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ess;this is a random walk on a bipartite graph whi
h essentially implements Burnside'slemma. For this approa
h to be feasible, the Markov 
hain ought to be \rapidlymixing", i.e., 
onverge rapidly to equilibrium. The Burnside pro
ess was known tobe rapidly mixing for some spe
ial groups, and it has even been implemented in some
omputational group theory algorithms. In this paper, we show that the Burnsidepro
ess is not rapidly mixing in general. In parti
ular, we 
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t an in�nite familyof permutation groups for whi
h we show that the mixing time is exponential in thedegree of the group.1 Introdu
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de�nitions.) The image of � 2 �m under g is 
onventionally denoted �g. Words � and �are in the same orbit if there is a permutation g 2 G whi
h maps � to �g = �. The orbitspartition the set of words into equivalen
e 
lasses, and the 
omputational problem is tosample words in su
h a way that ea
h orbit is equally likely to be output.1The main tool whi
h has been used for sampling orbits is Burnside's Lemma,2 whi
hsays that ea
h orbit 
omes up jGj times (as the �rst 
omponent) in the set of pairs�(� ; G) := f(�; g) j � 2 �m; g 2 G and �g = �g: (1)Thus, we are interested in the 
omputational problem of sampling uniformly at randomfrom �(� ; G), given (an eÆ
ient representation of) G.Wormald [17℄ has shown how to solve this sampling problem for rigid stru
tures. Thatis, he has given an eÆ
ient random sampling algorithm that works whenever a high fra
tionof the pairs in �(� ; G) have g equal to the identity permutation. Wormald's method doesnot extend to the 
ase in whi
h the identity permutation 
ontributes only a small fra
tion3of the pairs in �(� ; G). However, Jerrum proposed a natural approa
h based on Markov
hain simulation whi
h does extend to this 
ase [8℄.We give the details of the Markov 
hain simulation approa
h in Se
tion 2. In brief, theidea is to 
onsider the following bipartite graph: The verti
es on the left-hand side are allwords in �m. The verti
es on the right-hand side are all permutations in G. There is anedge from word � to permutation g if and only if �g = �. This graph essentially implementsBurnside's Lemma: The lemma shows that the stationary distribution of a random walkon the graph assigns equal weight to ea
h orbit, i.e., to ea
h unlabelled stru
ture. TheMarkov 
hain that we 
onsider, whi
h we refer to as the \Burnside pro
ess", is the randomwalk on this graph observed on alternate steps.We may obtain a nearly uniform unlabelled sample by simulating the Burnside pro
essfrom a �xed initial state for suÆ
iently many steps, and returning the �nal state. TheeÆ
ien
y of this sampling method is dependent on the so-
alled mixing time of the Burnsidepro
ess: in rough terms, how many steps is \suÆ
iently many"? The aim of this arti
leis to show that the mixing time of the Burnside pro
ess is sometimes very large. We nowmake that statement pre
ise.For any two probability distributions � and �0 on a �nite set 	 , de�ne the total variationdistan
e between � and �0 to beDtv(�; �0) := maxA�	 j�(A)� �0(A)j = 12Xx2	 j�(x)� �0(x)j:1Here is a 
on
rete example: Let � be a binary alphabet. En
ode the adja
en
y matrix of an n-vertexgraph as a word of length m = �n2�. The relevant permutation group is the group (a
ting on words) whi
his indu
ed by the group of all permutations of the n verti
es. Note that two graphs are in the same orbitif and only if they are isomorphi
.2Although this lemma is 
ommonly referred to as \Burnside's Lemma", it is really due to Cau
hy andFrobenius [14℄.3Spe
i�
ally, Wormald's approa
h 
an be used when the fra
tion of pairs in �(� ; G) whi
h are due tothe identity is at least the inverse of some polynomial in m.2



Suppose M is an ergodi
