
Automata, Logic and Games

C.-H. L. Ong

June 12, 2015

2

Contents

0 Automata, Logic and Games 1
0.1 Aims and Prerequisites . 1
0.2 Motivation . 2
0.3 Example: Modelling a Lift Control . 2

1 Büchi Automata 5
1.1 Definition and Examples . 5
1.2 Closure Properties . 8
1.3 ω-Regular Expressions . 11
1.4 Decision Problems and their Complexity . 12
1.5 Determinisation and McNaughton’s Theorem 16
Problems . 22

2 Linear-time Temporal Logic 25
2.1 Motivating Example: Mutual Exclusion Protocol 25
2.2 Kripke Structures . 26
2.3 Syntax and Semantics . 27
2.4 Translating LTL to Generalised Büchi Automata 30
2.5 The LTL Model Checking Problem and its Complexity 33
2.6 Expressive Power of LTL . 38
Problems . 40

3 S1S 45
3.1 Introduction . 45
3.2 The logical system S1S . 45
3.3 Semantics of S1S . 46
3.4 Büchi-Recognisable Languages are S1S-Definable 48
3.5 S1S-Definable Languages are Büchi-Recognisable 49
Problems . 51

4 Modal Mu-Calculus 53
4.1 Knaster-Tarski Fixpoint Theorem . 53
4.2 Syntax of the Modal Mu-Calculus . 56
4.3 Labelled Transition Systems . 57
4.4 Syntactic Approximants Using Infinitary Syntax 58
4.5 Intuitions from Examples . 60
4.6 Alternation Depth Hierarchy . 61
4.7 An Interlude: Computational Tree Logic (CTL) 62

i

ii CONTENTS

Problems . 65

5 Games and Tableaux for Modal Mu-Calculus 67
5.1 Game Characterisation of Model Checking . 67
5.2 Proof of the Fundamental Semantic Theorem 72
5.3 Tableaux for modal mu-calculus . 75
5.4 Parity Games . 80
5.5 Solvability and Determinacy for Finite Parity Games 81
5.6 Muller Games . 85
Problems . 88

6 Tree Automata, Rabin’s Theorems and S2S 91
6.1 Trees and Non-deterministic Tree Automata 91
6.2 Non-deterministic Parity Tree Automata . 93
6.3 Alternating Parity Tree Automata . 95
6.4 Closure Properties . 98
6.5 S2S and Rabin’s Tree Theorem . 100
Problems . 102

Bibliography 102

A Ordinals and Transfinite Induction: A Primer 107

Chapter 0

Automata, Logic and Games

0.1 Aims and Prerequisites

To introduce the mathematical theory underpinning the computer-aided verification of com-
puting (more generally reactive) systems.

- Automata on infinite words and trees as a model of computation of state-based systems.

- Logical systems such as temporal and modal logics for specifying correctness properties.

- Two-person games as a mathematical model of the interactions between a system and its
environment.

Prerequisites

- Logic: 1st/2nd year Logic and Proofs, or B1 Logic

- Computability and Complexity: Computational Complexity

Connexions with other DCS courses This course can be viewed as a follow-up of
Computer-Aided Formal Verification, emphasising the logical and algorithmic foundations.
In addition there are several points of contact with Software Verification, and Theory of Data
and Knowledge Bases.

Bibliography Many papers (and some book chapters) in the following can be viewed on
the Web.

- (Bradfield and Stirling, 2007) [Must-read for modal mu-calculus.]

- (Khoussainov and Nerode, 2001) [Useful general reference for Büchi automata and S1S.]

- (Grädel et al., 2002) [Encyclopaedic, but uneven quality.]

- (Stirling, 2001) [Good for modal mu-calculus and parity games.]

- (Thomas, 1990) [Quite standard reference, but a little dated.]

- (Thomas, 1997) [Excellent reference for the relevant parts of the course.]

- (Vardi, 1996) [Easy to read; covers Büchi automata and LTL, but takes a different approach.]

Course webpage Lecture slides, exercises for the problem classes, resources, and adminis-
trative details of the course will be posted at the course webpage

1

2 CHAPTER 0. AUTOMATA, LOGIC AND GAMES

http://www.cs.ox.ac.uk/teaching/materials13-14/automatalogicgames/

0.2 Motivation

Reactive systems are computing systems that interact indefinitely with their environment.
Typical examples are air traffic control systems, programs controlling mechanical devices
such as trains and planes, ongoing processes such as nuclear reactors, operating systems and
web servers.

Modelling Reactive Systems as Games There are different ways to model reactive
systems. Abstractly we can model a reactive system by a two-player game:

- Player 0 (or Élöıse) representing the System

- Player 1 (or Abelard) representing the Environment

Desirable correctness properties of the System are coded as winning conditions for Élöıse.
A strategy is winning for a player if it results in a win for the player, no matter what
strategy is played by the other player. Winning strategies for Élöıse correspond to methods
of constructing the System. Strategies are algorithms in abstract (and “neutral”) form.

0.3 Example: Modelling a Lift Control

Assume a building of 8 levels.

Game perspective A 2-player game.

