (a) and its strengthening (d).

Now consider an arbitrary pair (C,) satisfying C' € Fix 7, and suppose m € Ky(s, $2, $3).
For (C,n) to be generated, a certain well defined event must occur at each step of the
algorithm. The probability that (C,7) is generated is simply the product of these four
probabilities:

Wha(s, s2, 83) 1 1 Fixn 1

X X X = —,
Wha \Kn(s,s9,83)] Fixm Fu(s,s9,83) Wa'

which is clearly independent of C' and 7, as asserted in (b).
According to Lemma 3.2 the procedure can be implemented to run in polynomial time.
O

4 Sampling unlabelled trees

The previous section showed how to sample, u.a.r., an unlabelled connected multigraph with
a specified irreducible non-degenerate degree sequence. In Section 5 we will show how to
sample, u.a.r., an unlabelled connected multigraph with any specified degree sequence n.
Our basic strategy will be to select an irreducible degree sequence n’ such that n’ < n with
the “appropriate” probability, sample u.a.r. an unlabelled connected multigraph G’ with
degree sequence n’, and finally colour G’ to obtain a multigraph G' with degree sequence n.
(G" will be the core of G as defined in Section 2.) Instead of constructing G’ directly, we will
select a pair (C',7) as described in section 3 such that C' € Cyy and 7 € Aut(C"). Then we
will choose a colouring A such that T'(C', \) € Gn. The process of choosing n’ and A involves
counting and sampling unlabelled rooted trees. We provide the relevant tree results in this

section.

16

The basic framework in which we will work is as follows: We will consider “structures”
(trees with one or more root), each of which has a “weight” (a (A + 2)-tuple of integers) The
weight of a d-rooted n-vertex tree G (which is denoted u(G)) is the tuple (n —d, ig,...,ia),
where ¢, is the number of vertices of degree r, excluding the roots. We let T; denote the
1-rooted tree consisting of a single vertex and T denote the 2-rooted tree consisting of a
single edge. We define the following operations on trees. If G is a 1-rooted tree, we let [d]G
denote the 1-rooted tree obtained by taking d copies of GG, identifying the roots of the d
copies, and then relabelling the remaining vertices of trees 2,...,d to avoid name clashes. If
G and G’ are 1-rooted trees, we let G x G’ denote the tree obtained by identifying their roots
and relabelling the remaining vertices of G’ to avoid name clashes. If G is a tree-chain and
G' is a 1-tooted tree then we let G * G' denote the tree-chain constructed from G and G’
as follows. Root r; of G is is disconnected from its neighbour, v, in G, and is connected to
the root of G'. The root of G’ is connected to v. The vertices in G’ are then relabelled go
avoid name clashes. If G is a d-rooted tree and G’ is a d'-rooted tree, we let G + G’ be the
(d+d')-rooted tree obtained by relabelling the vertices and roots of G' to avoid name clashes.

Following Flajolet, Zimmerman and Van Cutsem [11], we form sets of structures induc-

tively from {T;} and {Ts} using the following constructors.

e S+ 5t The disjoint union of S and S’

e For d>1, [d]S: {[dG|G € S}

e SxS5: {(GxG|GeS G es'}

e If all structures in S’ have a single root of a given degree, SxS5": {GxG' |G € S,G' €

S'}

e 5.5 {G+G|GeS G eSS’}
The constructors + and - are from [11], which also considers other constructors. We use the
notation m- S as an abbreviation for the disjoint union of m copies of S, S+---+ .5, and we
use the notation S™ as an abbreviation for the Cartesian product of m copies of S, S--- 5.

A specification of sets S, ..., S, (which is sometimes referred to as a specification of S;)

is defined to be a sequence of equations

mg - So = Wo(), my - S1 = ¥1(So), ..., mp - S = U, (So,...,5_1)

3 3

where my, ..., m, are positive integers and, for ¢ € [0,...,7], ¥, is a term built from {T,},
{Ty}, and Sp,...,S;—1 using the constructors. An {-specification is a specification using

¢ constructors.! For every set S of structures, we use the notation S(i, ... ,4;) to denote the

'For this, we count the constructor [d] in [d]S as d constructors.

17

set
{s € S| for some ij41,...,9a41, u(s) = (i0,...,ia+1) }.

