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Abstract

We construct a stabilized finite-element method to compute flow and nonlinear deforma-
tions in an incompressible poroelastic medium. We employ a three-field mixed formulation to
calculate displacement, fluid flux and pressure directly and introduce a Lagrange multiplier to
enforce the no-flux boundary condition. We use a low order approximation, namely, continu-
ous piecewise-linear approximation for the displacements and fluid flux, and piecewise-constant
approximation for the pressure. This results in a simple matrix structure with low bandwidth
and enables steep pressure gradients, such as those occurring due to rapid changes in material
coefficients, boundary conditions or forcing, to be accurately approximated. Three dimensional
numerical experiments demonstrate the accuracy of the method and its ability to reliably capture
steep pressure gradients, and illustrate its application to modelling of the human lung.

1. Introduction

Poroelasticity is a mixture theory in which a complex fluid-structure interaction is approx-
imated by the superposition of solid and fluid components. Developments of the continuum
theory can be found, for example, in [1] and [2]. Poroelastic models have been developed to
study numerous geophysical applications ranging from reservoir engineering [3] to earthquake
fault zones [4]. Fully saturated, incompressible poroelastic models have been proposed for a
variety of biological tissues and processes, including lung parenchyma [5], protein-based hy-
drogels embedded within cells [6], blood flow in the beating myocardium [7, 8], brain oedema
and hydrocephalus [9, 10], and interstitial fluid and tissue in articular cartilage and intervertebral
discs [11, 12, 13].

In [14], we developed a stabilized, low-order, mixed finite element method for the fully sat-
urated, incompressible, small deformation case for which a linear elasticity model is sufficient.
Low-order finite element methods are relatively easy to implement and allow for efficient pre-
conditioning [15, 16]. We employed the fluid flux as a primary variable resulting in a three-field,
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displacement, fluid flux and pressure formulation. Keeping the fluid flux as a primary vari-
able obviates the need to calculate the flux via post-processing and allows physically meaningful
boundary conditions to be applied at the interface when modelling the interaction between a fluid
and a poroelastic structure [17]. Further it allows for an easy extension of the fluid model from a
Darcy flow to a Brinkman flow, for which there are numerous applications in modelling biolog-
ical tissues [18]. Rigorous theoretical results for the stability and optimal convergence rate for
linear poroelasticity were presented in [14]. The stabilization term requires only a small amount
of additional computational work, can be assembled locally on each element using standard fi-
nite element information, and leads to a symmetric addition to the original system matrix, thus
preserving any existing symmetry. The effect of the stabilization on the conservation of mass is
minimal in 3D, and disappears as the mesh is refined, see [14]. Other computational approaches
for poroelastic flows are described in [19], [20], [4], [21] and [22].

In section 2, we present a quasi-static incompressible poroelastic model. In section 3 we
develop the stabilized nonlinear finite-element method and provide some implementation details
in section 4. In section 5, we present a range of 3D numerical experiments to verify the accuracy
of the method and illustrate its ability to reliably capture steep pressure gradients. Finally we
apply the method to a large scale simulation of the right human lung.

2. Poroelasticity theory

Two complementary approaches have been developed for modelling a deformable porous
medium. Mixture theory, also known as the Theory of Porous Media (TPM) [23, 24, 2], has
its roots in the classical theories of gas mixtures and makes use of a volume fraction concept in
which the porous medium is represented by spatially superposed interacting media. An alter-
native, purely macroscopic approach is mainly associated with the work of Biot, and a detailed
description can be found in the book by Coussy [1]. Relationships between the two theories are
explored in [25, 26]. As is most common in biological applications, we use the mixture theory
for poroelasticity as outlined in [2] and recently summarized in [22].

2.1. Kinematics

χ(X, t)Xx = χ(X, t)Ω(0)Ω(t)

Figure 1: Illustration of the solid deformation.

Let the volume Ω(0) be the undeformed Lagrangian (material) reference configuration and let
X indicate the position of a particle in Ω(0) at t = 0. The position of a particle in the deformed
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configuration Ω(t) at time t > 0 is given by x, with x = χ(X, t) as shown in Figure 1. The
deformation map, χ(X, t), is a continuously differentiable, invertible mapping from Ω(0) to Ω(t).
Thus the inverse of the deformation map, χ−1(x, t), is such that X = χ−1(x, t). The displacement
field is given by

u(X, t) = χ(X, t) − X. (1)

The deformation gradient tensor is

F =
∂χ(X, t)
∂X

, (2)

and the symmetric right Cauchy-Green deformation tensor is

C = FT F. (3)

The Jacobian is defined as
J = det(F), (4)

and represents the change in an infinitesimal control volume from the reference to the current
configuration, i.e.,

dΩ(t) = JdΩ(0). (5)

Note that J > 0.

2.2. Volume fractions
We consider saturated porous media only in which the fluid accounts for volume fractions

φ0(X, t = 0) and φ(x, t) of the total volume in the reference and current configurations respec-
tively, where φ is known as the porosity. The fractions for the solid (or skeleton) are therefore
1 − φ0 and 1 − φ in the reference and current configuration respectively. For the mixture, ρ is the
density in the current configuration given by

ρ = ρs(1 − φ) + ρ fφ in Ω(t), (6)

where ρs and ρ f are the densities of the fluid and solid, respectively. We assume that both the
solid and the fluid are incompressible so that ρs = ρs

0 and ρ f = ρ
f
0 . Although both the solid and

fluid are assumed to be incompressible, the control volume can expand or contract due to fluid
entering or leaving the region, and

J =
1 − φ0

1 − φ
. (7)

2.3. The model
We define the boundary ∂Ω(t) = Γd(t) ∪ Γn(t) for the mixture and ∂Ω(t) = Γp(t) ∪ Γ f (t) for

the fluid, with an outward pointing unit normal n. We seek displacement χ(X, t), fluid flux z(x, t)
and pressure p(x, t) such that

−∇ · (σe − pI) = ρ f

k−1 z + ∇p = ρ f f
∇ · (χt + z) = g

χ(X, t)|X=χ−1(x,t) = X + uD

(σe − pI)n = tN

z · n = qD

p = pD

χ(X, 0) = X

in Ω(t),
in Ω(t),
in Ω(t),
on Γd(t),
on Γn(t),
on Γ f (t),
on Γp(t),
in Ω(0).