- Player 0 (Élöıse): Lift controller

- Player 1 (Abelard): Users

System state described by:

- A set of level numbers that have been requested, represented by a bit vector (b1, · · · , b8) ∈ B8

whereby bi = 1 iff level i has been requested.

- A level number i ∈ { 1, · · · , 8 } for the current position of the lift.

- A number (0 or 1) indicating whose turn it is.

State space of the system is B8 × { 1, · · · , 8 } × { 0, 1 }.

State-transition graph A directed (bipartite) graph: vertices are states, and edges are
transitions.

Transitions Two kinds: arrows from 0-states (Player 0’s turn to play) to 1-states (Player
1’s turn to play), and vice versa.

- (b1, · · · , b8, i, 0) −→ (b′1, · · · , b′8, i′, 1) such that i 6= i′, b′i′ = 0 and b′j = bj for j 6= i′.
The actions involved are: door is closed, movement of lift, door is opened, and movement
of people.

http://www.cs.ox.ac.uk/teaching/materials13-14/automatalogicgames/

0.3. EXAMPLE: MODELLING A LIFT CONTROL 3

- (b1, · · · , b8, i, 1) −→ (b′1, · · · , b′8, i, 0) such that bj ≤ b′j for all j ∈ { 1, · · · , 8 }.
The actions are: Users push buttons.

Winning conditions (= correctness properties)

Example properties

1. Every requested level will be served eventually.

2. The lift will return to level 1 infinitely often.

3. When the top level (where the boss lives!) is requested, the lift serves it immediately
and expeditiously (i.e. does not stop on the way there).

4. While moving in one direction, the lift will stop at every requested level, unless the top
level is requested.

Some key questions

1. Is there a lift-control (0-strategy) that can meet all the requirements (winning condi-
tions)?
Does a winning strategy exist?
Correctness conditions are typically encoded as logical formulas.

2. How much memory does the control need? Is finite memory enough?
Is there a finite-state1 winning strategy (i.e. one that uses only a finite amount of mem-
ory)?

3. Is there a method that can automatically derive a lift control from a given state-
transition graph and a given set of winning conditions?
Is the winning strategy effectively constructible?

1A model of computation is finite state if it has only finitely many possible configurations. Thus finite-state
automata are finite state, but pushdown automata and Turing machines are infinite state.

4 CHAPTER 0. AUTOMATA, LOGIC AND GAMES

Chapter 1

Büchi Automata

Synopsis

Definition and examples. Büchi automata are not determinisable. Closure properties of
Büchi-recognisable languages. Büchi’s proof of complementation via Ramsey’s Theorem.
Büchi’s characterisation and ω-regular expressions. Decision problems and their complex-
ity: non-emptiness is NL-complete, and universality is PSPACE-complete. Other acceptance
conditions: Muller, Rabin, Streett and Parity. Determinisation and McNaughton’s Theorem.

Notations Let U be a set.

- We write U∗ to mean the set of finite sequences (or words or strings) of elements of U . The
empty word is denoted ε. I.e. U∗ is the free monoid over U : the associative binary operation
is string concatenation (u, v) 7→ u · v (or simply u v, eliding ·) and the identity is ε.

- We write Uω to mean the set of infinite sequences (or ω-words or ω-strings) of elements of
U . An ω-word is represented as a function from ω to U , ranged over by α, β, ρ, etc. Thus
the map α represents the infinite word α(0) α(1) α(2) · · · .

Let u ∈ U∗ and w ∈ (U∗ ∪Uω). We say that u is a prefix of w, written u ≤ w, just if w = u v
for some v ∈ (U∗ ∪ Uω). We write u < w just if u ≤ w and u 6= w.

Henceforth we assume a finite alphabet Σ i.e. a finite set of symbols (or letters). Subsets
of Σ∗ are called ∗-languages; subsets of Σω are called ω-languages.

1.1 Definition and Examples

We use automata to define ω-languages.

Definition 1.1. A (non-deterministic) Büchi automaton is a quintuple A = (Q,Σ, q0,∆, F)
where

- Q is a finite set of states

- Σ is a finite alphabet

- q0 ∈ Q is the initial state

- ∆ ⊆ Q× Σ×Q is a transition relation

- F ⊆ Q is the set of final (or accepting) states.

5

6 CHAPTER 1. BÜCHI AUTOMATA

In case ∆ is a function Q× Σ −→ Q, we say that A is deterministic, and write δ for the
function.

It is helpful to think of a Büchi automaton as a finite, labelled directed graph: each edge
is labelled with an element of Σ; and the vertex labels are “initial” (labelling a unique vertex)
and “final” (labelling a subset of vertices).

Language Recognised by a Büchi Automaton

A run of A on an ω-word α ∈ Σω is an infinite sequence of states ρ = ρ(0) ρ(1) ρ(2) · · · such
that ρ(0) = q0, and for all i ≥ 0, we have

(ρ(i), α(i), ρ(i+ 1)) ∈ ∆.

In words, a run on α is an infinite path in the directed graph A, starting from the initial
vertex, whose labels on the edges trace out the ω-word α.

Note that if A is deterministic then every word has a unique run.

