Automata, Logic and Games

C.-H. L. Ong

March 6, 2013

Contents

Automata, Logic and Games

0.1 Aims and Prerequisites
0.2 Motivation e
0.3 Example: Modelling a Lift Control
Biichi Automata

1.1 Definition and Examples o
1.2 Closure Properties e
1.3 w-Regular Expressions
1.4 Decision Problems and their Complexity
Problems

Linear-time Temporal Logic

2.1 Motivating Example: Mutual Exclusion Protocol
2.2 Kripke Structures
2.3 Syntax and Semantics
2.4 Translating LTL to Generalised Biichi Automata
2.5 The LTL Model Checking Problem and its Complexity
2.6 Expressive Power of LTL
Problems
S1S

3.1 Imtroduction
3.2 The logical system SIS
3.3 Semantics of SIS
3.4 Biichi-Recognisable Languages are S1S-Definable
3.5 S1S-Definable Languages are Biichi-Recognisable
3.6 The Synthesis Problem 0o
Problems

Modal Mu-Calculus

4.1 Knaster-Tarski Fixpoint Theorem
4.2 Syntax of the Modal Mu-Calculus
4.3 Labelled Transition Systems L
4.4 Syntactic Approximants Using Infinitary Syntax
4.5 Intuitions from Exampleso o o
4.6 Alternation Depth Hierarchy
4.7 An Interlude: Computational Tree Logic (CTL)

NN =

(94

10
14
16
20

23
23
24
25
28
31
36
38

43
43
44
45
46
47
48
o1

CONTENTS

Problems

5 Games and Tableaux for Modal Mu-Calculus

5.1 Game Characterisation of Model Checking
5.2 Proof of the Fundamental Semantic Theorem
5.3 Tableaux for modal mu-calculus
54 Parity Gameso o

5.5 Solvability and Determinacy for Finite Parity Games

Problems

6 Tree Automata, Rabin’s Theorems and S2S

6.1 Trees and Tree automata
6.2 Parity tree automata L.
6.3 Parity Games and Complementation
6.4 The Non-emptiness Problem
6.5 S2S and Rabin’s Tree Theorem

Bibliography

A Ordinals and Transfinite Induction: A Primer

ii

103

Chapter 0O

Automata, Logic and Games

0.1 Aims and Prerequisites

To introduce the mathematical theory underpinning the computer-aided verification of com-
puting (more generally reactive) systems.

- Automata (on infinite words and trees) as a model of computation of state-based systems.

- Logical systems (such as temporal and modal logics) for specifying operational / correctness
properties.

- Two-person games as a conceptual basis for understanding and representing algorithmic
interactions between a system and its environment.

Prerequisites MSc (CS + MFoCS): Foundations of Computer Science. Main topics:

- (Finite) Automata Theory: 1st/2nd year Models of Computation
- Logic: 1st/2nd year Logic and Proofs, or B1 Logic
- Computability and Complexity: Computational Complexity

For information on the above courses, see http://www.cs.ox.ac.uk/teaching/courses/

Connexions with other DCS courses This course can be viewed as a follow-up of
Computer-Aided Formal Verification, emphasising the logical and algorithmic foundations.
In addition there are several points of contact with Software Verification, and Theory of Data
and Knowledge Bases.

Bibliography Many papers (and some book chapters) in the list can be viewed on the
Web.

Bradfield and Stirling, 2007) [Must-read for modal mu-calculus.]

[Khoussainov and Nerode, 2001) [Useful general reference for Biichi automata and S18S.]

Gradel et al., 2002) [Encyclopaedic, but uneven quality.]

Stirling, 2001) [Good for modal mu-calculus and parity games.]

Thomas, 1990) [Quite standard reference, but a little dated.]

~ o~ o~ o~ o~ o~

Thomas, 1997) [Excellent reference for the relevant parts of the course.]

1

http://www.cs.ox.ac.uk/teaching/courses/

CHAPTER 0. AUTOMATA, LOGIC AND GAMES

- (Vardi, 1996) [Easy to read; covers Biichi automata and LTL, but takes a different approach.]

Course webpage Lecture slides, exercises for the problem classes, resources, and adminis-
trative details of the course will be posted at the course webpage
http://www.cs.ox.ac.uk/teaching/materials12-13/automatalogicgames/

0.2 Motivation

Reactive systems are computing systems that interact indefinitely with their environment.
Typical examples are air traffic control systems, programs controlling mechanical devices
such as trains and planes, ongoing processes such as nuclear reactors, operating systems and
web servers.

Modelling Reactive Systems as Games There are different ways to model reactive
systems. Abstractly we can model a reactive system by a two-player game:

- Player 0 (or Elo'l'se) representing the System

- Player 1 (or Abelard) representing the Environment

Desirable correctness properties of the System are coded as winning conditions for Eloise.
A strategy is winning for a player if it results in a win for the player, no matter what
strategy is played by the other player. Winning strategies for Eloise correspond to methods
of constructing the System. Strategies are algorithms in abstract (and “neutral”) form.

0.3 Example: Modelling a Lift Control

Assume a building of 8 levels.

Game perspective A 2-player game.

- Player 0 (Elo’ise): Lift controller
- Player 1 (Abelard): Users

System state described by:

- A set of level numbers that have been requested, represented by a bit vector (by, - ,bg) € B3
whereby b; = 1 iff level ¢ has been requested.

- A level number i € {1,---,8} for the current position of the lift.

- A number (0 or 1) indicating whose turn it is.
State space of the system is B® x {1,---,8} x {0,1}.

State-transition graph A directed (bipartite) graph: vertices are states, and edges are
transitions.

http://www.cs.ox.ac.uk/teaching/materials12-13/automatalogicgames/

CHAPTER 0. AUTOMATA, LOGIC AND GAMES

Transitions Two kinds: arrows from O-states (Player 0’s turn to play) to 1-states (Player
1’s turn to play), and vice versa.

- (b1, ,bg,1,0) — (b, -+ ,bg,4’, 1) such that i # 7', b}, = 0 and b;- = b; for j # 7'
The actions involved are: door is closed, movement of lift, door is opened, and movement
of people.

- (b1, bsy i, 1) — (b, -+, b, 4,0) such that b; <0 for all j € {1,---,8}.

The actions are: Users push buttons.

Winning conditions (= correctness properties)

Example properties

1.
2.
3.

Every requested level will be served eventually.
The lift will return to level 1 infinitely often.

When the top level (where the boss lives!) is requested, the lift serves it immediately
and expeditiously (i.e. does not stop on the way there).

While moving in one direction, the lift will stop at every requested level, unless the top
level is requested.

Some key questions

1.

Is there a lift-control (0-strategy) that can meet all the requirements (winning condi-
tions)?

Does a winning strategy exist?

Correctness conditions are typically encoded as logical formulas.

How much memory does the control need? Is finite memory enough?

Is there a finite-state! winning strategy (i.e. one that uses only a finite amount of mem-
ory)?

Is there a method that can automatically derive a lift control from a given state-
transition graph and a given set of winning conditions?

Is the winning strategy effectively constructible?

Such an algorithm is often shown to be constructible by proving that it is a solution to
an appropriate decision problem of some class of automata.

1 A model of computation is finite state if it has only finitely many possible configurations. Thus finite-state
automata are finite state, but pushdown automata and Turing machines are infinite state.

3

CHAPTER 0. AUTOMATA, LOGIC AND GAMES

Chapter 1

Buchi Automata

Synopsis

Definition and examples. Biichi automata are not determinisable. Other acceptance condi-
tions: Muller, Rabin, Streett and Parity. Closure properties of Biichi-recognisable languages.
Biichi’s proof of complementation via Ramsay’s Theorem. McNaughton’s Theorem. Trans-
forming non-deterministic Biichi to deterministic Rabin automata: Safra trees and Schewe’s
history trees. Biichi’s characterisation and w-regular expressions. Decision problems and their
complexity: non-emptiness is NL-complete, and universality is PSPACE-complete.

Notations Let U be a set.

- We write U* to mean the set of finite sequences (or words or strings) of elements of U. The
empty word is denoted e. L.e. U* is the free monoid over U: the associative binary operation
is string concatenation (u,v) — u - v (or simply u v, eliding -) and the identity is e.

- We write U“ to mean the set of infinite sequences (or w-words or w-strings) of elements of
U. An w-word is represented as a function from w to U, ranged over by «, 3, p, etc. Thus
the map « represents the infinite word a(0) (1) (2)---.

Let u € U* and w € (U*UUY). We say that u is a prefiz of w, written u < w, just if w = uv
for some v € (U* UU%). We write u < w just if u < w and u # w.

Henceforth we assume a finite alphabet X i.e. a finite set of symbols (or letters). Subsets
of X* are called *-languages; subsets of X are called w-languages.

1.1 Definition and Examples

We use automata to define w-languages.

Definition 1.1. A (non-deterministic) Bichi automaton is a quintuple A = (Q, %, qo, A, F)
where

- @ is a finite set of states
- Y is a finite alphabet
- ¢o € Q is the initial state

- A C @ x X xQ is a transition relation

CHAPTER 1. BUCHI AUTOMATA

- F C @ is the set of final (or accepting) states.

In case A is a function Q) x ¥ — @, we say that A is deterministic, and we write ¢ for
the function.

It is helpful to think of a Biichi automaton as a finite, labelled directed graph: each edge
is labelled with an element of ¥; and the vertex labels are “initial” (labelling a unique vertex)
and “final” (labelling a subset of vertices).

Language Recognised by a Biichi Automaton

A run of A on an w-word o € ¥* is an infinite sequence of states p = p(0) p(1) p(2)--- such
that p(0) = qo, and for all ¢ > 0, we have

(p(i), (i), p(i+1)) € A.

In words, a run on « is an infinite path in the directed graph A, starting from the initial
vertex, whose labels on the edges trace out the w-word «.

Note that if A is deterministic then every word has a unique run.

A run p on « is accepting just if there is a final state that occurs infinitely often in p;
equivalently (because F is finite) inf(p) N F' # @, writing inf(p) for the set of states that occur
infinitely often in p.

An w-word « is accepted by an antomaton A just if there is an accepting run of A on
a. The language recognised by A, written L(A), is the set of w-words accepted by A. An
w-language is Biichi recognisable just if it is recognised by some Biichi automaton.

Convention When drawing automata as graphs, we circle the final states, and indicate the
initial state by an arrow.

Example 1.1. Set ¥ = {a,b,c}.

(i) L1 C X* consists of w-words in which after every occurrence of a there is some occurrence

of b.
b,c a,c
alNg
v%
b
(ii) Lo consists of w-words in which between every two occurrences of a, there is an even
number of b.

When the automaton reaches state g; (respectively ¢2), it has read an even (respectively
odd) number of b since the last a.

Is L1 recognised by a deterministic automaton? What about Lo?

CHAPTER 1. BUCHI AUTOMATA

Example 1.2 (A Non-Determinisable Biichi Automaton). The Biichi-recognisable language
L3 consisting of w-words over {0,1} that have only finitely many occurrences of 1 is not
recognised by any deterministic Biichi automaton.

Suppose, for a contradiction, Ls is recognised by a deterministic automaton

A:(Q7{071}7QO757F)'

It follows that ¢ extends to a function @ x {0,1}* — Q. Since A has an accepting run on
0%, we have 0(qp,0™) € F for some n;. Let u; € Q" be the “run” for 0"1.

Similarly, since A has an accepting run on 0™ 10%, we have §(qg, 0" 10"2) € F' for some
ngy. Let ug € Q* be the “run” for 0™ 10™2. Note that u; < us.

In this fashion, we obtain an infinite sequence of numbers ni,no,---, and an infinite
ascending chain u; < wus < wug--- whose limit is an accepting run of A on the w-word
0"110™210™310™1 - - -, which is a contradiction. [l

Where does the argument break down if A is not deterministic?
Exercise 1.1. Construct a Biichi automaton that recognises (i) Ls (ii) L3 = {0,1}* \ Ls.

Example 1.3. Construct a Biichi automaton for the language L4 consisting of w-words «
over { a, b, ¢ } such that a contains the segments a b and a ¢ infinitely often, but b ¢ only finitely
often.

. ¢
Just Fead a’

\Q/ : Juﬁ(r%‘{(")

Juvt() st
)'Mol. ab r%‘i(ac)

Figure 1.1: An automaton accepting infinitely many a b and a ¢ but only finitely many b c.

We argue that the automaton in Figure 1.1 recognises Ly as follows. By construction:

- when the automaton reaches the states q; and g5, it has just read a

7

CHAPTER 1. BUCHI AUTOMATA

- when it reaches the states ¢o, ¢4 and gg, it has just read b

- when it reaches the states ¢3 and g7, it has just read c.
Consequently, after leaving ¢g, the automaton is unable to read bc¢. Further

- when the automaton reaches state qq, it has just read ab

- when it reaches state g7, it has just read ac.

It then remains to observe that g7 is the (only) final state, and after leaving it, the automaton
must visit g4 before it is able to revisit gs.

Other Acceptance Conditions

An w-automaton is a quintuple A = (Q, X, g0 € Q, A C Q x ¥ X @, Acc); the component
Acc is its acceptance condition.
An w-automaton is called

- Biichi: if Acc is of the form F' C @, and a run p is accepting just if inf(p) N F # @.

- Muller: if Acc is of the form F = { Fy,--- , Fy } with each F; C @, and a run p is accepting
just if inf(p) € F.

- Rabin: if Acc is of the form { (E1, F1),---,(Ey, Fy)} with E;, F; € @, and a run p is
accepting just if

Fie{l,--- k}.inf(p)NE;, =2 A inf(p) NF; # &

Le. for some i, every state in Ej; is visited only finitely often in p, but some state in Fj; is
visited infinitely often in p.

- Streett: if Acc is of the form {(E1, F1), -, (Ek, Fi) } with E;, F; C @, and a run p is
accepting just
Vie{l,--- k}.inf(p)NE; =2 V inf(p) N F; # &

- Parity: Acc is specified by a priority function) : Q — w, and a run p is accepting just if
min Q(inf(p)) is even i.e. the least priority that occurs infinitely often is even.

Rabin condition is sometimes called pairs condition; Streett condition is sometimes called
complement pairs condition; parity condition is sometimes called Moskowski condition.

It is straightforward to see that parity condition is closed under negation. Given a priority
function Q : Q@ — w, let p be a run that is not parity-accepting. I.e. min Q(inf(p)) is odd.
Then p is parity-accepting w.r.t. the parity function Q' : ¢ — Q(¢) + 1. Note that the
Muller condition is also closed under negation. The negation of a Rabin condition is a Streett
condition, and vice versa. Given a set of pairs { (E1, F1), -, (Eg, Fx) }, let p be a run that is
not Rabin-accepting. I.e. we have —=(3i.inf(p) N E; = @ A inf(p) N F; # @), which is equivalent
to Vi.(inf(p) N E; # @ V inf(p) N F; = @). Thus p is Streett-accepting w.r.t. the set of pairs
{(Fl’El)v"' 7(Fk’Ek)}'

Example 1.4 (Muller and Rabin Conditions). Let Ls C { a, b, ¢ }* be the language consisting
of all words « satisfying: if a occurs infinitely often in «a, so does b.

Take the complete state-transition graph with state-set @ = { ¢4, @, ¢c }- The idea is that
when the automaton reaches state q,, it has just read a; similarly for g, and g.. The Muller
and Rabin conditions for a 3-state automaton that recognises L4 are as follows.

8

CHAPTER 1. BUCHI AUTOMATA

b The compment ofor U=Fa, b}

Stage L S lope 2

Figure 1.2: Transforming Muller to Biichi

- Muller: Take F ={UCQ|q €U=q €U}

- Rabin: Take Q@ = {({¢a },{ @, ¢ }), (D, {aw})}. Observe that a € L; iff a occurs only
finitely often in « or b occurs infinitely often in c.

Example 1.5 (From Muller to Biichi). Let Ay = ({ ¢a, @, ¢c }, 2, qo, F) be a Muller automa-
ton recognising Ls. We can construct an equivalent Biichi automaton as follows.

Stage 1. Simulate a run p of Ap;. Guess inf(p) = U, for some U € F. At some point, guess
that all states not in U have just been seen.

Stage 2. Check that henceforth:

(i) Every state reached is in U.

(ii) Every state in U is read infinitely often.

See Figure 1.2 for an illustration.

Let U C ¥*.
U* = {weX*|w=wujuy - uy, for some n >0, each u; € U }
Ut = {weX*|w=wujug - -u, for some n > 1, each u; € U }
UvY = {weX¥|w=ujuy --- where each u; € U }
ImU = {weX|w(0)---w(j)e U for infinitely many j € w}

In words, w € lim U just if U contains infinitely many prefixes of w.

Example 1.6. (i) Let U; = 0110* + (00)*. Then limU; consists of only two w-words,
namely, 0110000 --- and 0000 - - -.

(ii) Let Uz = 0*1. Then limU; = @.

CHAPTER 1. BUCHI AUTOMATA

1.2 Closure Properties

Biichi recognisable languages are closed under all boolean operations i.e. union, intersection
and complementation.

Proposition 1. (i) If U C ¥* is reqular then U“ is Biichi recognisable.
(ii) If U C X* is reqular and L C X% is Biichi recognisable then

U-L={u-a|luelUael}

18 Biichi recognisable.

(iii) If Ly and Lo are Biichi-recognisable w-languages, so are L1 U Lo and L1 N L.

Exercise 1.2. Prove (i) and (ii) of the proposition.

Closure under Union

As a first attempt, use the standard “union construction” in automata for finite words, but
note that we can’t use e-label edges. Thus for ¢ = 1,2, suppose L; is recognised by A; =
(Qi, 3, g5, A, F;). Assume Q; and Q2 are disjoint. Then L; U Lo is recognised by the Biichi
automaton

(Q1UQ2U{q}, %, q.4A,F1UF)

where qq is a fresh state, and

A = AjUA,
U {(g0,a,9) | a €% (q,a,9) € Ar}
U {(QO,CL,Q)|(IEE,((](2),(I,Q)€A2}

Le. for each a-transition from ¢} to ¢, we add a fresh a-transition from qo to ¢ (for i = 1,2).

Closure under Intersection

Suppose L; is accepted by A; = (Q;, %, Ay, g, Fi), for i = 1,2. As a first attempt, run the two
automata synchronously i.e. in lockstep. Following finite automata for finite words, construct
the product automaton

(Ql X Q2727A7 (Qé)qg))aFl X FQ)

where ((p,q),a,(p',q)) € A iff (p,a,p’) € Ay and (q,a,q') € Ay. This does not work be-
cause we cannot guarantee that the final states of A; and Ay are visited infinitely often
stmultaneously.

The point is that we need to ensure infinite alternation of a F}-state and a Fs-state. Thus
we construct a product automaton and cycle through the following:

1. Wait for an Fj-state in first component.

2. When an Fj-state is encountered in first component, wait for an Fy-state in second com-
ponent.

3. When an Fh-state is encountered in second component, go to 1.

10

CHAPTER 1. BUCHI AUTOMATA

The Modified Intersection Automaton Work with state-set Q1 x Q2 x {1,2}. Form
modified product automaton:

A= (Qux Q2 x{1,2}, B, A, (0,49, 1), Q1 x Fa x {2})
where: for every (p,a,p’) € Ay and every (q,a,q’) € Ay, we have

((p,g,1),a,(p',q',1)) € Aif p & i
((p,g,1),a,(p',q',2)) € Alif pe Py
- ((P,4,2),a,(p',q',2)) € A if g & F>
((p,4,2),a,(p',q',1)) € A if g € Iy

It follows that a run p of A’ on « simulates runs p; = 7j(p) of A on « and py = 7w5(p) of A
on a—where 7 : (p,q,j) — p and 7] is the point-wise extension—such that p visits a state
in Q1 x Fy» x {2} infinitely often iff p; visits F} infinitely often and po visits Fb infinitely
often. g

Closure under Complementation

Theorem 1.1 (Biichi 1960). If L C X% is Biichi recognisable (by A say), so is X\ L. Further
the automaton recognising X% \ L can be effectively constructed from A.

As a first attempt, consider the standard method to complement a finite-state automaton
for finite words: first determinise A, then “invert” the final states. Unfortunately, Bichi au-
tomata are not determinisable. As we have seen, there are non-deterministic Biichi automata
(for example, any automaton that recognises Lz of Example 1.2) that are not equivalent to
any deterministic automata.

Biichi’s proof We follow the account in (Thomas, 1990) of the proof by Biichi (1960b). Let
L be recognisable by a Biichi automaton A. We aim to show that both L and ¥¢\ L are rep-
resentable as finite unions of sets of the form L; - L where L; and Lo are regular *-languages.
(Note that it is relatively straightforward to prove the result for L alone: cf. Proposition 2.)

We shall construct L; and Lo as congruence classes. We say that a relation ~ C ¥* x 3*
is a congruence just if ~ is an equivalence relation such that whenever u ~ v’ and v ~ v’ then
u-v~u -v. Set

Wyg ={wes | q¢=q}

Fo._ we o
W,y ={weX[¢g—=rd}

where ¢ " v ¢ with X C Q means that exist qg, - ,gn € Q such that ¢ = gg —» q1 —
o2 g, = ¢, and {qo,"+ ,qn }NX # &; and in case X = @, we omit the subscript X from
g S5 x ¢. Define

wr~gw = Vg,qd €Q. (weWyy < w' € Wyg) A (we Wlfq/ —w' € Wfq/))

It is straightforward to see that ~ 4 is an equivalence relation over %* which has a finite index
(because @ is a finite set). It is an easy exercise to show that ~4 is a congruence.
The equivalence classes can be described as follows: for w € X*

[w]NA = ﬂq,q/eQ,wEquq/ WQ:(]’ N mq,q/eQ,u&Wq’q/ (Z* \ Wq,q/)
F F
N ﬂq,q/eQ,wEWq’“?q/ Wog 0O ﬂq,q/eQ,wﬁz?W(fq/ X"\ Wq,q’)

11

CHAPTER 1. BUCHI AUTOMATA

Since each Wf g 18 regular, so is each equivalence class [w].~ ,.
Let X C X*. We say that a congruence relation ~ C 3* x X* saturates X just if for all
u,v € X%, if [u]~ - []Y N X # @ then [u]~ - [v]¥ C X.

Lemma 1.1. (i) ~4 saturates L

(ii) ~4 saturates X¢ \ L.
Exercise 1.3. Prove (i) and (ii) of the lemma.

Finally it suffices to prove the following.

Claim. Let X C X¥. If a congruence ~ saturates X and has finite index, then
X = Hlu~- W | e pENX #2}.

Assume ~ saturates X. Then “D” follows from the definition of saturation.
To prove “C”, let w € X. Define an equivalence relation ~,, € D x D where D :=
{(i,j)ew?|i<j} by
(i,7) 2w (i',5") = wli, j] =~ w[i’, j]

where w(i, j| = a;---aj—1 with w =ag a1 ---. The index of ~,, is finite because the index of
~ is finite by assumption.

Now it follows from Ramsey’s Theorem! that there is an infinite set H = {ig, i1,42,-- - }
with 29 < i1 < 79 < --- which is homogeneous for the map:

assuming i < j. Le. there is a pair (i,i’) such that whenever k < [then (i,4") &, (ig,%;). In
particular all pairs (ig,i,.1) are in [(7,7")]~, . Thus

w = w[0, i) - wlig, i1] - wlin, ia] - - - € [w]0, 40]]x - ([w]d,]])*

as required. This completes the proof of the Claim, and hence the proof of Theorem 1.1.

Given a Biichi automaton A with n states, there are n? different pairs (¢, ¢’) and hence
0(22"2) different ~ 4-classes.

Exercise 1.4. Show that Biichi’s complement automaton has a size bound of 0(24”2) states.
Cf. (Pécuchet, 1986; Sistla et al., 1987).

! Let A be a set. We write (A),={BCA:|Bl=n}

Theorem 1.2 (Frank P. Ramsey 1930). Suppose f : (w)n — {0,1,--- ,k —1}. Then there is an infinite set
A C w which is homogeneous for f i.e. f is constant on (A)n.

If we think of f as a k-colouring of the n-elements subsets of w, then when A is homogeneous for f, in the
sense that all n-element subsets of A have the same colour.

12

CHAPTER 1. BUCHI AUTOMATA

McNaughton’s Theorem

Alternatively, following McNaughton (1966), given a Biichi-recognisable language L(B), one
can complement it by first transforming the Biichi automaton B to an equivalent determinis-
tic Muller automaton M, and then complement M to get M. Thus X%\ L(B) = X¥\ L(M) =
L(M). Note that Muller acceptance condition is closed under complementation: A deter-
ministic Muller automaton (Q, X, A, qo, F) recognises L if and only if the Muller automaton
(Q,2,A,qo, P(Q) \ F) recognises X \ L.