The generating function for the set S is a function s(xg,...,2a11) such that the coefficient

of 20 .. q;ZAAj:ll in s(xg,...,2zAa+1), which is denoted

[xf)o o mlAAill] (ZE(]. s :xA-I-l):

is equal to |S(ig,...,ia+1)|- The following is a straightforward extension of a theorem of
Flajolet et al. [11]

Theorem 4.1 Given an £-specification for sets Sp,..., Sy, a set of equations for the corre-

sponding generating functions is obtained automatically by the following translation rules:

m-S=5+5" s(xoy .., xar1) = (1/m)(s'(zo, ..., zat1) + 8" (zo,. .., 2A41))s

m-S =[d]S' = s(zo,...,TA+1) = (1/m)3’(Lahi),

m-S =5 x8" $(xoy .. xAar1) = (1/m) (s ;--~-SUA+1) s"(zo,y ..., xA+1)),

m-S=58x5" = s(xo,...,xa41) = (zr+2/m)("oy xas1) X 8"(z0, .-, 2AL1)),
where T is the degree of the roots of the structures in S”,

m-S=5-5" = s(xo,...,2a41) = (1/m)(s' (20,...,2a+1) X §"(z0,...,2A+1)).

Furthermore, there is a polynomial p such that all coefficients
, y
[QSE)U' xAAill]S ($07"'7$A+1)

for which j € [0,...,r] and every i, is at most i, can be computed in at most p(ig,...,int1,7,¢)

steps and a member of S;(ig,...,ia+1) can be sampled u.a.r. in p(io,...,ian41,7,¢) steps.

Proof: The coefficients of Sp,...,S, can be computed in order and stored in a table.
Sampling u.a.r. from S;(ig,...,ia+1) is accomplished as follows. If m-S; = {T1} or m-S; =
{T2}, this is straightforward. If m-S; = S, + S, sample w.a.r. from S,(io,...,4a+1) With
probability

|Sa(’é'(), s aiA+1)|/|Sj(i0: s aiA+1)|:

and from Sy(ig,...,ia+1) with the remaining probability. If m - S; = [d]S, then recursively
sample from S, (ig/d,...,ia+1/d) and make d copies of the resulting structure. If m - S;
Se X 54, evaluate

Ny = |Sc(igs - iayt)| X |[Salio —ig, ooy ingt — tasr)]

for all tuples i’ = (ig, ...,y ;) (other than i' = (0,...,0) and i’ = (ip,...,ia41)) in which
every i, satisfies 0 < i7, <i,. Choose i’ with probability Ni/} ; Ny . Recursively sample

structures from Se(ig,...,i'x,) and Sg(ip —ig,...,ia+1 —ix ;) and combine the structures.

18

The cases in which m - S; = 5. %S4 and m - 5; = S, - Sy are handled similarly, except that in
the case m - §; = S * Sq we replace 4,9 with 4,45 — 1. O

We will now use the above framework to show how to count and sample unlabelled rooted
trees. Let S, be the set containing one representative from each isomorphism class in the
set of 1-rooted trees with degree-r roots. We will first give a sequence of equations to define
the sets Sy(n) in terms of the constructors and we will then argue that the definition is a
specification (that is, the equations can be ordered in such a way that each equation depends
only on sets previously defined). The set of equations is adapted from Nijenhuis and Wilf [15].
First, note that Sy(0) = {T1} and Sp(n) = 0 for n # 0. Furthermore, S,(0) = 0, for » # 0.

For n > 0, we have

Si(n) = Z Sp(n— 1,40, ... tpytpy1 — 1,0p49,...,ia), and
0<r<A-1
io+-Fia=n—1
n-S(n) = Y d-([s1S1(d+1) x Sp_y(n — sd)), for r > 1.
1<s<r
1<sd<n

The first equation expresses the correspondence between n + 1-vertex trees rooted at a
vertex of degree 1, and n-vertex trees with unrestricted root degree. The second equation
expresses a construction for trees which has the property that each unlabelled n + 1-vertex
tree is represented n times: choose numbers s, d satisfying 1 < s <r and 1 < sd < n; choose
a tree 7/ with n + 1 — sd vertices, rooted at a vertex of degree 7 — s, and a tree 7" with d 41
vertices rooted at a vertex of degree 1; take s copies of 7/ and one copy of 7”7 and identify
all the roots (the identified vertices constitute the new root). Make d copies of the resulting
rooted tree. Nijenhuis and Wilf [15, p. 274] give a combinatorial proof of the equation by
establishing an explicit bijection between the figures enumerated by the left and right sides.

To see that the sequence of equations given is a specification, consider a 2-dimensional
table. The first 4+ 1 entries of column n correspond to sets Sp(n),...,Sy(n) (in the given
order). The remaining entries correspond to the sets [s]S1(n/s + 1), where s > 1 divides
n. Note that the equation corresponding to each table entry only uses sets corresponding to
smaller rows or columns of the table. Thus, we have a specification for the sets S,.(n).

