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Abstract

Studies of functional MRI (fMRI) data increasingly concern estimation at the group level, especially
differences in functional connectivity patterns between individual subjects and subject groups. Dual
regression and Independent Component Analysis (ICA) based techniques have been used extensively in
order to identify such patterns of functional connectivity for subject specific fMRI data. However the
results can often be misinterpreted due to artifacts such has head motion which can contaminate the
subject maps and potentially cause misdiagnosis. We present a two stage ICA approach implemented
using Variational Bayes to solve this contamination problem and estimate subject specific maps more ac-
curately. By working in a Bayesian framework we are able to use group map information to first compute
individual subject time-courses, learn additional artifact time-courses, and then use these time-courses
to estimate the final subject specific spatial maps. Comparison experiments against dual regression, the
current state of the art algorithm demonstrate that the ‘Dual-ICA’ approach is able to obtain subject
specific independent components that have less spatial contamination from artifacts.

Keywords: Functional Magnetic Resonance Imaging, Independent Component Analysis, Variational
Bayes, Dual Regression

1. Introduction

1.1. Functional MRI
Functional magnetic resonance imaging is the application of MRI techniques to mapping brain ac-

tivity, by imaging blood flow changes that are indirect, delayed measures of neurological activity. The
subject is imaged using rapid pulse sequences that acquire an entire slice at once and reacquire the same
slice repeatedly with a repeat time of around 3 seconds [1]. Thus a typical 10-minute scan will have
around 200 time points for each of the roughly 1 million voxels in the 3D image. This fMRI data can then
be analysed to find patterns of brain activity. These patterns are often referred to as spatial maps and
have recently become of great interest to the neuroscientific community for probing neural mechanism
and investigating diseases.

1.2. ICA for fMRI data
Independent Component Analysis (ICA) aims to extract features and structure from data that is

assumed to be a linear combination of underlying independent components. ICA can be used to decom-
pose the observed data, a two-dimensional (voxels × time) data matrix into a set of time-courses and
associated spatial maps, which jointly describe the temporal and spatial characteristics of underlying
hidden signals (components/maps). The main assumptions of ICA is that the underlying components
are spatially independent, add linearly and are non-Gaussian. These assumptions have been shown to
be correct for spatial maps produced by the activity-dependent sources of blood flow in the brain [2].

The ICA model presented in this work is a modified version of the Bayesian Linked-ICA model
described in [3]. In [3] Linked-ICA is applied to multi-modal fMRI data for fusing different modality
types together to automatically find patterns of related changes across multiple modalities. For our
model we simply set the number of modalities to one and use the existing Bayesian framework to adjust
the priors in such a way that we are able to incorporate group map information into our ICA estimation
of subject specific maps. This Bayesian ICA model differs from standard methods like FastICA [4] in that
it incorporates dimensionality reduction into the ICA method itself by the use of automatic relevance
determination (ARD) priors on the components [5]. The model works on the full-dimensionality of the
data and has an additive noise model, it also models an explicitly parametrized non-Gaussian source
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model (in this case a Gaussian mixture model) instead of maximizing negentropy (as used in FastICA).
Having an ARD in the model is useful, since we do not have to specify the number of components and
can rely on the model to eliminate weak components. However this feature is also the main drawback
of plain Bayesian ICA when applied to fMRI data, because brain maps that happened to have a weaker
signal can get automatically removed. This is why we use group map information within the Dual-ICA
procedure to ensure that all the maps are found.

1.3. Group ICA
Group ICA obtains subject specific maps by using a known group maps to guide the ICA. These

known group maps are given as part of the input to the algorithm and can be found using various
established methods. For example in [6] group maps from the fMRI data of multiple subjects are found
by using a modified FastICA procedure to find the independent components (spatial maps). These maps
are then converted to Z-score maps which depend on the amount of variability explained by the ICA
decomposition, these are then thresholded to produced the final subject spatial maps. The final group
maps can then be generated by averaging over several subjects. Once a set of group maps is available,
subject specific maps can be computed using dual regression [7]. Differences between the subject and
a group can then be used to help diagnose patients. For example, there has been a study by [8] which
compares subjects associated with Alzheimer’s and other age related cognitive impairment with healthy
subjects that are carriers of the APOE-e4 allele, a risk factor for developing Alzheimer’s later in life. It
is found that Alzheimer patients show an increased amount of activation in the hippocampus which is
associated with memory processing and lies within the ‘default mode network’ (Figure 1).

Figure 1: Shows the saggital, coronal and axial view of a spatial map representing the ‘default mode
network’. This map is estimated from a group of 36 subjects using probabilistic ICA [6]. The images
are taken from [8].