Theorem 1.3 (McNaughton 1966). The following are

equivalent: NM
(i) mon-deterministic Biichi automata (NB) / \
(ii) deterministic Rabin automata (DR) NR\ /DM
(iii) non-deterministic Rabin automata (NR) DR
(iv) deterministic Muller automata (DM) NTB

(v) non-deterministic Muller automata (NM)

Proof. We write = to mean “can be simulated by”.

- “DR = NR” and “DM = NM” are immediate.

- “NB = NR” and “DB =- DR”: Biichi conditions are instances of Rabin: Given F' C @), the
corresponding Rabin condition is { (&, F) }.

- “DR = DM” and “NR = NM”: Given Rabin { (E1, F1),- -+, (En, Fy) }. Set Muller

Fim (UCQIVWUNE=2)AUNE £2))
=1

- “NM = NB”: (informal)

Stage 1 Simulate a run p of the given Muller automaton. Guess inf(p) = U, some U € F.
At some point, guess that all states of p that are not in U have just been seen.

Stage 2 Check that henceforth:

(i) Every state reached is in U.
(ii) Every state in U is read infinitely often.

- “NB = DR” is the most difficult: it was first shown by McNaughton (1966), using a double
exponential construction.

O]

NB = DR: Safra’s Construction

Given a NB with n states, Safra’s method (Safra, 1988) constructs an equivalent DR with at
most (12)" n?" states and 2n pairs in the acceptance condition. The key ideas:

(i) Reachable states are organised into trees, called Safra trees, carrying information on the
history of possible runs reaching each state.

13

CHAPTER 1. BUCHI AUTOMATA

(ii) Nodes of Safra trees are named, allowing a dynamic reuse of the Rabin pairs.

See Lectures 26 and 27 in Kozen’s book (IKozen, 2006) for an informal account of Safra’s
construction, and (Schewe, 2009) for a state-of-the-art NB-to-DR transformation based on a
variant of Safra trees called history trees.

Recent Progress
(i) Piterman (2007) modified Safra trees to construct equivalent deterministic Parity au-
tomata of size at most 2nn'" n!
(ii) By a finer analysis of Piterman, Liu and Wang (2009) obtained an upper bound of
2n (n!)2.
(iii) Schewe (2009) gave a NB-to-DR construction with state complexity o(2.66n)", but
requiring 2"~! Rabin pairs.
(iv) Colcombet and Zdanowski (2009) proved that Schewe’s construction is optimal for state
complexity.

1.3 w-Regular Expressions

Proposition 2 (Biichi 1960). A language L C X% is Biichi recognisable if and only if L is a
finite union of sets of the form J - K*, where J, K C ¥* are reqular and @ # K C X7 (and
we may assume K - K C K).

Proof. Suppose L is recognised by A = (Q,%, A, qo, F'). For p,q € Q, let A,, be the finite
automaton (Q, X, A, p,{¢}). Write L*(A4,) for the finite-word language recognised by A,y
Then
o € ¥ is accepted by A
iff there exists a run p with inf(p) N F # &
iff there exists ¢ € F' and a = upuiug - - - where ug is accepted by Ay, 4

and for each ¢ > 1, u; is non-empty and accepted by A,,.

Hence L = qup L*(Agoq) - (L*(Aqq))“. =

Regular Expressions: A Revision

Fix a finite alphabet 3 and let a range over X. Regular expressions e are defined by the
grammar:

e n=D|elaletele-el|e”
For simplicity e - f is often written as e f. We define the denotation of a regular expression
[e] C X* as follows.

[e] = {e} [e-f1 = Tel-[/]
[¢] = @ [e'] = [el’
[a] = {a} [e+f] = le]ulf]

Let w € ¥*. We say that w matches e just if w € [e].

Theorem 1.4 (Kleene). A set of finite words is recognisable by a finite-state automaton if,
and only if, it is the denotation of a reqular expression. ([l

14

CHAPTER 1. BUCHI AUTOMATA

An w-reqular expression has the form

elffl'u_i__'_enf;:

where n > 0, and ey, f1,--- ,en, fn are regular expressions. The denotation of a w-regular
expression [e] C 3¢ is defined by the same clauses as regular expressions, and [e¥] = [e]”.
We say that an w-language is w-regular just if it is the denotation of a w-regular expression.

Corollary 1.1. A set of w-words is Biichi recognisable if and only if it is w-regular.

Proof. Immediate consequence of Proposition 2.]

Example 1.7. (i) A regular expression for L3 (i.e. the set of binary words containing only
finitely many 1s) is (0 + 1)*0“.

(ii) A regular expression for L3 is (0*1)«.
For w-regular expressions e and f, we say e = f just if [e] = [f]-

Lemma 1.2. For XY C ¥*

(i) (X+Y)=(X*Y)Y+ (X +Y)*X¥

(i) (XY)W =X(YX)
(iii) For allmn >0, (X")¥ = (XT)¥ = Xv.

(iv) X¥=X+X¥.
Proof. Exercise O

Research Problem Interlude: The Star Height Problem

The star height of a regular expression is the maximum nesting depth of the stars that occur
in the expression. Formally the star height of E, h(E), is defined inductively as follows.

h(e) := h2):=0 h(a):=0 foraeX

h(e + f) = max(h(e),h(f)) h(e- f) :=max(h(e), h(f))

h(e*) :=h(e) +1
The star height, h(L), of a regular language L is the minimum star height among all regular

expressions representing L. For example, the star height of e = (b+ aa*b)*aa* is 2, but the
star height of the language [e] is 1 because e is equivalent to (a + b)*a

Question FEggan (1963): Is there an algorithm that computes the star height of a regular
language?
Two break-through results:

(i) Hashiguchi (1988) published a non-elementary algorithm. The method is impractical.
For example, to determine the star height of a certain 4-state automaton A would require
the following number of languages to be tested for equivalence against A

(10101()) (101010>

(101"

(and equivalence of finite-state automata is PSPACE-complete). N.B. 1019 in decimal
has more than 10 billion zeros.

15

CHAPTER 1. BUCHI AUTOMATA

(ii) Kirsten (2005) introduced a double-exponential space algorithm, and takes an NFA as
input. His method is based on a new type of automata called distance desert automata.

1.4 Decision Problems and their Complexity

Decision problems for Biichi automata are worth studying because algorithms for solving
these problems are basic building blocks for the construction of algorithmic solutions to the
complex problems that arise in the verification of computing systems.

Non-Emptiness Problem Given a Biichi automaton A, is L(A) # @7

Proposition 3. The non-emptiness problem for Biichi automata A = (Q,%, A, qo, F) is
decidable in time O(|Q| + |A]).

Proof. We have:

L(A) #o
iff there is a path from ¢ to some ¢ € F, and there is a path from ¢ back to itself
iff automaton A (qua digraph) has a non-trivial SCC which is reachable from gg

and contains a final state ¢

Recall that a strongly connected component (SCC) of a directed graph is a maximal subgraph
such that for every pair of vertices in the subgraph, there is a directed path from one vertex
to the other.

There is a simple algorithm to decide the Non-Emptiness Problem. The idea is to find a
“lasso” in the graph underlying the automaton: the base of the lasso is the initial state, and
the loop must include a final state.

Algorithm: Finding a Lasso
Input: Biichi automaton A = (Q, %, A, qo, F).
Output: YES, if L(A) # @; NO otherwise.

1. Determine the set (g of states reachable from ¢g using (say) depth-first search.

2. Generate all non-trivial SCCs over @Qp; at the same time, check for containment
of a final state.

3. If there is a non-trivial SCC that contains a final state, return YES; otherwise
return NO.

Stages 1 and 2 require time O(|Q| + |A|) (Tarjan, 1972). O

In fact the non-emptiness problem is complete for NL (Non-deterministic Logspace).

An Interlude: NL and NL-Completeness

Recall that a non-deterministic Turing machine accepts an input word just if there is a com-
putation path from the initial configuration to an accepting configuration.

Definition 1.2. A decision problem is NL-complete just if it is
(i) solvable in NL (i.e. decidable by a non-deterministic Turing machine using O(logn)

space on a work tape, where n is the size of the input), and

16

CHAPTER 1. BUCHI AUTOMATA

co-r.e. Arithmetic Hierarchy re.

complete co-r.e. FO(N) r.e. complete
. FOH(N

EOV() Recursive (N)

Primitive Recursive

Oo(l)

so”] EXPTIME SO(LFP)

Fop” 1 SOm°"] PSPACE FO(PFP) SO(TC)
co—NP Polynomial-Time Hierarchy NP
complete co—NP SO NP complete

oY NP N co-NP 208
rorn O BT G)

o truly

PR so-tom © feasible”
FOl(log) *"] NC
FO[log n] AcC!
FO(CFL) sAC1
FO(TC) SO-Krom | NSPACE]log n]
FO(DTC) DSPACE[log n]
FO(REGULAR) NC'!
FOM) : ThC®
FO Logarithmic—Time Hierarchy AC

Figure 1.3: Immerman’s World of Complexity Classes (Immerman, 1999)

(ii) NL-hard (i.e. every NL-solvable problem is logspace-reducible to it).

Intuitively L (Logspace) is the collection of problems that are solvable using (i) a constant
number of pointers into the input (because each number in {0,...,n—1} can be represented
in binary in at most logn bits) (ii) and a logarithmic number of boolean flags. See Michael
Sipser’s book (Sipser, 2005) and Immerman’s book (Immerman, 1999) for a systematic treat-
ment.

Proposition 4. The Non-Emptiness Problem for Biichi automata is NL-complete.

Proof. We give an algorithm in NL that checks if there is a final state which is reachable from
the initial state qo, and reachable from itself. To do this, we first guess a final state f (say),
and then a path from ¢g to f, and from f to f.

To guess a path from states x to y:

1. Make x the current state.

17

CHAPTER 1. BUCHI AUTOMATA

2. Guess a transition from the current state, and make the target of the transition the new
current state.

3. If the current state is y, STOP; otherwise repeat from step 2.
The algorithm is in NL: at each stage, only 3 states are remembered (by 3 pointers into the
input string).

NL-hardness is proved by reduction from the Graph Reachability Problem (Given nodes
x and y in a finite directed graph, is y reachable from z7), which is NL-complete. O

Universality Problem Given a Biichi automaton A over ¥, is L(A) = 3“7
Proposition 5. The Universality Problem is PSPACE-complete.

To decide non-universality, given a Biichi automaton A, we could construct the comple-
ment automaton A (i.e. L(A) = ¥\ L(A)), then use the non-emptiness algorithm on A.
Unfortunately this would give an algorithm that is exponential in space and time!

To show PSPACE decidability, we determinise the automaton (which may be of exponen-
tial size) but calculate the states only on demand, and look for a word that is not recognised.

PSPACE Hardness Proof We present a proof by Sistla et al. (1987), which is by reduction
from the Universality Problem for Finite-State Automata (Given a FSA A, is L*(A) = X17).
The latter problem is PSPACE-complete (Meyer and Stockmeyer, 1972).

The idea is to define a transformation L C 3* — L’ C X% such that whenever A4 is a FSA
then L(A)’ is Biichi-recognisable; further L(A) = ¥* if and only if L(A) = 3¥.

Proof. Fix ¥ = {a',--- ,a"}. Given FSA A = (%,Q, A, qo, F), define two alphabets 3; =
{al,---,a} (i =1,2). Consider automata A; = (3;,Q, A, qo, F') such that for i = 1,2:

i
Va,q,j: (g,al,d) €A & (g07,¢) €A
Thus A; and As recognise the image of L*(A) over ¥; and Xy respectively. Now define
L' C (21 U Eg)w by
L/ = (L1 Lg)w
U (L2 Ll)w

where L; := L*(A4;).

Exercise 1.5. Construct a Biichi automaton A’ that recognises L', with size linear in that of

A.

Claim. The FSA A is universal (i.e. L*(A) = X1) if and only if the Biichi automaton A’ is
universal.

=: Assume A is universal. Then L; contains every non-empty word over ¥; (for i = 1,2).
Now every w-word over X1 U Yo is either

(i) entirely over 3; or entirely over g, or
(ii) alternates between ¥; and ¥y and then entirely over one of the two

(iii) alternates between 3; and X infinitely.

18

CHAPTER 1. BUCHI AUTOMATA

These cases are covered by L, by definition.

<: Assume A’ is universal. Take w € XT. Let w; be the image of w in Y;. Now,
by definition of L', (w; w2)¥ € (L1L2)¥, because (w; wy)¥ cannot belong to the other five
components of L'. Further, by construction of A, this implies that w; € L(A;) (for i = 1,2).
Hence w € L(A) as required. O

In the preceding proof, note that taking L’ to be L“ where L = L*(A) does not work,
because L* is universal does not imply that L is universal: just take L = { a, b} over alphabet

{a,b}.

19

CHAPTER 1. BUCHI AUTOMATA

Problems

1.1 Let X be a finite alphabet. Prove that every w € X% can be factorised as w = uv where
u € ¥* and v € X¥ and each letter in v occurs infinitely often in w.

1.2 Construct Biichi automata that recognise the following w-languages over ¥ = {a, b, c }:
(a) The set of words in which after each a, there is a b.

(b) The set of words in which a appears only at odd, or only at even positions.

1.3 Construct Biichi automata that recognise the following w-languages over ¥ = { a,b,c }:
(a) The set of w-words in which abc appears as a segment at least once.
(b) The set of w-words in which abc appears as a segment infinitely often.

(¢) The set of w-words in which abc appears as a segment only finitely often.

1.4 Prove that every nonempty Biichi-recognisable language contains an ultimately periodic
word (i.e. an infinite word of the form u v for finite words u and v).

1.5 Prove or disprove the following: for U,V C XT

a) (UUV)® =U“UV¥

(¢) UY =limU™

(d) im(U -V)=U-V¥.
(e)
) (UV)y*=U(VU)¥

(a)
(b) im(UUV) =limU UlimV
)
U+V)=UV)*+(U+V)U”
(

)
g) Foralln >0, (UM~ = (U")*=0U%
(h)

w

1.6 Prove that the w-language L = {u¥ : u € {0,1}T } is not recognised by any Biichi

automaton.

[Hint. Consider the word (01™)“ where n is a number greater than the number of states
of A]

20

CHAPTER 1. BUCHI AUTOMATA

1.7 Prove the following (from first principles):
(a) If U C ¥* is regular then U* is Biichi-recognisable.

(b) If U C ¥* is regular and L C X is Biichi-recognisable then U - L is Biichi-recognisable.
1.8 Prove Lemma 1.1.

1.9 Prove that an w-language is deterministic Biichi-recognisable iff it is of the form lim U
for some regular U.

1.10 (Hard) A quasi order (i.e. reflexive and transitive binary relation) < over a set X is
called a well quasi ordering (w.q.o.) if every infinite sequence ay,ag,--- from X is saturated,
meaning that there exist ¢ < j such that a; < a;.

Let X be a finite alphabet. The subword ordering < C X* x ¥* is defined as: ug -« Uy S

vy - -+ vy just if there exist 1 <41 <49 < --- <4y, < n such that for each 1 < j <m, u; = i -
Prove that (X*, <) is a w.q.o0.

[Hint. Suppose, for a contradiction, there is an infinite sequence of words wy, ws, - - that is
unsaturated. For an appropriate notion of “minimal”, choose a minimal such sequence. Then
consider the derived sequence vy, ve, - -- whereby w; = a;v; and a; € X, for each .|

1.11 Consider the w-language
L := {a€{0,1}*¥]| « contains 00 infinitely often, but 11 only finitely often }.
(a) Construct a Biichi automaton that recognises L. Explain why it works.
(b) Show that L is not recognisable by a deterministic Biichi automaton.

(c) We say that a w-automaton co-Biichi recognises an w-word « if there is a run p of the
automaton on « such that from some point onwards, only final states will be visited
i.e. there is an n > 0 such that for every i > n, p(i) is a final state.

Is L recognisable by a deterministic co-Biichi automaton? Justify your answer.

1.12
(a) Let L be an w-language over the alphabet . Define right-congruence ~p, C ¥* x ¥* by
u~pv = VaeXuae L+ vael.
Prove that every deterministic Muller automaton that recognises L needs at least as
many states as there are ~y-equivalence classes.

Show that there is a w-language L, which is not w-regular, such that ~y, has only finitely
many equivalence classes.

Hence, or otherwise, state (without proof) a result about regular x-languages (i.e. sets

of finite words) that does not generalise to w-regular w-languages.

(b) Is it true that an w-language is w-regular if and only if it is expressible as a Boolean
combination of languages of the form lim U where U is a regular x-language? Justify
your answer.

21

CHAPTER 1. BUCHI AUTOMATA

22

Chapter 2

Linear-time Temporal Logic

Synopsis!

Kripke structures. Examples of correctness properties of reactive systems. LTL: syntax and
semantics. Transformation of LTL formulas to generalised Biichi automata. LTL model check-
ing is PSPACE-complete: Savitch’s algorithm; encoding polynomial-space Turing machines
in LTL. Expressivity of LTL: Kamp’s theorem.

2.1 Motivating Example: Mutual Exclusion Protocol

The model checking problem: Given a system Sys and a specification Spec on the runs
of the system, does Sys satisfy Spec?

Example 2.1 (Mutual exclusion protocol). A MUX protocol is modelled by a transition
system over state-space B°:

Process 0: Repeat

00: <non-critical region 0>
01: wait unless turn = 0
10: <critical region 0>

11: turn := 1

Process 1: Repeat

00: <non-critical region 1>
01: wait unless turn =1
10: <critical region 1>

11: turn := 0
A state is a bit-vector “aq ag by bat” where a1 ao are by by are line no. of processes 0 and
1 respectively, and t is the value of shared variable turn; the initial state is 00000. Some
examples of correctness properties Spec:

(i) Safety: The state 1010t is never reached.

!The contributions of past guest lecturers, Matthew Hague and Anthony Lin, are gratefully acknowledged.

23

CHAPTER 2. LINEAR-TIME TEMPORAL LOGIC

(ii) Liveness: It is always the case that whenever 01b1bot is reached, 10b}b5t" is eventually
reached (similarly for aja201t and ajab10t’).

Temporal Logic in Computer Science

Amir Pnueli (1941-2009) won the ACM Turing Award 1996

“For seminal work introducing temporal logic into computing science and for out-
standing contributions to program and system verification.”

A landmark publication is (Pnueli, 1977).

2.2 Kripke Structures

Fix a set {p1,- -+ ,pn } of atomic propositions. We use Kripke structures K to model reactive
systems.
Definition 2.1. A Kripke structure over a fixed set of atomic propositions { p1, -+ ,pn } is a

quadruple (S, R, A, sg) with
- a finite state-set S, and sy € S is the initial state
- a transition relation R C S x S, and

- a labelling function A : S — P({p1,---,pn }), associating with each s € S the set of those
p; that are satisfied at s.

A Kripke structure is just a directed graph whose nodes are labelled by elements of the
power set, P({p1,--- ,pn }), as given by A.

by
Notation We often write A(s) as a bit vector | : | € B" such that b; = 1 iff p; € A(s).
bn,
A path through a Kripke structure (S, R, A, so) is an infinite sequence of states, sgpsisa-- -,

where for each i > 0, (s;,8;4+1) € R. The corresponding label sequence is the w-word over the
alphabet B™: A(sg) A(s1) A(s2)---.

Example 2.2. Fix atomic propositions p; and ps.

CHAPTER 2. LINEAR-TIME TEMPORAL LOGIC

Example label sequences:

ONOIGIGIOIGIHES
i) ()00)6 66

What are the differences between Biichi automata and Kripke structures?

Correctness Properties of Reactive Systems: Examples

When a reactive system is modelled as a Kripke structure, runs of the system correspond to
label sequences of K, which are w-words over (B")“. Correctness properties of the reactive
system are thus naturally expressed as properties of w-words. In other words, they are path
properties.

The model checking problem asks: given a correctness property ¢ expressed as a property
of w-words, does every label sequence of K satisfy 7

Example 2.3 (MUX protocol revisited). For ¢ = 0,1, let

- pi+1 stand for “Process i is waiting (to enter the critical region)”

- pixs stand for “Process ¢ is in critical region”
Consider the following ¢:

(i) “It is always the case that when p; holds then sometime later p3 holds” which means: for
any label sequence, when letter (1,bq,bs,bs) occurs, subsequently a letter (b],b,1,b))
occurs.

(ii) “ps and pg never hold simultaneously” which means: no label sequence contains the
letter (b1, ba,1,1).

Example 2.4 (Sequence properties). Fix state properties p; and py. Label sequences are
w-words over B2 = { (O) (0) (1) (1) }
o/>\1)>\o)>\1) J-
(i) Recurrence: “p; holds again and again (i.e. infinitely often).”
(ii) Periodicity: “p; is true initially and precisely at every third moment.”

(iii) Request-response: “It is always the case that whenever p; holds, ps will hold sometime
later.”

(iv) Obligation: “py eventually holds but py never does.”

(v) Until condition: “It is always the case that when p; holds, sometime later p; will be
true again, and in the meantime py is always true.”

(vi) Fairness: “If p; is true again and again (infinitely often), then the same is true of po”.

2.3 Syntax and Semantics

In our present modelling framework, correctness properties are path properties. We present
Linear-time Temporal Logic, a logical system for expressing properties of w-words.

25

CHAPTER 2. LINEAR-TIME TEMPORAL LOGIC

LTL-formulas, over atomic propositions p1,- -+ ,py, are defined by the grammar:
Y u= p; atomic proposition
—p negation

A1 conjunction

\
\
| Ve disjunction
|
\

X next
o Uy until
Intuitively
X “p is true at the next time-step”

e Uy “pis true until ¢ is true (and ¢ holds eventually)”

(Picture of time-line)

Two additional constructs

Fy “pis eventually true”
i.e. ¢ is true at some point in the future (starting from the present)
Gy “pis always true”

i.e. ¢ is true at every point in the future (including the present)

They are expressible in LTL by

Fo = trueUgyp
Gy = ~(Fy)

(Henceforth we regard the above as definitions.)
LTL-formulas over atomic propositions p1,--- ,p, are interpreted as sets of w-words «
over the alphabet B".
Notation Let a = a(0) (1) a(2)--- € (B")“:
- o' stands for a(i) a(i +1) a(i+2)---, so a = a’.

- (a(i)); is the j-th component of the vector a(i).

Definition 2.2 (Satisfaction). Let i > 0. Define o' F ¢ by recursion over the syntax of ¢:

ai#pj = (afi)); =1
0l Ep = (alFy)
dEpVY = alEp VvV aiEY
AEQANY = odlEp A EY
dlEXp = atlEgp
adEpUY = EIjZi:(ozj#w/\nggj—l:ozkl:go)

We say that a E ¢, read « satisfies @, just if a¥ E .

26

CHAPTER 2. LINEAR-TIME TEMPORAL LOGIC

Examples of LTL-definable Correctness Properties

Example 2.5 (Sequence properties revisited). (i) Recurrence: p; holds again and again
(i.e. infinitely often).
G (Fp1)

(ii) Periodicity: pp is true initially and precisely at every third moment.
P A X—p1 AN XX-p1 A G(p1 < XX Xpy)

(iii) Request-response: It is always the case that whenever p; holds, ps will hold sometime
later.
G (pl — XF pg)

(iv) Obligation: Eventually p; holds but ps never does.
Fpi A=Fpy

(v) Until condition: It is always the case that when p; holds, sometime later p; will hold
again, and in the meantime po is always true.

G(p1 — X(p2 Upr))

(vi) Fairness: If pj is true again and again, then the same is true of po.
G Fp, — GFpy
Exercise 2.1. Verify the following:
(i) @'FEFp < Fj>i:alEop
i) dF Gy <> Vji>i:alFop
Definition 2.3. (i) An w-language L C (B™)“ is LTL-definable just if there is an LTL-

formula ¢ over pi,---,p, such that L = {a € (B")* | « E ¢}. We say that L is
definable by .

(ii) We say that two LTL-formulas ¢ and 1) are equivalent, written ¢ = 1, if they define the
same w-language.

(iii) A Kripke structure I = (S, R, A, so) satisfies an LTL-formula ¢, written K F ¢, just if
every label sequence of IC satisfies .

Translating LTL formulas into Biichi automata We consider the translation of LTL
formulas into equivalent Biichi automata by examples.

Example 2.6.

akF F(pt A X(-p2 Up1))

iff for some j >0: ol Ep; and o/t E —py Upy

iff for some j > 0: o E p; and for some j' > j + 1: o/ F p; and
forall j+1<k<j —1:a"E-py

iff for some j and some j’ > j : a(j) and a(j') have 1 in the 1st
component, and for all j < k < j', (k) has 0 in 2nd component

iff « has two occurrences of (i) between which only letters

of the form ([’;) occur.

27

CHAPTER 2. LINEAR-TIME TEMPORAL LOGIC

Exercise Draw a Biichi automaton that recognises the same w-language.

