Differentiable Programming: Several Directions

Supervisor: Luke Ong

Optimisation problems are ubiquitous in Computer Science, with applications ranging
from neural network learning to computer vision. A widely used algorithm for solving op-
timisation problems is gradient descent, which uses the gradient of a differentiable function
at a point to determine how much the function’s inputs should be adjusted.

Differentiable programming is about the development of a programming system with
a built-in gradient operation for solving optimisation problems. Automatic differentiation
systems, and more generally, differentiable programming, have become extremely important
recently because they are the computational foundation of deep learning.

A key desideratum is that the constructible programs should denote differentiable func-
tions. We focus on imperative programs, so as to benefit from their expressiveness and
ease-of-use when creating models of complex systems that need to be optimised.

Unfortunately imperative programs are not always differentiable. For example, condi-
tional statements, which are a key feature of imperative programming languages, introduce
branch points — discontinuities where the branch taken changes — which are either ignored
(as nondifferentiable) or whose gradients are given as intervals by traditional automated
differentiation systems.

This project is concerned with approaches to the problem of optimising imperative
programs by transforming them to differentiable functions on which gradient descent can
safely operate.

Possible directions

e Formulation of a first-order imperative programming language with a reverse differ-
entiation operator.

e Definition of its denotational semantics, and a source code transformation.

e Approximation by simulated annealing: by gradually creating stricter differentiable
approximations of the program that condition on comparisons of values, apply gra-
dient descent to each approximation. Design and implement an algorithmic solution.

References

[1] Swarat Chaudhuri and Armando Solar-Lezama. Smooth interpretation. In Proceedings
of the 2010 ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2010, Toronto, Ontario, Canada, June 5-10, 2010, pages 279-291,
2010.



[2] U. Naumann. The art of differentiating computer programs: an introduction to algo-
rithmic differentiation. Society for Industrial and Applied Mathematics, 2011.

[3] Gordon D. Plotkin. Some principles of differentiable programming languages. ACM
POPL Plenary Lecture, 2018.

[4] Stan Development Team. nomad: A high-peformance automatic differentiation package.