A run ρ on α is accepting just if there is a final state that occurs infinitely often in ρ;
equivalently (because F is finite) inf(ρ)∩F 6= ∅, writing inf(ρ) for the set of states that occur
infinitely often in ρ.

An ω-word α is accepted by an automaton A just if there is an accepting run of A on
α. The language recognised by A, written L(A), is the set of ω-words accepted by A. An
ω-language is Büchi recognisable just if it is recognised by some Büchi automaton.

Convention When drawing automata as graphs, we circle the final states, and indicate the
initial state by an arrow.

Example 1.1. Set Σ = { a, b, c }.

(i) L1 ⊆ Σω consists of ω-words in which after every occurrence of a there is some occurrence
of b.

// q0

b,c

�� a
((
q1

b

ii

a,c

��

(ii) L2 consists of ω-words in which between every two occurrences of a, there is an even
number of b.

// q0

b,c

�� a)) q1

a,c

�� b)) q2

c

��

b

ii

When the automaton reaches state q1 (respectively q2), it has read an even (respectively
odd) number of b since the last a.

Is L1 recognised by a deterministic automaton? What about L2?

Example 1.2 (A Non-Determinisable Büchi Automaton). The Büchi-recognisable language
L3 consisting of ω-words over { 0, 1 } that have only finitely many occurrences of 1 is not
recognised by any deterministic Büchi automaton.

1.1. DEFINITION AND EXAMPLES 7

Suppose, for a contradiction, L3 is recognised by a deterministic automaton

A = (Q, { 0, 1 }, q0, δ, F).

It follows that δ extends to a function Q× { 0, 1 }∗ −→ Q. Since A has an accepting run on
0ω, we have δ(q0, 0

n1) ∈ F for some n1. Let u1 ∈ Q∗ be the “run” for 0n1 .
Similarly, since A has an accepting run on 0n110ω, we have δ(q0, 0

n110n2) ∈ F for some
n2. Let u2 ∈ Q∗ be the “run” for 0n110n2 . Note that u1 ≤ u2.

In this fashion, we obtain an infinite sequence of numbers n1, n2, · · · , and an infinite
ascending chain u1 ≤ u2 ≤ u3 · · · whose limit is an accepting run of A on the ω-word
0n110n210n310n41 · · · , which is a contradiction. �

Where does the argument break down if A is not deterministic?

Exercise 1.1. Construct a Büchi automaton that recognises (i) L3 (ii) L3 = { 0, 1 }ω \ L3.

Example 1.3. Construct a Büchi automaton for the language L4 consisting of ω-words α
over { a, b, c } such that α contains the segments a b and a c infinitely often, but b c only finitely
often.

Figure 1.1: An automaton accepting infinitely many a b and a c but only finitely many b c.

We argue that the automaton in Figure 1.1 recognises L4 as follows. By construction:

- when the automaton reaches the states q1 and q5, it has just read a

- when it reaches the states q2, q4 and q6, it has just read b

- when it reaches the states q3 and q7, it has just read c.

8 CHAPTER 1. BÜCHI AUTOMATA

Consequently, after leaving q0, the automaton is unable to read b c. Further

- when the automaton reaches state q4, it has just read a b

- when it reaches state q7, it has just read a c.

It then remains to observe that q7 is the (only) final state, and after leaving it, the automaton
must visit q4 before it is able to revisit q7.

1.2 Closure Properties

Büchi recognisable languages are closed under many operations, including all boolean opera-
tions i.e. union, intersection and complementation.

Proposition 1.1. (i) If U ⊆ Σ∗ is regular then Uω is Büchi recognisable.

(ii) If U ⊆ Σ∗ is regular and L ⊆ Σω is Büchi recognisable then

U · L := {u · α | u ∈ U,α ∈ L }

is Büchi recognisable.

(iii) If L1 and L2 are Büchi-recognisable ω-languages, so are L1 ∪ L2 and L1 ∩ L2.

Exercise 1.2. Prove (i) and (ii) of the proposition.

Closure under Union

As a first attempt, use the standard “union construction” in automata for finite words, but
note that we can’t use ε-label edges. Thus for i = 1, 2, suppose Li is recognised by Ai =
(Qi,Σ, q

i
0,∆i, Fi). Assume Q1 and Q2 are disjoint. Then L1 ∪ L2 is recognised by the Büchi

automaton
(Q1 ∪Q2 ∪ { q0 },Σ, q0,∆, F1 ∪ F2)

where q0 is a fresh state, and

∆ := ∆1 ∪∆2

∪ { (q0, a, q) | a ∈ Σ, (q1
0, a, q) ∈ ∆1 }

∪ { (q0, a, q) | a ∈ Σ, (q2
0, a, q) ∈ ∆2 }

I.e. for each a-transition from qi0 to q, we add a fresh a-transition from q0 to q (for i = 1, 2).