Example 2.7. (i) G(Fp;)

(ili) G(p1 — X Fpo)

At state ¢1, the automaton has no obligation to read a (T), qo means that it is obliged
to, but has not yet, read a (’1‘) since the last (i), g3 is reached after reading (%)

Exercise 2.2. Translate the following to Biichi automata:

(i) (Fp1) A—Fp2
(ii) G(p1 — X(p2 Up1))

2.4 Translating LTL to Generalised Biichi Automata

We can systematically translate a given LTL formula to an equivalent (generalised) Biichi
automaton. In fact, we shall utilise such an automaton construction to design a decision
procedure for the LTL model checking problem.

Definition 2.4. A generalised Biichi automaton (GBA) is a 5-tuple
(szvAvqfh{FO)'” 7E—1})

with final state-sets Fy, -+, F;_1 € Q. A run p is accepting just if for each ¢, there is some
state in F; which occurs infinitely often in p i.e. A,;(inf(p) N F; # @).

Proposition 6. Given a generalised Biichi automaton A = (Q,%, A, qo,{ Fo, -+ ,F1-1}),
define Biichi automaton

A =(@Qx{0,1,---,1—1}3, A" (q0,0), Fp x{0})

with A" consisting of

28

CHAPTER 2. LINEAR-TIME TEMPORAL LOGIC

- ((p,z'),a, (Q7i)) 7;fp ¢ Fi
- ((p1),0,(q, (i + 1) mod 1)) if p € Fi

assuming that (p,a,q) € A. Prove that A and A’ recognise the same w-language over 3.
Exercise 2.3. Prove the proposition.
The rest of the section is concerned with the proof of the following theorem.

Theorem 2.1 (Translating LTL to GBA). Let ¢ be an LTL formula over py,--- ,pn. Suppose
m s the number of distinct non-atomic subformulas of p. There is a generalised Bichi
automaton A, with state-set { qo } UB™™™ that is equivalent to ¢ i.e. the language definable
by ¢ coincides with the language recognised by A,. Further the translation ¢ — A, is effective.

Evaluating LTL-formula ¢ over a € (B")* Given w-word « over (B™)¥, and LTL-formula
@ over pi,--- ,pp. Define formulas 1, @9, -, Ynrm where

- @1 =D1, " ,Pn = Pn, and

- ©On+ls s Pn+m = @ are all the distinct non-atomic subformulas of ¢, listed in non-
decreasing order of size.

We construct a two-dimensional semi-infinite array of truth values, § € (B"*™)“, defined by:
(B(i)); = 1 (i.e. j-th row, i-th column is 1) if and only if o’ F ;. In particular a F ¢ <>
(B(0)min = 1. We call B € (B"T™)“ the p-expansion of a.

Bxample 2.8. Take ¢ = F(-pi A X (2 Up)) and o = (3) () () () () §) -+ We
construct 3 € (B?9)« the y-expansion of a:
p1r=p1|1 01 01 0
p2=p2(0 1 1 0 0 1
p3=—p |0 1 0 1 0 1
pa=-p2|1 0 0 1 10
ps=-p2Upr |1 01 1 1 0
we=X(-p2Up1)|0 1 1 1 0
or=-p1AX(—p2Up1) |0 1 0 1 0
o5 = F(opi AX(p2 Up)) [1 1 1 1
¥

Note that the 3rd (resp. 4th) row is the negation of the 1st (resp. 2nd) row.

Finite characterisation of the y-expansion of an w-word a The semantics of an
LTL formula ¢ over an w-word « is captured by the (p-expansion of o, which is an infinite
object. We first characterise gp-expansions by a finite set of compatibility conditions, and then
construct a generalised Biichi automaton that guesses the p-expansion of «, as « is read. We
divide these rules into local and global as follows.

29

CHAPTER 2. LINEAR-TIME TEMPORAL LOGIC

Local compatibility conditions: Local in the sense that the conditions relate contiguous
letters (qua column vectors) of 8 € (B™")~.

Cases Local conditions
pj =(er) | (B(2); =1 (B())k =
;= Ner | (B(i); =1 [(B(i))r =1 and (B(i)) = 1]
903 eV | (B(i); =1 [(B(i)k =1 or (B(i)) = 1]
=Xor [(B(); =1« (B(+ 1)) 1
wj=wr U | (B(); =14 (B())=1or [(B(1))r =1 and (B(i +1)); = 1]

The last clause can be explained by the equivalence: ¢ Uy =19V (¢ A X (¢ Uv)).

Global compatibility condition ¢; = ¢, Uz There is no m such that for all n > m,
we have (B(n)); =1 and (B(n)); = 0.

If « € (B")“ and v € (B™)¥, let « /7 denote the w-word over (B"+"™)“ obtained by
stacking a on top of ~.

Lemma 2.1. 8 := « [Jy € (B"T™)¥ satisfies the compatibility conditions if and only if it is
the p-expansion of «.

Proof. “«<” direction is obvious. “=": Let B; be the statement Vi > 0: (3(i)); =1 +» o' =
¢j. We prove Vj > 1: B; by induction on j.

Base case: ¢; = p;. Vacuously true.

Inductive case: The only less obvious case is when ¢; = ¢ Uy If (B(ip)); = 1 then for
all i <, the entry (8(i)); is “correct”, because of ¢ Uy = ¢ V (¢ A X (¢r, Uyy)) and the
induction hypothesis as k,l < j. It follows that if (8(¢)); = 1 for infinitely many 4, then the
entry (3(i)); is “correct” for all ¢ > 0. Now suppose for some ig, we have (5(i)); = 0 for all
i > 4. We claim that for all i > ig, (5(7)); = 0, and hence the entry is correct; for otherwise
we have (5(i)); = 1 for all i > iy, for some i; > iy (because of local compatibility for until
formulas), and so, violating global compatibility. O

Proof of Theorem 2.1

Lemma 2.2. The generalised Biichi automaton
AQO = ({QO}UIBnera Bna A7 q0, {Fb”' 7Fp})7
defined as follows, accepts a € (B™)“ if and only if a F .

Proof. Write non-initial state Ty = (x1, -+ ,Zn, Y1, ,Ym). The transition relation A is
defined as follows: for Ty and '%y/ ranging over B" ™™

- qo SN Ty provided Ty satisfies the local compatibility conditions and y,, = 1

- 7y = 77 provided 7y and 7’7 satisfy the local compatibility conditions (i.e. Ty corre-
sponds to the i-column and T’y to the (i + 1)-column in the table of local compatibility
conditions).

For each until subformula ¢; = ¢ U ¢, a final state-set F' containing all states with j-
component = 0 or [-component = 1. Let Fy,---,F, be all such sets, one for each until
subformula of . Thus we have

30

CHAPTER 2. LINEAR-TIME TEMPORAL LOGIC

A, accepts a € (B")%
iff { Definition of acceptance }

for some Ay -run p € (B"™)¥ on «, each Fj is visited infinitely often
iff {Lemma 2.1}

p is the p-expansion of «, and (p(0))m4n =1
iff { Definition of y-expansion of « }

a:a0|=<pm+n:<p

as desired.]

2.5 The LTL Model Checking Problem and its Complexity

Definition 2.5. A Kripke structure K = (S, R, A\, sg) over AP = {p1,...,pn} salisfies an
LTL-formula ¢ over AP, written K E ¢, if every label sequence of IC satisfies .

LTL Model-Checking Problem Given a Kripke structure K = (5, R, A, s9) over the
atomic propositions pi,--- ,ppn, and an LTL-formula ¢, does IC satisfy ¢?

The approach is to verify the negation: Is there a label sequence through K that does not
satisfy 7 Note that P C Q iff PNQ = 2.

Label sequences of a given Kripke structure are Biichi recognisable Given a
Kripke structure K = (S, R, A, sg) over pi,---,p,. Construct a Biichi automaton Ax =
(S,B", 50, A, S) whereby

(s, (b1, -+ ,by), s Y €A < (s,8) € Rand A(s) = (by,--- ,by)

Thus each transition of Ax has the label of the source state, and every state is final. Then
Ay recognises the language of label sequences of K.

Example 2.9. The Biichi automaton on the right recognises the set of label sequences of the
Kripke structure on the left.

Proposition 7. The LTL Model Checking Problem is solvable in time polynomial in the size
of the Kripke structure K and exponential in the size of the formula .

Proof. We give the model checking algorithm as follows.

31

CHAPTER 2. LINEAR-TIME TEMPORAL LOGIC

LTL Model Checking: Given a Kripke structure K and an LTL formula ¢, does
KE ©?

Algorithm:

1. Construct a Biichi automaton Ax that recognises the w-language of all label

sequences through .

2. Construct a generalised Biichi automaton A-, that recognises the w-language of
all label sequences that do not satisfy (.

3. Construct the intersection automaton Ax x A-, i.e. the Biichi automaton that
recognises L(Ax) N L(A-y).

4. Check for non-emptiness of Ax x A—.

Stages 1, 3 and 4 are all polytime. Stage 2 require exponential time in the size of ¢.

Theorem 2.2 (Sistla and Clarke 1985). The LTL Model Checking Problem is PSPACE-

complete in the size of the formula.

We present a proof of a result due to Sistla and Clarke (1985). To prove that LTL model
checking is solvable in PSPACE, we improve the EXPTIME algorithm of Theorem 2.1. For
PSPACE-hardness, we encode polynomial space Turing machines.

An Interlude: Savitch’s Algorithm We review the famous result of Savitch (1970); see
(Sipser, 2005, Ch. 8 Space Complexity) or (Papadimitriou, 1994).

In time complexity, non-determinism is exponentially more expensive than determinism.
But in space complexity, thanks to Savitch, non-determinism is only quadratically more ex-
pensive than determinism. Savitch proved that if a nondeterministic Turing machine can
solve a problem using f(n) space, then a deterministic Turing machine can solve the same
problem in the square of that space bound.

Savitch’s insight lies in a method to decide graph reachability which, though wasteful
in time, is highly efficient in space. The well-known depth-first and breadth-first graph
search algorithms are linear in the size of the graph. Savitch’s algorithm could be viewed
as “middle-first search” based on the fact that every path of length 2° has a mid-way point
which is reachable from the start, and from which the end is reachable, in no more than 2¢~!
steps.

32

CHAPTER 2. LINEAR-TIME TEMPORAL LOGIC

Savitch’s Algorithm
Input: A finite digraph G = (V, E), vertices u,v € V, i € N A
Output: YES iff there is a path in G from u to v of length at most 2°
Path(G,u,v,i) =
ifi=0
if u=wv or (u,v) € E
return YES
else return NO
for all vertices w € V
if Path(G,u,w,i — 1) and Path(G,w,v,i — 1)
return YES
return NO

Theorem 2.3 (Savitch 1970). Reachability (given a graph G = (V, E) and vertices u,v € V,
is there a path from u tov?) can be solved by calling Path(G,u,v,log |V|), which is computable
in space O(log? |V]).

To obtain the O(log? |V'|) space bound, we use a Turing machine to implement the recursive
program Path(G,u,v,log |V]), with its work tape acting like the stack of activation records.
At any time, the work tape contains log |V| or fewer triples of the form (z,y, j) where z,y € V
and j < log|V|, where each triple has length at most 3log|V|. For a proof, see for example
(Papadimitriou, 1994, p. 149-150).

Corollary 2.1 (Savitch 1970). For every function f(n) > log(n)
NSPACE(f(n)) € DSPACE(f(n)?).
It follows that PSPACE = NPSPACE.

Proof. Let P be a problem in NSPACE(f(n)). Let M be a nondeterministic Turing machine
with space usage bounded by f(n) and accepting P. To determine whether z € P, check
whether the configuration graph of M has a path of length at most 20U (IZ) from the initial
to an accepting configuration. This can be done in DSPACE(O(f(|z|)?)). O

LTL Model Checking is in PSPACE

The idea is to use the algorithm of Proposition 7 without building the intersection automaton
Ay x A—, in full; rather we compute the states of the automaton on demand. From Savitch’s
algorithm, we know that if the space required to store a state and decide a given transition
q — ¢ is polynomial in the size of the transition system, so is the space required to decide
reachability g —* ¢'.

States of the intersection automaton Ax x A-,, which are elements of the shape

(5,27,4) € QxB" ™™ x {1,--- 1},

can be stored in space polynomial in the size of the formula |p|. Note that m,l = O(]g|). To
decide (5,7 y,i) = (s/,7' 7, j), we need to verify:

33

CHAPTER 2. LINEAR-TIME TEMPORAL LOGIC

- Ty and T' ¥ satisfy the local compatibility conditions, such as [(8(i))r =1 or (3(2)); = 1];
since there are only linearly many conditions, they are easy to check.

- 1,7 are as determined by the global compatibility condition

- Finally s — s’ is a transition in Ax.

Thus transitions can be decided in space polynomial in |p|. It follows from Savitch that we
can decide (s,Z 7,7) =* (s',7' ¥, j) in polynomial space.

To decide non-emptiness of L(Ax x A-,), we seek a “lasso” on a final state (s, T ¥,%) in
the intersection automaton i.e.

by the following algorithm:

for all (s,T7,1)
if (s,Z 7,1) is final and (so, qo,0) =™ (s, T Y, 1)
for all (s,7y,i) — (s, ¥, J)
if (8,7 Y, 5) =" (5,77, 1)
return YES
return NO

Thus we conclude that LTL model checking is in PSPACE.

LTL Model Checking is PSPACE-hard

Let T be a Turing machine with space usage bounded by a polynomial function s(n). WLOG,
assume that T loops at each accepting configuration. We shall build a Kripke structure XC
and an LTL formula ¢ such that IC ¥ ¢ iff T' can reach an accepting state.

(1) Runs of T' can be represented as w-words.
(2) K tries to construct all runs of 7.

(3) The LTL formula ¢ asserts that the run in question is non-accepting (or malformed).

Runs as w-words An accepting run of T' can be written as a sequence of configurations c;,
separated by a marker [as follows.

leoller] - Jewlexlenler -

Each ¢;, which has the shape ag a1 -+ (q,a;) - - - ay(,) where 0 < j < s(n) and a; ranging over
input symbols, represents the configuration comprising the tape

ap ar - Gg(n)—1 as(n)DDDD

with control state ¢ and tape head position j. The initial configuration, ¢y, is the sequence
(go,0) O--- 0. Further, for all 4, ¢;4; follows from ¢;, and the control state in ¢y, is accepting.
————

s(n)
Thus an accepting run is an w-word of a certain shape.

34

CHAPTER 2. LINEAR-TIME TEMPORAL LOGIC

K constructs every run by generating every possible w-word.
)

Recognising a bad run We want ¢ to characterise exactly the non-accepting or malformed
w-words. Such a word is

(i) either not a sequence of configurations. For example a || (¢,0) [aa a] (¢,a) (q,b) ---
(i

) or it does not start with the initial configuration
(iii) or it does not reach a final configuration
)

(iv) or for some i, ¢;+1 cannot follow from from c¢;.

Then ¢ is the disjunction of the formulas describing the respective cases above. We consider
them in turn.

Not a sequence of configurations The w-word is not of the form] --- [--- [---

s(n) s(n)
S A G(l= XA A X

or some configuration does not contain exactly one head.

-G] = X (Cell U(Head A X (Cell U[))))]

where
Head := \/(q,a)
q,a
Cell == Va

a

Initial and final conditions The w-word:

- does not start with the initial configuration (g9, d) O --- O.
“[x@on A xo
2<i<s(n)

(Why don’t we test for || characters?)

- or does not reach a final configuration.

-F \/ (q’a)

q final,a

35

CHAPTER 2. LINEAR-TIME TEMPORAL LOGIC

Some c¢;;1 does not follow from ¢; Let r range over the transitions of 7.

-G <|] =\/ Followsr>

Let (g,a) be the head of r, ¢’ the next state, b the character to write, d € { —1,0,1} is
the direction of the head movement. Then

X oo X7 Char(a)A
Follows, :=\/ X°H Char(b) A A /\\/< s(n)+14)
1<i<s(n) X1+ State(q) jria \ X Char(a)
where
Char(b) = b Vv \/(¢",b)
q//
State(q’) := V(d,¢)

[

Putting all of the above together, we have IC ¥ ¢ iff T' has an accepting run.

Further considerations:

- What if the formula is fixed?
- What if the model is fixed?

2.6 Expressive Power of LTL

We say that L C 3% non-counting just if there is an ng > 0 such that for every n > ng and
for every u,v € ¥* and B € ¥¥, we have uv" 3 € L < wuv"™' 3 € L. lLe. if L contains
an infinite word that embeds a finite word repeated sufficiently often, then for every n larger
than the threshold, L contains such an embedded word in which the finite word is repeated
n-times.

For example, (00)* 1¢ is counting.

Proposition 8. FEvery LTL-definable w-language is non-counting. It follows that there are
Biichi recognisable w-languages that are not LTL-definable. (]

Some FAQs

(1) What does “linear time” in LTL mean?

Linear-time specifications set same conditions on every infinite path through system mod-
elled by Kripke structure. Branching-time specifications are conditions on the structure
of tree formed by all paths through a Kripke structure. Well-known logics for describing
branching-time properties are computational tree logic (CTL) and CTL*. See (Vardi,
2001) for a readable study on linear-time versus branching-time logics.

(2) Is LTL a “robust” logic? Are there nice characterisations of the LTL-definable languages?

A star-free reqular expression over Y is an expression built up using €, symbols a €
Y., concatenation, union and complementation with respect to X*. A star-free reqular
language is a language that matches a star-free regular expression.

36

CHAPTER 2. LINEAR-TIME TEMPORAL LOGIC

Theorem 2.4 (Characterisations of LTL Definability). Let L C X¢. The following are
equivalent.

(i) L is definable in LTL
(ii) L is star-free w-regular i.e. a finite union of w-languages of the form Ly - LY where
Ly, Lo C 3* are star-free regular
(i4i) L is a finite union of w-languages of the form lim LiN(X¥\lim Lg) where Ly, Ly C ¥*
are star-free reqular. O
What is Kamp’s Theorem?

In his UCLA PhD thesis, Kamp (1968) proved that an w-language is LTL-definable if
and only if it is definable in FO(<, (P,)qex) i.e. first-order logic with a binary predicate
symbol < and a unary predicate P, for each a € ¥. We write M, = (w, <, (Py)qex) for
the obvious structure determined by o € ¥ where for each a € ¥, n € P, <+ a(n) = a.

Theorem 2.5 (Kamp 1968). Let a be an w-word over ¥ and n € w.

(i) For each LTL formula ¢ there ezists a formula x,(x) in FO(<, (Py)qex) with a free
variable x such that
a"Eo & My FExe(n).

(i1) For each formula x(z) in FO(<,(P,)acyx), there exists an LTL formula ¢, such
that
Mo Ex(n) < " F py.

It follows that for each FO sentence x there exists an LTL formula ¢, such that
MoEx &V E Dy -]
See (Rabinovich, 2012) for a new proof of Kamp’s theorem.
Can we extend LTL to make it equi-ezpressive with Biichi automata (for w-languages)?

Yes. uLTL: LTL augmented by (a least u, and hence also greatest v) fixpoint operators.

Theorem 2.6 (Characterisations of w-Regularity). Let L C ¥“. The following are
equivalent.

(i) L is w-regular
(ii) L is definable in pLTL
(#ii) L is definable in S1S (see the following chapter)
(iv) L is definable in Weak S1S. O

Is there a characterisation of the subclass of Biichi automata that is equivalent to LTL?

The automata that are equi-expressive with LTL formulas are called linear weak alter-
nating automata. For details see (Loding and Thomas, 2000; Gastin and Oddoux, 2001;
Hammer et al., 2005).

37

CHAPTER 2. LINEAR-TIME TEMPORAL LOGIC

Problems

2.1 Consider the following properties for the lift system introduced in the introductory
chapter:

(A1) Every requested level will be served eventually.
(A2) The lift will return to level 1 again and again.

(A3) Whenever the top level is requested, the lift serves it immediately and does not stop on
the way there.

(A4) Tt is always the case that while moving in one direction, the lift will stop at every
requested level, unless the top level is requested.

Assume that the lift serves only four levels. By introducing appropriate atomic propositions
(ten should suffice), describe the above properties as LTL-formulas. You should begin by
constructing the state-transition graph.

2.2 Let ¢, and x be LTL-formulas. We say that two formulas are equivalent if they define
the same language. For each of the following, prove or disprove each of the two implications:

2.3 Let ¢ and ¥ be LTL-formulas. Consider the following temporal operators:

(a) “at next” ¢ AX1: When 1 next? holds (if it does), so does ¢.
(Note that 1) may never hold.)

(b) “while” ¢ W1: ¢ holds for at least as long as 1) does.
(Note that 1) is not assumed to hold at the beginning.)

(¢) “before” ¢ B1p: When 1 next holds (if it does), ¢ does so before.
(Note that 1) may never hold.)

For each construct, find an equivalent LTL-formula.

2We do not mean “when ¢ hold at the next time step”, but rather “when ¢ holds at some point in the
future”.

38

CHAPTER 2. LINEAR-TIME TEMPORAL LOGIC

2.4 Translate the following LTL formulas to Biichi automata:
(a) Fpy AN—Fpy
(b) G(p1 — X(p2 Up1))
(¢) GFpy — FGps.

2.5 We define a sublogic 7(U) of LTL consisting of formulas that are built up from the
atomic propositions, using conjunction, negation and the until-operator ¢ U . (Thus we
may write LTL as T(X, U).)

Suppose there is only one atomic proposition, p;. Consider the label sequence

a = (1)(1)(0)(0)---

(a) Prove, by structural induction on formulas, that for all ¢ € T(U), we have o F ¢ iff
1
o F .

(b) Find an LTL-formula % satisfying a® F v and o' ¥ .

(c) Hence prove that 7 (U) is strictly less expressive than LTL.

2.6 Prove that for each generalised Biichi automaton

A:(Q727A7QO){F07'” 7ﬂ—1})

there is an equivalent Biichi automaton A’ i.e. they recognise the same w-language.

2.7 Consider the LTL-formula ¢ = p; U (X p2).
(a) Let a € ({0,1}?)*. Formulate the compatibility conditions for the y-expansion of a.

(b) Construct a generalised Biichi automaton A equivalent to ¢. What are the final states
of A?

(c) Construct directly a Biichi automaton recognising L = {a € ({0,1}?)“ :ak ¢ }.

2.8
(a) Show that the w-language L; = { (01)“ } is non-counting.
(b) Show that the w-language is Ly = {01(0101)*0“ } counting.

2.9 An w-language L over an alphabet X is said to be stuttering if for each letter a € X, we
have
uafB €L < uaaf €L

(where u ranges over ¥* and 8 over X¢¥). Which of the following are true? Justify your
answers.

(a) If ¢ is an LTL formula then L(y) is stuttering.
(b) If ¢ is an LTL formula without X (-) then L(¢p) is stuttering.

39

CHAPTER 2. LINEAR-TIME TEMPORAL LOGIC

2.10 Let p be the only atomic proposition. For n > 0, let 7, be the infinite word 1™01%.
Thus if i # n then 4% F p, and 7" ¥ p.

Let ¢ be an LTL-formula. Prove, by structural induction, that if ¢ has no more than n
occurrences of X (—), then for all i, j > n, we have v; F ¢ iff v; F ¢.

[Hint. For the inductive case of ¢ = p1 Upa: 7; F ¢ means that for some [> 0, we have
7L E 2, and ¥ E ¢ for all 0 < k < I. Consider the cases of [<4 and [> 4 in turn. In the
former case, analyse the cases of ¢ —1 > n and ¢ — [< n. Note that 'yf- = v, if I <+4. What
is AL if 1 > 7]

2.11 { We define a sublogic 7 (X, G) of LTL consisting of formulas that are built up from the
atomic propositions, using conjunction, negation, next-time operator X ¢, and the always-
modality G ¢. We shall prove:

Theorem 2.7. T (X, G) is strictly less expressive than LTL.

Consider a Kripke structure (over atomic propositions p1, p2) that has states sg, - -+ , Sam—1
and the transition relation is specified by:

si—sj <= j=i+1lor(i=4m—1andj=2m).

The proposition p; is assumed to hold for all states except s3,,, and ps is assumed to hold for
just the states so,,,—1 and s4y,m—1. Let a be the uniquely determined label sequence starting
in state sg. Le.

w

2m

(a) List the elements of the set {0 <[<4m —1:a'Ep; Ups}.

(b) Prove that for all ¢ € T(X, G) containing fewer than m — 1 occurrences of X, we have

ALEp = oPMEo.

(c) Observe that a” F p; Ups and a®™ ¥ p; Up,. Hence or otherwise prove that 7(X, G)
is strictly less expressive than LTL.

2.12 The aim of the problem is to establish the co-NP-hardness of the LTL Model Checking
Problem by reducing (the co-NP-complete problem) 3-UNSAT to it.