 Markov 
hain with state spa
e 	 and stationary distribution �,and let the t-step distribution ofM , when started in state x0, be �t. The mixing time ofM ,given initial state x0, is a fun
tion �x0 : (0; 1)! N , from toleran
es Æ to simulation times,de�ned as follows: for ea
h Æ 2 (0; 1), let �x0(Æ) be the smallest t su
h that Dtv(�t0 ; �) � Æfor all t0 � t. If the initial state is not signi�
ant or is unknown, it is appropriate to de�ne�(Æ) = maxx �x(Æ), where the maximum is over all x 2 	 . By rapid mixing, we meanthat �(Æ) � poly(m; log Æ�1), where m is the input size|in our 
ase the degree of thegroup G|and Æ the toleran
e. Stuart Anderson has suggested the phrase torpid mixingto des
ribe the 
ontrasting situation where mixing time is exponential in the input size.The Burnside pro
ess was shown to be rapidly mixing for some very spe
ial groupsG [8℄.However, it was an open question whether it is rapidly mixing in general. The pre
ise resultof this arti
le (Theorem 11) is a 
onstru
tion of an in�nite family of permutation groups Gfor whi
h we show that the mixing time �(13) is exponential in the degree of G. Thus,if we use the t-step distribution to estimate the probability �(A) of some event A � 	in the stationary distribution, the result may be out by as mu
h as 13 , unless we take texponentially large.The main idea of the proof is to relate the mixing time of the Burnside pro
ess to the\Swendsen-Wang pro
ess", a parti
ular dynami
s for the Potts model in statisti
al physi
s.The Swendsen-Wang pro
ess was shown by Gore and Jerrum [6℄ to have exponential mix-ing time at a 
ertain 
riti
al value of a parameter 
alled \temperature". It turns out thatthe Swendsen-Wang pro
ess de�ned on a graph � at a di�erent (lower, non-
riti
al) tem-perature has exa
tly the same dynami
s as the Burnside pro
ess on a derived permutationgroup G3(� ). Thus we only have to relate the Swendsen-Wang pro
ess at the two di�erenttemperatures, whi
h we do using the \l-stret
h" 
onstru
tion used by other authors [7℄.The dynami
s of the Swendsen-Wang pro
ess is not perfe
tly preserved by the l-stret
h
onstru
tion, but the 
orresponden
e is 
lose enough to yield the 
laimed result.Se
tions 2 and 3 des
ribe the Burnside and Swendsen-Wang pro
esses; Se
tion 4 de-s
ribes the relationship between the two; Se
tion 5 relates the Swendsen-Wang pro
essat two di�erent temperatures via the l-stret
h 
onstru
tion, thus 
ompleting the \torpidmixing" proof; �nally, Se
tion 6 
on
ludes with some open problems.2 The Burnside pro
essLet � = f0; : : : ; k � 1g be a �nite alphabet of 
ardinality k, and G a permutation groupon [m℄ = f0; : : : ; m� 1g. For g 2 G and i 2 [m℄, denote by ig the image of i under g. Thegroup G has a natural a
tion on the set �m of all words of length m over the alphabet � ,indu
ed by permutations of the \positions" 0; : : : ; m � 1. Under this indu
ed a
tion, thepermutation g 2 G maps the word � = a0a1 : : : am�1 to the word �g = � = b0b1 : : : bm�1de�ned by bj = ai for all i; j 2 [m℄ satisfying ig = j. The a
tion of G partitions �m into anumber of orbits, these being the equivalen
e 
lasses of �m under the equivalen
e relationthat identi�es � and � whenever there exists g 2 Gmapping � to �. The orbit f�g : g 2 Gg
ontaining the word � 2 �m is denoted �G. As we indi
ated in the introdu
tion, Burnside's3



Lemma says that ea
h orbit 
omes up jGj times in the set �(� ; G) de�ned in equation (1).Thus, we are interested in the problem of uniformly sampling elements of �(� ; G).A standard atta
k on 
ombinatorial sampling problems [10℄ is to design a Markov
hain whose states are the stru
tures of interest (in this 
ase the state spa
e is G) andwhose transition probabilities are 
hosen so that the stationary distribution is the requiredsampling distribution. The following natural Markov 
hain was proposed by Jerrum [8℄. Aswe noted in the introdu