Closure under Intersection

Suppose Li is accepted by Ai = (Qi,Σ,∆i, q
i
0, Fi), for i = 1, 2. As a first attempt, run the two

automata synchronously i.e. in lockstep. Following finite automata for finite words, construct
the product automaton

(Q1 ×Q2,Σ,∆, (q
1
0, q

2
0), F1 × F2)

where ((p, q), a, (p′, q′)) ∈ ∆ iff (p, a, p′) ∈ ∆1 and (q, a, q′) ∈ ∆2. This does not work be-
cause we cannot guarantee that the final states of A1 and A2 are visited infinitely often
simultaneously.

The point is that we need to ensure infinite alternation of a F1-state and a F2-state. Thus
we construct a product automaton and cycle through the following:

1.2. CLOSURE PROPERTIES 9

1. Wait for an F1-state in first component.

2. When an F1-state is encountered in first component, wait for an F2-state in second com-
ponent.

3. When an F2-state is encountered in second component, go to 1.

The Modified Intersection Automaton Work with state-set Q1 × Q2 × { 1, 2 }. Form
modified product automaton:

A′ := (Q1 ×Q2 × { 1, 2 }, Σ, ∆′, (q1
0, q

2
0, 1), Q1 × F2 × { 2 })

where: for every (p, a, p′) ∈ ∆1 and every (q, a, q′) ∈ ∆2, we have

- ((p, q, 1), a, (p′, q′, 1)) ∈ ∆′ if p 6∈ F1

- ((p, q, 1), a, (p′, q′, 2)) ∈ ∆′ if p ∈ F1

- ((p, q, 2), a, (p′, q′, 2)) ∈ ∆′ if q 6∈ F2

- ((p, q, 2), a, (p′, q′, 1)) ∈ ∆′ if q ∈ F2

It follows that a run ρ of A′ on α simulates runs ρ1 = π∗1(ρ) of A1 on α and ρ2 = π∗2(ρ) of A2

on α—where π1 : (p, q, j) 7→ p and π∗1 is the point-wise extension—such that ρ visits a state
in Q1 × F2 × { 2 } infinitely often iff ρ1 visits F1 infinitely often and ρ2 visits F2 infinitely
often. �

Closure under Complementation

Theorem 1.1 (Büchi 1960). If L ⊆ Σω is Büchi recognisable (by A say), so is Σω\L. Further
the automaton recognising Σω \ L can be effectively constructed from A.

As a first attempt, consider the standard method to complement a finite-state automaton
for finite words: first determinise A, then “invert” the final states. Unfortunately, Büchi au-
tomata are not determinisable. As we have seen, there are non-deterministic Büchi automata
(for example, any automaton that recognises L3 of Example 1.2) that are not equivalent to
any deterministic automata.

Büchi’s proof We follow the account in (Thomas, 1990) of the proof by Büchi (1960b). Let
L be recognisable by a Büchi automaton A. We aim to show that both L and Σω \L are rep-
resentable as finite unions of sets of the form L1 ·Lω2 where L1 and L2 are regular ∗-languages.
(Note that it is relatively straightforward to prove the result for L alone: cf. Proposition 1.2.)

We shall construct L1 and L2 as congruence classes. We say that a relation ∼ ⊆ Σ∗ ×Σ∗

is a congruence just if ∼ is an equivalence relation such that whenever u ∼ u′ and v ∼ v′ then
u · v ∼ u′ · v′. Set

Wq,q′ := {w ∈ Σ∗ | q w
=⇒ q′ }

WF
q,q′ := {w ∈ Σ∗ | q w

=⇒F q
′ }

where q
a1···an====⇒X q′ with X ⊆ Q means that exist q0, · · · , qn ∈ Q such that q = q0

a1−→ q1
a2−→

· · · an−→ qn = q′, and { q0, · · · , qn }∩X 6= ∅; and in case X = Q, we omit the subscript X from
q
w
=⇒X q′. Define

w ∼A w′ := ∀q, q′ ∈ Q.
(
(w ∈Wq,q′ ↔ w′ ∈Wq,q′) ∧ (w ∈WF

q,q′ ↔ w′ ∈WF
q,q′)

)

10 CHAPTER 1. BÜCHI AUTOMATA

It is straightforward to see that ∼A is an equivalence relation over Σ∗ which has a finite index
(because Q is a finite set). It is an easy exercise to show that ∼A is a congruence.

The equivalence classes can be described as follows: for w ∈ Σ∗

[w]∼A =
⋂
q,q′∈Q,w∈Wq,q′

Wq,q′ ∩
⋂
q,q′∈Q,w 6∈Wq,q′

(Σ∗ \Wq,q′)

∩
⋂
q,q′∈Q,w∈WF

q,q′
WF
q,q′ ∩

⋂
q,q′∈Q,w 6∈WF

q,q′
(Σ∗ \WF

q,q′)

Since each WF
q,q′ is regular, so is each equivalence class [w]∼A .

Let X ⊆ Σω. We say that a congruence relation ' ⊆ Σ∗ × Σ∗ saturates X just if for all
u, v ∈ Σ∗, if [u]' · [v]ω' ∩X 6= ∅ then [u]' · [v]ω' ⊆ X.

Lemma 1.1. (i) ∼A saturates L

(ii) ∼A saturates Σω \ L.

Exercise 1.3. Prove (i) and (ii) of the lemma.