Precisely, prove that a propositional formula ¢ in conjunctive normal form (with three
literals per clause, where a literal is a variable or the negation of a variable) can be trans-
formed in polynomial time into a Kripke structure Ky and an LTL-formula Fy such that

40

CHAPTER 2. LINEAR-TIME TEMPORAL LOGIC

is satisfiable if, and only if, the pair (Ky, Fy) is a no-instance of the LTL Model Checking
Problem.

Take ¢ = (z1 V —xo V 3) A (—21 V e V —zg) which can be satisfied with the assignment
1 — 1,29 — 0,23 — 0.

Consider the following Kripke structure Cy,

1 x9 xs3
(3) ©) 3)
. / \%1 / \%2 / \y@
(0>\® /(°)\<1> /@\@) / (©)

X, X X3

The labels are defined as follows: the j-component of the label of the literal ¢ is 1 just if ¢
occurs in the j-clause of ¥. The idea is that an assignment determines a path through the

Kripke structure.
(a) What is Fy, for the above example?

(b) By giving the construction ¢ — KCy, and the corresponding formula F;, prove that there
is a polynomial reduction of the desired kind.

Thus conclude that the LTL Model Checking Problem is co-NP-hard.

41

CHAPTER 2. LINEAR-TIME TEMPORAL LOGIC

42

Chapter 3

S1S

Synopsis

Examples. Syntax and semantics. Biichi-recognisable languages are S1S-definable. S1S-
definable languages are Biichi-recognisable. Church’s Synthesis Problem (Overview).

References (Biichi, 1960a; Elgot, 1961; Biichi, 1962; Muller, 1963)

3.1 Introduction

How would you decide the following kinds of sentences?

(i) Ve.Jy,z. (y+1<zxz Vz+1<y A2z+1<2)
(ii) “For every (non-zero) natural number n, there are powers of two, x and y, such that
r<n<y.”
Vn. 3z, y. PowsOf2(x) A PowsOf2(y) Nx <n <y

(iii) A given subset X of natural numbers contains only even numbers.

The logical system S1S The above can be described as sentences of monadic second-order
logic of one-successor, or S1S. Second-order means that we allow quantification over relations;
monadic means that quantification is restricted to monadic (or unary) relations, namely, sets.
The theory S1S is the set of true statements about w = {0, 1,2, ---} expressible in a language
that has:

- a unary function symbol s for successor
- a binary set-membership predicate €
- first-order quantification (over elements of w) and second-order quantification (over subsets

of w).

The theory S1S is decidable, but not in elementary time i.e. there is no (fixed) h > 0 such
that the theory is decidable in time bounded by the tower-of-exponentials function of height
h, exp;(n) where

expy(n) :=n exp1(n) = 2¢ePn(n)

43

CHAPTER 3. S1S

Why study S1S?
- Historical importance: the first time automata and logic connection is established and
exploited.

- Powerful decidable theory: many decisions problems can be shown decidable by reduction

to S1S.

- MSO is considered a gold standard of logics for describing correctness properties of reactive
Systems.

3.2 The logical system S1S

The vocabulary consists of a unary function symbol s and a binary predicate symbol €. The
corresponding logical structure is (w,s, €) where! s is the successor function x — z + 1, and
€ C w x 2% is the standard membership relation between elements and sets.

The logical system S1S is defined as follows.

- Variables. 1st-order variables (z,y, z, etc.) range over natural numbers (regarded as posi-
tions in w-words). 2nd-order variables (X,Y, Z, etc.) range over sets of natural numbers.

- Terms. 1st-order variables are terms. If ¢ is a term, so is st.

- Formulas. Atomic formulas are of the shape t € X where t is a term and X is a 2nd-order
variable.
S1S formulas are built up from atomic formulas using standard Boolean connectives, with
V- and J-quantifications over 1st and 2nd-order variables.

Constructs definable in S1S Note that 0 and the atomic formulas s = ¢t and s < t are
definable in terms of set-membership and successor.

-fr=y = VXreXeoyeX

- 4YXCY” = VeaxeX szeY

- X =Y = XCYANYCX

- “x=0" = Yy.-(x =sy) “z has no predecessor”

-4 =1" = x=5s0

- <y = VX (zreXAVzzeX 5sze X)) > yeX

“Every set X that contains x and is closed under successor (in particular, the smallest such
X) also contains y.”

- “X is finite” = JzVy.(y e X —y < x)

Subsystems of S1S

- First-order fragment: S15;. Formulas are built up from atomic formulas using boolean
connectives and first-order quantifiers.

"'We use the same ETEX-symbol for the function symbol s (in the vocabulary) and its interpretation (in the
logical structure) — it should be clear from the context which is intended; similarly for €.

44

CHAPTER 3. S1S

- Ezistential S1S. Formulas are S1S;-formulas preceded by a block 3Y7 ---Y,, of existential
second-order quantifiers.

3.3 Semantics of S1S

Write p(x1, -+, Zm, X1, -, X;,) to mean: @ has free 1st-order variables from z1, - - - , z,, and
free 2nd-order variables from Xi,---,X,. Let a; € w and P; C w. For @ = a1,--- ,a,, and
P=~P, -, P, we write

(W’S7E)SE;F F So(xla"' axm>Xla"' >Xn)

or simply @, P F ¢, to mean “ the structure (w,s,€) with the assignment 7 +— a; X — P
satisfies ¢”.

Definition 3.1. We define the satisfaction relation

a,PF oz, X)
by recursion over the syntax of ¢:
a;PEs(--(sx)-)€EX; = ai+k€eP,
~——
k
@ PE-o@ X) = @;PEpa,X)
@G PE (T, X)Vpa(Z,X) = @;PFp1(x,X) or aPF (T, X)
a;PEIyp@,y, X) = a,bPFp@,y,X) for some b € w
a@;PEIZo(x, X, Z) = @P,QF .o, X,Z) for some Q Cw

Standardly ¢1 Aps is equivalent to -1 V-9, and VX.p and Vz.p are equivalent to —(3X.—p)
and —(Jz.—¢p) respectively.

Representing a set of natural numbers as an infinite word We represent any P C w
by its characteristic word, written " P € B“, defined by

P(i)=1 < i€eP

E.g. the characteristic words of the set of multiples of 3 and the set of prime numbers are
respectively:

100100100100100100100100 - - -

001101010001010001010001 - - -

We represent a € w by the characteristic word of the singleton set {a }.
More generally the characteristic word of a tuple

(ala"' aamapla"' aPn) S wmx (2w)n

written "a1,--- ,am, P1, -+, P, is an infinite word over the alphabet B™ " such that each
of the m + n tracks (or rows) is the characteristic word of the corresponding component of
the tuple (@, P).

45

CHAPTER 3. S1S

Defining w-languages by S1S formulas We say L C B“ is S15-definable by ¢(X) just if
L={"P7e€B¥: PE p(X)}. Le. Each P that satisfies ¢(X) contains exactly the numbers
denoting the positions of ‘1’ in an w-word in L C B¥.

Example 3.1. (i) The set L; = {a € B¥ : « has infinitely many 1s} is first-order defin-
able by p1(X) =Ve.Jyz <y Ay e X.

(ii) (00)*1¢ is definable by

0eY
YyyeY <syeyY
reyY
Vez<z—z¢& X
Vezax<z—zeX

po(X) = FY 3.

> > > >

(What is Y'?) Recall that (00)*1“ is a “counting” language, hence not LTL-definable.

Translating LTL to S1S Fix atomic formulas py, - - -, p,. We say S1S-formula (X1, , Xp)
is equivalent to an LTL-formula ¢ just if [] = {"P7 € (B")¥: PE ¢(X) }.

Example 3.2. (i) XX (p2 — Fp1)
v3(X1,X2) = ss0€ Xy —»r.(ssO0<zAxe Xy)
(ii) F(pr A X (-p2 Up1))

©4(X1, X2)
T e X,
sz <y
A Jy. | AN yeXy
N Vz(sz<zAz<y)— —(z € Xy)

= dx.

3.4 Biichi-Recognisable Languages are S1S-Definable

Definition 3.2. An w-language L C (B")” is S1S definable just if there is an S1S-formula
o(X1, -+, Xp)such that L={"Py,--- ,P,7 € (B")“: PE o(X) }.

Theorem 3.1 (Biichi). For every Biichi automaton A over the alphabet B™, there is an S1S
formula pa(X1,- -+, Xy,) such that for every (Py,--- , P,) € (2°)", we have P F ¢4 (X) if and
only if A accepts "Py,--- , Py,

The proof idea is simple: take a Biichi automaton A = (Q, %, ¢, A, F) where ¥ = B",
and construct an S1S-formula @ 4(Xy,---,X,) that asserts “there is an accepting run of A
on input given by the characteristic word of (Xy, -+, X,)”.

Proof. The aim is to code a run. Suppose @ = {q1, - ,q¢mn }. A run p(0)p(1)--- € QY is
coded by m subsets of w, namely Y7, -, Y},, such that

€Yy <« p(i) = q

46

CHAPTER 3. S1S

Clearly Y7, - ,Y,, form a partition of w. Each tuple “Y7,---,Y,,” describes an infinite word
over (), a, whereby each

Y; = { positions in a with symbol g; }.

Define partition(Y1,--- ,Y.y,) to be

Vx.(\/xeY}-) A - EIy.\/(yEY}/\erj)
i=1 i#j

by
Coding letters of the alphabet B” Fora= | : | € B", introduce shorthand
bn
r € X, = [bi](x € X1) A[ba](x € Xo) A -+ Alby](z € Xp)
where
bl € Xi) = { i(i)EQXZ) i)ftflier:vvilse
Given a Biichi automaton A = ({1,--- ,m },B", 1,A, F), define ¢ 4(X1, -+, X,) to be

partition(Y1, -+, Yy)
A 0eEYN
AN Ve \apeal@ €Y ANz € Xy A sz €Y))
AN Voedy(z <y A Viepy €Yi)

E)ZRTED A

Thus for every (Py,---,P,) € (2*)", A accepts "Py,--+, P,V iff PF (X1, -+, Xp). O
Observer that ¢4(X7, -+, X,,) is an existential S1S-formula. It follows that Biichi-

recognisable w-languages are existential S15-definable.

3.5 S1S-Definable Languages are Biichi-Recognisable

Theorem 3.2 (Biichi). For every S1S formula o(x1,- -, Tm, X1, -+, Xy), there is an equiv-
alent non-determinstic Biichi automaton A, over alphabet B in the sense that

L(A(p) - {'_alu." 7am7P17”' 7Pn—l€ (Bm+n)w ’67?':g0}

Proof. The proof is by induction on the size of ¢. An atomic formula has the forms (s --- (s x;) - -

———
k

X;. We build a Biichi automaton to read the tracks ¢ and m + j only (corresponding to x;
and X; respectively), performing the following check: if the unique 1 of the wz;-track is at
position [(say), then the Xj-track has a 1 in position [+ k.

Disjunction: Consider ¢1(Z, X) V ¢2(%, X). By the induction hypothesis, suppose au-
tomata A, and A, are equivalent to ¢1 and @2 respectively. Set Ay, vy, to be the Biichi
automaton that accepts the union of (the respectively w-languages of) A,, and A, .

47

CHAPTER 3. S1S

Negation: Consider —¢(%, X). By the induction hypothesis, suppose A, is equivalent to
@. Set A—, to be the automaton that recognises the complement of L(A,).

Second-order existential quantification: Consider IY.p(T, Y;Y)' By the induction hy-
pothesis, suppose A, is the Biichi automaton equivalent to ¢(Z, X,Y"). Le. for all (a, P,Q) €
W™ X (2w)n+1

a,P,QFp <+ A, accepts "a, P,Q"

by

b1
We construct Asy,, by replacing each transition label : in A, by : thus
bm+n b
b m+n
introducing (further) non-determinacy.
b
by !
Consequently a transition via : in Agy., corresponds to a transition via
b bern
m+n 0
b1
or : in A,. Hence
bm+n
1

Asy., accepts Ta, P € (B™t)w

iff for some cocy - -- € BY, we have A, accepts (O‘é(?)) (O‘éll)) .
(Suppose coe1 -+ ="Q 7V and o ="@, P™.)

iff for some Q C w we have @, P,Q F o(7, X,Y)

iff @, PF3IY.TY)

First-order existential quantification: Consider Jy.p(Z,y, X). Exactly the same as above.
O

3.6 The Synthesis Problem

output input
3=11010 - a=01101--

Church (1903-1995)

Identify (infinite) binary sequences «, with subsets of N. For example we identify
101011 --- with {0,2,4,5,---}. Specifications ¢(X,Y’) are given in monadic second-order
logic (or S1S), where variables X and Y range over subsets of N.

48

CHAPTER 3. S1S

The Synthesis Problem (Alonzo Church, 1962) Construct a procedure that trans-
forms a given logical specification ¢(X,Y) to a finite-state automaton with output, which,
for every input sequence «, produces an output sequence /3 such that P,Q F ¢(X,Y") holds,

where [P| = a and [Q] = .

Example 3.3. Informal specification: o = input stream; 8 = output stream

(i) “1-Reflecting”: If current input symbol is 1, so is the next output symbol.
(ii) Output stream B has no successive 0s.

(iii) “0-Fairness”: If o has infinitely many Os, so has £.
MSO formula ¢(X,Y): Write X (¢) to mean “t € X”.
e(X,)Y) = V2 (X(2) = Y(2))

A =(FzY(x) A=Y (sx))
A (Vedy >x.-X(y) — Vo.dy > z.-Y(y))

A Mealy-automaton solution (= finite-state strategy for E’loi’se}:

- If current input is 1, then output 1

- If current input is 0, then output the opposite of the preceding output.

0/1
11

Al

Church’s Problem Recast as a Game Problem A 2-Person Infinite 0/1-Game:

- Players: Abelard and Eloise.
- Abelard starts with a(0). Eloise responds with 5(0).

- Thereafter the players alternate, producing the infinite sequence

a(0), B(0), a(1), B(1),a(2), B(2), -

- Winning condition given by “specification” p(X,Y): Eloise wins just if P,Q E o(X,Y)
holds where [P]| = a and [Q] = 5.

Fix a language L for describing ¢.

The L-Synthesis Problem: A Modern Game Version Construct a procedure that,
given a 2-person infinite 0/1-game with winning condition ¢(X,Y") in £, decides if there is a
(finite-state) winning strategy for Eloise, and if so, constructs it.

49

CHAPTER 3. S1S

From MSO Specification to Muller Games An important first step to solving Church’s
Problem: translate the “external” specification ¢ to an “internal” winning condition of an
appropriate game.

1. From MSOL to Muller Automata

Theorem 3.3 (Biichi 1960, McNaughton 1966). Every MSO-formula ¢(X,Y) can be
transformed to an equivalent deterministic Muller automaton A, i.e. for each Py, Py C
w, we have (P, P2) holds iff the infinite sequence of binary words, [Pi, Py], is recog-
nised by A,.

2. From Muller Automata to Muller Games
A deterministic Muller automaton can equivalently be re-presented (by “splitting the
labelled transitions”) as a Muller game.

A Solution to the MSOL-Synthesis Problem Biichi and Landweber solved the Syn-
thesis Problem in 1969, using highly complex machineries.
A Modern Game Perpective:

Theorem 3.4 (Biichi-Landweber 1969). Given a Muller game with n states, one can effec-
tively determine if Floise has a winning strategy from a given state, and if so, construct a
finite-state winning strategy using n! - n control states.

Proof. (Outline)
(i) Transform the MSO-formula ¢(X,Y) first to a deterministic Muller automaton.
(ii) Re-present the Muller automaton as a Muller game.
(iii) Transform the Muller game to a parity game that simulates it.
)

(iv) Solve the parity game; each of its (positional) winning strategy induces a finite-state
winning strategy in the simulated Muller game.

O

For an exposition of Church’s Synthesis Problem, see Thomas’ tutorial Thomas (2008).

50

CHAPTER 3. S1S

Problems

3.1 Consider the following Biichi automaton A:

N
Y \0/

(a) Construct an Existential S1S-formula equivalent to A.
(b) Construct an LTL-formula equivalent to A.

(¢) A star-free w-regular language over an alphabet ¥ is a finite union of w-languages of the
form U - V¥, where U and V are (regular) languages constructed from a finite set of
finite words over X using the Boolean operations, namely, complementation, union and
concatenation.

Prove that A recognises a star-free regular w-language.

3.2 Let A be the following Biichi automaton A:

1
——q——=n (@)
0
0

Construct an S1S-formula ¢(X) such that a € B* satisfies ¢ iff A accepts a.

3.3

(a) An w-language L C B“ is said to be definable by an S1S formula x(X) just if L =
{TP7€BY| PE x(X)} where "P7 is the characteristic word of P C w.

Let p be the only atomic proposition. Prove that for every LTL formula ¢ there is a
formula @(X) in S1S; such that ¢ and @(X) define the same w-language. You should
state the predicate symbols you assume in the vocabulary of S1S.

(b) Prove that equi-cardinality of sets, that is, the predicate
EqCard(A,B) := A, B C w have the same cardinality

cannot be expressed in S1S.

3.4 Give S1S-formulas ¢1 (X1, X2) and ¢2(X1, X9) for the following w-languages:
() L1=(1)(5) (o)
(b) La=(311) ()"

Explain the purpose of the main subformulas of ¢1(X1, X2) and p2(X1, X2).

51

CHAPTER 3. S1S

3.5 Show that (natural numbers) addition = y + z is not definable in S1S.

[Hint. Show that S1S-definability of addition would imply that the language {a™b"c* :
n > 0} is Biichi recognizable.]

3.6 Presburger arithmetic is first-order logic over the structure (w,+) where
+ = {(a,b,c) ew®:a+b=c}.

A number can be represented as a finite set of numbers corresponding to the positions of
1s in its binary representation.

(a) Show that there is an S1S formula ¢(X,Y,Z) asserting that the numbers a,b and ¢
represented respectively by the finite sets X, Y and Z are related by the equation a+b =
c.

[Hint. Recall the idea of full adder in Digital Hardware.]
(b) Deduce that formulas of Presburger arithmetic can be translated into S1S.

Hence prove that Presburger arithmetic is decidable.

Why does this not contradict the preceding question?

3.7 Weak monadic second-order theory of one successor, WS1S, is defined in the same way
as S1S except that second-order variables range over only finite sets of natural numbers.

(a) Fix a deterministic Muller automaton A. Since it is not possible to say anything in
WS1S about any complete run directly, we restrict ourselves to prefixes of runs. Note
that every w-word that is accepted by a deterministic Muller automaton has a unique
accepting run.

Give a WS1S-formula that defines the w-language recognized by A.

(b) Hence deduce that an w-language is S1S-definable iff it is WS1S-definable.

52

Chapter 4

Modal Mu-Calculus

Synopsis

Knaster-Tarski fixpoint theorem. Syntax and semantics. Syntactic approximants via infini-
tary syntax. Intuitions from examples. A branching-time temporal logic: computational tree
logic (CTL).

References (Bradfield and Stirling, 2001, 2007; Stirling, 2001, 1997) For a primer on ordi-
nals and Knaster-Tarski Theorem, see (I[<ozen, 2006, pp. 35-43).

Background Modal mu-calculus’s defining feature — use of least and greatest fixpoint op-
erators. The idea goes back a long way:

- Fixpoints in program logics: de Bakker, Park and Scott (late 60s).

- Fixpoints in modal logics of programs: Pratt (1980), Emerson and Clark (1980), Kozen
(1983).

Formulas of modal mu-calculus are notoriously hard to read. A good intuitive appreciation
is essential for understanding the theory.

4.1 Knaster-Tarski Fixpoint Theorem

Posets, Supremums and Infimums: A Revision A partially-ordered set is a pair (L, <)
such that < is a binary relation over L that is

(i) reflexive: for every z € L, x < x

(ii) antisymmetric: for every z,y € L, if t <y and y <z then x =y
(iii) transitive: for every x,y,z € L, if t <y and y < z then z < z

Let M C L. An element [€ L is the least upper bound (LUB, or supremum) of M, written
\V M, just if:

(i) forallz e M, z <1
(ii) for all y € L, if for all x € M we have = < y, then | < y.

Similarly for greatest lower bound (GLB, or infimum), written A M.

93

CHAPTER 4. MODAL MU-CALCULUS

Complete lattices and monotone functions A complete lattice is a partially-ordered
set (L, <) in which every subset M C L has a least upper bound \/ M and a greatest lower
bound A M in L. Every such L has a greatest \/ L (= A @) and least element A\ L (= \/ 9).

Example 4.1. (i) Is (w, <) a complete lattice? No, because \/w = w ¢ w.
(ii) (P(S),C) is a complete lattice. For every U C P(S), we have

Vu =Ju ={sesS:0eld.scU}.
The least and greatest elements are & and S respectively.

A function from L to L is said to be monotone just if f(x) < f(y) whenever x < y. An
element = € L is a fizpoint of f just if f(x) = x. We say x is a postfized point of f just if
x < f(x); x is a prefized point of f if f(x) < x.

Example 4.2. (i) Reals: (R, <)
(i) (NU{w}, <)
(iii) Divisibility: (Z\{0},_|-) where z | y := Ju.z x u =y.
(iv) Words ordered by prefix: (X%, <prer). E.g. ab <prer abba.
)

(v) Lexicographical: (X*, <jexico). E.g. abba <jexico abc (assuming that 3 is linearly
ordered).

(vi) Subword: (X*, <qupw), With aba <gpw baabbaa

Poset | Complete Lattice

N

S
NN 2 R
=Z2=2=22x=2

Least prefixed and greatest postfixed points

Lemma 4.1. Let L be a complete lattice and f : L — L be a monotone function.

(i) The least prefixed point of f, denoted lpr(f), exists, and is N{xz € L : f(x) <z }.
(i) The greatest postfixed point of f exists and is \/[{x € L: x < f(z) }.

Proof. (i) Let pref(f) := {x € L : f(x) < =} be the set of prefixed points of f. It suffices
to show that A pref(f) is a prefixed point. Let x € pref(f). Then A pref(f) < z. Since
f is monotone we have f(Apref(f)) < f(x), but f(x) < z because x € pref(f). Hence
f(Apref(f)) < x for every x € pref(f). Since f(Apref(f)) is an lower bound, we have
F(Apref(f)) < Apref(f) as required. (ii) Exercise. O

54

CHAPTER 4. MODAL MU-CALCULUS

Construction of fixpoints Let (L, <) be a complete lattice, and f : L — L is monotone.
Define, by transfinite induction, a family of elements of L, indexed by ordinals:

= f(f%)
A o= Vaer f¢ for X alimit ordinal

We then set f* := \/ cora f*

(Base case — f? = L — is included in the case for limit ordinal.)

Lemma 4.2. If a < 8 then f* < f5.

fa+1

Proof. We prove by transfinite induction on «. Two cases:
(i) = ap + 1 is successor ordinal. Two cases of 3:
- If B = Bo+ 1 then f@:= f(f) < f(f%) = f#, by monotonicity of f and IH.
-Ifp=V Bo<f Bo, then oy < By for some Gy < B, and so by monotonicity of f and IH
fou= foott < At <\ p0 = f0

0<pB

(ii) « is a limit ordinal. For each oy < o < B, by IH, f@ < f#. Because f? is an upper
bound, we have

o=\ o<

ap<a

Thanks to the Lemma, we have a chain:
L=f<fl<fP< s <<

Since Ord is a class (not a set), the map Ord — L defined by « — f cannot be injective,
and so, the chain must “plateau out” at some point.
The closure ordinal of f is defined to be the smallest ordinal x such that f* = fr+l,
Hence f* = f" where k is the closure ordinal.

Theorem 4.1 (Knaster-Tarski). Let (L,<) be a complete lattice. If f : L — L is a
monotone function, the least prefixed point of f, written lpr(f), is f*.

Proof. Recall f*:=\/ cora f* = f", where is the closure ordinal.

“Ipr(f) < f*’: It suffices to prove that f* is a prefixed point of f. We have f(f") =
fnJrl — Jm.

“lpr(f) > f*7: We shall prove by transfinite induction that f¢ < lpr(f), for all ordinals
a. This is sufficient, since f*:=\/ corq f* < lIpr(f). For successor ordinals o 4 1:

fert = f(f*)
< f(lpr(f)) induction hypothesis
< pr(f) definition of Ipr(f)

For limit ordinals A, we have f* < [pr(f) for all @ < A by the IH; therefore

o=\ < ()

a<<A

95

CHAPTER 4. MODAL MU-CALCULUS

Exercise 4.1. State and prove a corresponding version of the Theorem for greatest postfixed
points.

Lemma 4.3. lpr(f) exists, and coincides with the least fixpoint of f, denoted lfp(f). Simi-
larly greatest fixrpoint exists and coincides with greatest postfived point.