tion, it is essentially a random walk on the bipartite graph whi
h
orresponds to Burnside's Lemma. The state spa
e of the Markov 
hain MB = MB(G;� )is just G. The transition probabilities from a state g 2 G are spe
i�ed by the following
on
eptually simple two-step experiment:(B1) Sample � uniformly at random (u.a.r.) from the set Fix g := f� 2 �m : �g = �g.(B2) Sample h u.a.r. from the point stabiliser G� := fh 2 G : �h = �g.The new state is h. Algorithmi
ally, it is not diÆ
ult to implement (B1). However, Step(B2) is apparently diÆ
ult in general. (It is equivalent under randomised polynomial-time redu
tions to the Setwise Stabiliser problem, whi
h in
ludes Graph Isomorphism as aspe
ial 
ase.) Nevertheless, there are signi�
ant 
lasses of groups G for whi
h an eÆ
ient(polynomial time) implementation exists. Luks has shown that p-groups|groups in whi
hevery element has order a power of p for some prime p|is an example of su
h a 
lass [11℄.Returning to the Markov 
hain itself, we note immediately thatMB is ergodi
, sin
e ev-ery state (permutation) 
an be rea
hed from every other in a single transition, by sele
tingthe word � = 0m in step (B1). Let � : G! [0; 1℄ denote the stationary distribution of MB.Then �(g) is proportional to the degree of vertex g in the bipartite graph 
orrespondingto Burnside's Lemma, whi
h is jFix gj = k
(g), where 
(g) denotes the number of 
y
les inthe permutation g. We have therefore established the following Lemma from [9℄:Lemma 1 Let � be the stationary distribution of the Markov 
hain MB(G;� ). Then�(g) = k
(g)=j�(� ; G)j for all g 2 G.Although the Markov 
hain MB on G is the most 
onvenient one for us to work with, itis 
lear that we 
an invert the order of steps (B1) and (B2) to obtain a dual Markov 
hainM 0B(G;� ) with state spa
e �m. The dual Markov 
hain4 has greater pra
ti
al appeal, asit gives a uniform sampler for orbits (i.e., unlabelled stru
tures):Lemma 2 Let �0 be the stationary distribution of the Markov 
hain M 0B(G;� ). Then�0(�) = jGjj�Gj j�(� ; G)jfor all � 2 �m; in parti
ular, �0 assigns equal probability to ea
h orbit �G.4In referen
es [8℄ and [9℄, the primed and unprimed versions are reversed.4



The result again follows from a 
onsideration of the random walk on the bipartite graph,using the elementary group-theoreti
 fa
t that jG�j � j�Gj = jGj.Peter Cameron has observed that a Markov 
hain similar to M 0B may be de�ned forany group a
tion, not just the spe
ial 
ase of a permutation group G a
ting on �m bypermutation of positions. In the general setting: given a point �, sele
t u.a.r. a groupelement g that �xes �, and then sele
t a point that is �xed by g. Thus, the generalisationof M 0B to arbitrary group a
tions provides a potentially eÆ
ient pro
edure for uniformlysampling unlabelled stru
tures (i.e., sampling stru
tures up to symmetry). This pro
edurehas been implemented in 
ertain algorithms for determining the 
onjuga
y 
lasses of a�nite group [16℄.Of 
ourse, the e�e
tiveness of M 0B (equivalently MB) as a basis for a general purposesampling pro
edure for unlabelled stru
tures depends on its mixing time. It was knownthat MB mixes rapidly in some spe
ial 
ases (see Jerrum [8℄), but it was not previouslyknown whether MB mixes rapidly for all groups G. Spe
i�
ally, it was not known whetherthe mixing time of MB(G;� ) is uniformly bounded by a polynomial in m, the degree of G.The result in this arti
le is a 
onstru
tion of an in�nite family of permutation groups forwhi
h we show that the mixing time of MB grows exponentially in the degree m.3 The Swendsen-Wang pro
essAs noted in the Introdu
tion, our strategy is to relate the mixing time of the Burnsidepro
ess to that of the Swendsen-Wang pro
ess. In this se
tion we des
ribe the latterpro
ess, whi
h provides a parti
ular dynami
s for the q-state Potts model. In fa
t, weneed only 
onsider the spe
ial 