Finally it suffices to prove the following.

Claim. Let X ⊆ Σω. If a congruence ' saturates X and has finite index, then

X =
⋃
{ [u]' · [v]ω' | [u]' · [v]ω' ∩X 6= ∅ }.

Assume ' saturates X. Then “⊇” follows from the definition of saturation.
To prove “⊆”, let w ∈ X. Define an equivalence relation ≈w ⊆ D × D where D :=

{ (i, j) ∈ ω2 | i < j } by
(i, j) ≈w (i′, j′) := w[i, j] ' w[i′, j′]

where w[i, j] = ai · · · aj−1 with w = a0 a1 · · · . The index of ≈w is finite because the index of
' is finite by assumption.

Now it follows from Ramsey’s Theorem1 that there is an infinite set H = { i0, i1, i2, · · · }
with i0 < i1 < i2 < · · · which is homogeneous for the map:

{ i, j } 7→ [(i, j)]≈w

assuming i < j. I.e. there is a pair (i, i′) such that whenever k < l then (i, i′) ≈w (ik, il). In
particular all pairs (ik, ik+1) are in [(i, i′)]≈w . Thus

w = w[0, i0] · w[i0, i1] · w[i1, i2] · · · · ∈ [w[0, i0]]' · ([w[i, i′]]')ω

as required. This completes the proof of the Claim, and hence the proof of Theorem 1.1.

Given a Büchi automaton A with n states, there are n2 different pairs (q, q′) and hence
O(22n2

) different ∼A-classes.

Exercise 1.4. Show that Büchi’s complement automaton has a size bound of O(24n2
) states.

Cf. (Pécuchet, 1986; Sistla et al., 1987).

1 Let A be a set. We write (A)n := {B ⊆ A : |B| = n }.

Theorem 1.2 (Frank P. Ramsey 1930). Suppose f : (ω)n → { 0, 1, · · · , k − 1 }. Then there is an infinite set
A ⊆ ω which is homogeneous for f i.e. f is constant on (A)n.

If we think of f as a k-colouring of the n-elements subsets of ω, then “A is homogeneous for f” means that
f maps all n-element subsets of A to the same colour.

1.3. ω-REGULAR EXPRESSIONS 11

1.3 ω-Regular Expressions

Let U ⊆ Σ∗.

U∗ := {w ∈ Σ∗ | w = u1 u2 · · ·un for some n ≥ 0, each ui ∈ U }
U+ := {w ∈ Σ∗ | w = u1 u2 · · ·un for some n ≥ 1, each ui ∈ U }
Uω := {w ∈ Σω | w = u1 u2 · · · where each ui ∈ U }

limU := {w ∈ Σω | w(0) · · ·w(j) ∈ U for infinitely many j ∈ ω }

In words, w ∈ limU just if U contains infinitely many prefixes of w.

Example 1.4. (i) Let U1 = 0110∗ + (00)+. Then limU1 consists of only two ω-words,
namely, 0110000 · · · and 0000 · · · .

(ii) Let U2 = 0∗1. Then limU2 = ∅.

Proposition 1.2 (Büchi 1960). A language L ⊆ Σω is Büchi recognisable if and only if L is
a finite union of sets of the form J ·Kω, where J,K ⊆ Σ∗ are regular and ∅ 6= K ⊆ Σ+ (and
we may assume K ·K ⊆ K).

Proof. Suppose L is recognised by A = (Q,Σ,∆, q0, F). For p, q ∈ Q, let Ap q be the finite
automaton (Q,Σ,∆, p, { q }). Write L∗(Aq q′) for the finite-word language recognised by Aq q′ .
Then

α ∈ Σω is accepted by A

iff there exists a run ρ with inf(ρ) ∩ F 6= ∅
iff there exists q ∈ F and α = u0u1u2 · · · where u0 is accepted by Aq0 q

and for each i ≥ 1, ui is non-empty and accepted by Aq q.

Hence L =
⋃
q∈F L

∗(Aq0 q) · (L∗(Aq q))ω.

Regular Expressions: A Revision

Fix a finite alphabet Σ and let a range over Σ. Regular expressions e are defined by the
grammar:

e ::= ∅ | ε | a | e+ e | e · e | e∗

For simplicity e · f is often written as e f . We define the denotation of a regular expression
[[e]] ⊆ Σ∗ as follows.

[[ε]] = { ε } [[e · f]] = [[e]] · [[f]]

[[∅]] = ∅ [[e∗]] = [[e]]∗

[[a]] = { a } [[e+ f]] = [[e]] ∪ [[f]]

Let w ∈ Σ∗. We say that w matches e just if w ∈ [[e]].

Theorem 1.3 (Kleene). A set of finite words is recognisable by a finite-state automaton if,
and only if, it is the denotation of a regular expression. �

12 CHAPTER 1. BÜCHI AUTOMATA

An ω-regular expression has the form

e1 · fω1 + · · ·+ en · fωn

where n ≥ 0, and e1, f1, · · · , en, fn are regular expressions such that ∅ 6= [[fi]] ⊆ Σ+ for all
i ∈ { 1, . . . , n }.