Proof. By definition f(lpr(f)) < lpr(f). Since f monotone, f(lpr(f)) is also a prefixed point.
Hence lpr(f) < f(lpr(f)). Le. lpr(f) is a fixpoint of f. That Ipr(f) is the least fixpoint
follows from the fact that every fixpoint is also a prefixed point. O

Fixpoints as recursion Given a state transition system (graph) (S, R C S x S). We give
the semantics of a basic state-based modal logic by the mapping

¢ = ol = {seSiske;}
I.e. denotation of a formula is an element of P(S). Hence ¢(Z), with a free second-order

variable Z that ranges over P(S), can be viewed as a function f, : P(S) — P(S). Recall:

(i) (P(S),C) is a complete lattice.

(ii) If f, : P(S) — P(S) is monotone, by Knaster-Tarski, f, has unique least and greatest
fixpoints, denoted jf, and v f, respectively.

Thus we can extend modal logic by

- least fizpoint operator, pZ.p(Z), interpreted as i f,, and
- greatest fixpoint operator, vZ.p(Z), interpreted as v f,.

Fixpoints give a semantics of recursion, as in domain theory. Recursive modal logic
formulas give succinct expressions of the usual operators of temporal logic.

4.2 Syntax of the Modal Mu-Calculus

Given

- Var, a set of 2nd-order variables, ranged over by X,Y, Z, etc.
- Prop, a set of atomic propositions, ranged over by P, Q, etc.

- L, a set of labels, ranged over by a, b, etc.

modal mu-calculus formulas are defined by the grammar:

¢ == P | Z | pihp2 | fale | —¢ | vZe

The last case, namely, formation of vZ.p, is subject to the requirement that each free occur-
rence of Z in ¢ be positive i.e. in the scope of an even number of negations (so that ¢(Z)
denotes a monotone function in 7).

Notation. If ¢ is written ¢(Z), subsequent writing of ¢(¢)) means “p with v substituted
for all free occurrences of Z7”.

o6

CHAPTER 4. MODAL MU-CALCULUS

Positive, and positive normal forms Derived operators:

P1Vpr = (o1 A)
(@) = —([a]~p)
uZ.p = —wZ-op(—Z)

A modal mu-calculus formula is in positive form if it is written, using derived operators
where necessary, so that — is always applied to atomic propositions. A formula ¢ is in
positive normal form if, in addition, all bound variables are distinct. Le. if 0 X.¢) and o’Y.y
are distinct subterms of ¢ (where 0 X.— and ¢'Y.— are fixpoint operators), then X # Y.
Eg puZ-PVvvY.(Y AN{(a)Z)

Operator precedence

)= > DBooleans > .=
(a)— vZ.—

Reading: If [a]— and A contend for a formula, then [a]|— wins. For example [a]p A 1) means
([a]p) A, and pZ.Z A ¢ means puZ.(Z A). Thus the scope of a fixpoint extends as far right
as possible.

Note that every formula can be converted to positive normal form using de Morgan laws,
and a-conversion: replacing a bound name by a fresh name.

4.3 Labelled Transition Systems

A modal mu-calculus structure over (Prop, £) is a labelled transition system (LTS), namely,
a triple T'= (S, —, p) with

- a set S of states

- a transition relation — C S x £ x S (as usual we write s — ¢ to mean (s,a,t) € —)

- a function p : Prop — P(S) interpreting the atomic propositions.

Observe that an LTS is just a directed graph, whose edges are labelled by elements of L,
and vertices are labelled by elements of P(Prop) i.e. each x € S is labelled by { P € Prop :

z € p(P)}.

Definition 4.1. Given an LTS T, and a valuation (or assignment) V : Var — P(S), we
define:

IPI = p(P)
1zl = V(2)
I=ely = S\l
ler Aol = leally N ezl
llalelt = {s|VteS.s -t = telgl}}
lvZely = ULUCS|UClelvizon }

where the valuation V[Z — U] is defined by:

wszuy_{U X =z

V(X) if X # Z.

NB. {U;C S:iel}:={xeS:xecU, forsomeiecT}

o7

CHAPTER 4. MODAL MU-CALCULUS

Remark 4.1. (i) Generally let K C £, define
IIKlell == {s|Vae K.VteS.s 5t = tel|oly}

Write [—]¢ to mean [L]p, similarly for (—)ep.
(ii) Equivalently we can define
lvZely = afp(fozv)

where f, zv : P(S) — P(S) is the function U ||<pH€[ZHU}.
Note that f, 7y is monotone. By two lemmas (greatest fixpoint equals greatest postfixed
point, which is the supremum of all postfixed points), we have

afp(fezv) = V{Ue€P(S):U< fozv(U)}
U{U CS:U Clelvizan -

Exercise 4.2. Prove the following.

T T T
ler Vpaly = leily Ulealy
T a T
{a)ely, = {s|3teS.s—t Ate]|eply}
T T
luz.ely, = U CS|lelvizmy UL

= MUEPWS): fozvU) <U} =1fp(fozv)
Note that ({U; CS:iel}:={xeS:xcUforeveryicZ}
Since puZ.po = wZ.—~p(~Z), we have

Xelf = UU U C o2 T)
= (T :UC @y}
— T 1%y ST
= U 12Ty CUY

Notations

(1) We sometimes write s FL ¢ := s € ||<p||‘r‘c
In case T' is understood, and ¢ is closed, we simply write s F ¢.

(ii) We often write t:=vZ.Z and f := —t.
What are [vZ.Z|{, and f = pZ.2?

T??

(iii) For closed formulas ¢, and 1, we write ¢ = 1 to mean “for all LTS T, ||ng£ = |v|5"-

4.4 Syntactic Approximants Using Infinitary Syntax

The fixpoint formulas of the modal mu-calculus denote fixpoints of monotone functions in a
complete lattice. When reasoning about fixpoints, it is convenient to introduce a notation for
approximants of these fixpoints. To this end, we introduce an infinitary syntax.

Let A range over limit ordinals

wWZ.o(Z) = f
potZ2.o(Z) = p(pZ.9(2))
W 2.9(Z) = N aaern*Z.9(2)

o8

CHAPTER 4. MODAL MU-CALCULUS

The semantics of these infinitary terms are defined as:
a+1 T . T
”,“ Z-QD(Z)”¥ T ”SO(Z)”V[ZH"HO‘Z-SD%Z)"%C}
112 Z0(Z)ly = Vacr I0Zp(Z)]y

Thus [uZ.0(Z)|{ = |4 Z.0(Z)|{ where & is the closure ordinal. If |u*Z.o(Z)| = |u*t Z.0(2)|5,
then |1 Z.(Z)|y = |nZ-o(Z)|5-

Similarly for approximants of the greatest fixpoints:

WZ.0(2) = t
VHZp(Z) = (v Zp(2))
VZ.0(Z) = NoerV*Z.p(Z)

and . .
”VQ_HZ'QO(Z) ”V = ||<p(Z) ||V[Z,_)"VCIZ'¢(Z)"€}

HVAZ.cp(Z)”‘:C = /\a<)\HVaZ-‘P(Z)”\:C

Note that the infinitary terms v+t Z.0(2),0*Z.0(2), u*t1 Z.¢(Z), etc. are not part of
the modal mu-calculus. They are notations denoting subsets of the state-set that are useful
for calculations.

Lemma 4.4 (Approximation). Let T = (S, —,p) be an LTS. For any s € S, we have

(i) s € |uZ.p(Z)|% iff s € |u*Z.p(2)|3 for some a.
(ii) s € [vZ.p(2)|y iff s € [v*Z.p(Z)|] for all .
Proof. (i) We have |uZ.p(2) Hg = Ilfp(fp,z,v) by definition. Note that for each ordinal

a, |n*Z.p(Z) ||‘T/ coincides with fg ,, i.e. the element of P(S) in the chain fg 2V :)ZV, e
indexed by «. Hence, by Knaster-Taski

T T
Iz)y = \ fozv = | 2o (D).
acOrd a€O0rd

(ii) Exercise

Lemma 4.5. Let T = (S, —,p) be an LTS. For any s € S, we have

(i) If s € H,uZ.go(Z)”g then there is a least ordinal o such that s € ||,uaZ.<,0(Z)”‘T/ but
s ¢ H,uﬁZ.gp(Z)”g for all B < a.
(it) If s & |[vZ.p(2)|% then there is a least ordinal a such that s ¢ |[v*Z.p(Z)|V but s €
H,LL"‘Z.np(Z)”;‘C for all B < a.
Proof. The sequence
1Kzl C W' Zely < IZely C -
is an increasing chain in P(S), whose supremum is ||uZ.g0||‘T/ by Knaster-Tarski. Since
uZopll = U, 11 Zeg i6 s € |uZ.glL, the set {8 € Ord s s € | Zgl] } is non-empty.

Since the class of ordinals is well-founded®, the set has a least element « (say). It follows that
s € ”/LO‘Z.QOH‘:C and s & H,uBZ.ga”‘:C for all 5 < a. O

LA binary relation, R, is well-founded on a class X just if every non-empty subset of X has a minimal
element with respect to R.

99

CHAPTER 4. MODAL MU-CALCULUS

4.5 Intuitions from Examples

Correctness properties of reactive systems are often classified into safety or liveness properties.
Intuitively

- safety properties say that “something bad will never happen”

- liveness properties say that “something good will eventually happen”.

Useful Slogans

1. “v is looping, whereas p is finite looping”

2. “u is liveness and v is safety”.
Example 4.3 (“v is looping”). (i) vZ.P A [a]Z relativized ‘always’ formula. “P is true
along every a-path”.

(ii) vZ.QV (P A [a]Z) relativized ‘while’ formula. “On every a-path, P holds while @
fails”. The formula is true if either @ holds, or P holds and wherever we go next (via a), the

formula is true, and In particular, if P is always true, and) never holds, the formula is
true. Cf. uZ.QV (P A (a)Z)—next slide.

Mu-formulas require something to happen (i.e. to exit the loop), and are thus liveness
properties.

Example 4.4 (“u is finite looping”). (i) uZ.PV [a]Z: “On all a-paths, P eventually holds”.

(ii)) uZ.QV (P A {a)Z): “On some a-path, P holds until () holds (and @ must eventually
hold).” IL.e. we are not allowed to repeat the unfolding forever, so we must eventually “bottom
out” through the @ disjunct.

Example 4.5. Consider the simple transition system

T1:8

O

a

with state-set S = {s} and a single transition s = s. We have s £ vZ.({(a)Z V [a]f).
Intuitively this is because from s it is always possible to do an a-transition and then an
a-transition and then an a-transition ... ad infinitum.

Example 4.6. Take T} as before. We show that s # uZ.({(a)Z V [a]f). If s satisfies pZ.({(a)Z V [alf)

to hold, then it must be possible for s to do a finite? number of a-transitions and then satisfy

[a]f, but the latter is impossible since there is always an a-transition from s. L.e. s can never

satisfy (a)(---({a)([a]f))). Now we calculate. Note that u'Z.({(a)Z V [a]f) = ((a)f V [a]f).
—_———

finite times
Now |{(a)f| = @ and |[a]f| = @. So |p'Z.({a)Z V [a]f)| = @. Similarly |x2Z.({(a)Z V [a]f)| =
@. Hence |uZ.((a)Z V [a]f)| = @
Alternatively consider the function
feU = a2V [afl5gmn
= @) Zlgz0 Y lalfl
= Uug

which is the identity map on P(S). Hence |uZ.({a)Z V [a]f)| = Ifp(f) = 2.

?Because S is finite, the closure ordinal of any monotone function on P(S) is finite.

60

CHAPTER 4. MODAL MU-CALCULUS

Example 4.7. Take the transition system

a
Ty, = 0 >1—"52
a

with state-set S = {0,1,2}. We show that 0 F vZ.uY.[a](({(b)t A Z) VY'). First note | (b)t] =
{1}. Set
FU) = [pY-[a(((b)t A Z) VYY) iz0)

W.t.p. 0 € gfp(F). By abuse of notation, we have
F{0,1,2} = F{0,1} = F{1} = [pY.[a]({1} VY)].

Intuitively s € |uY.[a]({1} VY)]| if and only if every a-labelled path from s reaches 1. What
is |puY[a]({1} VY)|? We have

lw'Y-la] {1} vY)] = {0.2}
|?Y-[a)({1} VY [a({1}Vv{0,2}) ={0,1,2}
l2Y-la){1}vY)] = [al({1}Vv{0,1,2})={0,1,2}.

Le. F{0,1,2} ={0,1,2}. Hence gfp(F)={0,1,2}.

4.6 Alternation Depth Hierarchy

Consider the following modal mu-calculus formulas.
o uX.pV[—]X: all paths eventually satisfy ¢
o VY. [uZ.PV(—)Z]A(—)Y: there exists an infinite path along which P is always reachable
o VYuZ.(PV(—=)Z) A (—)Y: there exists a path along which P holds infinitly often

The fixed point quantifiers provide great expressive power. Liveness and safety can be ex-
pressed readily and by allowing more nested fixpoint quantifiers (depth) we can express com-
plex fairness constraints. Thus it natural to define a measure of expressiveness in this term.

The alternation depth of a formula is the maximum number of x/v alternations in a chain
of nested fixed points. The simple hierarchy counts the syntactic alternation. The Niwiriski
hierarchy considers genuine dependency between the fixed points.

Formally the Niwiniski hierarchy is defined as follows. A formula ¢ is in the classes IIj
and Xff if it contains no fixpoint operators i.e. it is a formula of modal logic. The class X/ 41
is the closure of ¥}, UII}, under the following rules.

o If p,ip € Xl |, then p A, VU, [alp, (a)p € X .
o If p € X' | and X positive in ¢, then pX.¢ € X8 .

o If p(X),9 € EZH, then () € EZJFI, provided no free variable of 1) becomes bound
by a fixpoint quantifier in ¢.

61

CHAPTER 4. MODAL MU-CALCULUS

DY
s XX
I —I1

I © W TTH
Y | R -0, e

Figure 4.1: Alternation-depth hierarchy.

The class I 41 1s defined analogously.

It is known that indeed arbitrary alternation is necessary to capture all expressible prop-
erties, in other words the modal mu-calculus alternation hierarchy is strict (Bradfield 1996).

There is a price to pay for this expressive power and that is complexity. The most notable
open problem in modal mu-calculus is the complexity of model checking.

Model Checking Problem: Given an LTS T, a state s, and a closed modal mu-calculus
formula ¢, does s € Hg0||g hold?

The best algorithms to date are all essentially exponential in the depth of the formula ¢
and the best known bound is NP N co-NP. The problem is conjectured to be in P. The
harder problem of satisfiability is known to be EXPTIME-complete.

Satisfiability Problem: Given a closed modal mu-calculus formula o, is it satisfiable? L.e. is
there an LTS T with a state s such that s € |¢|5?

Although modal mu-calculus is a decidable logic, it is too expressive for real use. Its
importance comes mainly from providing a meta-language to establish results about other
temporal logics. Most temporal logics such as LTL and CTL and their extension can be
interpreted into modal mu-calculus using two nested quantifiers.

4.7 An Interlude: Computational Tree Logic (CTL)

o u= Pl=p|oiApa| [Klp | AlpU) | E(p U1)

where P € Prop and K C L.

CTL is a branching time logic; LTL is a linear-time logic.

62

CHAPTER 4. MODAL MU-CALCULUS

Semantics of CTL We interpret CTL formulas in the same structures as modal mu-
calculus. Let T = (S,— C S x L x S,p: Prop — 2°) be an LTS.

sEP = se&pP)
sSE-p = sFyp
sEp1iANps = sFE ¢ and sk @g
skF [Kl]p := for all finite or infinite runs s Ay sy By gy

if a; € K, then s;1 F ¢.

sE A(pUv) := for all finite or infinite runs s = 59— 51 —= 59+ - -,
there is ¢ > 0 with s; F 1 and for all 0 < j <4, s; F ¢

sEE(pU1) := for some finite or infinite runs s = sy — 81 —2 59+ -,

there is ¢ > 0 with s; F 1 and for all 0 < j <, 55 F ¢

In LTL, we write Fp :=tU g and G ¢ := =(F —p). In CTL, we write AF ¢ := A(tU)
and A G ¢ := -E(t U —y); similarly for EF ¢ and E G ¢.
Example 4.8. (i) sE EF P. There is a path from s on which P is eventually true.

(iil) sE AFEG P. On every path from s, there is a state from which there is a path where
P holds everywhere.

(iii) s F EG AF P. There is a path from s such that every state ¢ on it satisfies the property
that on every path from ¢, P is eventually true.

Example 4.9. What does the mu-formula pZ.[£]Z mean? We use approximants to analyse
the formula.

- pZL)Z =2

- prZ.[L)Z := [£]@, which is the set of terminal or “deadlocked” states.

- L ZL)Z = [L)---[L]D (i + 1 nested boxes), which is the set of states s such that every
path from s has length at most ¢ and necessarily ends at a “deadlocked” state.

Hence puZ.[L]Z describes the set of states s of an LTS such that every path from s necessarily
ends in a deadlocked state. In fact we have puZ.[L]Z = AF ([L]f).

Example 4.10. CTL formula ¥V G ¢: “for every path (or run), ¢ always holds on it”. It is
the property X such that ¢ is true now, and for every successor, X remains true. Le. X
satisfies the modal equation:

X = oA [-]X

where [—]X means “X is true at every successor”.
Which fizpoint? If a state satisfies any solution of the equation then surely it satisfies
YV G ¢. So the “equation” should be

X = pN[-]X

or more precisely, |[X| C [¢A[—=]X|. Thus the meaning is the greatest postfixed point
vX.oN[—]X.

63

CHAPTER 4. MODAL MU-CALCULUS

Example 4.11. CTL formula 3 F¢: “there exists a path on which ¢ eventually holds”. It is
the property Y such that either ¢ holds now, or there is some successor on which Y is true.
L.e. Y satisfies the modal equation:

Y = pV(9)Y

where (—)Y means “Y is true at some successor”.
We can argue: if a state satisfies 3 F o, then it surely satisfies any solution of the equation;
and so, we want the least solution of

Y < pV(—)Y

or more precisely [Y| 2 ¢V (—)Y]. Le. the meaning is the least prefixed point pY.¢ vV (—)Y".

64

CHAPTER 4. MODAL MU-CALCULUS

Problems

4.1 Let ¢ be a monotone function on the powerset of S. Let U C S. Prove

UCagfolp) < U Cp(gfp(Y))

where ¢V : P(S) — P(S9) is the function given by V + U U ¢(V).

4.2 Prove the following:

(a) If s € ||,uZ.cp||‘T/ then there is a least ordinal a such that s € ”;LO‘Z.QOH€, and for all 8 < a,
Bz.ol%
s & |1’ Z.ply-

(b) If s ¢ HVZ.QOH‘T, then there is a least ordinal « such that s ¢ ||V"Z.g0H‘T/, and for all 8 < «,
Bz oL
s € [v"Z.¢ly.

4.3 Prove that if the state-set S has n elements, then for any s € S
(a) sEy vZ.piff s € ||1/”Z.g0”‘T/

(b) sy uZ.giff s € [u"Z.0|,

4.4 We say that ¢ and v are equivalent just if for any T and for any V', we have Hg0||‘T/ = ||z/1”€
Prove

(a) pZ.p(Z) and p(uZ.p) are equivalent (similarly vZ.p and p(vZ.¢) are equivalent).

(b) uZ.o(Z) and —vZ.—p(—Z) are equivalent.

4.5 Is there a labelled transition system T and a valuation V such that for every modal
mu-calculus formula ¢, |uZ.0|{ = |vZ.¢|L?

4.6

(a) Show that sg € |pZ.[a]Z H‘T, iff there is no infinite transition sequence

a a a
So —> 81 —> S —> -

(b) What is the meaning of vZ.[a]Z?

65

CHAPTER 4. MODAL MU-CALCULUS

4.7 Consider the transition system

with state-set S = {0,1,2}.

(a) Compute |pY.vZ.]a](((B)tVY) A Z)|.

(b) Prove or disprove the following by drawing the game graph and argue by the existence
(or not) of a winning strategy.

i. 0F pZvY.|al(((b)tVY)AZ).
ii. 2F pZvY.al((tVY) A Z).

4.8 We say that variable Z in a formula ¢ is guarded if every occurrence of Z in ¢ is in the
scope of some modal operator [a]— or (a)—. We say that a formula is guarded if for every
subformula 0Z.1¢ of ¢, Z is guarded in ¢ (where o = u,v). Prove Kozen’s Lemma: Every
modal mu-calculus formula is equivalent to some positive guarded formula.

4.9 What properties are expressed by the following modal mu-calculus formulas?
(a) pz.[L]Z
(b) vZ{a)Z N (b)Z

4.10 Fix a set L of labels. Express the following in modal mu-calculus formulas.
(a) Eventually either a happens or P becomes true.
(b) Along some path P is always true

(¢) There is a path along which P holds continuously and @ holds infinitely often.

66

Chapter 5

Games and Tableaux for Modal
Mu-Calculus

[We gratefully acknowledge Bahareh Afshari’s contribution to the section on tableaux for modal
mu-calculus.

Synopsis

Modal mu-calculus model checking games. Streett and Emerson’s Fundamental Semantic
Theorem. 2-person infinite games. Memoryless winning strategies. Signature and signature
decrease lemma. Tableaux. Tree model property. Finite model property. Parity games.
Computing winning regions. PARITY is in NP Nco-NP. Determinacy for finite parity games.

References (Streett and Emerson, 1989; Bradfield and Stirling, 2007; Stirling, 1997, 2001;
Walukiewicz, 1995; Niwinski and Walukiewicz, 1997)

5.1 Game Characterisation of Model Checking

Modal Mu-Calculus Model Checking Problem Given a state sg of a labelled transition
system 7', a valuation V', and a mu-calculus formula ¢, does sg IZ‘:C ® hold?.

We aim to give a game characterisation of the problem. We shall consider games played
by players V (Verifier) and R (Refuter) on directed graphs of a certain kind. Given a state
sg of a transition system 7', a valuation V and a modal mu-calculus formula ¢, we define
a game between V and R, 95(30,<p), such that sg |=‘T/ o if, and only if, there is a winning
(memoryless) strategy for V in G (so, ¢).

The characterisation may be viewed as a version of the Fundamental Semantic Theorem
of Streett and Emerson (Streett and Emerson, 1989).

Some preliminaries on syntax We assume that ¢ is positive normal i.e.

(i) Negation is only applied to atomic propositions.
(ii) If 0121 and 0975 are two different occurrences of binders in ¢, then Z; # Z,.

(iii) Free variables are disjoint from bound variables.

67

CHAPTER 5. GAMES AND TABLEAUX FOR MODAL MU-CALCULUS

Every formula can be converted into positive normal form using de Morgan laws and by
renaming bound variables. For example

PZAIVY N ((0VZ A Y wZ. (b)Y A [K]2))

can be rewritten

PZAIVY V(00 Z A uX vU. (DX A [K]U))

Let Sub(yp) be the set of subformulas of ¢. For example, Sub(uX.vY.([b]X A [K]Y)) is the
set

{ uX.vY.([b|X A [K]Y), vY. B X A[K]Y, D)X A[K]Y, [b)X, [K]Y, X, Y }

If ¢ is (positive) normal and 0Z.¢) € Sub(p), then the (bound) variable Z can be used to
identify this subformula.

For 01 X1.41,09X0.109 € Sub(yp), we say that X; subsumes Xo, written X = Xo, just if
09 X210y € Sub(o1X1.41). In the example above, X subsumes Y (but not vice versa).

Lemma 5.1. Assume a positive normal .

(i) If X subsumesY andY subsumes Z, then X subsumes Z.
(ii) If X subsumesY and X #Y, then it is not the case that Y subsumes X.

Definition 5.1 (Model Checking Game GL(s,)). Fix a transition system 7' = (S, — C
Sx L xS, p:Prop— P(5)), astate sp € S, a valuation V, and a positive normal ¢. The
two players are Refuter (R) and Verifier (V).

- R attempts to show sg #‘T, ©, whereas
- V attempts to show sg |:‘T/ ®.

We define the graph underlying G-(so, ¢). The vertices (also called positions, or moves) are
pairs (¢,1) where t € S and ¥ € Sub(y). The initial vertex is (sg,). Edges are organised
into three groups according to the shape of the subformula.

- Boolean subformulas. For each 11 V 12,91 Apy € Sub(yp), s € S, i € {1,2}, the following
are edges:

(8,91 V ah2) = (s, 9), (8,01 AN bg) = (s,14)

- Modal subformulas. For each K C £, a € K, and each state ¢ where s —s ¢, the following
are edges:

(s, [K]Y) = (£,9), (s, (K)¥) = (£, ¥)
- Fizpoint subformulas. For each 0 Z.1) € Sub(p), each s € S, the following are edges:
(s,029) = (s,2), (s,Z) = (s,)

Observe that the size of 1) decreases in (s,1) — (s',9) in all cases except when 1) is a fixpoint
variable.

Plays There are no out-going edges from (s,1) where 1 is an atomic proposition (P or
—P), or free variable Z (i.e. does not identify any fixpoint subformula). Certain vertices are

68

CHAPTER 5. GAMES AND TABLEAUX FOR MODAL MU-CALCULUS

“owned” by one of the two players; as for the rest of the variables (all of which have out-degree
1), it is unimportant who owns them.