ase q = 3. See Martin's book [13℄ for ba
kground on thePotts model.A (3-state) Potts system is de�ned by a graph � = (V;E) and a real number (\inversetemperature") �. For 
ompa
tness, we will sometimes denote an edge (i; j) 2 E by ij. A
on�guration of the system is an assignment � : V ! f0; 1; 2g of \spins" or 
olours to theverti
es of � . The set of all 3jV j possible 
on�gurations is denoted by 
 . We asso
iateea
h 
on�guration � 2 
 with an energy H(�) := Pij2E �1 � Æ(�(i); �(j))�, where Æ isthe Krone
ker-Æ fun
tion whi
h is 1 if its arguments are equal, and 0 otherwise. Thusthe energy of a 
on�guration is just the number of edges 
onne
ting unlike 
olours. The(Boltzmann) weight of a 
on�guration � is exp(�� H(�)). The partition fun
tion of the3-state Potts model is Z = Z(� ; �) :=X�2
 exp �� � H(�)�; (2)it is the normalising fa
tor in the Gibbs distribution on 
on�gurations, whi
h assigns prob-ability exp(�� H(�))=Z to 
on�guration �. To avoid the exponentials, we will de�ne theedge weight � of the Potts system to be e��, so the partition fun
tion (2) may be rewrittenas Z = Z(� ; �) =X�2
 Yij2E �[1�Æ(�(i);�(j))℄: (3)5



Thus the weight of a 
on�guration is �b, where b is the number of bi
hromati
 edges.The Swendsen-Wang pro
ess spe
i�es a Markov 
hainMSW(� ; �) on 
 . Let the 
urrentPotts 
on�guration be denoted by �. The next 
on�guration �0 is obtained as follows.(SW1) Let A = fij 2 E : �(i) = �(j)g be the set of mono
hromati
 edges. Sele
t a subsetA � A by retaining ea
h edge in A independently with probability p = 1� �.(SW2) The graph (V;A) 
onsists of a number of 
onne
ted 
omponents. For ea
h 
onne
ted
omponent, a 
olour is 
hosen u.a.r. from f0; 1; 2g, and all verti
es within the 
om-ponent are assigned that 
olour.That the Markov 
hain with transitions de�ned by this experiment is ergodi
 is immediate;that it has the 
orre
t (i.e., Gibbs) distribution is not too diÆ
ult to show. (See, forexample, Edwards and Sokal [4℄.) Both the Swendsen-Wang pro
ess (MSW(� ; �)) andthe Burnside pro
ess (MB(G;� )) are examples of Markov 
hains using the \method ofauxiliary variables" (see [4℄ and [1℄).4 The relationship between the Burnside pro
ess andthe Swendsen-Wang pro
essLet � be a �nite alphabet of size k, and let � = (V;E) be an undire
ted graph de�ning a 3-state Potts system with edge weight � = k�2. We will 
onstru
t an asso
iated permutationgroup G3(� ) su
h that the dynami
s of the Burnside pro
ess on (G3(� );� ) is essentiallythe same as the Swendsen-Wang dynami
s on (� ; �). This 
onstru
tion generalises a
onstru
tion from [8℄, whi
h deals with the 
ase k = 2 (i.e., the binary alphabet 
ase).The permutation group G3(� ) a
ts on the set � = Se2E �e, whi
h is the disjoint unionof three-element sets �e. Arbitrarily orient the edges of � , so that ea
h edge e 2 E hasa de�ned start-vertex e� and end-vertex e+. For e 2 E and v 2 V , denote by he some�xed permutation that indu
es a 3-
y
le on �e and leaves everything else �xed, and denoteby gv the generator gv := Ye:e+=v he � Ye:e�=v h�1e :Finally, de�ne G3(� ) = hgv : v 2 V i, the group generated by fgvg.Observe that the generators of G3(� ) 
ommute and have order three, so ea
h permu-tation g 2 G3(� ) 
an be expressed asg = g(�) := Yv2V gv�(v) =Ye2E he�(e+)��(e�); (4)where � : V ! f0; 1; 2g. Provided the graph � is 
onne
ted, this expression is essentially
anoni
al, in that � is uniquely determined up to addition (mod 3) of a 
onstant fun
tion.To see this, note that g uniquely determines the exponent of he in expansion (4), whi
h inturn determines the di�eren
e between the 
olours (viewed as integers) at the endpoints of6



edge e. Note that all three of the 
on�gurations asso
iated with g indu
e the same set Ain (SW1). Thus, the transition probabilities from the three 
on�gurations are the same,and we 
an therefore think of g as being asso
iated with all three 
