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The general theme is to use higher-order logic, (refinement) types, allied formal meth-
ods (notably SMT solving and model checking), and machine learning for the automatic
verification, specification and synthesis of programs.

Several years ago (circa 2012), Bjørner, McMillan and Rybalchenko advocated an ap-
proach to automatic program verification based on constrained Horn clauses (CHC). Our
recent POPL paper1 (Burn et al., 2018) extends the CHC approach to higher orders.

We formalise a class of constrained systems, called higher-order constrained Horn clauses
(HoCHC), and introduce two decision problems relevant to program verification, namely,
HoCHC satisfiability, and HoCHC safety problems. Not surprisingly, these problems are
not decidable in general. In (Burn et al., 2018), we developed a sound approach to solve
the HoCHC safety problem, based on a refinement type system:

(1) Type Soundness : given an instance of the HoCHC safety problem, if the associated
“logic program” of the problem instance is typable, then it is a yes-instance.

(2) Reduction. We show that typability reduces to solvability of a system of 1st-order
constrained Horn clauses.

We have developed a prototype “proof of concept” tool implementation of this method,
called Horus: see http://mjolnir.cs.ox.ac.uk/horus

Members of my research group are now working on other approaches to solving HoCHC:

(i) SLD resolution of higher-order logic programs

(ii) Reynold’s defunctionalization.

In the following I briefly describe a number of possible projects.

Project 1. Relativised completeness of refinement types for solving
HoCHC

The refinement type approach (i.e. (1) and (2) above) is not complete: the converse of type
soundness (1) does not hold. We conjecture that completeness holds for a class of HoCHC
satisfying a syntactic constraint called safety (Knapik et al., 2002).

1See also the slides http://www.cs.ox.ac.uk/people/luke.ong/personal/IRIF-7Dec17.pdf, and a
video recording of the POPL18 presentation https://dl.acm.org/citation.cfm?id=3158099&picked=

formats.
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We think that there are connections with the notion of relativised completeness studied
by Unno et al. (2013), though our focus on safety is new.

This project would suit someone who is interested in (refinement) types, lambda calculus
and functional programming.

Project 2. Relatively-complete Hoare logic for higher-order pro-
grams

Blass and Gurevich (1987, 2000) characterised existential fixed point logic as the under-
lying logic of Hoare axiom systems. Their result can be read, dually, as a statement of
the (relative) completeness of first-order constrained Horn clauses for proving the partial
correctness of first-order programs. We conjecture that this theorem about first-order con-
straints can be lifted to state the relative completeness of HoCHCs for proving partial
correctness assertions of higher-order programs.

Previous approaches to the problem of constructing relatively complete systems for
higher-order programs have either relied on first-order Gödel encodings (Unno et al., 2013),
higher-order expressiveness assumptions (Olderog, 1983), or bespoke higher-order logics
(cf. evaluation formulas of Honda et al. (2006)), none of which seems amenable to automa-
tion.

By contrast, we have shown (Burn et al., 2018) that HoCHCs are well suited to automa-
tion, and can even leverage the existing work in higher-order (and first-order) verification.
Our approach will be to design a new Hoare logic for higher-order programs (with and
without state) in which the problem of provability is readily seen to reduce to the HoCHC
problem.

This project would suit someone who has some background in logic, theory of verification
(Hoare logic), and denotational semantics (e.g. Full abstraction problem of PCF (Plotkin,
1977)).

Project 3. Higher-order logic, machine learning, and program
synthesis

Automatic program synthesis is an old problem which is still central to programming.
There have been interesting developments recently using a variety of approaches:

1. refinement types e.g. (Polikarpova et al., 2016)

2. Angluin-style automata learning e.g. (Vaandrager, 2017)

3. syntax-guided and search / model checking based e.g. (et al., 2015)

A direction which I am interested in developing is synthesis of (higher-order) functional
programs by learning from examples. A highly relevant work is an approach based on
higher-order inductive logic programming, due to Cropper and Muggleton (2016). Their
method involves an alternation of higher-order procedures called Abstraction and Inven-
tion. HoCHC are syntactically essentially the same as some versions of higher-order logic
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programs in the literature: many key observations in higher-order inductive logic pro-
graming are just as meaningful when transposed to the HoCHC setting. The idea is that
Abstractions can benefit from recent advances in the use of refinement types in automatic
program specification. Moreover, Inventions, which are concerned with the construction of
definitions for the predicate variables used in the Abstractions, can be augmented using
syntax-guided model checking.

Explainable AI or meta-interpretive AI is a grand challenge. Progress will rely on mar-
rying data-centric AI (statistical machine learning, dominating AI in the last two decade)
with symbolic AI (building on symbolic logic, the basis of much of AI up to the 90s, formal
methods and programming languages, and other branches of CS). A related challenge in AI
is the development of automatic programming systems (“writing codes that write codes”).
This project may be viewed as a (small) first step in these directions. Comparatively more
speculative, this project is also suitable as a DPhil project.
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