As we described in the beginning of this section, our algorithm in Section 5 will sample
wa.r. a colouring A of a configuration ¢ = (Ry/, By, P) such that T'(C,\) € Gn. Recall
that a colouring A of C is a mapping from By to B (the set of block-colours), and from
P to P (the set of pairing-colours). The blocks in B, are ordered and the pairings in P
can be ordered according to the ordering of the blocks, so a colouring may be specified as a
sequence of n’ block-colours followed by a sequence of m' = %Zz in} pairing colours. Thus,
the set of available colourings depends only on n and n’. Let A, v denote the set of available

colourings. Given the specification for the set S,(n), we can derive specifications for B, P,

19

and therefore, A, n. We start by observing that B = Sy + --- + Sa. Let P, denote the
set containing one representative from each isomorphism class of length-£ tree-chains (thus,
P =Po+P1+Py+--). A specification for P is as follows:

Po = {Tq}.
Pe = (Pg_l * So) + -+ (Pg_l * SA,Q).

Let Ln’,ro,...,rn/ denote the set of colourings of a configuration with degree sequence n’ in
which the block-colouring for the ith block is a tree whose root has degree r;. Then the set
Ln/7ro7...,,ﬂn, can be specified using the equation

!
_ pm
Ln’,ro,...,r r P : Sro e Sr ’-

n n

Finally, note that Ay, v is the disjoint union, over all (polynomially many) choices of rq, ..., 7y

of Ln’,ro,...,rn/ (n - n”:n[) - nga ces A — ”2) where
n! = \{j:lgjgn’ andvj+7“j:i}‘,

where v; denotes the size of the ith block in B.

Thus, we have a specification for A, . While some of the sets used in the specification
such as P and Sy,...,Sa are infinite, these sets are made up by taking the disjoint union
of finite subsets. Accordingly, there is a polynomial-sized specification for A, and the

following is a corollary of Theorem 4.1.

Corollary 4.2 There is a polynomial p such that computing |An n| and sampling w.a.r. from

Apn e take at most p(n) steps.

5 Sampling unlabelled multigraphs

Let Hn, be the set of connected multigraphs with degree sequence n and vertex set V,, and
let ﬁn be the set of isomorphism classes of H,. In this section, we will describe a procedure
MULTISAMPLE that samples u.a.r. from ’ﬁn. The procedure will first (see Steps 1-4 of
Figure 2) sample w.a.r. from Gn and will then use rejection to obtain a uniform distribution
on Hy.

All the components of MULTISAMPLE are now ready: Section 2 introduced the machinery
that we will use to reduce the general problem to the special case in which n is irreducible,
Section 3 solved the irreducible case, and Section 4 described the tools that we will use to
lift the solution for the irreducible case up to a solution for general degree sequences. It only

remains to assemble the pieces.

20

Step 1 Select a degree sequence n’ such that n’ < n according to the probability
distribution p,.

Step 2 Select a pair (C,7) using the procedure CONFIGSAMPLE developed in
Section 3 (see Figure 1), with parameter n’. If that procedure returns —,
then output — and halt; otherwise the result is a pair selected u.a.r. from
the set of pairs (C,), with C € Cy and 7 € Aut(C).

Step 3 Select a colouring A u.a.r. from Ay, 5.

Step 4 If 7 € Aut(C, \) then let G be any rooted multigraph in I'(C, \); other-
wise output — and halt.

Step 5 If G has at least two cycles then output ¥(G). Otherwise, let k be the
number of non-isomorphic 1-rooted multigraphs with the same vertex and
edge set as G. (The choice of root is arbitrary in the case of trees, but must
be on the cycle in the case of unicyclic multigraphs.) With probability k!
output ¥(G); otherwise output —.

Figure 2: Procedure MULTISAMPLE for sampling u.a.r. from Hy.

Given a degree sequence n, let the probability distribution p, assign probability

Wn’ ‘An,n’|

M‘Kn" (17)

pa(n’) =

to irreducible degree sequences satisfying n’ < n, and zero probability to the others. Here,
[Ap]
M l'l ‘ n,n
2 TRl

is the normalising factor required to form a probability distribution. (The sum is over ir-
reducible degree sequences n’ such that n’ < n. The fact that this is the right summation
follows from Observation 2.3.) The significance of py, is that it is the “correct” distribution
from which to sample the degree sequence of the core. This is the final ingredient in the

sampling procedure MULTISAMPLE, which is presented in Figure 2.