The problem with dual regression is that it does not always produce accurate subject specific maps,
especially when artifacts and true maps are spatially or temporally correlated with each other. This
correlation between artifacts and true maps causes the estimated maps to be a mixture of subject maps
and artifacts, making it difficult for neuroscientists to identify the true spatial map. Throughout this
work we will refer to this unwanted effect as contamination. By working within a Bayesian framework we
are able to specify the priors in such a way that it allows us to incorporate the group map information to
guide the subject specific ICA to find independent spatial maps as well as artifact maps, thus resulting
in overall better map estimates that contain less contamination.

2. Bayesian Dual-ICA Model

The observed variables Y are the subject’s fMRI data which are made up of spatial maps X (voxels
× components), time-courses H (components × time) and additive noise E such that

Y = XH + E, (1)

where E models Gaussian noise, with precision (inverse variance) λ:

E ∼ N(0, 1/λ), (2)

λ ∼ Gamma(rms(Y)2c0, c0). (3)
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Here rms is the root mean squared used to measure the magnitude of variability, for the constant c0 a
value of 10−3 has proven to be robust. The number of actual components (maps) is unknown but will
be determined by initially assuming many components and then using an ARD prior [9] to eliminate
components that are too weak and not significant. We therefore introduce the matrix W which can be
interpreted as a weighting matrix for each component. The model now reads

Y = XWH + E, (4)

with W having the prior
W ∼ N(0, 1/ω). (5)

As one of the precisions ω for one of the components tends to∞ it will effectively eliminate this component
from that time point by forcing the corresponding row of W to be zero with very high precision.

2.1. Independent Spatial Maps
The driving force behind an ICA decomposition is that the data is derived from a number of sta-

tistically independent spatial sources; these are the spatial maps Xl for l = 1...L. In order to find the
non-Gaussianity of the individual sources we explicitly fit a non-Gaussian distribution to each source by
assuming a particular functional form. This is the approach taken here, using an M-component Gaussian
mixture model. The mixture model prior on the spatial maps can be expressed as

P (Xn,l|µ,β,π) =
M∑

m=1

P (qn = m|πl)P (Xn,l|m,µl,m, 1/βl,m)

=
M∑

m=1

πl,mN(Xn,l|µl,m, 1/βl,m), (6)

where Xn,l is the nth voxel in the lth ICA component (spatial map), µl,m, βl,m and πl,m are the means,
precisions and component proportions respectively. Here qn = m is a hidden mixture membership
variable that indicates which mixture component Xn,l was drawn from. For simplicity and practicality,
we chose M = 3 as the number of mixture components which seems to work well. The priors for π come
from a Dirichlet distribution

π ∼ Dir(1). (7)

The priors for µ and β depend on which stage of the algorithm we are currently in, this will be discussed
in section 3.

2.2. Variational Bayesian Inference
In Bayesian inference we aim to infer the posterior distributions for our parameters. Variational

optimization can be applied to solve this inference problem, for a more complete explanation than
the one given here we refer the reader to [10] and [11]. Let Z denote the set of all latent variables
(maps and time-courses) and parameters, and let X denote the set of all observed variables (the fMRI
data). Evaluating the full posterior distribution P (Z|X) is intractable so instead we choose a suitable
distribution Q(Z) which provides an approximation to the true posterior distribution. We can decompose
the log marginal distribution as the lower bound L(Q) and the KL divergence KL(Q||P ) as

lnP (X) = L(Q) + KL(Q||P ), (8)

where we have defined

L(Q) =
∫
Q(Z) ln

{
P (Z,X)
Q(Z)

}
dZ, (9)

KL(Q||P ) = −
∫
Q(Z) ln

{
P (Z|X)
Q(Z)

}
dZ. (10)

Our aim is to maximize the lower bound L(Q), which is equivalent to minimizing the KL divergence.
For the choice of the variational Q-distribution we seek a choice that is simple enough to make our
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computations tractable but at the same time gives enough flexibility to make the bound tight. Here we
take the most common approach and use the mean field approximation, and the posterior distribution
is factorized as

Q(Z) =
∏

i

Q(Zi) (11)

= Q(H)Q(β)Q(µ)Q(π)Q(W)Q(ω)Q(λ)
L∏

l=1

Q(Xi, qi). (12)

This explicitly factorizes the spatial sources X over its separate components . This approximation is
a reasonable one because the component sources are assumed to be statistically independent of one
another. It can now be shown that the optimum form for each component of the posterior distribution
is given by

Q(Zi) =
exp(Ek 6=i[lnP (X,Z)])∫

exp(Ek 6=i[lnP (X,Z)]) dZj
(13)

All the calculations for the expectations which are needed to obtain the parameter updates may be
derived analytically and can be found in the appendix of [3]. The initialisation to this iterative procedure
is specific to the stage of the algorithm, this is explained in the appendix.