(8)



NONLINEAR 4

The fluid flux z = φ(v f − vs) where v f and vs are the velocities of the fluid and solid components
respectively, χt denotes ∂χ(X,t)

∂t and σe is the stress tensor given by

σe =
1
J

F · 2
∂W(χ)
∂χ

· FT , (9)

where W(χ) denotes a strain-energy law (hyperelastic Helmholtz energy functional) dependent
on the deformation of the solid. The permeability tensor is given by

k = J−1Fk0(χ)FT , (10)

where k0(χ) is the permeability in the reference configuration, which may be chosen to be some
(nonlinear) function dependent on the deformation. Examples of deformation dependent perme-
ability tensors for biological tissues can be found in [27, 12, 28]. Details of the derivation of (8)
appear in Appendix A.

It is important to recognize that ∇(·) = ∂/∂x(·) denotes the partial derivative with respect to
the deformed configuration. We will use ∇ to denote the spatial gradient in Ω(t) rather than the
more explicit ∇x=χ(X,t). The latter more clearly indicates the dependency of the gradient operator
on the deformation χ(X, t) and highlights the inherent nonlinearity that arises due to the fact that
the deformation χ(X, t) is one of the unknowns. Similarly the deformed domain Ω(t) in which
equations (8) pertain, is a function of the deformation map χ, and therefore incorporates another
important nonlinearity.

3. The stabilized finite element method

We extend the method of [14] from the linear, small deformation poroelastic case to large
deformation poroelasticity. For ease of presentation, we will assume all Dirichlet boundary con-
ditions are homogeneous, ie., uD = 0, qD = 0, pD = 0.

3.1. Weak formulation
We define the following spaces for the deformed location, fluid flux and pressure respectively,

WE(Ω(t)) = {v ∈ (H1(Ω(t)))d : v = 0 on Γd(t)},
WD(Ω(t)) = {w ∈ Hdiv(Ω(t)) : w · n = 0 on Γ f (t)},

L(Ω(t)) =

{
L2(Ω(t)) if Γn(t) ∪ Γp(t) , ∅
L2

0(Ω(t)) if Γn(t) ∪ Γp(t) = ∅,

}
,

where L2
0(Ω(t)) =

{
q ∈ L2(Ω(t)) :

∫
Ω(t) q dΩ(t) = 0

}
.

The continuous weak problem is: Find χ(X, t) ∈WE(Ω(0)), z(x, t) ∈WD(Ω(t)) and p(x, t) ∈
L(Ω(t)) for any time t ∈ [0,T ] such that∫

Ω(t)

[
σe : ∇S v − p∇ · v

]
dΩ(t) =

∫
Ω(t)

ρ f · v dΩ(t) +

∫
Γn(t)

tN · v dΓn(t) ∀v ∈WE(Ω(t)),∫
Ω(t)

[
k−1 z · w − p∇ · w

]
dΩ(t) =

∫
Ω(t)

ρ f f · w dΩ(t) ∀w ∈WD(Ω(t)),∫
Ω(t)

[
q∇ · χt + q∇ · z

]
dΩ(t) =

∫
Ω(t)

gq dΩ(t) ∀q ∈ L(Ω(t)).

(11)
Here ∇S v = 1

2

(
∇v + (∇v)T

)
for some vector v.
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3.2. The fully discrete model

Let T h be a quasi-uniform partition of Ω(t) into non-overlapping elements K, where h de-
notes the size of the largest element in T h. We then define the following finite element spaces,

WE
h (Ω(t)) =

{
vh ∈ C0(Ω(t)) : vh|K ∈ P1(K) ∀K ∈ T h, vh = 0 on Γd(t)

}
,

WD
h (Ω(t)) =

{
wh ∈ C0(Ω(t)) : wh|K ∈ P1(K) ∀K ∈ T h,wh · n = 0 on Γ f (t)

}
,

Qh(Ω(t)) =


{
qh : qh|K ∈ P0(K) ∀K ∈ T h

}
if Γn(t) ∪ Γp(t) , ∅{

qh : qh|K ∈ P0(K),
∫

Ω(t) qh = 0 ∀K ∈ T h
}

if Γn(t) ∪ Γp(t) = ∅
,

where P0(K) and P1(K) are the spaces of constant and linear polynomials on K respectively. We
define the combined solution spaceUh(t) = WE

h (Ω(0)) ×WD
h (Ω(t)) × Qh(Ω(t)).