Lemma 5.1 The procedure MULTISAMPLE presented in Figure 2 is correct: (a) the probabil-
ity that the algorithm produces an output other than — is Q(n~'); (b) for each isomorphism
class U € ﬁn, the probability that U is returned by MULTISAMPLE is a constant, namely
M1, independent of U; and (c) the procedure MULTISAMPLE runs in time polynomial in n,

assuming the mazimum degree A is bounded.

Proof: The procedure successfully completes Step 2 precisely if some value other than — is
returned by procedure CONFIGSAMPLE; the probability of this event is bounded away from 0,
by part (a) of Theorem 3.3. Indeed, part (d) of that theorem tells us more: namely that the

21

automorphism 7 € Aut(C) returned by CONFIGSAMPLE is the identity with probability
bounded away from 0. But if 7 = (), Step 4 is guaranteed to be successful. The probability
that Step 5 is successful it at least 1/n. This completes the proof of (a).

We now proceed to compute the probability that a certain isomorphism class U € ’}-Nln
appears as output. We start by showing that, after Step 4, the probability that G is in any
given class in Gn is ML, Let U be a class in Gp. By Lemma 2.4, U has a uniquely defined
core with degree sequence n’, say. By Lemma 2.7, A condition for U to be returned in Step 4
is that the degree sequence n’ is selected in Step 1, an event which occurs with the probability
pn(n'), given in equation (17). Now fix attention on a particular triple (C, 7, \), satisfying
C € Cy and 7 € Aut(C,A). By Theorem 3.3, the probability that (C,m, A) is selected in
Steps 2 and 3, conditioned on the particular choice of degree sequence n’, is (Wy [Apw|) 7.
By Corollaries 2.8 and 2.9, exactly |K,| of these triples correspond to the desired output U.

Thus, again conditioned on the choice of n’, the probability that U is returned is

|Kn’|
Wn’ ‘An,n’|

" is selected in

Multiplying this expression by the probability (17) that degree sequence n
Step 1, we see that the overall probability that U is returned at the end of Step 4 is a
constant, in fact M~'. If U € ?—Nin has at least 2 cycles, it comes up once in QNH. Otherwise, it
appears k times in én, where k is as in Figure 2. By accepting U only with probability k=1,
the output distribution after Step 5 is uniform on Ha.

Step 1 is polynomial time by Lemma 3.2 and Corollary 4.2; Step 2 is polynomial time
by Theorem 3.3; and Step 3 by Corollary 4.2. Step 4 is clearly polynomial time. Step 5 is
reducible to isomorphism of 1-rooted trees, which can conveniently be decided by a recursive
canonical labelling scheme: if the root is the only vertex assign it label (); otherwise let
l1,la,...,l; be the labels of the ¢ subtrees of the root, ordered lexicographically, and assign
label (l1l5...1;) to the root. By induction, two 1-rooted trees are isomorphic iff their root

labels are equal. Thus, we have established (c). O

6 Sampling molecules

In this section we extend our results to the chemical problem — given a molecular formula,
select, uniformly at random, a structural isomer having the given formula. We start by
extending the algorithm in section 5 so that it can be used to uniformly sample unlabelled
connected self-loop-less multigraphs with a given degree sequence. For this we use procedure
MULTISAMPLE, except that if the output has a self-loop, it is rejected. If the degree sequence
of the core is non-degenerate then the core will be a simple graph with probability bounded
away from 0 (see section 3) so the probability of rejection is not too high. If the degree

sequence of the core is degenerate then the rejection probability will also be low, provided

22

that n is sufficiently large.

The modified version of procedure MULTISAMPLE, which uniformly samples unlabelled
connected self-loop-less multigraphs with a given degree sequence, solves the following prob-
lem: Given a molecular formula in which each atom has a distinct valence, select, uniformly
at random, a structural isomer having the given formula?. We can further modify procedure
MULTISAMPLE so that it can be used to uniformly sample structural isomers even when the
molecular formula has different atoms with the same valence. Formally, we fix ¢ types of

vertices and we interpret a typed degree sequence
NOLs - N0t - s AL - TRAE

as a requirement that a multigraph have n;; degree-i vertices of type j. An isomorphism
between typed multigraphs must map each vertex to a vertex of the same type. Procedure
MULTISAMPLE can be extended in a straightforward way to give a polynomial-time algorithm
that takes as input a typed degree sequence and selects, uniformly at random, an unlabelled
connected multigraph with the given degree sequence. The generation of the core is as before,
except that the definition of the group K, changes since blocks can only be mapped to other
blocks of the same type. The inductive specifications in Section 4 must be modified slightly to
account for the types, so the choice of n’ is modified accordingly. The choice of the colouring A
is also modified slightly. The colouring of each block must have a root that has the same type
as the block and a colouring of a pairing between blocks of types 2 and j must have roots of

types ¢ and j, respectively. Everything else is as before.