3. Dual-ICA algorithm

Now that we have defined our model and shown how to solve it we can apply it to the previously
described problem of finding subject specific maps X and time-courses H as well as any additional subject
artifacts maps and time-courses X́ and H́ respectively.

3.1. Dual-ICA algorithm overview
First we ‘fix’ the known group maps as our subject maps by adjusting the priors in our model and

then learn the corresponding time-courses. In addition to this we also use the ICA to learn extra artifact
maps and time-courses. Then as a post-processing step to the first stage we inspect the time-courses
found by the ICA and eliminate any duplicates. These duplicates correspond to differences between the
subject and group maps, removing one of the duplicates will prevent the ICA splitting the subject map
into two maps during the next stage. In the second and final stage we ‘fix’ all (both subject and artifact)
time-courses previously found and set uninformative priors on the maps, allowing us to freely estimate
the desired subject maps and artifact maps from the subject’s fMRI data.

All the coefficients used throughout this work have been chosen in line with [3] or were found experi-
mentally. Because these hyperparameters are mostly extremely small or very large values, small changes
in their value seem to have no significant consequence on the final result. However as part of future work
the significance of these coefficients should be investigated to both show they are robust and to optimize
the algorithm and improve results even further.

3.2. Stage 1, finding the time-courses
In this method we assume that we know the subject maps contain most of the group maps but do

also have some map differences. In stage 1, we fix the subject maps to be the group maps and try to
learn the corresponding time-courses, this is very similar to performing straight forward regression where
the group maps are used as regressors. In addition to this we also learn extra maps and time-courses for
artifacts, and subject maps that show differences between the subject and group maps. To implement
this in our model we fix the prior of the spatial maps to be the known group maps

Xf ∼ N(G, 10−6), (14)

and put an uninformative prior on the corresponding time-courses so they are ‘loose’ and are able to be
estimated freely

Hl ∼ N(0, 106). (15)
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We also aim to find additional artifacts and map differences by adding extra spatial maps with uninfor-
mative priors

X́l ∼
M∑

m=1

πmN(µm, 1/βm), (16)

µ ∼ N(0, 106), (17)

β ∼ Gamma(103, 10−6), (18)

as well as uninformative priors for the corresponding time-courses

H́l ∼ N(0, 1). (19)

The priors on the ARD are
ωf ∼ Gamma(10−12, 106), (20)

ώl ∼ Gamma(1012, 10−2). (21)

We can also write this in matrix form as

Y =
[
Xf X́l

] [Wf 0
0 Ẃl

] [
Hl

H́l

]
+ El, (22)

where the ICA has to estimate the whole right-hand side. All matrices with subscript f are denoted as
fixed because they are unable to change from their initialisation, the other matrices with subscript l are
loose and are able to be freely estimated.

3.3. Stage 1.1, getting rid of duplicate time-courses
From stage 1 we have learned subject time-courses H and additional time-courses H́. As a post-

processing step we inspect the additional time-courses H́ and aim to identify time-courses which corre-
spond to a spatial map difference between a subject and group map. These time-courses will be very
similar to the time-courses learnt from previously fixed group maps that are different to the correspond-
ing subject maps. We propose a simple threshold based method on the correlation between time-courses
H and H́

corr(Hl, H́j) > α =⇒ matching time course found, (23)

where l = [1...L] are the different subject time-courses and j = [1...A] denote the additional time-courses,
α is a threshold to decide whether two time-courses are similar enough to conclude that they correspond
to the same spatial map, a value of α = 0.9 seems to work well. Any time-courses in H́ that have been
found to have matching time-courses in H get removed from H́. This is done to prevent the ICA from
splitting the the one true map into two separate maps during stage 2.

3.4. Stage 2, finding the spatial maps
During stage 2 we fix all the previously found time-courses and then learn the corresponding spatial

maps, this time these are the maps that best fit the subject’s data. In matrix form we have

Y =
[
Xl X́l

] [Wf 0
0 Ẃf

] [
Hf

H́f

]
+ El. (24)

Since we want to fix the time-courses we fix their priors as

Hf ∼ N(Hstage1, 10−12), (25)

H́f ∼ N(H́stage1, 10−12). (26)

The priors for the spatial maps are unconstrained (loose) so they can be freely estimated, with Xl having
the same prior as X́l in (16). The prior on ώf is the same as ωf given in (20).
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4. Results

4.1. Simulated fMRI
The simulated fMRI data that is used for our experiments was generated by mixing a set of spatial

maps with distinctive time-courses using software downloaded from
http://mlsp.umbc.edu/simulated fmri data.html. For this experiment we chose four distinct group maps
that can be seen in Figure 2 and created an artificial subject containing four actual spatial maps, where
two maps (maps 2 and 4) are the same as maps from the group maps and two are different (maps 1 and
3). The subject also contains an extra five artifact maps, all these are shown in Figure 3. To achieve
even more realistic simulations we also added 30% of unit Gaussian noise to the subject’s fMRI data.