The discretization in time is given by partitioning [0,T ] into N evenly spaced non-overlapping
regions (tn−1, tn], n = 1, 2, . . . ,N , where tn−tn−1 = ∆t. For any sufficiently smooth function v(t, x)
we define vn(x) = v(tn, x) and the discrete time derivative by vn

∆t := vn−vn−1

∆t .
The fully discrete weak problem is: For n = 1, . . . ,N, find χn

h ∈ WE
h (Ω(0)), zn

h ∈ WD
h (Ω(tn))

and pn
h ∈ Qh(Ω(tn)) such that

∫
Ω(tn)

[
σn

e,h : ∇S vh − pn
h∇ · vh

]
dΩ(tn) =

∫
Ω(tn)

ρ f n
· vh dΩ(tn) +

∫
Γn(tn)

tn
N · vh dΓn(tn)

∀vh ∈WE
h (Ω(tn)),∫

Ω(tn)

[
k−1 zn

h · wh − pn
h∇ · wh

]
dΩ(tn) =

∫
Ω(tn)

ρ f f n
· wh dΩ(tn) ∀wh ∈WD

h (Ω(tn)),∫
Ω(tn)

[
qh∇ · χ

n
h,∆t + qh∇ · zn

h

]
dΩ(tn) + J(pn

h,∆t, qh) =

∫
Ω(tn)

gnqh dΩ(tn) ∀qh ∈ Qh(Ω(tn)).

(12)

The stabilization term is given by

J(p, q) = Υ
∑

K∈T h

∫
∂K\∂Ω(tn)

h∂K~p�~q� ds,

where Υ is a stabilization parameter that is independent of h and ∆t. Here h∂K denotes the size
(diameter) of an element edge in 2D or face in 3D, and ~·� is the jump across an edge or face
(taken on the interior edges only). The stabilization term has been introduced here to add stability
and ensure a well-posed fully-discrete model. It has been shown in [14] that the convergence is
insensitive to Υ.

3.3. Solution via Newton iteration at tn, n = 1, . . . ,N.

Let un
h = {χn

h, zn
h, pn

h} ∈ Uh(tn) denote the solution vector at a particular time step, δuh =

{δv, δz, δp} denote the solution increment vector, and vh = {vh,wh, qh} ∈ Vh(t) where Vh(t) =

WE
h (Ω(t)) ×WD

h (Ω(t)) × Qh(Ω(t)). The nonlinear system of equations (12) can be recast in the
form: Find un

h ∈ Uh(tn) such that

Gn(un
h, vh) = 0 ∀vh ∈ Vh(tn), (13)
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where

Gn(un
h, vh) =

∫
Ω(tn)

[
σn

e,h : ∇S vh − pn
h∇ · vh + k−1 zn

h · wh − pn
h∇ · wh + qh∇ · (vn

∆t,h + zn
h)

−ρ f n
· vh + ρ f f n

· wh + gqh

]
dΩ(tn)

−

∫
Γn(tn)

tn
N · vh dΓn(tn).

(14)

Given an approximate solution un
h, we approximate (13) by

Gn(un
h, vh) + DGn(un

h, vh)[δuh] = 0 ∀vh ∈ Vh(tn),

and solve
DGn(un

h, vh)[δuh] = −G(un
h, vh) ∀vh ∈ Vh(tn), (15)

for the Newton step δuh, where DG is the directional derivative of G, at un
h, in the direction δuh.

3.3.1. Approximation of DGn.
In biphasic tissue problems, it is common to approximate directional derivative of G by as-

suming the nonlinear elasticity term is the dominant nonlinearity and ignoring the other nonlin-
earities [29, 4]. Let

En((χn
h, pn

h), vh) =

∫
Ω(tn)

[
σn

e,h : ∇S vh − pn
h∇ · vh

]
dΩ(tn). (16)

For Newton’s method we require the directional derivative of En((χn
h, pn

h), vh) at a particular trial
solution (χn

h, pn
h) in the direction δχh, given by (see [30, section 3.5.3])

DEn((χn
h, pn

h), vh)[δχh] =

∫
Ω(tn)

[
∇S vh : Θn

h : ∇S δχh + σn
e,h :

(
(∇δv)T · ∇vh

)]
dΩ(tn), (17)

whereΘn
h is a fourth-order tensor and σn

e,h is the effective (elastic) stress tensor, both evaluated at
a trial solution χn

h. Further, any variable with a bar above it will correspond to it being evaluated
at a trial solution. The fourth-order spatial tangent modulus tensor Θ is described in Appendix
B. For a detailed explanation and derivation see [30, 31]. The approximate linearization of the
nonlinear problem is thus given by

DGn(un
h, vh)[δuh] ≈∫
Ω(tn)

[
∇S vh : Θn

h : ∇S δχh + σe,h :
(
(∇δχh)T · ∇vh

)
− δph∇ · vh

+k̄−1
δzh · wh − δph∇ · wh + qh∇ ·

(
δχh

∆t
+ δzh

)]
dΩ(tn),

(18)
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Using (14), (18) and equation (15) the Newton solve becomes: Find δχh ∈ WE
h (Ω(0)), δzh ∈

WD
h (Ω(tn)) and δph ∈ Qh(Ω(tn)) such that∫
Ω(tn)

[
∇S vh : Θn

h : ∇S δχh + σn
e,h :

(
(∇δχh)T · ∇vh

)
− δph∇ · vh

]
dΩ(tn)

=

∫
Ω(tn)

[
σn

e,h : ∇S vh − pn
h∇ · vh − ρ f n

· vh

]
dΩ(tn) −

∫
Γn(tn)

tn
N · vh dΓn(tn) ∀vh ∈WE

h (Ω(tn)),∫
Ω(tn)

[
k̄−1

δzh · wh − δph∇ · wh

]
dΩ(tn)

=

∫
Ω(tn)

[
k̄−1 zn

h · wh − pn
h · ∇wh − ρ f f n

· wh

]
dΩ(tn) ∀wh ∈WD

h (Ω(tn)),∫
Ω(tn)

[
qh∇ ·

(
δχh

∆t
+ δzh

)]
dΩ(tn) + J

(
δph

∆t
, qh

)
=

∫
Ω(tn)

[
qh∇ · (χ∆t,h + zh) − gqh

]
dΩ(tn) + J

(
ph,∆t, qh

)
∀qh ∈ Qh(Ω(tn)).