’ \% ‘ R ‘ Ownership is irrelevant (say, V) ‘
CRERRY (8,91 A\ o)
(s, (K)¥) (s, [K]y) (s, Z) for bound Z
(s,P), s € p(P) | (s,P), s € p(P) (s,02.9)
(s,2),s¢V(Z) | (s,2),s€V(Z)

A play of GL(sp,¢) is a path in the game graph that starts from the initial vertex (so, ¢),
namely, (so,), (s1,¢1), (s2,¢2), - -, such that for each i, if (s;, ¢;) has label V (resp. R), then
V (resp. R) chooses (si+1, @it1)-

Example 5.1. Take the transition system with state-set S = {s} with £ = {a,b}, and a

o). a
transition s — s.
T1 = S

O

a

The game G (s, vZ.[b]f A (a)Z) has the following game graph:
(s,vZ.[blf A\ (a)Z)

v
(s,2)
v
(s,[b]f AN {a)Z) R
/ \
R (s, [b]f) (s,{@)2) V

Winning conditions R wins a play just if

(i) The play is (so,0), (s1,¢1),- -+, (sn, Pn) and
a. o = P and s, & p(P) or
b. ¢, = Z and Z is free in ¢ and s, € V(Z), or
c. on=(K)pand {t:s, —+tandac K} =0
(ii) The play (so,%0), (s1,%1),* " s (Sn,¥n), - is infinite, and the unique fixed point vari-

able X, which occurs infinitely often and which subsumes all other variables occuring
infinitely often, identifies a least fixpoint subformula of ¢.

V wins a play just if
(i) The play is (so,%0), (s1,1); -, (8n,) and
a. ¢p = P and s, € p(P), or
b. ¢, = Z and Z is free in ¢ and s, € V(Z), or
c. on=[KJpand {t:s, “standac K} =02

(ii) The play (so,%0), ($1,%1)," ", (Sn,®n), - is infinite, and the unique fixed point vari-
able X, which occurs infinitely often and which subsumes all other variables occuring
infinitely often, identifies a greatest fixpoint subformula of ¢.

69

CHAPTER 5. GAMES AND TABLEAUX FOR MODAL MU-CALCULUS

It follows from the winning condition that given a maximal play (either finite and terminal,
or infinite), exactly one of V and R wins.

Proposition 9. If (so, v0), (s1,%1),*+ » (Sn, ¥n), - is an infinite play of the game G (so,),
then there is a unique variable X that

(i) occurs infinitely often (i.e. p; = X for infinitely many j), and
(ii) if Y also occurs infinitely often, then X subsumes Y .

Proof. Because ¢; decreases in size except when it is a fixpoint variable, there are infinite
variable occurrences in an infinite play. Suppose, for a contradiction, X and Y are maximal
among the infinitely occurring variables and none subsumes the other. It follows that:

(i) The respective fixpoint subformulas named by X and Y occur in different branches of a
conjunction or disjunction.

(ii) Further the conjunction (say) is in the scope of some fixpoint subformula named by Z
(say), for otherwise, at most one of X and Y can occur infinitely often.

Hence Z subsumes both X and Y and occurs infinitely often in the play, which is a contra-
diction. O

Example 5.2 (7} revisited).

Who wins the game? Two cases according to R’s move:

- R chooses the left branch: V wins.

- R chooses the right branch: If an infinite play should arise, since Z identifies a v-fixpoint,
V wins.

Hence V wins.
Is it always the case that exactly one of R and V has a winning strategy?

Example 5.3 (T} revisited). G22(0, uY.vZ.[a](((b)t VY) A Z)) where

a
T, = 0 122
a

with state-set S ={0,1,2}. Who wins the game? (See the picture on the next page)
R has a winning strategy:

- At (1, ()t VY) A Z): choose right branch
- At (0, ((b)t VY) A Z): choose right branch

70

CHAPTER 5. GAMES AND TABLEAUX FOR MODAL MU-CALCULUS

(0, WY Z [a) ()t VY) A Z))

(0, VZ.[(:L](((bv)t VY)AZ)
(0,2)

(1,2)
v
(tVY)AZ) R

V wins! R (2,t) (LvZ]a)((tVY) A Z)) O0,((tVY)ANZ) R

\
V (0, (b)tVY)
\
V loses! V (0, (b)t)

Figure 5.1: Game graph of T5

At (0, ()t VY):
- V loses at once if he chooses the left disjunct.

- V also loses if he chooses the right disjunct all the time, since the infinitely occurring and
subsuming variable identifies a u-fixpoint.

Hence R has a winning strategy.
Example 5.4. We present the game graph G12(0, uY.vZ.[a](((b)t VY) A Z)) in Figure 5.1.

A strategy for a player is a set of rules telling the player how to move. A player uses
strategy m in a play provided all his moves in the play obey the rules in m. Memoryless
strategies (often called history-free strategies in the literature) are strategies that depend only
on the last move or position of the play. It follows that for player R, rules have the form:

- at position (s, @1 A p2) choose (s, ;) where i =1 or i =2

- at position (s, [K]y) such that {t: s —>tand a € K} # @, choose (t,) where s — ¢
and a € K.

Similarly for player V, rules have the form:
- at position (s, 1 V ¢2) choose (s, ;) where i =1 or i = 2

- at position (s, (K)y) such that {t:s —»tand a € K} # @, choose (t,¢) where s — t
and a € K.

A strategy 7w for a player is winning if the player wins every play in which he uses 7
(regardless of how his opponent plays). We aim to prove:

71

CHAPTER 5. GAMES AND TABLEAUX FOR MODAL MU-CALCULUS

Theorem 5.1 (Fundamental Semantic Theorem). sg |=‘:C w if and only if player V has a
memoryless winning strategy for G&(so, ¢).

We shall establish the Theorem by proving the following:

(i) If so F{ ¢ then player V has a memoryless winning strategy for G (so, ¢).
(ii) If so #L ¢ then player R has a (memoryless) winning strategy for G{ (s, ¢).

It follows from the definition that if one player has a winning strategy, then the other
does not. Le. at most one player has a winning strategy for a given game G (so, ¢). Thus it
follows from statements (i) and (ii) in the preceding that at least one player has a winning
strategy for a given game.

A class of games is said to be determined if for every game, there is a winning strategy for
exactly one of the players. Thus model checking games of the kind, g@(so, ¢), are determined.
We shall see shortly that these games are parity games. In 1975, Donald A. Martin proved
that all Borel games (which include parity games) are determined.

5.2 Proof of the Fundamental Semantic Theorem

Assume sg |=‘T/ @. We aim to show that V is always able to preserve the “truth of game
positions” by making judicious choices, so winning every play.
We list all the fixpoint subformulas of ¢, in decreasing order of size, as follows:

0121401, 022292, -+, OnZpahy

It follows that:
(i) if ¢ < j then it is impossible for Z; to subsume Z;
(ii) if Z; subsumes Z; then i < j.
A position in the game G (s, o) has the form (¢,1) where 1 may contain free variables

in {Z1,---,Z,}. Our strategy is to show that V can play in such a way that if it reaches
(s',4) then s’ EL . An immediate problem is that since some of the Z;s may occur free in

Y, ||¢’||\T/ may not be defined!

True positions and valuations We first define valuations Vp,-- -, V}, by induction on n:
Vo =V
Vipr = VilZin o loinaZip iy
The idea is V; maps Z1,---,Z; to their respective (correct) denotations. E.g. Vi : Z; —
lo1 Z1 .41 ”50 Note that V = Vj is not well-defined on Z1, Zs,--- , Z,, but this is ok since
0171.91—as Zj is the most subsuming—does not contain any free occurrence of Zo,--- |, Z,.
Similarly, |02 Z2.109 ||€1 is well-defined since it does not contain free occurrences of Zs, - -- , Z,,

and so on. Thus V;, captures the semantics of all bound variables Z;s i.e. ||¢||xT/n is well-defined
for every v € Sub(yp).

We say that (¢,1) is a true position just if ¢ Fzgn 1. Note that (sg, o) is a true position,
by assumption.

72

CHAPTER 5. GAMES AND TABLEAUX FOR MODAL MU-CALCULUS

Next we give a more refined valuation that identifies the smallest least fizpoint approzimant
making a given position true. Let

nY1.x1, pYa.x2, <o, wWYmXm

be the set of least fixpoint subformulas of ¢, again in decreasing order of size.

A signature is just an m-long vector of ordinals. We say that signatures r < r’ if r
lezicographically precedes® r'.

Given a signature r = o - - o, and a valuation V, we define valuations Vf,---, V] by
induction:

Vo = V

T — r
i+1 ‘/z

7 ||Uz‘+1Zi+1~l/)1:+1||\T/; if i1 =v
i+1 : .
’ ||MY}QJ.Xj ”%/;'r else if Ui+1Zi+1 = /L}/j

Thus we use a signature r = aq - - - ;, to interpret the least fixpoint subformulas in ¢ so that
the j-th such is interpreted by its a;-th approximant.

p-signature of a true position
Lemma 5.2. Ift |=‘T/n 1 then there is a smallest signature r such that t |=TY;. .

Thus given a true position (t,), we define its u-signature (or simply signature), written
sigh(t, 1)), to be the least such that ¢ EL., 1 holds.
Notation Let r and ' be signatures. We write

- r(k) to mean the kth component of the signature r, and

- 7 =, v’ to mean that the first & components of the signatures r and 7’ are identical.

The p-signature is unchanged or decreases when passing through boolean, modal or v-
variable dependencies / edges, and when passing through (—,Y}), it strictly decreases in the
jth-component and is unchanged in each of the 1,---,5 — 1 component.

Lemma 5.3 (Signature Decrease). Whenever the LHS of the relation in question is defined,
we have
(i) sigh(s,p1V @2) = sigh(s, i), for some i € {1,2}.
(it) sigh(s, 1 A p2) = max(sigh(s, 1), sig" (s, 2))
(iii) sigh(s, (a)p1) = sigh(t, ¢1), for some t such that s =t
(iv) sigh(s,[aler) > sigh(t, 1), for all t such that s = t
(v) Assuming Z; is a v-variable, sigh(s,vZ;b;) = sigh(s, Z;) = sigh(s, ;).
(vi) Assuming Z; =Y} is a p-variable
(a) sigh(s, pYj.x;) =j—1 sigh(s,Y;)
(b) sigh(s,Y;)(j) > sigh(s,x;)(j) and sigh(s,Y;) =j—1 sigh(s, x;)-

Proof. Exercise. O

1We define a1 -+ am < by -+ bm iff a1 <bi,or (a1 =0br and az - am < bz--bp).

73

CHAPTER 5. GAMES AND TABLEAUX FOR MODAL MU-CALCULUS

Winning memoryless stratregy for V Finally we simultaneously give the memoryless
strategy for V and prove that it is winning, by appealing to the Signature Decrease Lemma.

Suppose (S, @m) is the current position in the play. Assume that it is a true position,
and 50, sy, Fyrm @ where 1y, = sigh (sm, om). If (8m, ©m) is a final position, then V is the
winner. Therefore either V wins or the play is not yet complete. In the latter, we show how
the play is extended to (Sm+1,®m+1) by a case analysis on ¢p,.

- ¢©m = 1 A e: Then R chooses v; for some i € {1,2} as the next move, and the next
position (Sym+41, ©m+1) = (Sm, ;) remains true, and S;,+1 |=V7:m+1 Oma1 wWith rp1 < rp,
by the Lemma.

- ¢m = [K]¢: Then R chooses as the next move (Sp41, Pm+1) = (t,7), for some ¢ and some
a € K such that s, — t. Since s, € | [K}wﬂ%m, we have S;,41 € ||¢||€Jm, SO (Sm+15 Pm+1)
is true and rp,41 < 7y, by the Lemma.

Applying the Signature Decrease Lemma

- ©m = Y1 V a: V chooses one of ¥y and vy (say 1) that holds. The next position
(Sm+1, Pm+1) = (Sm, 1) remain true. By the Lemma, 7,11 = 7.

©m = (K)1: similar to above.
- om = 0:Z;%;. Then (Sm+1, ©m+1) = (Sm, Zi). Two cases:
- 0; =V: (Sm+t1,Pm+1) 18 & true position, and 7,41 = 7.
- 0; = (Sm41, Pm+1) IS a true position, but 7,11 =;—1 7.
- om = Z;. Then (Spm+1, Pm+1) = (Sm, ;). Two cases:
- 0; =V: (Sm+t1,Pm+1) 18 & true position, and 7,41 = 7.

- 0 = (Sm41, Pm+1) 1s a true position, with rp,41 < 7, and 7,41 =i—1 ™.

The case of infinite plays Take an infinite play (so, ¢0), (S1,¢1), - in which after (say)
(sk, ¢r), every occurrence of a fixpoint variable is subsumed by Z;. Suppose, for a contradic-
tion, Z; = Y} which identifies a least fixpoint subformula pYj.x;.

Let ki, ko,--- be the positions in the play where Y} occurs. The move from (sy,,Y;) to
(Sk;+1,X;) causes a strict decrease of the p-signature. We show that the remaining moves
between k; and k;11 cannot cancel this decrease out.

We only need to worry about (s, uY;.x;) — (s, Y]), as this is the only case which may cause
an increase in the p-signature. By assumption Y is subsumed by Yj; it follows that [> j.
Note that the transition (¢, uYj.x;) to (¢,Y;) is not possible in the segment from k; to ki1
because Y; is assumed to be subsuming. Hence the increase in p-signature occurs after the
[-th component, and so, there is still an overall decrease in the respective j-prefix of r, as z
progresses from k; to k; 1. This contradicts the well-foundedness of (fixed-length vectors of)
ordinals.

A duality We use a “symmetric” argument to establish the other direction: If s J?f‘ic @ then
player R has a memoryless winning strateqy for Qg(s, ©).
Specifically

- For a position (t,v) that is false (i.e. s ¢ |\1[1||‘7;), define its v-signature, written sig”(t,),
to be the least r such that ¢ L, 1 holds.

74

CHAPTER 5. GAMES AND TABLEAUX FOR MODAL MU-CALCULUS

- Establish a corresponding Signature Decrease Lemma for v-signatures.

- Define a memoryless winning strategy for R.

Hence V has a memoryless winning strategy for g$(s, p) iff s IZ‘:C .

Lemma 5.4. A player does not have a memoryless winning strategy for g@(s, ©) if and only
if he has a memoryless strategy for Q;‘C(s, ©), where @ is the positive normal form of —p.

Proof. We consider V; the situation for R is exactly dual.

V has no memoryless winning strategy for G{-(s,)
iff s #‘T/ ©
iff s |:‘T/ —p

iff 'V has a memoryless winning strategy for GZ (s, @)

5.3 Tableaux for modal mu-calculus

Preliminaries We will not distinguish between different labels namely only consider for-
mulae [L] and (L£)¢ which we will denote with Og and $p. Note that this is not a necessary
condition for the following but makes for concise presentation.

From now on, all formulae considered are assumed to be closed, in positive normal form
and guarded. A formula ¢ is guarded if for every oZ.1) € Sub(p), every occurrence of the
bound variable Z in i appears in the scope of a modal operator. Every formula can be
converted into guarded form by replacing unguarded p- and v-variables by P A =P and
PV =P respectively where P is any atomic proposition. For example uZ.Z V ¢ is equivalent
to uZ.p and vY.(Q A (uZ.Y AN<CZ)) Vv OY is equivalent to vY.(Q A uZ.0Z) v OY.

Satisfaction and Models We say a transition system 7" = (S, —, A) with a distinguished
node sg satisfies the formula ¢ of modal mu-calculus, if so =7 ¢ (i.e. so € ||¢||T). In this case
we call T" a model of ¢ and say that ¢ is satisfiable.

Tableaux: an informal view Consider the formula ¢ = vY pX.(OOPAOCX)V (-PASOY).
We want to ask if ¢ is satisfiable. We aim to find a model of ¢ namely a transition system

75

CHAPTER 5. GAMES AND TABLEAUX FOR MODAL MU-CALCULUS

T = (S,—,\) and so € S such that so = ¢. We can proceed as follows.

so = vYpuX.(OOPAOX)V (P AQY)
so E (OOPAOX)V (P ASY)
so EOOPAOX
so E{00P,OX}
ds1 150 = 81 s1 E{0OP, X}
s1 ={0P,(0OPACX)V (mPAOY)}
s1 = {OP,-P AQY}
s; = {0OP,—P, oY}
dsg 1 81 — 89 sy =E{P,Y}
sg =A{P,(DO0PAOX)V (-mPAOY)}
sy E{P,0OPAOX}
sy E{P,00P,OX}
Jds3 : s9 — s3 s3 = {OP X}

This “model search” naturally gives rise to the transition system illustrated in Figure 5.2.
This search for satisfiability (or soundness) can be formalised using tableaux. The idea is to
encapsulate all possible plays on an arbitrary transition system as a tree where each node is
labelled by a subset of Sub(yp).

S0 81 52 83— s; € A(P) if and only if ¢ > 0 is even

Figure 5.2: A model of vY puX.(OOP A OX) V (=P A QY).

Trees and Paths

Definition 5.2. A tree is a tuple 7' = (S, —, A) with a distinguished node p which satisfies
the following conditions.

- (S,—) is a connected, directed graph.
- A s a function from S to a set of labels.

- The are no transitions into p.

For every s € S\ {p} there is exactly one sy € S such that sg — s.

The node p is referred to as the root of the tree; any node without outgoing transitions is a
leaf and A is the labelling function of the tree T. We use subscripts to emphasise which tree
they refer to.

If T'= (S,—,\) is a tree then a path through 7" is an enumerable set P C S such that
pr € P, if s9 = s € P then so € P, and for every s € P either s is a leaf or there exists
exactly one s’ € S such that s — s’ and s’ € P. Hence a path can be visualised as a sequence
pT = S0 — S1 — S2 — ... = S, — ... and we write P(n) to denote s,.

76

CHAPTER 5. GAMES AND TABLEAUX FOR MODAL MU-CALCULUS

Recall Prop is a (possibly infinite) set of propositions from which the syntax of L, is
defined. Let Prop™ = {—P: P € Prop}. Uppercase Greek letters such as I" and A denote
sequents, finite sets of formulae. OI' abbreviates the set {0y : ¢ € T'} and OT" is defined
analogously. We write I', ¢ to mean I' U {¢}, and I', A to denote I" U A.

FaSOOﬂOI P?QDZ .
N) """ V) ———i=0o0r1
™) L', 00 A V) TopoVer 0
r.z |) . .
(0) T.oZo o€ {u,v} (Z) .7 Z identifies 0 Z.¢

I',0 for each 6 € A
ar, A, e

(mod) © C PropU Prop™ consistent

Table 5.1: Rules for generating pre-tableaux.

Definition 5.3. A pre-tableau for T" is any tree generated by the rules in Table 5.1 from the
sequent I' in which any finite branch terminates by reaching a sequent of the form 0=, OA, ©
where A is empty. Note that this tree is finitely branching and branching only occurs at a
(mod)-rule.

For each rule in Table 5.1 the distinguished formulae in the lower and upper sequents are
called respectively the principal and residue formulae of the rule. In case of a (mod)-rule all
the formulae occurring are considered distinguished including those in ©.

Note that our trees grow upwards. Thus the tableau rules are presented such that they
read bottom-up. For example, in the (V)-rule from the sequent I', g V ¢1 we may proceed to
either I', g or I, 1.

Exercise 5.1. Write down a (mod)-rule for L,,-formulae with labels that satisfies the informal
soundness property described above.

Proposition 10. Every infinite path in a pre-tableau passes through a (mod)-rule infinitely
often. Moreover, the (mod)-rule can be applied only if no other rule is applicable.

Proof. Exercise 5.3. 0

Fix a pre-tableau t = (V,—, \) for I" and a path P through ¢. A finite thread (through P)
is a sequence of formulae ¢q, ¢1, ..., Y, such that

- i € M(P(3)) for each i < n;

- wi+1 = ;i if @; is not principal in the rule applied at node P(7), otherwise ¢;4+1 is the
residual subformula of ¢; occurring in the label of P(i 4 1).

An infinite sequence of formulae g, 1, ... is a thread if every finite initial sequence is.

Lemma 5.5. For each infinite thread there exists a variable that appears infinitely often in
the thread and subsumes all other infinitely occurring variables.

Proof. Exercise. O

In each infinite thread the unique variable identified by Lemma 5.5 will be referred to as
the most significant variable of the thread. We call an infinite thread a p-thread if its most
significant variable is a p-variable; otherwise it is a v-thread.

7

CHAPTER 5. GAMES AND TABLEAUX FOR MODAL MU-CALCULUS

Definition 5.4. A pre-tableau is a tableau if

(i) the sequent at the leaf of each finite branch is of the form OI', © where O is a consistent
set of propositions, and

(ii) every infinite thread is a v-thread.

Lemma 5.6. Let t = (V,—, \) be a tableau. Then for every v € V we have \(v) N (Prop U
Prop™) is consistent.

Proof. Exercise 5.3. O

Example 5.5. Of the four pre-tableaux given below for the formula uZ.Q vV (P A <$Z) only
the first tree are tableaux. The fourth one which is assumed to always pick the right disjunct
in @V (PA<$Z) is not a tableau.

Q
((2 Qv (PAOZ) Z
(V) « (mod) —=Z
(7) QY (PAOZ) () P07 :
(\/) Q (HlOd) 4 \/) PANOZ (\/) P}\)Oiz
2) QV(PAOZ) N P, OZ 2) QV (PAOZ)) QV(PANOZ)
(() Z (V) PAOZ (mod) Z (mod) Z
Wozov (P roz) QV(PAOZ) P.oZ P.oZ
(Z) (N 5 as ey a
() A (\/) PANOZ (\/ PANOZ
W Z.ov (P AoZ) (7) QY (PAOZ) () QY (PAOZ)
Z Z
W7oV (ProD) Wz qv (Proz)

Soundness and Completeness
Lemma 5.7 (Soundness). If ¢ has a tableau then ¢ is satisfiable.

Proof. Let t = (V,—,\) be a tableau for . Define a tree T = (S, —7, A7) and a map
7:V — S such that

(i) 7(p) = pr
(ii) If v — wu and the tableau rule applied at v is (mod) then 7(v) —p 7(u), otherwise
T(u) = 7(v).
(iii) P € Ap(s) if and only if there exists v € V' such that 7(v) = s and P € A(v).
We will use ¢ to define a winning strategy for Verifier in the model checking game G (pr, ¢),
whence the Fundamental Semantic Theorem yields pr =7 ¢.

Suppose we have a play (so, o), (51,¢1), ---, (Sn, ¢n) and a corresponding thread ¢f), ¢},
..., ¢, in the tableau ¢ such that

- there exists ip = 0 < i1 < -+ < ip < inp1 = M+ 1 so that for every j < n and every
k S [ij7ij+1)) 902; = 9037 and

- ¢} is principal in the node v of ¢ associated to it and 7(v) = sy,.

78

CHAPTER 5. GAMES AND TABLEAUX FOR MODAL MU-CALCULUS

Suppose ¢, ¢ PropU Prop~. We show how the play and the thread can be extended.

Case L. It is Verifier’s move then either ¢, = g V 91 or ¢, = Ohg. As t is a tableau and
o = @, the thread can be extended by some 1 € {tg,11}. If u denotes the node
associated to 1 in this thread set Verifier’s choice to be (spt1, nt1) = (7(u),).

Case II. It is Refuter’s move. Then for any any choice of (8,11, pn+1) by Refuter the thread
can be extended accordingly.

This is in fact a winning strategy for Verifier. Suppose (so, ¥0), (51,%1), - - -, (Sn, ¥n) is a finite
play using the above strategy. It follows that there exits a node v € V such that 7(v) = s,
and ¢, € A(v) is principal at v. If ¢, € Prop, this play is winning for Verifier by definition.
If ¢, = =P then since A(v) N (Prop U Prop™) is consistent, P ¢ Ar(s,) and Verifier wins
this play too. Furthermore, an infinite play corresponds to an infinite thread in the tableau.
Since every infinite thread is a v-thread this implies that the play is winning for Verifier. [

Lemma 5.8 (Completeness). If ¢ is satisfiable then ¢ has a tableau.

Proof. Let T be a transition system with distinguished node so such that so =7 ¢. Use
Verifier’s winning strategy in G”(sg,) (given by the Fundamental Semantic Theorem) to
make your choices in defining a pre-tableau for . Then every infinite thread in the tableau
corresponds to an infinite play in the game and hence is a v-thread. Moreover, every finite
branch in the pre-tableau will be of the form OI', ©® where © is consistent as otherwise there
will be maximal plays that end in a position (s, P) with s = P or (s, <) which would be
losing for Verifier. O

The Soundness and Completeness Lemmata give us a characterisation of satisfaction in
terms of the existence of tableaux:

Theorem 5.2. A formula is satisfiable iff it has a tableau.