Group map 1 Group map 2 Group map 3 Group map 4

Figure 2: Representative fMRI maps of a group of subjects. Map 1 is task-related, maps 2 and 4 are
transiently task-related and map 3 is functional related.

Subject map 1

0 50 100
−1.5

−1

−0.5

0

0.5

1

1.5
Subject TC 1

Subject map 2

0 50 100
−1

−0.5

0

0.5

1
Subject TC 2

Subject map 3

0 50 100
0.4

0.5

0.6

0.7

0.8

0.9
Subject TC 3

Subject map 4

0 50 100
0.5

0.6

0.7

0.8

0.9

1
Subject TC 4

Subject artifact map 5

0 50 100
−2

−1.5

−1

−0.5

0

0.5

1
Subject artifact TC 5

Subject artifact map 6

0 50 100
0

0.2

0.4

0.6

0.8

1
Subject artifact TC 6

Subject artifact map 7

0 50 100
−0.5

0

0.5

1

1.5
Subject artifact TC 7

Subject artifact map 8

0 50 100
−2

−1.5

−1

−0.5

0

0.5
Subject artifact TC 8

Subject artifact map 9

0 50 100
−1

−0.5

0

0.5

1
Subject artifact TC 9

Figure 3: Shows a set of subject specific maps and their associated time-courses. This subject shares
maps 1-4 with the group, however there are notable differences between the subject and the group in
maps 1 and 3 where in each case one of the bright spots is missing. The other maps simulate artifacts
including sinusoidal rotation motion (map 5), cardiac pulsation (map 6), scanner drift (map 7), head
motion (map 8) and a strong scanner hardware artifact (map 9).

4.2. Stage 1 results
By fixing the 4 group maps the ICA outputs 11 spatial maps and their corresponding time-courses,

as seen in Figure 4. Maps 1-4 are identical to the group maps, since these are the fixed group maps. The
remaining maps are the estimated artifacts (maps 5-9) and the map differences between the subject and
the group maps (maps 10 and 11).
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Figure 4: Shows the output of Dual-ICA after stage 1.

From the post-processing stage described in section 3.3, time-courses of maps 10 and 11 are identified
as having a very high correlation to time-courses 3 and 1 respectively and as a result time-courses 8 and
10 are removed for stage 2.

4.3. Stage 2 results
After fixing the previously estimated time-courses, the final results from the Dual-ICA algorithm are

shown in Figure 5. All four subject maps are found correctly with some added noise. The prominent
artifacts (maps 6, 8 and 9 in Figure 5 ) are also estimated well.
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Figure 5: Shows the output of Dual-ICA after stage 2.

4.4. Comparison against dual regression
Dual regression is the current state of the art method for finding subject specific maps. It uses the

group maps as a set of spatial regressors in a General Linear Model (GLM) which in this case is just
a multivariate least squares regression, to find temporal dynamics associated with each group map. It
then applies these time-courses as a set of temporal regressors in a GLM, to find subject specific maps
[7]. The results from running dual regression on the simulated data yield heavily contaminated subject
maps (bottom of Figure 6). This is because there is significant overlap and correlation between subject
maps and time-courses, and artifact maps and time-courses, which causes the regression to pull some of
the artifacts into the subject map estimates. The advantage of Dual-ICA is that it is able to separately
estimate the extra artifact maps, giving them less chance to contaminate the subject maps (middle of
Figure 6).
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Subject map 1 Subject map 2 Subject map 3 Subject map 4 Subject artifact map 5 Subject artifact map 6 Subject artifact map 7 Subject artifact map 8 Subject artifact map 9

Dual ICA map 1 Dual ICA map 2 Dual ICA map 3 Dual ICA map 4 Dual ICA map 5 Dual ICA map 6 Dual ICA map 7 Dual ICA map 8 Dual ICA map 9

Dual regression map 1 Dual regression map 2 Dual regression map 3 Dual regression map 4

Figure 6: Shows the ground truth of the subject maps (top), maps found by Dual-ICA (middle) and
maps estimated by dual regression (bottom).