(19)

4. Implementation details

4.1. Matrix assembly for the Newton iteration

Let φk denote a vector-valued linear basis function for the (P1)d space, and

χn
i =

nu∑
k=1

χn
i,kφk ∈WE

h (Ω(0)), zn
i =

nz∑
k=1

zn
i,kφk ∈WD

h (Ω(tn)).

Similarly let ψi denote a basis function for the space P0, hence

pn
i =

np∑
k=1

pn
i,kψk ∈ Qh(Ω(tn)).

Now let un
i := (χn

i , zn
i , pn

i ) ∈ Rnu+nz+np denote the fully discrete solution at the ith step within
the Newton method at time tn. The Newton algorithm at a particular time step n, is given in
Algorithm 1.

Algorithm 1 Newton algorithm at tn
i = 0
un

0 = {χn−1, zn−1, pn−1}

while ||R(un
i , u

n−1)|| > TOL & i < ITEMAX do
Assemble R(un

i , u
n−1) and K(un

i ) on Ω(tn)i

Solve K(un
i )δun

i+1 = −R(un
i , u

n−1)
Compute un

i+1 = un
i + δun

i+1
Update the mesh, Ω(tn)i+1 = χn

i
i = i + 1

end while
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At each Newton iteration we are required to solve the linear system

K(un
i )δun

i+1 = −R(un
i , u

n−1). (20)

This system can be expanded as Ke 0 BT

0 M BT

−B −∆tB J


δχ

n
i+1

δzn
i+1

δpn
i+1

 = −

 r1(χn
i , pn

i )
r2(χn

i , zn
i , pn

i )
r3(χn

i ,χ
n−1, zn

i , pn
i )

 , (21)

where the elements in the matrices in (21) are given by

ke
kl =

∫
Ω(tn)i

[
ET

k D(χn
i )El + (∇φk)Tσe(χn

i )∇φl

]
dΩ(tn)i,

mkl =

∫
Ω(tn)i

k−1(χn
i )φk · φl dΩ(tn)i,

bkl = −

∫
Ω(tn)i

ψk∇ · φl dΩ(tn)i,

jkl = Υ
∑

K∈T h
i

∫
∂K\∂Ω(tn)i

h∂K~ψk�~ψl� ds.

r1i =

∫
Ω(tn)i

[(
σe(χn

i ) − pn
i I

)
: ∇φi − ρ(χn

i )φi · f
]

dΩ(tn)i −

∫
Γn(tn)i

φi · tN(χn
i ) dΓn(tn)i,

r2i =

∫
Ω(tn)i

[
k−1(χn

i )φi · z
n
i − pn

i ∇ · φi − ρ
fφi · f

]
dΩ(tn)i,

r3i =

∫
Ω(tn)i

ψi

[
∇ ·

(
χn

i − χ
n−1

)
+ ∆tψi∇ · zn

i − ∆tψig
]

dΩ(tn)i

+Υ
∑

K∈T h
i

∫
∂K\∂Ω(tn)i

h∂K~ψi�~pn
i − pn−1� ds.

Details of the matrices D and E appear in Appendix B

4.2. Stabilization matrix assembly
Let K ∈ Th be an element and D(K) be the pressure degree of freedom associated with

element K. We defineA(K) to be the set of elements L ∈ Th neighboring K.

Algorithm 2 Stabilization matrix J assembly

for every K ∈ Th do
for every L ∈ A(K) do

Calculate h∂K

i← D(K)
j← D(L)
J ii ← J ii + (δh∂K in 2D, δh3/2

∂K in 3D)
J i j ← J i j − (δh∂K in 2D, δh3/2

∂K in 3D)
end for

end for
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4.3. Fluid-flux boundary condition

When solving the equations for Darcy flow using the Raviart-Thomas element (RT-P0), the
fluid-flux boundary condition is enforced naturally by this divergence free element. Unfortu-
nately this is not possible using our proposed P1-P1-P0-stabilized element. However, solving
the poroelastic equations (8) using a piecewise linear approximation for the deformation and
Raviart-Thomas element for the fluid (P1-RT-P0) does not satisfy the discrete inf-sup condition
and can yield spurious pressure oscillations, see [32, 33] for details.

To enforce the no-flux boundary condition z · n = qD along the boundary Γ f (t) we introduce
a Lagrange multiplier Λh, where Λh ∈ W f

h (t), the discrete space of piecewise constant functions
defined on all element surfaces with non-zero intersection with Γ f (t). The resulting modified
continuous weak-form is

G((χh, zh, ph), (vh,wh, qh)) + (Λh,wh · n)Γ f = qD,∀(vh,wh, qh) ∈ Vh(t),

(z · n, l)Γ f = qD, ∀l ∈ W f
h (t).

(22)

The discretization and implementation of this additional constraint is straightforward and re-
sults in a discrete system with additional degrees of freedom for every node on Γ f . The terms
(Λh, w · n)Γ f and (z · n, l)Γ f are nonlinear since the normal is a function of the (nonlinear)
displacement. Note, within all the simulations we have undertaken, we found that treating these
terms as linear terms did not prevent the convergence of the Newton algorithm. Alternatively
these terms could be linearized as has been described in detail for the traction boundary condi-
tion, see [30, section 4.2.5] and [20].