The denotation of a ω-regular expression [[e]] ⊆ Σω is defined by the same clauses as
regular expressions, and [[eω]] := [[e]]ω. We say that an ω-language is ω-regular just if it is
the denotation of a ω-regular expression.

Corollary 1.1. A set of ω-words is Büchi recognisable if and only if it is ω-regular.

Proof. Immediate consequence of Proposition 1.2.

Example 1.5. (i) A regular expression for L3 (i.e. the set of binary words containing only
finitely many 1s) is (0 + 1)∗0ω.

(ii) A regular expression for L3 is (0∗1)ω.

For ω-regular expressions e and f , we say e ≡ f just if [[e]] = [[f]].

Lemma 1.2. For X,Y ⊂ Σ∗

(i) (X + Y)ω ≡ (X∗Y)ω + (X + Y)∗Xω

(ii) (XY)ω ≡ X(Y X)ω

(iii) For all n > 0, (Xn)ω ≡ (X+)ω ≡ Xω.

(iv) Xω ≡ X+Xω.

Proof. Exercise

1.4 Decision Problems and their Complexity

Decision problems for Büchi automata are worth studying because algorithms for solving
these problems are basic building blocks for the construction of algorithmic solutions to the
complex problems that arise in the verification of computing systems.

Non-Emptiness Problem Given a Büchi automaton A, is L(A) 6= ∅?

Proposition 1.3. The non-emptiness problem for Büchi automata A = (Q,Σ,∆, q0, F) is
decidable in time O(|Q|+ |∆|).

Proof. We have:

L(A) 6= ∅
iff there is a path from q0 to some q ∈ F , and there is a path from q back to itself

iff automaton A (qua digraph) has a non-trivial SCC which is reachable from q0

and contains a final state q

1.4. DECISION PROBLEMS AND THEIR COMPLEXITY 13

Recall that a strongly connected component (SCC) of a directed graph is a maximal subgraph
such that for every pair of vertices in the subgraph, there is a directed path from one vertex
to the other.

There is a simple algorithm to decide the Non-Emptiness Problem. The idea is to find a
“lasso” in the graph underlying the automaton: the base of the lasso is the initial state, and
the loop must include a final state.

Algorithm: Finding a Lasso
Input: Büchi automaton A = (Q,Σ,∆, q0, F).
Output: YES, if L(A) 6= ∅; NO otherwise.

1. Determine the set Q0 of states reachable from q0 using (say) depth-first search.

2. Generate all non-trivial SCCs over Q0; at the same time, check for containment
of a final state.

3. If there is a non-trivial SCC that contains a final state, return YES; otherwise
return NO.

Stages 1 and 2 require time O(|Q|+ |∆|) (Tarjan, 1972).

In fact the non-emptiness problem is complete for NL (Non-deterministic Logspace).

An Interlude: NL and NL-Completeness

Recall that a non-deterministic Turing machine accepts an input word just if there is a com-
putation path from the initial configuration to an accepting configuration.

Definition 1.2. A decision problem is NL-complete just if it is

(i) solvable in NL (i.e. decidable by a non-deterministic Turing machine using O(log n)
space on a work tape, where n is the size of the input), and

(ii) NL-hard (i.e. every NL-solvable problem is logspace-reducible to it).

Intuitively L (Logspace) is the collection of problems that are solvable using (i) a constant
number of pointers into the input (because each number in { 0, . . . , n−1 } can be represented
in binary in at most log n bits) (ii) and a logarithmic number of boolean flags. See Michael
Sipser’s book (Sipser, 2005) and Immerman’s book (Immerman, 1999) for a systematic treat-
ment.

Proposition 1.4. The Non-Emptiness Problem for Büchi automata is NL-complete.

Proof. We give an algorithm in NL that checks if there is a final state which is reachable from
the initial state q0, and reachable from itself. To do this, we first guess a final state f (say),
and then a path from q0 to f , and from f to f .

To guess a path from states x to y:

1. Make x the current state.

2. Guess a transition from the current state, and make the target of the transition the new
current state.

3. If the current state is y, STOP; otherwise repeat from step 2.

14 CHAPTER 1. BÜCHI AUTOMATA

Figure 1.2: Immerman’s World of Complexity Classes (Immerman, 1999)

1.4. DECISION PROBLEMS AND THEIR COMPLEXITY 15

The algorithm is in NL: at each stage, only 3 states are remembered (by 3 pointers into the
input string).

NL-hardness is proved by reduction from the Graph Reachability Problem (Given nodes
x and y in a finite directed graph, is y reachable from x?), which is NL-complete.

Universality Problem Given a Büchi automaton A over Σ, is L(A) = Σω?

Proposition 1.5. The Universality Problem is PSPACE-complete.

To decide non-universality, given a Büchi automaton A, we could construct the comple-
ment automaton A (i.e. L(A) = Σ \ L(A)), then use the non-emptiness algorithm on A.
Unfortunately this would give an algorithm that is exponential in space and time!

To show PSPACE decidability, we determinise the automaton (which may be of exponen-
tial size) but calculate the states only on demand, and look for a word that is not recognised.