on�gurations.Lemma 3 Suppose � is a graph, � a �nite alphabet, and let k = j� j. ThenMB(G3(� );� ) �= MSW(� ; k�2);that is to say, ea
h permutation g in the state spa
e ofMB(G3(� );� ) 
an be asso
iated withexa
tly three 
on�gurations in the state spa
e of MSW(� ; k�2) in su
h a way that transitionprobabilities are preserved.Proof. We asso
iate ea
h permutation g 2 G3(� ) with three 
on�gurations as des
ribedabove. As we observed, the transition probabilities of the three 
on�gurations in SW areidenti
al.Perhaps the easiest way to show that these transition probabilities are the same asthose in MB is to 
ombine the experiment de�ning the Burnside pro
ess (see (B1) and(B2)) with that de�ning the Swendsen-Wang pro
ess (see (SW1) and (SW2)) into a single
oupled version. Start with the pair (g; �g), where �g is one of the three 
on�gurationsasso
iated with g.(C1) Sample � u.a.r. from the set Fix g = f� 2 �m : �g = �g of words �xed by g. LetA := fe 2 E : � is not 
onstant on �eg. The pair (�;A) is the intermediate state.(C2) Sample h u.a.r. from the point stabiliser G� = fh 2 G : �h = �g.The new pair is (h; �h) (
hoose �h uniformly at random from the three 
on�gurationsasso
iated with h).By 
onstru
tion, the transitions g ! � ! h o

ur with the probabilities di
tated by(B1) and (B2). We must 
he
k that the indu
ed transitions �g ! A ! �h mat
h (SW1)and (SW2) in probability. Let e = uv 2 E be any edge, and 
onsider the a
tion of gon �e. If �g(u) = �g(v) then the a
tion of g on �e is the identity, and probability that �is 
onstant on �e is k�2. Thus the probability that e 2 A is 1 � k�2, independent of theother edge 
hoi
es, as required by (SW1), where � = k�2. Otherwise, �g(u) 6= �g(v) andthe a
tion of g on �e is a 3-
y
le. Ne
essarily, � is 
onstant on �e, and e =2 A, again asrequired by (SW1). So the distribution of A � E is 
orre
t.To verify the se
ond step, again let e = uv 2 E be any edge. If e 2 A then � is not
onstant on �e, entailing that the a
tion of h on �e is the identity and �h(u) = �h(v).Conversely, if e =2 A then � is 
onstant on �e, and �h(u)� �h(v) is un
onstrained. Thush 7! �h is a bije
tion from G� to 
on�gurations that are 
onstant on 
onne
ted 
omponentsof (V;A), and the distribution of �h is as demanded by (SW2).7



5 Torpid mixingWe have seen that the Burnside pro
ess is equivalent to the Swendsen-Wang pro
ess at aparti
ular edge-weight �; and it is known that the Swendsen-Wang pro
ess at a di�erentedge weight (whi
h is approximately 1� (4 ln 2)=jV j, where V is the vertex set of � ) hasexponential mixing time [6℄. In this se
tion we bridge the gap between the di�erent edgeweights.Denote by Pl the path of length l or l-path, i.e., the graph with vertex set [l + 1℄ andedge set ffi; i + 1g : 0 � i < lg.Lemma 4 Consider a randomly sampled 
on�guration of the 3-state Potts model on Plwith edge weight �. The indu
ed distribution of 
olours on the two end verti
es of Pl isidenti
al to the distribution of 
on�gurations of the 3-state Potts model on P1 (= K2) withedge weight �̂(l) := (1 + 2�)l � (1� �)l(1 + 2�)l + 2(1� �)l : (5)Proof. De�ne w(l) 2 R2 to be the ve
tor whose �rst (respe
tively, se
ond) 
omponentw(l)0 (respe
tively, w(l)1 ) is the total weight of those 
on�gurations on Pl whose (ordered)endpoints have 
olours (0; 0) (respe
tively, (0; 1)). Clearly, there is nothing spe
ial in theparti
ular 
hoi
e of 
olours; the pair (0; 0) 
ould be repla
ed by any pair of like 
olours,and (0; 1) by any pair of unlike ones. Introdu
e the matrixT := � 1 2�� 1 + �� ;a straightforward indu
tion on l establishesw(l) = T l�10� :The matrix T has eigenvalues 1� � and 1 + 2�. Introdu
e two further matri
esD := � 1� � 00 1 + 2�� and S := � 2 1�1 1� :Then T = SDS�1 and hen
e T l = SDlS�1. Noting thatS�1 = 13 � 1 �11 2 � ;we obtain w(l) = SDlS�1�10� = 13 � (1 + 2�)l + 2(1� �)l(1 + 2�)l � (1� �)l � : (6)Sin