5. Numerical results

We present four numerical examples to test the performance of the proposed stabilized finite
element method. The first two examples are from mechanobiology and geotechnical applications,
the third is a swelling example that undergoes significant large deformations and the fourth is
an application from respiratory physiology. For the implementation we used the C++ library
libmesh [34], and the multi-frontal direct solver mumps [35] to solve the resulting linear systems.
For the strain energy law we chose a Neo-Hookean law taken from [30, eqn. (3.119)], with the
penalty term chosen such that 0 ≤ φ < 1, namely

W(χ) =
µ

2
(tr(C) − 3) +

λ

4
(J2 − 1) − (µ +

λ

2
)ln(J − 1 + φ0). (23)

For further discussion of strain energy laws for porelasticity we refer to [26] and [22]. The
material parameters µ and λ in (23) can be related to the Young’s modulus E and the Poisson
ratio ν by µ = E/(2(1 + ν)) and λ = (Eν)/((1 + ν)(1 − 2ν)). Details of the effective stress tensor
and fourth-order spatial tangent modulus for this particular law can be found in Appendix B. For
the permeability law we chose

k0(χ) = k0I. (24)

5.1. 3D unconfined compression stress relaxation

In this test, a cylindrical specimen of porous tissue is subjected to a prescribed displacement
in the axial direction while left free to expand radially. The original experiment involved a spec-
imen of articular cartilage being compressed via impervious smooth plates as shown in Figure
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2a. After loading the tissue, the displacement is held constant and the tissue is allowed to relax
in the radial direction. The fluid pressure is constrained to be zero at the outer radial surface. The
outer radial boundary is permeable and free-draining, the upper and lower fluid boundaries are
impermeable and frictionless. The outer radius and height of the cylinder is 5mm, whereas the
axial compression is 0.01mm. The parameters used for the simulation can be found in Table 1.

(a) (b)

Figure 2: (a) The test problem. (b) Pressure field at t = 200s using a mesh with 3080 tetrahedra.

Parameter Description Value
k Dynamic permeability 10−3 m3 s kg−1

ν Poisson’s ratio 0.15
E Young’s modulus 1000 kg m−1 s−2

∆t Time step used in the simulation 4 s
T Final time of the simulation 1000 s
Υ Stabilization parameter 10−3

Table 1: Parameters used for the unconfined compression test problem.

For the special case of an axisymmetric solution, [36] provides the following closed-form
analytical solution for the radial displacement in response to a step loading function,

u
a

(a, t) = ε0

ν + (1 − 2ν)(1 − ν)
∞∑

n=1

exp (−α2
n

Mkt
a2 )

α2
n(1 − ν)2 − (1 − ν)

 , (25)

where ε0 is the amplitude of the applied axial strain and a is the radius of the cylinder. Here tg is
the characteristic time of diffusion given by tg = a2/Mk, where M = λ+2µ is the P-wave modulus
of the elastic solid skeleton, k is the permeability and αn are the solutions to the characteristic
equation, given by J1(x) − (1 − ν)xJ0(x)/(1 − 2ν) = 0, where J0 and J1 are Bessel functions.
The computed radial displacement shown in Figure 3 is in good agreement with the analytical
solution. The effect of the stabilization parameter on the numerical solution was investigated in
[14], and shown to have a negligible effect since the stabilization parameter can be chosen to be
very small in 3D. Similar unconfined compression problems have been used to test other large
deformation poroelastic software such as FEBio [37].
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Figure 3: Radial expansion versus time comparing the analytical and numerical solutions with Υ = 0.001.

5.2. Terzaghi’s problem

This is a common test problem from geomechanics with an analytical solution, and has been
used to investigate the origins of non-physical pressure oscillations that arise in some finite ele-
ment solutions near the boundary [38, 4]. The domain consists of a porous column of unit height,
bounded at the sides and bottom by rigid and impermeable walls. The top is free to drain (pD = 0)
and has a downward traction force, p0, applied to it. The boundary and initial conditions for this
1D problem can be written as

tN = −p0,

u = 0,
u = 0,

z = 0
z = 0,

pD = 0

p = 0

for x = 0, t > 0
for x = 1, t > 0
for x ∈ [0, 1], t = 0.

(26)

The analytical pressure solution, in non-dimensional form is given by

p∗ =

∞∑
n

2
π(n + 1/2)

sin(π(n + 1/2)) exp−π(n+1/2)(λ+2µ)kt . (27)

For a detailed explanation and derivation of this solution see [1, section 5.2.2].
We discretized the column using 60 hexahedra elements and solved the problem using both

the stabilized low-order finite element method and a higher-order inf-sup stable finite element
method with piecewise linear pressure approximation. The material parameters used for the
simulation can be found in Table 2. The simulation results of the pressure for the two methods
at t = 0.01s and t = 1s are shown in Figure 4. At t = 0.01s the piecewise linear (continuous)
approximation fails to approximate the thin boundary layer in the pressure field and suffers from
overshooting (Figure 4a). The stabilized low-order method does not suffer from this problem and
accurately captures the pressure field near the boundary (Figure 4b). At t = 1s the boundary layer
has grown and both the piecewise linear pressure approximation (Figure 4c) and the piecewise
constant pressure approximations (Figure 4d) yield satisfactory results.
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Parameter Description Value
k0 Dynamic permeability 10−5 m3 s kg−1

ν Poisson ratio 0.25
E Young’s modulus 100 kg m−1 s−2

∆t Time step used in the simulation 0.01 s
T Final time of the simulation 1 s
Υ Stabilization parameter 2 × 10−5

Table 2: Parameters used for Terzaghi’s problem.