Corollary 5.1 (Tree Model Property). If a formula ¢ of modal mu-calculus has a model then
it has a tree model.

Proof. Suppose ¢ is satisfiable. The Completeness Lemma 5.8 implies that ¢ has a tableau.
The proof of the Soundness Lemma 5.7 then shows how to extract a tree model for ¢ from
this tableau.]

Finite Model Property Tableaux are a powerful tool for decision procedures. They
are closely related to games and automata, but provide an insight that is unique. We will
demonstrate this by proving the following classic result.

Theorem 5.3 (Finite Model Property). If a formula ¢ of modal mu-calculus has a model
then it has a finite model.

Proof. If ¢ has a model then by Lemma 5.8 it has a tableau, say t. Let S be the collection of
finite threads p that are extended by some infinite thread whose most significant quantifier is
encountered already in p. S naturally forms a finitely branching tree in which all branches are
finite, whence by Koéning’s Lemma, S is a finite set. The leaves of S define a finite set of nodes
Fy C Vi such that every infinite path in ¢ passes through exactly one node of Fy. Similarly for
each n > 1 there exists a finite set F;, C V; such that every infinite path through ¢ intersects

79

CHAPTER 5. GAMES AND TABLEAUX FOR MODAL MU-CALCULUS

F,, exactly once, and every infinite thread through ¢ sees its most significant variable at least
once between the sets F,,_1 and F,.

We can now construct the finite model for ¢. Fix k = 2/54@)l and an arbitrary node
v € Fy,. For j < k, denote by v; the unique node in F; below v. As k is sufficiently large,
there exists i < j < k such that A\¢(v;) = A¢(v;). In ¢, remove the subtree of ¢ at v; and add an
edge from the predecessor of v; to v;. Note that the resulting structure is not a tableau but
its “unravelling” will give rise to a tableau due to the definition of F;. Repeat this process
for each node of Fj. This yields a finite tree-with-back-edges. From this finite structure we
can extract a finite transition system by the same construction as in the soundness lemma
which, by an analogous argument, is a model of ¢. O

The following stronger result can also be proved using tableaux. However, the proof is
beyond the scope of this lecture.

Theorem 5.4 (Small Model Property). If a formula ¢ of modal mu-calculus has a model
then it has a model of size at most 22°" where n is the size of .

The idea is to show that if ¢ has a tableau then it has a tableau in which any two
applications of the (V)-rule to the same sequent with the same principal formula yields the
same residue. This will allow us to mark a frontier of depth 2°() from which we can already
make the back-edges as in the proof of the finite model property.

An immediate consequence of the theorem is

Corollary 5.2. The satisfaction problem for the modal mu-calculus is decidable. Indeed, the
problem is EXPTIME (complete).

5.4 Parity Games

Definition 5.5. A parity game is a tuple G = (N, E, vy, A\, Q) where

- (N,E C N x N) is a directed graph such that F is total (i.e. for each u, there is some v,
such that (u,v) € F), and v; € N is the start vertex

- A: N — {V, R} labels each vertex with R (Refuter) or V (Verifier); A\(v) indicates which
player is responsible for moving from v

-Q:N—{0,---,p} assigns a priority (or colour) to each vertex v

A play begins with a token on the start vertex v;. When the token is on u and A(u) = P,
player P moves it along an outgoing edge (u,v) to v. A play is an infinite path vy vy ---v;---
in the graph visited by the token.

The winner of a play is determined by the min-parity condition: if the least priority that
occurs infinitely often in the sequence Q(vy) Q(v1) Q(vg) - - - is even then V wins; otherwise R
wins. There is an equivalent max-parity condition.

Example 5.6 (A parity game). V-moves are circled; R-moves are boxed. Prioities are indi-
cated in red after the colon. Who has a winning strategy starting from a?

80

CHAPTER 5. GAMES AND TABLEAUX FOR MODAL MU-CALCULUS

Recall: V wins an infinite play just if the least infinitely occurring priority is even. Ans: V
has a winning strategy: b—c¢, f— g, d—g.

Example 5.7.

From which vertices does V have a winning strategy? Equivalently, what is the winning region
of V?

Example 5.8. Parity Game G22[0, uY.vZ.[a](((b)t VY) A Z)] where Ty is defined in Exam-

81

CHAPTER 5. GAMES AND TABLEAUX FOR MODAL MU-CALCULUS

ple 6.2.

\V)

V20/
Viéo\lo
!)
Vb 2e \
lV

O

Every modal mu-calculus model checking instance determines a parity game. Precisely,

Proposition 11. The mu-calculus model checking problem reduces to the decision problem
PARITY: given a parity game, does V have a winning solution?

5.5 Solvability and Determinacy for Finite Parity Games

Let G = (N, —,v9,\, Q) be a parity game, and v € N. Write G(v) := (N, —,v, A\, Q). Let
P e {V,R}. The winning region of P, written Wp, is the subset of G-vertices v such that P
has a winning strategy starting from v (i.e. in the game G(v)). It follows from the definition
that Wi N Wy = @. Trivially Wx U Wy C N.

Theorem 5.5 (Solvability). Let G = (N, —,v9, A\, Q) be a finite parity game. Both the
winning regions, Wy and Wg, and the corresponding memoryless winning strategies for V
and R are computable.

Intuitively Forceég(X) is the set of vertices from which player P can force play to enter
the set X of vertices in at most ¢ moves.

82

CHAPTER 5. GAMES AND TABLEAUX FOR MODAL MU-CALCULUS

Definition 5.6 (Force Sets). Let X C N.

Forceh(X) = X for P {V,R}
Forcegl(X) .= Forcer(X)
U {j:AJ)=R A 3k ecForcey(X).j =k}
U {j:AY§)=V AVkj—k = k& Forcel(X)}

Forcelf'(X) := Forcel (X)

U {j:A§)=V A 3k € Forcel, (X).j =k}
U {j:Ay§)=RAVkj—k = kcForcel,(X)}
Forcep(X) = U;>o Forcelr(X)

Rank and Forcing Strategy The definition of force set provides a method for computing
it. As i increases, we calculate Forcel>(X) until it is the same as Force’; '(X). Clearly this
must hold when i < (|N| —|X]) + 1.

If j € Forcep(X) and current position is j, then P can force play from j into X, regardless
of how the opponent moves. (Vertex j itself need not belong to X.) The rank of such a vertex
j is the least index i such that j € Forcel(X).

For each i € Forcep(X) belonging to P, either i € X or there is ¢ — k and k € Forcep(X),
so the forcing strategy for P is to choose a k with the least rank.

Example 5.9 (Force Sets of a Parity Game). V-moves are circled; R-moves are boxed.
Prioities are indicated in red.

Forcel, ({ f})

{r}

{f.9}

{f.9.d}
{f.g.d,c}
{f.9.d,c.b}
{f,9,d,c,b,a}
{f,9,d,¢c,b,a,e}

Since Forcey ({ f }) is the entire vertex set, and f has the least priority which is even, V has
a winning strategy from every vertex. V’s forcing strategy: f+— g, d— g, b~ ¢

S T W N = O

83

CHAPTER 5. GAMES AND TABLEAUX FOR MODAL MU-CALCULUS

Subgames If X C N, then G — X is the result of removing all vertices in X from G, all
edges from vertices in X, all edges into vertices in X.

The subgraph G — X may or may not be a parity game (because not all vertices may be
total). If it is, then G — X is a subgame of G.

Proposition 12. If G is a game and X is a subset of vertices, then the subgraph G —
Forcep(X) is a subgame.

Exercise 5.2. Prove the proposition.

Algorithmic Solution of Finite Parity Games WReg(G) computes G’s winning re-
gions, Wy and Wrg. (The respective memoryless winning strategies can be extracted from the
correctness proof.) Assume the least priority is even; otherwise swap players in the algorithm.

Algorithm WReg(G). Output: Wy and Wg

1. Let v be a G-vertex of the least priority (assumed even). Set X := Forcey ({ v }).
2. If X = N then return Wy := N and Wg := &.
3. Else run WReg(G — X), and let Wy, and W{, be the winning regions.
(a) If V can guarantee transition from v to Wy, U X, i.e.,
{ (@) Mv) =V A W' v—=d ANV e (W, UX), or } then
B) Av) =R A V' .v =V = v e (W, UX)

Wy = W‘//UX
return
Wg = Wp.
(b) Else set X’ := Forceg(W}) in G. Run WReg(G — X'), and let W{, and W7, be
= WRUX'
the winning regions. Return R
Wy = W{.

Example 5.10 (Computing Winning Regions). Parity game G:

Run WReg(G): let winning regions be Wy and Wg. Set X = Forcey({ f}) ={d, f,h,i}.
WReg(G — X) returns regions Wy, = @ and Wy = (G — X).

Since f — h and h € X, return Wy = X and Wg = W,

Parity game G — X:

84

CHAPTER 5. GAMES AND TABLEAUX FOR MODAL MU-CALCULUS

In G — X, Forceg({e}) = (G — X). Hence WReg(G — X)) returns winning regions Wy, = &
and Wp, = (G — X).

Proof of Theorem 5.5: Correctness of WReg(G)

Proof. By induction on n = |N|. Base case n = 1 is trivial. Inductive case. G — X has less
than n vertices. By the induction hypothesis WReg(G — X)) computes winning regions Wy,
and Wp,.

Case 1. V can guarantee transition from v to W, UX iff (a) or (b). Claim: (i) W{,UX C
Wy and (ii) W5 € Wg; this is sufficient since Wi, UW{, UX = N. Thus the memoryless
V-strategy on W{, U X is: 1. On WY, play the winning strategy (thanks to the induction
hypothesis). 2. On X, play the “forcing” strategy, eventually reaching v. 3. From v, move
back to W{,UX. For R, use the memoryless winning strategy given by the induction hypothesis
Proof of Claim (i): If the play eventually remains in WY, then V wins by the induction
hypothesis; otherwise the play passes through v infinitely often, then V wins since the priority
of v, which is the least, is even. (ii) holds because, starting in W}, R can guarantee that the
play remains in W, (because no V-move in G — X can transition to X).

Case 2. R can guarantee transition from v to Wy. Thus v € X’. By the induction
hypothesis WReg(G — X’) computes the winning regions Wy, and Wi;. Claim: (i) WaUX' C
Wg (ii) W{; € Wy. Proof of (i): R can move to Wy, from any move in X', and there he can
guarantee that the play remains in Wp. From a move in Wy, V can choose to move to either
W or X'. In both cases, R wins the play. (ii) is clear since V can guarantee that the play
remains in W{/.

In the worst case, WReg is called 2/V! times; thus running time is exponential in |N|. [

Uniformly Winning Memoryless Strategies Let X C Wy, A V-strategy is uniformly
winning on X just if it is winning for V from every v € X.

Lemma 5.9. Given a parity game, if Wy # & then V has a memoryless strategy that is
uniformly winning on Wy, .

Proof. Exercise O

PARITY is the decision problem: Given a parity game G = (N, —, v, A,), is vg € Wy?

Proposition 13. PARITY € NP Nco-NP

85

CHAPTER 5. GAMES AND TABLEAUX FOR MODAL MU-CALCULUS

Proof. We first show that PARITY is in NP. Guess a uniformly winning V-strategy, which is
succinct i.e. its size is O(|N|). It can be verified in time polynomial in |G| whether vy € Wy.
Claim: vy € Wy iff in the strategy transition graph (i.e. one edge from V-vertices and all edges
from R-vertices), V cannot enter a loop from vy such that the least priority is odd. Suppose
(w.l.o.g.) that the least odd and the largest priorities are 1 and p (even) respectively: just
verify for the subgraphs over

p
U Q_l(i)7 U Q_l(i>7) U Q_l(i)
i=1 i=3 i=p—1
whether they contain a strongly connected component reachable from vy which meets the
priorities 1,3, - - , p respectively.
The complementary problem vy € (N — Wy) is just vg € Wg, which is in NP using the
same argument but with the players swapped.]

One of the best known open problem in the foundations of verification:

Conjecture 5.1. PARITY € P

Determinacy for Finite Parity Games

Theorem 5.6 (Determinacy). Let G = (N, —,vg, A\, Q) be a finite parity game. Then N C
Wy UWR. Further if v € Wy (resp. Wgr) then V (resp. R) has a memoryless winning strategy
from v.

Proof. Suppose the image of Qis {0,1,--- ,p — 1}. Proof is by induction on p. Base case is
trivial. Inductive case: if least priority is odd, swap players. Let HFr be the set of vertices
from which R has a memoryless winning strategy, and let p be a memoryless R-strategy that
is uniformly winning on HFg. It suffices to show that V has a memoryless winning strategy
from every vertex in N — HFg.

Case 1. No vertex in G — H F'r has the least priority, 0. Apply the induction hypothesis to
the subgame G— H F'r, since no vertex in it has priority 0. I.e. G— H Fr can be partitioned into
winning regions WY, and W, in which memoryless winning strategies exist for the respective
players. Now Wr = HFr U W} and Wy = Wy,; G is thus partitioned and the respective
players have the appropriate memoryless winning strategies.

Case 2. G — HFp contains a vertex with priority 0. Claim: V can guarantee that,
starting from a vertex in G — H FR, the play remains there. Now either the play stays in
(G — HFR) — Forcey (271(0) — HFR) or it visits Forcey (Q271(0) — HFR) infinitely often. In
the former case, V wins by the induction hypothesis with a memoryless strategy; in the
latter, V wins by infinitely many visits to a vertex with priority 0, also with a memoryless
strategy. [

Additional Topics

- Equivalence of alternating parity automata and modal mu-calculus (word languages, ranked
trees, and graphs).

- Understanding alternation of fixpoints:
wYr.vZy. - uYpwZny. oY1, Yo, Zh, - Zy)

In terms of expressive power, the alternation depth hierarchy is strict.

86

CHAPTER 5. GAMES AND TABLEAUX FOR MODAL MU-CALCULUS

- AFMC contains CTL, but not CTL*. Model checking AFMC is P-complete.

87

CHAPTER 5. GAMES AND TABLEAUX FOR MODAL MU-CALCULUS

Problems

5.1 This question proves the basic result: modal mu-calculus is bisimulation invariant.

First a definition. We say that a relation B C S; x So between the states of labelled
transition systems 7; and T3, where 7; = (S;, —>,p;) (i = 1,2), is a bisimulation just if
whenever (s,t) € B

e for all P € Prop, s € p1(P) iff t € pa(P)
o forallae L

— for all &' € Sy, if s —=; s’ then there exists a state ¢ € Sy such that t — ¢’ and
(¢',t') € B, and

— for all t/ € Sy, if t —25 t’ then there exists a state s’ € S; such that s —=; s’ and
(¢',t') € B.

Two states s and t are bisimulation equivalent, written s ~7; 7, t, just if there is a bisimulation
relation B such that (s,t) € B.

Prove that if s ~7; 7, t then for all modal mu-calculus sentences ¢, we have s E7t ¢ iff

tET .
5.2 Prove the Signature Decrease Lemma: Whenever the left-hand side of the relation in
question is defined, we have:

(a) sigh(s,p1 V p2) = sigh(s, ¢;), for some ¢ € {1,2}.

(b) sigh(s, 1 A p2) = max(sigh(s, 1), sigh(s, ¢2))
(c) sigh(s, (a)py1) = sigh(t, 1), for some t such that s % ¢
(d) sigh(s,[a]e1) > sigh(t, 1), for all t such that s 5 t
(e) Assuming Z; is a v-variable, sigh(s,vZ;.1;) = sigh(s, Z;) = sigh(s,v;).
(f) Assuming Z; =Y} is a p-variable

(a) sigh(s, pYj.x;) =j—1 sigh(s,Y;)
(b) sigh(s, Y;)(7) > sigh(s, x;)(j) and sigh(s, ¥;) =3_1 sig"(s, x;) (and so sigh(s, ¥;) >
sigh (s, xj))-

5.3 Prove the following.
(i) Every infinite path in a pre-tableau passes through a (mod)-rule infinitely often.

(ii) Let ¢ = (V,—,A) be a tableau and suppose v € V. Then for all P € Prop we have
{P,~P} & A(v).

88

CHAPTER 5. GAMES AND TABLEAUX FOR MODAL MU-CALCULUS

5.4 Show in the proof of the Soundness Lemma 5.7 there is in fact a memoryless strategy
for verifier.

Hint: you need to address the following issue. If between two (mod)-rules a disjunction,
say o V 11, is broken down more than once with a different disjunct chosen, what will a
successful strategy for verifier pick without referring to the history of the play so far?

5.5 Prove that every mu-calculus model checking game g@(& ¢) determines an equivalent
parity game namely define a parity game gg[s,go] such that Player P has a memoryless
winning strategy for g‘?(s, @) if and only if Player P has a memoryless winning strategy for

ACRE

5.6 Assume the notations of the lecture course. Let sg be a state of a finite labelled transition
system T. WLOG let ¢ be a closed formula in positive normal form with no occurrences of
atomic propositions. Suppose ¢ has n fixpoint variables; and m least fixpoint variables
Y1, -+, Yy, naming subformulas pYi.x1, -+ , #Ym - Xm in decreasing order of size.

Fix a memoryless V-strategy o for the game GL(so,). A signature assignment is an
assignment S of signatures (of length m) to each position (¢,1). We say that a signature
assignment is o-consistent just if for each position u

if u = (s,Y;) then S((s,x;)) <; S(u) and S((s,x;)) =j—1 S(u)
if 0 = (5, 1Y) then S((5,Y})) =5-1 S(u)
if u is a V-position then S(o(u)) < S(u)

if u is a R-position then for all successor vertices v we have S(v) < S(u).

(i) Prove that s FL ¢ if, and only if, there is a memoryless V-strategy o and a o-consistent
signature assignment S.

(ii) Hence prove that the modal mu-calculus model checking problem is in NP N co-NP.

5.7 The model checking problem of the modal mu-calculus can be given a game characteri-
zation:

(a) s FL ¢ iff player V has a memoryless winning strategy for G{. (s, ¢).
(b) s¥L ¢ iff player R has a memoryless winning strategy for G (s, ¢).
In the lectures, we proved (i). This question proves (ii).
Henceforth we fix a transition system 7' and a normal formula . Let
VYl'Xla VYQ'X?) T VYme

be the set of greatest fixpoint formulas in ¢, again in decreasing order of size.

We define valuations Vjy, - - -, V;, by induction:
Vo =V
Viri = VilZip1 = losniZioa il

89

CHAPTER 5. GAMES AND TABLEAUX FOR MODAL MU-CALCULUS

Thus we can make sense of ||1[J||‘:Cn C S, for any ¥ € Sub(yp).

Given a signature r = oy, -+ , ay, and a valuation V, we define v-valuations? Voo, Vo by
induction:
Vgo= vV
Viie = Vi'lBi1/Zi]
where

lois1 Ziv1 iy if 01 = 1
Ei—i—l = a; T ¢ .
IvY; 7 .x; ||V;r if 011241 = VY]
Recall that if s & HVZ.@[J”‘T/ then there is an ordinal « such that s ¢ ||1/Z°‘.1/}||€ and for all
B < a, we have s € ||1/Zf3.¢||‘T/.

Let ¢ € Sub(p). If s & [¢]1, we define the v-signature of (s, 1), written sig” (s,), to be the
<-least signature 7 = a - - - ay, such that s & [,

(a) Prove the Signature Decrease Lemma: Whenever the left-hand side of the equation or
inequality is defined:

i sig”(s, 1 N\ p2) = sig" (s, 1) or sig”(s, p1 A pa) = sig” (s, pa)
ii. Sigy(sa P11V @2) > max(sig”(s, (701)7 SigV(S, 302))
iii. sig¥(s, [a]p1) > sig¥(t, 1), for some t such that s = ¢

iv. sig”(s,(a)p1) > sig”(t, 1) for all ¢ such that s % ¢, or s does not have an a-
transition

v. Assuming Z; is a p-variable, sig” (s, uZ;.;) = sig”(s, Z;) = sig”(s, ;)

vi. Assuming Z; =Y is a v-variable, sig”(s,vYj.x;) is the same as sig”(s,Y) on the
first j — 1 components

vii. Assuming Z; = Y; is a v-variable, sig¥(s,Y;) > sig”(s,x;), and the first j — 1
components of the two signatures are the same but not the j-component.

(b) Hence prove that if s %T, o then R has a memoryless winning strategy.

5.8 Let ¢ be a monotonic function on a powerset 2°. Prove that for every U C S,

UCvXpX) & UCepX.(UUp(X))).

2This is dual to, and not to be confused with, the p-valuations as defined in the lectures.

90

Chapter 6

Tree Automata, Rabin’s Theorems
and S2S

Synopsis

Biichi tree automata. Deterministic Muller tree automata are more expressive. Complemen-
tation of parity tree automata via determinacy of parity games. Rabin’s Basis Theorem. S2S:
syntax and semantics. Expressivity of S2S: examples. Rabin Tree Theorem: S2S is decidable.

6.1 Trees and Tree automata

We are interested in infinite (full) binary trees whose nodes are labelled by letters of an
alphabet . Formally a X-labelled binary tree is a function ¢ : {0,1}* — X i.e. the label of
the tree ¢t at node u € { 0,1 }* is t(u).

.6

00 / \ 01
00/ \ 01 10/ \ 11
[

We write T% for the collection of ¥-labelled binary trees. Henceforth by a tree, we mean
an element of TL. A tree language is just a subset T" C TE. A mazimal path (or, simply,
path) of a tree t is a sequence m = uguj ug--- of tree nodes whereby uy = € (the root of
the tree) and w;+1 = u; 0 or w41 = u; 1, for every @ > 0. The w-word determined by 7 is
t(uo) t(ul) t(’u,g) S eV

Definition 6.1. A tree automaton A (for X-labelled binary trees) is a tuple (Q, X, go, A, Acc),
where

- (Q is the finite set of states, gy is the initial state
- ACQ XXX @ x(Q is the transition relation, and

- Acc is the acceptance condition (such as Biichi, Muller, Rabin and Parity).

91

CHAPTER 6. TREE AUTOMATA, RABIN’S THEOREMS AND S2S

The automaton is deterministic just if for every ¢ and a, there is at most one transition (or
quadruple) in A the first two components of which are ¢ and a.

A run-tree of a tree automaton A over a tree t is an assignment of states to tree nodes
i.e. a function p: {0,1}* — @ such that

- p(€) = qo, and
- for all w € {0,1}*, (p(u),t(u), p(u0),p(ul)) € A.

Note that a run-tree is a ()-labelled binary tree.

Let Acc be an acceptance condition for automata over w-words. A run-tree p is accepting
w.r.t. condition Acc just if every path of p is accepting w.r.t. Acc; we say that a tree automa-
ton A = (Q, %, qo, A, Acc) accepts a given tree ¢ just if there is run-tree of A over ¢ which is
accepting w.r.t. Acc. Thus we have Biichi tree automata, Muller tree automata, Rabin tree au-
tomata, Parity tree automata, etc. For example, a Biichi tree automaton A = (@, X, qo, A, F)
accepts a tree t just if there exists a run-tree p of A over ¢t such that in every path of p, a
final state from F' occurs infinitely often.

The tree language recognised by the tree automaton A, denoted L(A), is the set of trees
accepted by A.

Example 6.1. Consider the language T of { a,b }-labelled binary trees ¢ such that ¢ has a
path with infinitely many a’s. The Biichi tree automaton ({ ¢a, s, T },{a,0}, 90,2, {qa, T })
where

(Q*aa) = {(Qaa—r)7 T Qa)}
A (b)) = {(@ 1) (T,a)}
(T,%) — {(T,T)}

recognises the language 77 (where * mean a or b). Clearly the automaton accepts every tree
from the state T. Observe that every run-tree has a single path labelled with states ¢, (and
possibly ¢), and the rest of the run-tree is labelled with T. There are infinitely many states
qq on this path if and only if there are infinitely many vertices labelled by a on the path of the
input tree. Thus the non-deterministic automaton descends the input tree ¢ guessing such a
path.

Example 6.2. Consider the language Ty := T¢_ ,, \ T1. Le. Ty consists of {a,b }-labelled
binary trees t such that every path of ¢ has only finitely many a. Define a deterministic Muller
tree automaton ({ qa, qp },{ @, b}, qa, A, {{q }}) where

A { (@0) = {(60:00)}
(@0) = (@ @)}

Then, given a tree t, for each path 7 of ¢, there are infinitely many occurrences of b (re-
spectively a) on 7 if and only if the corresponding path of the unique run-tree p over ¢ has
infinitely many occurrences of ¢, (respectively qg); it follows that ¢ € T if and only if for
every path in the unique run-tree, the set of infinitely occurring states is { ¢, }. Hence the
automaton recognises T5.

In constrast to automata over w-words, deterministic Muller tree automata and non-
deterministic Biichi tree automata are not equivalent.