e Pl is equivalent|in the sense of the statement of the lemma|to a single edge withe�e
tive weight w(l)1 =w(l)0 , Lemma 4 follows immediately.8



Denote by Kn
Pl the graph obtained from the 
omplete graph on n verti
es by subdividingea
h edge by l � 1 intermediate verti
es of degree two. Thus ea
h edge of Kn be
omes inKn
Pl a 
opy of the l-path Pl. We refer to the verti
es of degree n�1 as exterior verti
esand those of degree two as interior. (Assume n > 3 to avoid trivialities.) We remarkthat this 
onstru
tion is just the \l-stret
h", used in related situations by Jaeger, Vertiganand Welsh [7℄. The l-stret
h operation allows us to move between di�erent edge weights,at least if we forget for a moment the spe
i�
 dynami
s imposed by the Swendsen-Wangpro
ess.Lemma 5 Consider a randomly sampled 
on�guration of the 3-state Potts model on Kn
Pl with edge weight �. The indu
ed distribution of 
olours on the exterior verti
es of Kn
Plis identi
al to the distribution of 
on�gurations of the 3-state Potts model on Kn with edgeweight �̂, where �̂ = �̂(l) is as in (5).Proof. Suppose � is any Potts 
on�guration on the graph Kn 
 Pl, and S is any subsetof its verti
es. Denote by �jS 2 f0; 1; 2gjSj the restri
tion of � to the set S. Throughsome elementary algebrai
 manipulation, we may express the partition fun
tion of a Pottssystem on Kn 
 Pl in terms of the partition fun
tion of a Potts system on Kn with edgeweight 
loser to 1. In the following manipulation, we assume that the verti
es of Kn 
 Plare numbered 0; : : : ; N � 1 and that the exterior verti
es re
eive numbers in the range0; : : : ; n� 1. Furthermore, Uij � [N ℄ denotes the set of l � 1 interior verti
es lying on thel-path between exterior verti
es i and j, and Eij denotes the set of edges on that path.Z(Kn 
 Pl; �)=X� Yuv2E �[1�Æ(�(u);�(v))℄=X�j[n℄ X�jU0;1 � � � X�jUn�2;n�1  Yuv2E0;1 �[1�Æ(�(u);�(v))℄ � � � Yuv2En�2;n�1 �[1�Æ(�(u);�(v))℄!=X�j[n℄ X�jU0;1 Yuv2E0;1 �[1�Æ(�(u);�(v))℄!� � � X�jUn�2;n�1 Yuv2En�2;n�1 �[1�Æ(�(u);�(v))℄!=X�j[n℄ Y0�i<j�n�1C �̂[1�Æ(�(i);�(j))℄= Cn(n�1)=2 Z(Kn; �̂);where C is a 
onstant (a
tually w(l)0 ). The penultimate equality above uses Lemma 4.Let �̂ 2 f0; 1; 2gn be any 
on�guration on Kn. From the above manipulation, wesee that the weight of the 
on�guration �̂ on Kn is equal|modulo the 
onstant fa
torCn(n�1)=2|to the sum of the weights of 
on�gurations � of Kn 
 Pl that agree with �̂ onthe exterior verti
es or, symboli
ally, �j[n℄ = �̂. This proves Lemma 5.9



Lemma 6 There exists an in�nite sequen
e of pairs (n; l) = f(n(l); l) : l = 1; 2; : : :g su
hthat �����1� �̂(l)�� 4 ln 2n(l) ���� � 3n(l)2for all pairs, where �̂(l) is de�ned as in (5).Proof. The fun
tion 1 � �̂(l) de
reases monotoni
ally to 0, as l ! 1. Given l, 
hoose nto be the unique natural number satisfying4 ln 2n(l) + 1 < 1� �̂(l) � 4 ln 2n(l) :The upper and lower bounds di�er by less than 3n(l)�2. Thus, we have proved Lemma 6.Let 
 be the set of 
on�gurations of the 3-state Potts model on Kn 
 Pl. For ea
h
on�guration � 2 
 , de�ne 
(�) 2 R3 be the 3-ve
tor whose ith 
omponent is the pro-portion of exterior verti
es of Kn
 Pl given 
olour i by �. Then let 
1:1:1(") (respe
tively,
4:1:1(")) denote the set of 
on�gurations � su
h that 
(�) lies within an "-ball 
entred at(13 ; 13 ; 13) (respe
tively, one of the three "-balls 
entred at (23 ; 16 ; 16), (16 ; 23 ; 16), or (16 ; 16 ; 23)).Lemma 7 Let a 
on�guration � be sampled from the 3-state Potts model on Kn
Pl withedge weight �, and suppose that 1� �̂(l) = (4 ln 2)=n+O(n�2). Then, for any " > 0:(i) Pr(� 2 
1:1:1(")) = 
(n�2);(ii) Pr(� 2 
4:1:1(")) = 
(n�2); and(iii) Pr(� =2 
1:1:1(") [ 
4:1:1(")) = e�
(n).The impli
it 
onstants depend only on ".Proof. By Lemma 4, we may equivalently work with the Potts model on Kn with edgeweight �̂(l).When 1� �̂(l) = (4 ln 2)=n, i.e., the error term is 0, this is pre