(a) (b)

(c) (d)

Figure 4: (a) Pressure at t = 0.01s using a continuous linear pressure approximation. (b) Pressure at t = 0.01s using a
discontinuous piecewise constant approximation. (c) Pressure at t = 1s using a continuous linear pressure approximation.
(d) Pressure at t = 1s using a discontinuous piecewise constant approximation.

5.3. Swelling test

This problem is similar to the one in [7] and highlights the method’s ability to reliably capture
steep gradients in the pressure solution due to rapid changes in material parameters. Given a unit
cube of material, a fluid pressure gradient is imposed between the two opposite faces at X = 0
and X = 1. The pressure pD on the inlet face X = 0 is increased very rapidly from zero to
a limiting value of 10kPa, i.e., pD = 104(1 − exp(−t2/0.25)) Pa). On the outlet face X = 1,
the pressure is fixed to be zero, pD = 0. There are no sources of sinks of fluid. A zero flux
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condition is applied for the fluid velocity on the four other faces (Y = 0, 1, Z = 0, 1). Normal
displacements are required to be zero on the planes X = 0, Y = 0 and Z = 0. The permeability
of the cube 0 < X < 0.5, 0.5 < Y < 1, 0 < Z < 0.5, i.e., 1/8 of the volume, is smaller than in
the rest of the unit cube by a factor of 500. The computational domain is shown in Figure 5a,
highlighting the region of reduced permeability. The parameters chosen for this test problem are
given in Table 3.

Fluid enters the region from the inlet face and the material swells like a sponge, undergoing
large deformation as shown in Figure 5b. The evolution of the pressure and the Jacobian at the
points at (0, 0, 1), (0.5, 0, 1) and (1, 0, 1) in the reference configuration are shown in Figures 6a
and 6b respectively. These position are indicated by the red, blue and green balls in Figure 5a.
The pressure and volume change at the point (0, 1, 0) (black ball in Figure 5a) is also shown
in Figures 6a and 6b. Due to its reduced permeability, this region is much slower to swell and
achieve its ultimate equilibrium state and the fluid mainly flows around the region of reduced
permeability, see Figure 5b. The steep pressure gradients at the boundary of the less permeable
region seen in Figure 5b are well approximated by the piecewise constant (discontinuous) pres-
sure space even on this relatively coarse discretization, and the no-flux boundary condition is
enforced correctly along the deformed boundary. Continuous pressure spaces would require a
much finer discretization in this region.

(a) (b)

Figure 5: (a) Initial simulation setup. The grey cube represents the region of reduced permeability. The colored balls
indicate the position of the points used for tracking the pressure and volume changes shown in Figures 6a and 6b. (b)
The deformed cube after 1s showing the pressure solution and fluid flux.
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Parameter Value
k0 10−5 m3 s kg−1

ν 0.3
E 8000 kg m−1 s−2

∆t 0.02 s
T 20 s
Υ 10−4

Table 3: Parameters used for the swelling test problem.

(a) (b)

Figure 6: (a) Pressure, p, (b) volume change, J (b) plotted against time at locations X = (0, 0, 1) [red], X = (0.5, 0, 1)
[blue], X = (1, 0, 1) [green] and X = (1, 0, 1) [black]. (These locations are shown using the colored balls in Figure 5a).

5.4. Ventilation of the right lung lobe
In this example we derive a whole organ model of the right lung. We use high-resolution CT

images taken at total lung capacity (TLC) and functional residual capacity (FRC) to provide a
rough estimate of the deformation of the lung surface from expiration to inspiration. To simulate
breathing we assume a sinusoidal breathing cycle and expand the lobe surface from FRC to 40%
of TLC (normal inspiratory volume). The lung is first segmented from the CT data and then
meshed using standard techniques. The conducting airways are also segmented from the CT data
at TLC, and a centerline with radial information is calculated. To approximate the remaining
airways we use a volume filling airway generation algorithm [39]. We assume that a simple
Poissiuelle flow model can describe the air flow in the airways and that the lung parenchyma can
be modelled as a poroelastic medium [40, 27].

We couple the airway network to the parenchyma by adding the flow contribution from each
distal (terminal) airway as a source term in the poroelastic mass conservation equation for the
segment of poroelastic tissue supplied by that distal branch. We also set the average pressure in
each of these regions to be equal to the distal pressure in the airway supplying that region. The
flow in the airway network, the poroelastic equations and the coupling conditions are solved in
a monolithic fashion. For details see [41]. Figure 7 shows the pressure in the airway and on the
outer surface of the lung. Heterogeneity in the airway radii and lengths results in heterogene-
ity in airway resistance and produces the patchy pressure distribution seen in Figure 7b. This
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phenomenon has also been observed in [42] and is well approximated by the (discontinuous)
piecewise constant pressure elements. Once again for this example, a continuous pressure field
would require a finer discretization.

(a) (b)

Figure 7: Pressure in the airway tree (a) and on the lung surface (b) at 80% of full inspiration level.

6. Conclusions

Stabilized low-order methods can offer significant computational advantages over higher or-
der approaches. In particular, one can employ meshes with fewer degrees of freedom, fewer
Gauss points, and simpler data structures. The additional stabilization terms can also improve
the convergence properties of iterative solvers.

The main contribution of this paper is to extend the local pressure jump stabilization method
[43] already applied to three-field linear poroelasticity in [14], to the large deformation case.
Thus, the proposed scheme is built on an existing scheme for which rigorous theoretical results
addressing the stability and optimal convergence have been proven, and for which numerical
experiments have demonstrated its ability to overcome spurious pressure oscillations. Owing to
the discontinuous pressure approximation, sharp pressure gradients due to changes in material
coefficients or boundary layers can be captured reliably, circumventing the need for severe mesh
refinement. The addition of the stabilization term introduces minimal additional computational
work, can be assembled locally on each element using standard element information, and leads
to a symmetric addition to the original system matrix, thus preserving any existing symmetry.
As the numerical examples have demonstrated, the stabilization scheme is robust and leads to
high-quality solutions.

