
Flow Analysis as a Higher-order Constraint Problem

Luke Ong Steven Ramsay

January 2018

A central problem in program analysis [5] is to predict, statically, which values may
occupy a variable at runtime. In a functional programming language the task, known as
flow analysis, is particularly difficult since the control flow of the program cannot be accu-
rately determined from the program syntax due to the prescence of higher-order functions.
Nevertheless, the problem is such an important and natural one that it has been well
studied, with most approaches being equivalent to, or some variation on, Shivers’ seminal
analysis 0-CFA. This analysis is particularly appealing because it has a constraint-based
formulation: the analysis generates a set of constraints (in this case subset inclusions)
which capture the essence of the problem and whose satisfaction yields a solution to the
original problem.

However, until recently, most approaches to the problem involve approximating higher-
order control flow using first-order apparatus (e.g. tree grammars, set constraints or ab-
stract machines). Some attempts have been made to do better using new technology
(e.g. pushdown automata, indexed grammars, higher-order model checking [8]) but there
is currently no crisp, constraint-based formulation of a truely higher-order flow analysis.

This project aims to develop a flow analysis for functional programs (or an applied
lambda calculus) formulated as a higher-order constraint problem (the unknowns that are
constrained are of higher-type). One starting point is the work on exact flow analysis
using higher-order model checking, since we know that higher-order model checking [3,
7, 6] can itself be recast, in a natural way, as a higher-order constraint problem. (See
[2] for a higher-order Horn constraint-based approach to the safety verificaiton of higher-
order programs; and [4, 1] for first-order examples.) Whatever approach is taken, the
analysis must be described precisely, shown to be sound (the results of an analysis do
not omit any of the possible values that a variable can take at runtime) and there should
be a prototype implementation. Beyond this, the work lends itself well to two possible
extensions, depending on the time and inclination of the student:

1. Extending the flow analysis to a real language, such as Haskell, via the Core language
of GHC or

2. Characterising classes of constraint and classes of program for which the analysis
enjoys a notion of relative completeness.

Relevant Courses

- 2nd and 3rd-year: Compilers, and Lambda Calculus and Types.

1



- 4th-year: Computer-aided Formal Verification; Automata, Logic and Games; and Pro-
gram Analysis.

References

[1] N. Bjørner, A. Gurfinkel, K. L. McMillan, and A. Rybalchenko. Horn clause solvers
for program verification. In Fields of Logic and Computation II - Essays Dedicated to
Yuri Gurevich on the Occasion of His 75th Birthday, pages 24–51, 2015.

[2] T. C. Burn, C. L. Ong, and S. J. Ramsay. Higher-order constrained horn clauses for
verification. PACMPL, 2(POPL):11:1–11:28, 2018.

[3] N. Kobayashi. Model checking higher-order programs. J. ACM, 60(3):20, 2013.

[4] K. L. McMillan. Lazy annotation revisited. In Computer Aided Verification - 26th
International Conference, CAV 2014, Held as Part of the Vienna Summer of Logic,
VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings, pages 243–259, 2014.

[5] F. Nielson, H. R. Nielson, and C. Hankin. Principles of program analysis. Springer,
1999.

[6] C.-H. L. Ong. Higher-order model checking: An overview. In 30th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015,
pages 1–15, 2015.

[7] S. J. Ramsay, R. P. Neatherway, and C.-H. L. Ong. A type-directed abstraction refine-
ment approach to higher-order model checking. In The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’14, San Diego,
CA, USA, January 20-21, 2014, pages 61–72, 2014.

[8] Y. Tobita, T. Tsukada, and N. Kobayashi. Exact flow analysis by higher-order model
checking. In Functional and Logic Programming - 11th International Symposium,
FLOPS 2012, Kobe, Japan, May 23-25, 2012. Proceedings, pages 275–289, 2012.

2