PSPACE Hardness Proof We present a proof by Sistla et al. (1987), which is by reduction
from the Universality Problem for Finite-State Automata (Given a FSA A, is L∗(A) = Σ+?).
The latter problem is PSPACE-complete (Meyer and Stockmeyer, 1972).

The idea is to define a transformation L ⊆ Σ∗ 7→ L′ ⊆ Σω such that whenever A is a FSA
then L(A)′ is Büchi-recognisable; further L(A) = Σ∗ if and only if L(A)′ = Σω.

Proof. Fix Σ = { a1, · · · , an }. Given FSA A = 〈Σ, Q,∆, q0, F 〉, define two alphabets Σi =
{ a1

i , · · · , ani } (i = 1, 2). Consider automata Ai = 〈Σi, Q,∆i, q0, F 〉 such that for i = 1, 2:

∀q, q′, j : (q, aji , q
′) ∈ ∆i ↔ (q, aj , q′) ∈ ∆

Thus A1 and A2 recognise the image of L∗(A) over Σ1 and Σ2 respectively. Now define
L′ ⊆ (Σ1 ∪ Σ2)ω by

L′ := (L1 L2)ω ∪ (L1 L2)∗Lω1 ∪ (L1 L2)∗Lω2
∪ (L2 L1)ω ∪ (L2 L1)∗Lω2 ∪ (L2 L1)∗Lω1

where Li := L∗(Ai).

Exercise 1.5. Construct a Büchi automaton A′ that recognises L′, with size linear in that of
A.

Claim. The FSA A is universal (i.e. L∗(A) = Σ+) if and only if the Büchi automaton A′ is
universal.

⇒: Assume A is universal. Then Li contains every non-empty word over Σi (for i = 1, 2).
Now every ω-word over Σ1 ∪ Σ2 is either

(i) entirely over Σ1 or entirely over Σ2, or

(ii) alternates between Σ1 and Σ2 and then entirely over one of the two

(iii) alternates between Σ1 and Σ2 infinitely.

These cases are covered by L′, by definition.
⇐: Assume A′ is universal. Take w ∈ Σ+. Let wi be the image of w in Σi. Now,

by definition of L′, (w1 w2)ω ∈ (L1L2)ω, because (w1 w2)ω cannot belong to the other five
components of L′. Further, by construction of A′, this implies that wi ∈ L(Ai) (for i = 1, 2).
Hence w ∈ L(A) as required.

16 CHAPTER 1. BÜCHI AUTOMATA

In the preceding proof, note that taking L′ to be Lω where L = L∗(A) does not work,
because Lω is universal does not imply that L is universal: just take L = { a, b } over alphabet
{ a, b }.

1.5 Determinisation and McNaughton’s Theorem

Other Acceptance Conditions

An ω-automaton is a quintuple A = 〈Q, Σ, q0 ∈ Q, ∆ ⊆ Q× Σ×Q, Acc 〉; the component
Acc is its acceptance condition.

An ω-automaton is called

- Büchi : if Acc is of the form F ⊆ Q, and a run ρ is accepting just if inf(ρ) ∩ F 6= ∅.

- Muller : if Acc is of the form F = {F1, · · · , Fk } with each Fi ⊆ Q, and a run ρ is accepting
just if inf(ρ) ∈ F .

- Rabin: if Acc is of the form { (E1, F1), · · · , (Ek, Fk) } with Ei, Fi ⊆ Q, and a run ρ is
accepting just if

∃i ∈ { 1, · · · , k } . inf(ρ) ∩ Ei = ∅ ∧ inf(ρ) ∩ Fi 6= ∅

I.e. for some i, every state in Ei is visited only finitely often in ρ, but some state in Fi is
visited infinitely often in ρ.

- Streett : if Acc is of the form { (E1, F1), · · · , (Ek, Fk) } with Ei, Fi ⊆ Q, and a run ρ is
accepting just

∀i ∈ { 1, · · · , k } . inf(ρ) ∩ Ei 6= ∅ ∨ inf(ρ) ∩ Fi = ∅

- Parity : Acc is specified by a priority function Ω : Q → ω, and a run ρ is accepting just if
min Ω(inf(ρ)) is even i.e. the least priority that occurs infinitely often is even.

Rabin condition is sometimes called pairs condition; Streett condition is sometimes called
complement pairs condition; parity condition is sometimes called Mostowski condition.

It is straightforward to see that parity condition is closed under negation. Given a priority
function Ω : Q → ω, let ρ be a run that is not parity-accepting. I.e. min Ω(inf(ρ)) is odd.
Then ρ is parity-accepting w.r.t. the parity function Ω′ : q 7→ Ω(q) + 1. Note that the
Muller condition is also closed under negation. The negation of a Rabin condition is a Streett
condition, and vice versa. Given a set of pairs { (E1, F1), · · · , (Ek, Fk) }, let ρ be a run that is
not Rabin-accepting. I.e. we have ¬(∃i.inf(ρ)∩Ei = ∅ ∧ inf(ρ)∩Fi 6= ∅), which is equivalent
to ∀i.(inf(ρ) ∩ Ei 6= ∅ ∨ inf(ρ) ∩ Fi = ∅). Thus ρ is Streett-accepting w.r.t. the set of pairs
{ (F1, E1), · · · , (Fk, Ek) }.