Appendix A. Model derivation

Appendix A.1. Conservation of mass
The mass balance for the solid and fluid phases respectively can be expressed as

d
dt

∫
Ω(t)

(1 − φ)ρs dΩ(t) =

∫
Ω(t)

(
∂(1 − φ)ρs

∂t
+ ∇ · ((1 − φ)ρsvs)

)
dΩ(t) = 0, (A.1)

d
dt

∫
Ω(t)

φρ f dΩ(t) =

∫
Ω(t)

(
∂φρ f

∂t
+ ∇ · (φρ f v f )

)
dΩ(t) =

∫
Ω(t)

ρ f g dΩ(t), (A.2)
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where v f is the velocity of the fluid and vs is the velocity of the solid given by

vs(x, t)|x=χ(X,t) =
∂χ(X, t)
∂t

. (A.3)

and g is a general source or sink term. In differential form,

∂(1 − φ)ρs

∂t
+ ∇ · ((1 − φ)ρsvs) = 0 in Ω(t), (A.4)

∂(φρ f )
∂t

+ ∇ · (φρ f v f ) = ρ f g in Ω(t), (A.5)

or,

∂ρ̂s

∂t
+ ∇ · (ρ̂svs) = 0 in Ω(t), (A.6)

∂ρ̂ f

∂t
+ ∇ · (ρ̂ f v f ) = ρ f g in Ω(t), (A.7)

where ρ̂s = ρs(1 − φ) and ρ̂ f = ρ fφ.

First noting that ρs and ρ f are constants and can be factored out and then adding equations
(A.4) and (A.5), provides the mass balance or continuity equation of the mixture,

∇ · ((1 − φ)vs) + ∇ · (φv f ) = g in Ω(t). (A.8)

Appendix A.2. Conservation of momentum
For α = s, f the conservation of linear momentum for solid and fluid components is given by

d
dt

∫
Ω(t)

ρ̂αvαdΩ(t) =

∫
Ω(t)
∇ · σα + ρ̂α f + p̂α + βαvα dΩ(t), (A.9)

where σα is the Cauchy stress tensor for the α = s, f , f is a body force, p̂α are interaction forces
representing frictional interactions between the solid and fluid (see Appendix A.3) and βα is the
constituent source term. Here βs = 0 and β f = ρ f g. Applying Reynolds Transport Theorem, we
rewrite the integral conservation law in differential form and obtain

∂(ρ̂αvα)
∂t

+ (vα · ∇)(ρ̂αvα) + ρ̂αvα(∇ · vα) = ∇ · σα + ρ̂α f + p̂α + βαvα in Ω(t). (A.10)

Expanding the LHS,

ρ̂α
(
∂vα

∂t
+ (vα · ∇)vα

)
+

(
∂ρ̂α

∂t
+ (vα · ∇)ρ̂α + ρ̂α(∇ · vα)

)
vα

= ρ̂α
Dvα

Dt
+

(
∂ρ̂α

∂t
+ ∇ · (ρ̂αvα)

)
vα.

Using (A.6) and (A.7) to replace the second term above,

ρ̂αaα = ∇ · σα + ρ̂α f + p̂α in Ω(t), (A.11)

where

as(x, t)|x=χ(X,t) =
∂2χ(X, t)
∂t2 , (A.12)

a f =
∂v f

∂t
+ (v f · ∇)v f . (A.13)
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Appendix A.3. Constitutive relationships

Constitutive relationships for the interaction forces, permeability tensor and solid and fluid
stress tensors are provided below.

Appendix A.3.1. Interaction forces
The interaction force is given by

p̂s = − p̂f = −p∇φ + φ2 k−1
· (v f − vs), (A.14)

where k is the (dynamic) permeability tensor and p is the fluid pressure [1]. The first term, p∇φ,
accounts for the pressure effect resulting from the variation of the section offered to the fluid
flow, and the second term, φ2 k · (v f − vs), describes the viscous resistance opposed by the shear
stress to the fluid flow from the drag at the internal walls of the porous network. This particular
choice for the interaction force means that the momentum balance for the fluid flow can later be
reduced to the well known Darcy law.

Appendix A.3.2. Permeability tensor
The permeability tensor is given by

k = J−1Fk0(χ)FT , (A.15)

where k0(χ) is the permeability in the reference configuration, which may be chosen to be some
(nonlinear) function dependent on the deformation. Examples of deformation dependent perme-
ability tensors for biological tissues can be found in [27, 12, 28]. A common isotropic assumption
is

κ = κ0Π (J) I, (A.16)

where κ0 is the permeability in the reference configuration and Π (J) is some function dependent
on the volume change. For example, in [27], the following isotropic constitutive law for the
permeability of lung tissue is proposed

κ = κ0

(
J
φ

φ0

)2/3

I, (A.17)

where κ0 is the permeability in the reference configuration.

Appendix A.3.3. Solid stress tensor
The solid stress tensor is given by [2],

σs = σs
e − (1 − φ)pI, (A.18)

where σs
e is the effective stress tensor given by

σs
e =

1
J

F · 2
∂W(χ)
∂C

· FT . (A.19)

Here W(χ) denotes a strain-energy law (hyperelastic Helmholtz energy functional) dependent on
the deformation of the solid.
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Appendix A.3.4. Fluid stress tensor
The fluid stress tensor can be written as [2],

σ f = σ f
vis − φpI, (A.20)

where σ f
vis denotes the viscous stress tensor of the fluid, given by

σ f
vis = µ fφ

(
(∇v f ) + (∇v f )T −

2
3
∇ · v f

)
, (A.21)

where µ f is the dynamic viscosity of the fluid.