isely the result of Goreand Jerrum [6, Prop 3℄. See also Bollob�as, Grimmett and Janson [2℄. The validity of theproof given in [6℄ is una�e
ted by the error term: an additive error O(n�2) in �̂(l) translatesto an additive perturbation O(n�1) in the fun
tion f in [6, eq. (2)℄. This perturbation maybe absorbed into the error term � appearing in that equation, whi
h is 
(1). Thus, wehave proved Lemma 7.We now need to 
ompare the dynami
s of the Swendsen-Wang pro
esses on Kn 
Pl and Kn, more pre
isely, the Markov 
hains MSW(Kn 
 Pl; �) and MSW(Kn; �̂). The
orresponden
e will not be exa
t, as in Lemma 3, but it will be 
lose enough for ourpurposes. 10



Let G�;p denote the standard random graph model in whi
h an undire
ted �-vertexgraph is formed by adding, independently with probability p, for ea
h unordered pair ofverti
es (i; j), an edge 
onne
ting i and j. Suppose that p < d=�, with d < 1 a 
onstant,and � is sele
ted a

ording to the model G�;p. It is a 
lassi
al result that, with probabilitytending to 1 as � !1, the 
onne
ted 
omponents of � all have size O(log �). We requirea (fairly 
rude) large deviation version of this result.Lemma 8 Let � be sele
ted a

ording to the model G�;p, where p < d=� and 0 < d < 1is a 
onstant. Then the probability that � 
ontains a 
omponent of size ex
eeding p� isexp(�
(p� )).Proof. This result in exa
tly this form appears as [6, Lemma 4℄. See O'Connell [15,Thm 3.1℄ for a mu
h more pre
ise large-deviation result for the \giant 
omponent" ofa sparse random graph.We also need:Lemma 9 (Hoe�ding) Let Z1; : : : ; Zs be independent r.v's with ai � Zi � bi, for suitable
onstants ai; bi, and all 1 � i � s. Also let bZ =Psi=1 Zi. Then for any t > 0,Pr �j bZ � Exp bZj � t� � exp��2t2 . sXi=1 (bi � ai)2�Proof. See M
Diarmid [12, Thm 5.7℄.Lemma 10 Let a 
on�guration � 2 
 be sampled from the 3-state Potts model on Kn
Plwith edge weight �, and suppose that 1 � �̂(l) = (4 ln 2)=n + O(n�2). Let �0 2 
 be theresult of applying one step of the Swendsen-Wang pro
ess, starting at �. Then, for any" > 0, Pr(�0 2 
1:1:1(") j � 2 
1:1:1(")) = 1� e�
(pn );and Pr(�0 2 
4:1:1(") j � 2 
4:1:1(")) = 1� e�
(pn ):The impli
it 
onstants depend only on ".Proof. For i; j exterior verti
es of Kn 
 Pl satisfying �(i) = �(j).Pr(Path i$ j is mono
hromati
) = 1w(l)0 = 3(1 + 2�)l + 2(1� �)l ;where the se
ond equality is from (6). After step (SW1),Pr(Path i$ j is 
ontained in A)= Pr(Path i$ j is mono
hromati
)� (1� �)l= 3(1� �)l(1 + 2�)l + 2(1� �)l= 1� �̂(l): 11



For 
onvenien
e, set p̂ = 1��̂(l). Now suppose � 2 
1:1:1(") and 
onsider the set of exteriorverti
es of some given 
olour, and let � � (13+")n be the size of that set. Provided " is smallenough (" = 1=40 will do), p̂� � d < 1. By Lemma 8, with probability 1� exp(�
(p� )),the maximum number of exterior verti
es in any 
onne
ted 
omponent of the graph ([N ℄; A)restri
ted to this 
olour-
lass is at most p�. (Re
all that [N ℄ is the vertex set of Kn
Pl.)Combining this observation for all three 
olours, and noting � = �(n), we obtain thefollowing: with probability 1 � exp(�
(pn )), the number of external verti
es in any
onne
ted 
omponent of ([N ℄; A) is at most pn.Let s be the number of su
h 
omponents, and n1; : : : ; ns be their respe
tive sizes. Theexpe
ted size of a 
olour-
lass 
onstru
ted in step (SW2) is n=3, and be
ause there aremany 
omponents (at least pn ) we expe
t the a
tual size of ea
h 
olour-
lass to be 
loseto the expe
tation. We quantify this intuition by appealing to the Hoe�ding bound. Fixa 
olour, say 0, and de�ne the random variables Y1; : : : ; Ys and bY byYi = �ni; if the ith 
omponent re
eives 
olour 0 in step (SW2);0; otherwise,and bY =Psi=1 Yi. Then Exp bY = n=3 and, by Lemma 9, for any t > 0,Pr �jbY � Exp bY j � t� � exp��2t2 . sXi=1 n2i�� exp(�2t2n�3=2);sin
e sXi=1 n2i � sXi=1 nipn = n3=2:Similar bounds apply, of 
ourse, to the other 
olours. Choosing t = "n=p3 we see that,with probability 1 � exp(�
(pn )), the size of every 
olour 
lass in �0 lies in the range�(13 � "=p3 )n; (13 + "=p3 )n�; but this 
ondition implies �0 2 
1:1:1(").This proves the �rst part of Lemma 10, 
on
erning 
1:1:1("); the se
ond part of thelemma follows from the �rst by Lemma 7 and time-reversibility. In parti
ular, it followsfrom the fa
t that MSW satis�es the detailed balan
e 
ondition:Pr(� = �1 ^ �0 = �2) = Pr(� = �2 ^ �0 = �1);for all 
on�gurations �1 and �2, where � is sampled from the stationary distribution.It is now a short step to the main theorem. Re
all that �(13) denotes the number of steps tbefore the t-step distribution is within variation distan
e 13 of the stationary distribution(maximised over the 
hoi
e of starting state).Theorem 11 Let � be a �nite alphabet of size at least two. There exists an in�nite familyof permutation groups G su
h that the mixing time of the Burnside pro
ess MB(G;� ) isexponential in the degree m of G; spe
i�
ally �(1=3) = 
(exp(m1=(4+"))) for any " > 0.12



Proof. By Lemma 3, it is enough to exhibit an in�nite family of graphs � su
h thatMSW(� ; �) has exponential mixing time, where � = k�2. This family of graphs will of
ourse be (Kn(l)
Pl : l 2 N) where n(l) is as de�ned in lemma 6. The family of permutationgroups promised by the theorem will then be (G3(Kn(l) 
 Pl) : l 2 N).Consider a traje
tory (�t : t 2 N) of MSW(Kn 
 Pl; �) starting in the stationary distri-bution. We say that the traje
tory es
apes at step t if(�t 2 
1:1:1(") ^ �t+1 =2 
1:1:1(")) _ (�t 2 
4:1:1(") ^ �t+1 =2 
4:1:1(")):For ea
h t, by Lemma 10, the probability of es
ape at time t is bounded by exp(�
(pn )).Furthermore, by Lemma 7 the probability of the event�0 =2 
1:1:1(") [ 
4:1:1(")is also bounded by exp(�
(pn )).Thus there is a fun
tion T = T (n) = exp(
(pn )) su
h that, with probability atleast 910 , the initial segment of the traje
tory (�t : 0 � t � T ) lies either entirely within
1:1:1(") or entirely within 
4:1:1("). Hen
e there is an initial state s 2 
1:1:1(") su
h thatPr(�T =2 
1:1:1(") j �0 = s) � 110 , and similarly for s 2 
4:1:1("). Choose su
h an initialstate s from whi
hever of 
1:1:1(") or 
4:1:1(") has the smaller total weight in the stationarydistribution. Then the variation distan
e of the T -step distribution from the stationarydistribution is at least 12 � e�
(n) � 110 � 13 . Finally note that m = O(n2l) = O(n2 logn).(It is straightforward to see from Lemma 6 that l = O(logn).) Thus, we have provedTheorem 11.Although the de�nition of � 
ontains an existential quanti�
ation over initial states, it willbe seen that Theorem 11 is not very sensitive to the initial state: �(13) 
an be repla
edby �s(13), where s ranges over almost every state in 
1:1:1(") or 
4:1:1("), as appropriate(\almost every" being interpreted with respe
t to the stationary distribution).6 Open problemsIn this paper, we have shown that the Burnside pro
ess is not rapidly mixing in general.It remains an open question whether there is some other polynomial-time method whi
ha
hieves the same distribution as the Burnside pro
ess, either on permutations (as inLemma 1) or on words (as in Lemma 2). Sin
e (B1) is easy to implement in polynomial-time, a polynomial-time sampling algorithm for the stationary distribution � of Lemma 1would yield a polynomial-time sampler for the stationary distribution �0 of Lemma 2 (i.e.,the uniform distribution on orbits). If there is a polynomial-time sampling algorithm for thedistribution � this will imply [9℄ that there is a fully polynomial randomised approximations
heme for the single-variable 
y
le index polynomial for every integer k (see [3℄). Su
ha result would be a striking 
ontrast to the result of the authors (see [5℄) whi
h showsthat, unless NP = RP, no su
h approximation algorithm exists for any �xed rationalnon-integer k. 13
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