Dual-ICA also performs well for different noise levels (Figure 7) and with varying number of artifacts
added to the simulated subject data (Figure 8).

0 50 100 150

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of noise added

M
ea

n 
co

rr
el

at
io

n 
to

 tr
ue

 m
ap

s

Spatial map correlation 

 

 

Dual regression

Dual ICA 

0 50 100 150
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Percentage of noise added

M
ea

n 
co

nt
am

in
at

io
n 

of
 e

st
im

at
ed

 m
ap

s

Spatial map contamination

 

 

Dual regression

Dual ICA

Figure 7: Shows the average amount of correlation between the estimated subject maps and the ground
truth (left), and the total amount of contamination in the estimated subject maps (right) with varying
amounts of noise added to the subject data. Here 100% corresponds to noise which is Gaussian and of
the same (100%) magnitude as the spatial map.

To calculate how much a subject map is contaminated by a particular artifact, we first orthogonalise
the artifact with respect to the subject map so that the artifact does not contain any subject map, and
then calculate how much correlation there is between the orthogonalised artifact and the subject map.
For all the correlations we used the well known Pearson correlation coefficient.
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Figure 8: Shows the average amount of correlation between the estimated subject maps and the ground
truth (left), and the total amount of contamination in the estimated subject maps (right) with varying
number of artifacts in the subject data.

4.5. Real fMRI data
The group data used for this experiment was generated from 36 healthy participants. The subject

specific fMRI data is taken from a participant that had some cognitive impairment. The Dual-ICA
algorithm is able to consistently reproduce all the 20 subject specific network maps that are also present
in the group maps. A sample output of one of the maps is shown in Figure 9. The proposed method also
finds 4 additional artifacts in the data one of which is shown in Figure 10. Dual regression only regresses
out subject maps that corrspond to group maps and does not try to detect these additional artifacts.

 

 

Figure 9: Shows one of the maps produced by the Dual-ICA algorithm, the different maps correspond
to different slices of the brain. This particular map corresponds to the auditory system.
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Figure 10: Shows one of the artifact maps found by Dual-ICA.

5. Future work

Through future work we will aim to properly evaluate these two methods on real fMRI by comparing
results from larger studies and by using various statistical comparisons to test the accuracy of the maps,
however this will be much more difficult for real fMRI than for simulated data because we don’t actually
know what the exact ground truth is.

The main disadvantages of this Bayesian Dual-ICA approach are the computational cost involved and
the complexity of the implementation. Dual regression is extremely simple to implement and also fast
at finding subject components making it accessible to many researchers. To make Bayesian Dual-ICA
more practical, research into ways of simplifying the model and making good initialisations in order to
decrease the number of iterations will be important.

6. Conclusions

Investigating functional brain networks (maps) has recently become a major research area within
the neuroscience community. Dual regression has been used to decompose subject fMRI data into a set
of time-courses and associated spatial maps by using existing group maps as regressors. However dual
regression can often suffer from contamination due to various artifacts that are present in the subject’s
fMRI data.

In this work we presented a Bayesian Dual-ICA model to solve this contamination problem. By
working within a Bayesian framework we are able to specify the priors in such way that it allows us to
incorporate the group map information in order to guide the subject specific ICA to find independent
spatial maps as well as artifact maps, thus preventing artifacts from contaminating the subject maps.
The model was implemented and solved using Variational Bayes and tested on simulated and real fMRI
data. We also compared our method against dual regression and for simulated data showed that it
produces cleaner subject maps that have less spatial contamination from artifacts.
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Appendix A. Initialisation of ICA

To start with we need to provide the iterative variational algorithm with some initialisation for the
maps and time-courses. As with most ICA implementations, Group-ICA is initialised from a PCA
decomposition. In stage 1 we use the group spatial maps as a set of spatial regressors, to find the
time-courses associated with each group map

H = Y/G. (A.1)

This is done using a simple multivariate least squares method. Next we subtract the group maps
found within the subject’s fMRI data from this data and use PCA (implemented using a singular value
decomposition) to find the most prominent time-courses H́ left in the residuals

X́ΣH́ = SVD(Y −GH) (A.2)

Finally we use all the found time-courses
[
H H́

]
(subject and artifact) to regress out the corresponding

spatial maps
[
X X́

]
(subject and artifact) from the data

[
X X́

]
= Y/

[
H
H́

]
. (A.3)

These spatial maps and time-courses are then used to initialise the iterative VB algorithm. A good
initialisation is important so that the algorithm does not get stuck in a local minimum early on. For
stage 2, where the time-courses are fixed a similar thing is done and the roles of the time-courses and
spatial maps in the above procedure are just reversed.
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