Appendix A.4. The general poroelasticity model

Summing the conservation laws for solid and fluid and applying the constitutive relations,
the conservation of linear momentum for the mixture is

ρ̂sas + ρ̂ f a f = ∇ · (σe + σvis − pI) + ρ f in Ω(t). (A.22)

The momentum equation for the fluid flow alone is

ρ̂ f a f = ∇ · (σ f
vis − φpI) + ρ̂ f f + p∇φ − φ2 k−1(v f − vs) in Ω(t). (A.23)

We define the boundary ∂Ω(t) = Γd(t) ∪ Γn(t) for the mixture and ∂Ω(t) = Γp(t) ∪ Γ f (t) for the
fluid, with an outward pointing unit normal n. The problem for the mixture theory model is: Find
χ(X, t), v f (x, t) and p(x, t) such that

ρ̂sas + ρ̂ f a f = ∇ · (σe + σvis − pI) + ρ f in Ω(t),

ρ̂ f a f = ∇ · (σ f
vis − φpI) + p∇φ − φ2 k−1(v f − vs) + ρ̂ f f in Ω(t),

∇ · ((1 − φ)vs) + ∇ · (φv f ) = g in Ω(t),
χ(X, t)|X=χ−1(x,t) = X + uD on Γd(t),

(σe + σvis − pI)n = tN , on Γn(t),

v f = v f
D on Γ f (t),

n · σ f
vis · n− φpI · n = sD on Γp(t),

χ(X, 0) = X, vs(X, 0) = vs0, v f (X, 0) = v f 0 in Ω(0).


(A.24)

Appendix A.5. Simplification of the model

We assume accelerations aα and the viscous shear stress in the fluid σ f
vis are small, and define

the fluid flux variable
z = φ(v f − vs). (A.25)
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The resulting problem is: Find χ(X, t), z(x, t) and p(x, t) such that

−∇ · (σe − pI) = ρ f

k−1 z + ∇p = ρ f f
∇ · (vs + z) = g

χ(X, t)|X=χ−1(x,t) = X + uD

(σe − pI)n = tN

z · n = qD

p = pD

χ(X, 0) = X

in Ω(t),
in Ω(t),
in Ω(t),
on Γd(t),
on Γt(t),
on Γ f (t),
on Γp(t),
in Ω(0).



(A.26)

We note that, for example∫
Ωt

∇x ·σ(x) dx =

∫
Ωt

∇X ·F−1σ(χ(X, t)) dx =

∫
Ω0

∇X ·F−1Jσ(χ(X, t)) dX =

∫
Ω0

∇X ·(SFT ) dX,

(A.27)
where S is the second Piola-Kirchoff stress tensor.

Appendix B. The fourth-order spatial tangent modulus tensor Θi jkl

The fourth-order spatial tangent modulus tensor Θi jkl can be written as (in component form,
see [31, section 5.3.2] and [44, section 6.6] )

Θi jkl =
1
J

FiI F jJ FkK FlLCIJKL, (B.1)

where C is the associated tangent modulus tensor in the reference configuration, given by

CIJKL =
4∂2W

∂CIJ∂CKL
+ pJ

∂C−1
IJ

∂CKL
. (B.2)

For the numerical examples we have used the following Neo-Hookean strain-energy law

W(C) =
µ

2
(tr(C) − 3) +

Λ

4
(J2 − 1) − (µ +

Λ

2
)ln(J − 1 + φ0). (B.3)

Thus, the resulting effective stress tensor is given by

σe =
Λ

2

(
J −

1
J − 1 + φ0

)
I + µ

(
CT

J
−

I
J − 1 + φ0

)
, (B.4)

and the spatial tangent modulus tensor is given as

Θ = Θe + p(I ⊗ I − 2Z), (B.5)

where

Θe =

[
ΛJ − 2µ

(
1

2(J − 1 + φ0)
−

J
2(J − 1 + φ0)2

)]
I ⊗ I

+

[
2µ

J − 1 + φ0
− Λ(J −

1
J − 1 + φ0

)
]
B, (B.6)
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and
Bi jkl =

1
2

(δikδ jl + δilδ jk), Zi jkl = δikδ jl, I ⊗ I = δi jδkl. (B.7)

See [31, chapter 5] and [30, chapter 3] for further details.

To simplify the implementation of the spatial tangent modulus we make use of matrix Voigt
notation. The matrix form of β is given by D, which can be written as (see [31, section 7.4.2])

D =
1
2



2Θ1111 2Θ1122 2Θ1133 Θ1112 +Θ1121 Θ1113 +Θ1131 Θ1123 +Θ1132
2Θ2222 2Θ2233 Θ2212 +Θ2221 Θ2213 +Θ2231 Θ2223 +Θ2232

2Θ3333 Θ3312 +Θ3321 Θ3313 +Θ3331 Θ3323 +Θ3332
Θ1212 +Θ1221 Θ1213 +Θ1231 Θ1223 +Θ1232

sym. Θ1313 +Θ1331 Θ1323 +Θ1332
Θ2323 +Θ2332


. (B.8)

We also make use of the following implementation friendly matrix notation for ∇Sφk

Ek =



φk,1 0 0
0 φk,2 0
0 0 φk,3
φk,2 φk,1 0
0 φk,3 φk,2
φk,3 0 φk,1


. (B.9)
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