Acknowledgements: We thank Jean-Loup Faulon for proposing the problem and explain-

ing the chemical applications. We also thank Alan Frieze for suggesting the use of the core.

References

[1] E.A. Bender and E.R. Canfield, The asymptotic number of labelled graphs with given
degree sequences, Journal of Combinatorial Theory, Series A 24 (1978) 296-307.

[2] C. Benecke, R. Grund, R. Hohberger, A. Kerber, R. Laue and T. Wieland, MOLGEN+,
a generator of connectivity isomers and stereoisomers for molecule structure elucidation.
Anal. Chem. Acta. 314 (1995) 141-147.

[3] B. Bollobas, The asymptotic number of unlabelled regular graphs, Journal of the London
Mathematical Society 26 (1982) 201-206.

2For some chemical applications, such as applications in which valences are variable, it may be appropriate
to modify the rejection phase so that some self-loops are allowed in the final output.

23

[4] B. Bollobds, Almost all regular graphs are Hamiltonian, European Journal on Combina-
torics 4 (1983) 97-106.

[5] B. Bollobas, Random Graphs, Academic Press, 1985.

[6] N. G. De Bruijn, Pélya’s theory of counting, in Applied Combinatorial Mathematics,
Beckenbach, E.F., Ed., John Wiley and Sons, Inc., 1964, see especially Section 5.13.

[7] J.D. Dixon and H.S. Wilf, The random selection of unlabeled graphs, Journal of Algo-
rithms 4 (1983) 205-213.

[8] J.L. Faulon, On using graph-equivalent classes for the structure elucidation of large
molecules, J. Chem. Inf. Comput. Sci. 32(4) (1992) 337-348.

[9] J.L. Faulon, Stochastic generator of chemical structure: 1. Application to the structure
elucidation of large molecules, J. Chem. Inf. Comput. Sci. 34(5) (1994) 1204-1218.

[10] J.L. Faulon, personal communication.

[11] P. Flajolet, P. Zimmerman and B. Van Cutsem, A calculus for the random generation of
labelled combinatorial structures, Theoretical Computer Science 132 (1994) 1-35.

[12] P. Flajolet, P. Zimmerman and B. Van Cutsem, A calculus for the random generation of

unlabelled combinatorial structures, in preparation.

[13] M. Jerrum and A. Sinclair, Fast uniform generation of regular graphs, Theoret. Comput.
Sci. 73 (1990) 91-100.

[14] B.D. McKay and N.C. Wormald, Uniform generation of random regular graphs of mod-
erate degree, J. Algorithms 11 (1990) 52—67.

[15] A. Nijenhuis and H. S. Wilf, Combinatorial Algorithms (2nd edition), Academic Press,
1978.

[16] G.Pdlya and R.C. Read, Combinatorial Enumeration of Groups, Graphs, and Chemical
Compounds, Springer-Verlag, 1987.

[17] R.C. Read, Some recent results in chemical enumeration, in Graph Theory and its Ap-

plications, Springer-Verlag, 1972.

[18] R.C. Read, The enumeration of acyclic chemical compounds, in Chemical Applications
of Graph Theory, Balaban, A.T., Ed., Academic Press, 1976.

[19] H. Robbins, A remark on Stirling’s formula, American Mathematical Monthly 62 (1955)
26-29.

24

[20] V. Sperschneider and G. Antoniou, Logic: A Foundation for Computer Science, Addison-
Wesley, 1991, chapter 13.

[21] T. Wieland, A. Kerber and R. Laue, Principles of the generation of constitutional and
configurational isomers, J. Chem. Inf. Comput. Sci. 36 (1996), 431-439.

[22] H.S. Wilf, The uniform selection of free trees, Journal of Algorithms 2 (1981) 204-207.

[23] N.C. Wormald, Some problems in the enumeration of labelled graphs, Ph.D. Thesis,
Department of Mathematics, University of Newcastle, New South Wales, 1978.

[24] N.C. Wormald, The asymptotic connectivity of labelled regular graphs, Journal of Com-
binatorial Theory, Series B 31 (1981) 156-167.

[25] N.C. Wormald, Generating random unlabelled graphs, SIAM Journal of Comput-
ing 16(4) (1987) 717-727.

[26] S. Zhan, On Hamiltonian line graphs and connectivity, Discrete Mathematics 89 (1991)
89-95.

25