Theorem 6.1. The language To (of Example 6.2) is not recognisable by any Biichi tree
automaton, whether deterministic or not.

92

CHAPTER 6. TREE AUTOMATA, RABIN’S THEOREMS AND S2S

Proof. Assume, for a contradiction, that the Biichi tree automaton A = (Q,{a,b},qo, A, F)
recognises Ts. Let n = |F| + 1. Consider the following { a, b }-labelled binary tree ¢:

a uwe(1to)forie{l,---,n}
t:u—
b otherwise

Since t € Tb, there is a accepting run-tree p of A on t. On the path 1%, a final state
is visited, say, at vg = 1™°. On the path 1™°01%, final states are visited infinitly often.
Suppose a final state is reached, for the first time after 0, at v1 = 1™°01™!. By repeated
the argument, we obtain visits to final states at the nodes vg = 1", vy = 1m0 01" --- v, =
1m0 (1™ 0---01™». Now, there exist ¢ < j such that the same final state appears at v; and
vj. It follows from the definition of ¢ that between v; and v;, at least one label a occurs (at
the node v; 0).

Construct a new tree t' by copying the (respective labels of the) part between v; and v;
repeatedly. Similarly we construct the corresponding run-tree p’ form p. Thus A also accepts
t' i.e. t' € Ty, but in ¢, infinitely many a occur on the new path 7, which is a contradiction. []

6.2 Parity tree automata

A parity tree automaton is a tuple A = (Q, 3, qo, A,) with priority map Q : Q@ — {0,--- ,k }.
It accepts a tree t just if there is a run-tree p of A over t such that for every path of p, the
least priority that occurs infinitely often is even.

Example 6.3. Consider the parity tree automaton ({ ¢u,q },{a,0},qa, A,) where A is as
defined in Example 6.2, and €2 : g, — 1; g, — 2. For every path in a given tree, there are only
finitely many occurrences of a if, and only if, the there are finitely many occurrences of ¢, in
the corresponding path of the (unique) run-tree, which is so if, and only if, the least priority
that occurs infinitely often is 2. Thus the automaton recognises T5.

Theorem 6.2. (i) There is algorithm that, given a parity tree automaton, constructs an
equivalent Muller tree automaton.

(ii) There is algorithm that, given a Muller tree automaton, constructs an equivalent Parity
tree automaton.

Proof. Exercise. O

Closure properties of parity tree automata

Lemma 6.1 (Closure under Union). Given parity tree automata Ay and Az, one can construct
a parity tree automaton recognising L(A1) U L(As).

Proof. Assume that the state-sets Q1 and Q2 of Ay and As respectively are disjoint, with
initial states g; and g2. We define the new automaton with state-set { go } UQ1 U Q2 with new
initial state go of prioirty 0 (say). Take all transitions of A; and Asg; add, for every transition
(q1,a,7m1,72) or (g2, a,ry,r2), the new transition (qo, a,r1,72). O

Given trees s € Tf,t € TS, define the tree s x t € TF 5, by s x t(u) = (s(u),t(u)). The
Y -projection of s x t is the tree t. Given a language T consisting of (I" x X)-labelled binary
trees, define
m(T):={te% |Is:sxteT}

93

CHAPTER 6. TREE AUTOMATA, RABIN’S THEOREMS AND S2S

Lemma 6.2 (Closure under Projection). Given a parity tree automaton recognising the lan-
guage T of (T' x X)-labelled binary trees, one can construct a parity tree automaton recognising

s (T).

Proof. Given a parity tree automaton A over I' x X, define a parity tree automaton B over X
which does, in any step, the following. For input letter b € ¥ guess the I'-component a and
proceed by an A-transition for the input letter (a,b). The state set is not changed. O

Notation Following Vardi and Kupferman, we use acronym XY Z where

- X ranges over automaton modes: deterministic, non-determinisitc and alternating

- Y ranges over acceptance / winning conditions: Biichi, Muller, Rabin, Streett and Parity
- Z ranges over word and tree automaton.

For example, DMW and NPT are shorthand for deterministic Muller word automaton and
non-deterministic parity tree automaton respectively.

6.3 Parity Games and Complementation

Acceptance Parity Game Given a NPT A = (Q,3,q7,A,Q) and a tree ¢, we define a
parity game, called the acceptance parity game, Gay = (N, E, (€,qr), A, Q') as follows. Writing
Ny :=A"Y(V) and Ny := A"} (R)

- NV:{Ovl}* XQ

- NR:{()?l}* X (QXQ)

for each vertex (v, q) € Ny, for each transition (g, a, qo,q1) € A with t(v) = a, we have

((U7Q)7 (’U, (QO7 Q1)) ek

for each vertex (v, (qo,q1)) € Ng, we have

((Ua <QU7 ql))v (U 0,(]0)>, ((Ua (QOa ql))? (U 1,(]1)) € FE.

- (v,q) = Qq) and (v, (g0, q1)) — max(2(qo), 2(q1))-

It follows from the definition of the game G4 ; that there is a one-one correspondence between
accepting run-trees of A over ¢ and winning strategies for Verifier in G4 ;.

Lemma 6.3 (Run). Verifier has a winning strategy in Gay from vertex (e, qr) if and only if
te L(A).

Given an “input-free” parity tree automaton A = (Q, qr, A, Q) where A C Q X Q X Q, we
define a simpler parity game G4 = (N, E,qr, A, Q') in which the tree ¢ and the parameter w
in the game positions are suppressed:

- Ny =0Q

- Np=QxQ

E={(¢.(d,q"),(d.d").d), (¢ d").d") | (0,4, q") € A}
- g— Q(q) and (go, 1) — max(Q(qo), 2(q1))-

94

CHAPTER 6. TREE AUTOMATA, RABIN’S THEOREMS AND S2S

Lemma 6.4 (Run: input-free). Verifier has a winning strategy in G4 from vertex qy if and
only if the tree automaton A has an accepting run.

Theorem 6.3 (Memoryless Determinacy). Let G be a parity game. From every vertex of G,
one of the two players has a memoryless winning strategy.

Proof. In descriptive set theory, the Borel determinacy theorem (Martin, 1975) states that
every Gale-Stewart game whose winning set is a Borel set is determined. Parity games lie
in the third level of the Borel Hierarchy, hence they are determined. Proofs of memoryless
determinacy of parity games can be found in (Emerson and Jutla, 1991; Mostowski, 1991;
Zielonka, 1998). O

A major theorem of the chapter is the closure of NPT under complementation. The
result was first obtained by Michael Rabin in a landmark paper (Rabin, 1969). Gurevich
and Harrington (1982) used games to simplify the proof; they proved a bounded memory
theorem for the Rabin condition. A further simplification for the parity condition was proved
independently by Emerson and Jutla (1991) and by Mostowski (1991).

Theorem 6.4 (Closure under Complementation). There is an algorithm that, given a parity

tree automaton A, constructs a Muller tree automaton that accepts exactly the trees rejected
by A.

The proof relies on two fundamental results:

(i) memoryless determinacy of parity games (Theorem 6.3), and

(ii) closure under complementation of NPW.

Proof. Let A = (Q,%,A,q,2) be a NPT of ¥-labelled binary trees. Then it follows from
Lemma 6.3 that a tree t € (TE\ L(A)) if, and only if, Verifier does not have a winning strategy
in the acceptance game G4 ;. Thanks to the Memoryless Determinacy Theorem for Parity
Games (Theorem 6.3), t € (T% \ L(A)) if, and only if, Refuter has a memoryless winning
strategy in G4 ;.

We aim to transform Refuter’s memoryless winning strategy to a NMT B that recognises
the complement of L(A). A memoryless strategy for Refuter is a function Ng — Ny that
maps a given vertex (v, (qo,q1)) € Ng to one of (v0,qp) and (v1,q1). A key observation is
that such a strategy for Refuter can be represented as a LocStr-labelled binary tree

f:{0,1}* — LocStr

where LocStr is the finite set ((Q x Q) — {0,1}) of local strategies.

Take such a strategy function f and consider the tree ¢ x f : {0,1}* — ¥ x LocStr, in
which the node u has label (t(u), f(u)). Let ¥’ = X x LocStr x {0,1}. Then an w-word
over ', o = (ag, fo,do) (a1, f1,d1) -+, such that each a; = t(dy---d;) and f; = f(do---d;),
represents a path €,dy,dydy,--- in the tree t x f. We say that a play over « is an w-word
(vo, qo) (vo, mo) (v1,q1) (vi,m1) -+ € (Ny - Ng)¥ such that
- UO = €
- (qi)ai7mi) S A

- film;) = d; and ¢i41 = q% where m; = (¢°, ql).

95

CHAPTER 6. TREE AUTOMATA, RABIN’S THEOREMS AND S2S

Thus a play over « is just a play in the acceptance game G4 whereby Refuter plays according
to strategy f and which determines a path « in the tree t x f.

It is straightforward to construct a NPW C' that accepts exactly those words a over ¥/
such that there is a play over « that satisfies the parity condition. By McNaughton’s Theorem,
there is a NMW C that accepts the complement of this language. I.e. C accepts those words
a € ¥'* for which all plays over « violate the parity condition.

A strategy function f is not winning for Refuter in G4, if, and only if, there is a play
which is winning for Verifier when Refuter plays according to f. This play traces out a path
of the tree ¢t x f. It follows that automaton C' would accept such a path qua w-word over X'.
But if f is winning then none of the paths is accepted by C. Le. every such path is accepted
by C. Therefore f is a winning strategy for Refuter if, and only if, each path of the tree t x f
is accepted by C.

Thus the NMT tree automaton B recognising the complement of A consists of two au-
tomata. Given an input tree ¢, the first constructs a strategy function f by guessing the
corresponding local strategy at each node; the second runs C along each path in the tree
t x f. Thus the automaton B accepts a tree if, and only if, Refuter has a winning memoryless
strategy function f. This completes our proof of Theorem 6.4. O

Even though parity tree automata can be complemented, they are not determinisable.
The following result says that there is no hope for determinisation.

Lemma 6.5. Consider the language consisting of { a,b }-labelled binary trees t such that t
has at least one vertex labelled with a. The language is not recognisable by a deterministic
tree automaton with any of the acceptance conditions we have considered.

6.4 The Non-emptiness Problem

Recall that a noneempty regular w-language contains an ultimately periodic w-word. We show
a corresponding result for non-empty tree languages recognisable by parity tree automata.

Definition 6.2. A tree ¢ € T% is said to be regular just if there is a deterministic finite
automaton (DFA) equipped with output, which gives, for every w € { 0,1 }*, the label t(w) at
node w. The automaton has the form B = (Qp,{0,1},q¥, 05, f5) where 65 : @x{0,1} = Q
is the transition function, and fg : @p — X is the output function.

Lemma 6.6. A tree t € T is reqular if and only if there is a deterministic input-free tree
automaton C with state-set QQ x % such that the X-projection of the unique run-tree of C is
the tree t.

Theorem 6.5 (Rabin Basis Theorem). (i) The emptiness problem for parity tree automata
15 decidable.

(ii) If a parity tree automaton accepts some tree then it accepts a regular tree.

Proof. (i) Let A = (Q,%,q0,A,Q) be a NPT. We define an input-free NPT A" = (Q X
Y {q} xX,—, A" Q) which non-deterministically generates an input tree ¢, and processes t
like A. Note that A’ has possibly several initial states. By Lemma 6.4, A’ has an accepting
run from (qo, a) if, and only if, Verifier has a winning strategy from (qo, a) in the parity game

Gar.

96

CHAPTER 6. TREE AUTOMATA, RABIN’S THEOREMS AND S2S

(ii) Suppose L(A) # @ i.e. A’ has an accepting run. It follows that in the parity game G 47,
Verifier has a memoryless winning strategy from (qo,a). The memoryless strategy induces
a deterministic tree automaton as a “subautomaton” of A’; where for each state (¢,a), only
one transition exists for the continuation of the run. This tree automaton generates a regular
tree, which is accepted by A, by construction of A’.

O

6.5 S2S and Rabin’s Tree Theorem

The Logical System S2S The logical system S2S (monadic second-order logic of 2 suc-
cessors) is defined over first-order variables x,y,--- ranging over {0,1}* (nodes in the full
binary tree) and over second-order variables X,Y,--- ranging over 2{01}" (sets of nodes of
the full binary tree).

Terms are built up from first-order variables and € by the two successors, represented as
concatenation with 0 and 1 respectively.

Let s and t are terms. The atomic formulas are
- X(s) “sisin X7
-s<t “sisaprefixof t”
-s=t “sisequal tot”.
The formulas of S2S are built up from the atomic formulas using the standard boolean con-
nectives, and closed under first- and second-order quantifiers 3 and V.

The structure of the infinite full binary tree is to = (B*, €, Sp, S1) where S; is the i-th

successor function: Sp(u) = v0 and S1(u) = ul for u € B*. The theory S2S is the set of
S2S-sentences that are true in to.

Semantics of S2S S2S-formulas (X1, -+ , X,,), with free 2nd-order variables from X7, -+, X,,,
are interpreted in expanded structures t = (to, P1,--- , P,). We write

tE o(X1,-,X,)

just if ¢ satisfies ¢(X). We identify ¢ with the infinite tree ¢t € %, whereby for each u € B*,
we have
t(u) = (b1, - ,b,) whereb; =1 < u € P,

Given an S28 formula ¢(X) the tree language defined by ¢(X) is the set
Lig) = {t e |tE ¢}
Theorem 6.6. A tree language is S2S-definable if and only if it is recognisable by a NPT.

Theorem 6.7 (Rabin Tree Theorem). The theory S2S is decidable.

97

CHAPTER 6. TREE AUTOMATA, RABIN’S THEOREMS AND S2S

98

Bibliography

J. Bradfield and C. P. Stirling. Modal logics and mu-calculi. In A. Ponse and S. Smolka,
editors, Handbook of Process Algebra, pages 293-332. Springer-Verlag, 2001.

J. Bradfield and C. P. Stirling. Modal mu-calculi. In A. Ponse and S. Smolka, editors,
Handbook of Modal Logic, pages 721-756. 2007. Studies in Logic and Practical Reasoning
Volume 3.

J. R. Biichi. Weak second order arithmetic and finite automata. Zeitschrift fir Maths. Logik
und Grundlagen Maths., 6:66-92, 1960a.

J. R. Biichi. On a decision method in restricted second order arithmetic. In Proc. International
Congress on Logic, Methodology and Philosophy of Science, pages 1-11. Stanford Univ.
Press, 1960b.

J. R. Biichi. Weak second order arithmetic and finite automata. In Proc. Int. Congr. Logic,
Methodology and Philosophy of Science, pages 1-12. Stanford University Press, 1962.

Thomas Colcombet and Konrad Zdanowski. A tight lower bound for determinization of
transition labeled biichi automata. In ICALP(2), pages 151-162, 2009.

Lawrence C. Eggan. Transition graphs and the star-height of regular events. Michigan
Mathematical Journal, 10:385-397, 1963.

C. C. Elgot. Decision problems of finite automata design and related arithmetics. Trans.
Amer. Math. Soc., 98:21-52, 1961.

E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy. In FOCS,
pages 368-377, 1991.

H. B. Enderton. Elements of Set Theory. Academic Press, 1977.

Paul Gastin and Denis Oddoux. Fast LTL to biichi automata translation. In CAV, pages
53-65, 2001.

Erich Gradel, Wolfgang Thomas, and Thomas Wilke. Automata, Logics and Infinite Games.
Springer-Verlag, 2002. LNCS Vol. 2500.

Y. Gurevich and L. Harrington. Tree, automata and games. In STOC, pages 60—65, 1982.

Moritz Hammer, Alexander Knapp, and Stephan Merz. Truly on-the-fly LTL model checking.
In TACAS, pages 191-205, 2005.

99

BIBLIOGRAPHY

Kosaburo Hashiguchi. Algorithms for determining relative star height and star height. Inf.
Comput., 78(2):124-169, 1988.

Neil Immerman. Descriptive Complexity. Springer, New York, 1999. Graduate Texts in
Computer Science.

H. W. Kamp. The temporal logic of programs. PhD thesis, University of California, Los
Angeles, 1968.

B. Khoussainov and A. Nerode. Automata Theory and its Applications, volume 21 of Progress
in Computer Science and Applied Logic. Birkhauser, 2001.

Daniel Kirsten. Distance desert automata and the star height problem. ITA, 39(3):455-509,
2005.

D. Kozen. Theory of Computation. Springer-Verlag, 2006.

Wanwei Liu and Ji Wang. A tighter analysis of piterman’s biichi determinization. Inf. Pro-
cess. Lett., 109:941-945, 2009.

Christof Loding and Wolfgang Thomas. Alternating automata and logics over infinite words.
In IFIP TCS, pages 521-535, 2000.

D. A. Martin. Borel determinacy. The Annals of Mathematics, 102(2):363-371, 1975.

R. McNaughton. Testing and generating infinite sequences by a finite automaton. Information
and Control, 9:521-530, 1966.

A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular expressions with
squaring requires exponential time. In Proc. 13th IEEE Symp. on Swithcing and Automata
Theory, pages 125-129, 1972.

A. W. Mostowski. Games with forbidden positions. Technical Report 78, 1991.

D. Muller. Infinite sequences and finite machines. In Proc. Jth Ann. IEEE Symp. Switching
Circuit Theory and Logical Design, pages 3—16, 1963.

D. Niwinski and I. Walukiewicz. Games for the mu-calculus. Theoretical Computer Science,
163:99-116, 1997.

C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

J. P. Pécuchet. On the complementation of biichi automata. Theoretical Computer Science,
47:95-98, 1986.

Nir Piterman. From nondeterministic biichi and streett automata to deterministic parity
automata. Logical Methods in Computer Science, 3, 2007.

Amir Pnueli. The temporal logic of programs. In Proc. 18th IEEE Symp. Found. of
Comp. Sci., pages 46-57, 1977.

M. O. Rabin. Decidability of second-order theories and automata on infinite trees.
Trans. Amer. Maths. Soc, 141:1-35, 1969.

A. Rabinovich. A proof of Kamp’s theorem. In CSL, pages 516-527, 2012.

100

BIBLIOGRAPHY

S. Safra. On the complexity of w-automaton. In Proc. 29th IEEE Symp. Foundations of
Comp. Sc., pages 319-327, 1988.

Walter J. Savitch. Relationships between nondeterministic and deterministic tape complexi-
ties. Journal of Computer and System Sciences, 4:177-192, 1970.

Sven Schewe. Tighter bounds for the determinisation of biichi automata. In FoSSaCS, pages
167-181, 2009.

Michael Sipser. Introduction to the Theory of Computation. Thomson Course Technology,
2005.

A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation problem for biichi automata
with applications to temporal logic. Theoretical Computer Science, 49:217-237, 1987.

A. Prasad Sistla and Edmund M. Clarke. The complexity of propositional linear temporal
logics. J. ACM, 32(3):733-749, 1985.

C. P. Stirling. Bisimulation, model checking and other games. Notes for Mathfit instructional
meeting on games and computation, Edinburgh, 1997.

C. P. Stirling. Modal and Temporal Properties of Processes. Springer-Verlag, 2001. Texts in
Computer Science.

Robert S. Streett and E. Allen Emerson. An automata theoretic decision procedure for the
propositional mu-calculus. Inf. Comput., 81(3):249-264, 1989.

R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Computing, 1:146-160,
1972.

W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, Volume B, pages 134-191. Elsevier, 1990.

W. Thomas. Languages, automata and logic. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, volume 3. Springer-Verlag, 1997.

W. Thomas. Solution of Church’s problem: A tutorial. In K. Apt and R. van Rooij, editors,
New Perspectives on Games and interaction, volume 4. Amsterdam University Press, 2008.

M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In Proceedings of
Banff Higher Order Workshop, pages 238-266. Springer-Verlag, 1996. LNCS Vol. 1043.

M. Y. Vardi. Branching vs linear time: final showdown. In ETAPS 2001. Springer-Verlag,
2001.

1. Walukiewicz. Notes on the Propositional Mu-calculus: Completeness and Related Results.
BRICS NS. BRICS, Computer Science Department, University of Aarhus, 1995.

Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications to automata
on infinite trees. Theor. Comput. Sci., 200(1-2):135-183, 1998.

101

BIBLIOGRAPHY

102

Appendix A

Ordinals and Transfinite Induction:
A Primer

Everybody is familiar with the set w = {0,1,2,---} of finite ordinals or natural numbers. A
standard mathematical tool is the Principle of Mathematical Induction on this set. How does
one count beyond the finite ordinals? Is there an associated induction principle?

Ordinals are certain sets of sets.

- There are two kinds: successors and limits.
- They are well-ordered.
- There are a lot of them.

We can do induction on them, using the Principle of Transfinite Induction.

A good reference is Enderton’s book (FEnderton, 1977).
We assume the axioms of Zermelo-Fraenkel set theory. It is impossible to understand
ordinals and transfinite induction properly outside the context of set theory.

Definition A.1. (i) A set C of sets is said to be transitive just if A € C whenever A € B
and B € C. Equivalently C is transitive if every element of C is also a subset of C

ie. C C2C.
(ii) An ordinal is defined to be a set A such that A is transitive, and every element of A is
transitive. We use a, 3,7, - to refer to ordinals.

There are several equivalent definitions of ordinals. It follows that

(i) every element of an ordinal is an ordinal

(i) every transitive set of ordinals is itself an ordinal.

The collection of all ordinals is not a set, but a proper class.

Ordinals are well-ordered A binary relation < on a set A is a linear order if it satisfies:
(i) Irreflexivity: Ve € A.—(z < z)

(i) Transitivity: Vz,y,z € A. e <y N y<z sz <z

(i) Trichotomy: Vz,y € A.x <y Vy<zxz Vzr=y

103

APPENDIX A. ORDINALS AND TRANSFINITE INDUCTION: A PRIMER

A binary relation < on a class S is well-founded just if every non-empty subset of S has a
<-minimal element.

For ordinals «, 3, define a < 3 just if o € 8. It follows that every ordinal is equal to the
set of all smaller ordinals i.e. « = {f:8<a}.

Proposition 14. (i) < is a well-founded linear ordering on the class of ordinals.

(i) If a is an ordinal, so is o U {«a}, called the successor ordinal of o, which is denoted
a+1.

(iii) If A is a set of ordinals then |J A is an ordinal; and it is the supremum of the ordinals
mn A under <.

An ordinal is called a successor ordinal if it is of the form « + 1; otherwise it is a limit
ordinal. For example, the smallest few ordinals are

= J

= {7}

= {2.{2}}

= {o{g}{2,{a}}}

SCI RS
|

The first infinite ordinal isw := {0,1,2,--- }. The smallest limit ordinal is 0, the next smallest
is w. In fact there are uncountably many countably infinite ordinals:

wwt+lw+2, - wtw=w-2,--- jw-3, -,

60 — ww R
The set of all countable ordinals is the first uncountable ordinal, written w;.
Principle of Transfinite Induction To prove that “for all ordinals «, the property H,
holds”, we establish the following:

(i) Successor ordinal o + 1: Assuming that H, holds, then H,41 holds.
(ii) Limit ordinal X\: Assuming that H, holds for all &« < A, then H) holds.

The validity of the principle ultimately rests on the well-foundedness of the relation €.

104

	Automata, Logic and Games
	Aims and Prerequisites
	Motivation
	Example: Modelling a Lift Control

	Büchi Automata
	Definition and Examples
	Closure Properties
	-Regular Expressions
	Decision Problems and their Complexity
	Problems

	Linear-time Temporal Logic
	Motivating Example: Mutual Exclusion Protocol
	Kripke Structures
	Syntax and Semantics
	Translating LTL to Generalised Büchi Automata
	The LTL Model Checking Problem and its Complexity
	Expressive Power of LTL
	Problems

	S1S
	Introduction
	The logical system S1S
	Semantics of S1S
	Büchi-Recognisable Languages are S1S-Definable
	S1S-Definable Languages are Büchi-Recognisable
	The Synthesis Problem
	Problems

	Modal Mu-Calculus
	Knaster-Tarski Fixpoint Theorem
	Syntax of the Modal Mu-Calculus
	Labelled Transition Systems
	Syntactic Approximants Using Infinitary Syntax
	Intuitions from Examples
	Alternation Depth Hierarchy
	An Interlude: Computational Tree Logic (CTL)
	Problems

	Games and Tableaux for Modal Mu-Calculus
	Game Characterisation of Model Checking
	Proof of the Fundamental Semantic Theorem
	Tableaux for modal mu-calculus
	Parity Games
	Solvability and Determinacy for Finite Parity Games
	Problems

	Tree Automata, Rabin's Theorems and S2S
	Trees and Tree automata
	Parity tree automata
	Parity Games and Complementation
	The Non-emptiness Problem
	S2S and Rabin's Tree Theorem

	Bibliography
	Ordinals and Transfinite Induction: A Primer