Example 1.6 (Muller and Rabin Conditions). Let L5 ⊆ { a, b, c }ω be the language consisting
of all words α satisfying: if a occurs infinitely often in α, so does b.

Take the complete state-transition graph with state-set Q = { qa, qb, qc }. The idea is that
when the automaton reaches state qa, it has just read a; similarly for qb and qc. The Muller
and Rabin conditions for a 3-state automaton that recognises L4 are as follows.

- Muller: Take F = {U ⊆ Q | qa ∈ U ⇒ qb ∈ U }.
- Rabin: Take Ω = { ({ qa }, { qb, qc }), (∅, { qb }) }. Observe that α ∈ L5 iff a occurs only

finitely often in α or b occurs infinitely often in α.

1.5. DETERMINISATION AND MCNAUGHTON’S THEOREM 17

Figure 1.3: Transforming Muller to Büchi

Example 1.7 (From Muller to Büchi). Let AM = ({ qa, qb, qc },Σ, q0,F) be a Muller automa-
ton recognising L5. We can construct an equivalent Büchi automaton as follows.

Stage 1. Simulate a run ρ of AM . Guess inf(ρ) = U , for some U ∈ F . At some point, guess
that all states not in U have just been seen.

Stage 2. Check that henceforth:

(i) Every state reached is in U .

(ii) Every state in U is read infinitely often.

See Figure 1.3 for an illustration.

McNaughton’s Theorem

Theorem 1.4 (McNaughton 1966). The following are
equivalent:

(i) non-deterministic Büchi automata (NB)

(ii) deterministic Rabin automata (DR)

(iii) non-deterministic Rabin automata (NR)

(iv) deterministic Muller automata (DM)

(v) non-deterministic Muller automata (NM)

NM

uu

NR

>>

DM

``

DR

`` >>

NB

OO

Proof. We write ⇒ to mean “can be simulated by”.

- “DR ⇒ NR” and “DM ⇒ NM” are immediate.

- “NB ⇒ NR” and “DB ⇒ DR”: Büchi conditions are instances of Rabin: Given F ⊆ Q, the
corresponding Rabin condition is { (∅, F) }.

18 CHAPTER 1. BÜCHI AUTOMATA

- “DR ⇒ DM” and “NR ⇒ NM”: Given Rabin { (E1, F1), · · · , (En, Fn) }. Set Muller

F := {U ⊆ Q |
n∨
i=1

(U ∩ Ei = ∅) ∧ (U ∩ Fi 6= ∅) }

- “NM ⇒ NB”: (informal)

Stage 1 Simulate a run ρ of the given Muller automaton. Guess inf(ρ) = U , some U ∈ F .

At some point, guess that all states of ρ that are not in U have just been seen.

Stage 2 Check that henceforth:

(i) Every state reached is in U .

(ii) Every state in U is read infinitely often.

- “NB⇒ DR” is the most difficult: it was first shown by McNaughton (1966), using a double
exponential construction.

Note that McNaughton’s theorem provides an alternative route to complementing an
ω-regular language, since it is easy to complement a Muller automaton. Given a Büchi-
recognisable language L(B), one could first transform the Büchi automaton B into an equiv-
alent deterministic Muller automaton M = (Q,Σ,∆, q0,F). Then the Muller automaton
(Q,Σ,∆, q0,P(Q) \ F) recognises Σω \ L(B).

NB ⇒ DR: Safra’s Construction

In order to determinise a non-deterministic automaton, we must find a finite data structure
that can approximate the set of states across possible runs of the non-deterministic automaton,
and can distinguish between accepted and rejected ω-words.

For automata over finite words, the power set data structure is sufficient. Given a non-
deterministic automaton with state set Q, the deterministic automaton uses states S ∈ P(Q).
Such a state S stores the set of states from Q that are reachable on a given input word, and
the deterministic automaton accepts if it ends in a state S such that S ∩ F 6= ∅.

Unfortunately, for non-deterministic Büchi automata, the same construction does not
always distinguish between accepted and rejected ω-words. In fact, even with the more
powerful Muller or Rabin acceptance condition, the powerset data structure is not sufficient
(Michel, 1988; Löding, 1999).

The solution is to use a more sophisticated data structure called Safra trees (Safra, 1988).
In these notes, we describe history trees, a variant of Safra trees introduced by Schewe (2009).

As a running example in this section, we will use the non-deterministic Büchi automaton
in Figure 1.4 (for which there is no deterministic Büchi automaton recognizing the same
language).

History trees

A Σ′-labelled tree t is a partial function t : N∗ → Σ′ mapping a position/node x ∈ N∗ to its
label t(x) ∈ Σ′ such that dom(t) is prefix closed (i.e. t truly has a tree structure).

We say t is

• finite if dom(t) is finite;

1.5. DETERMINISATION AND MCNAUGHTON’S THEOREM 19

r0 r1 r2
a,b

a,b b a

b

Figure 1.4: Non-deterministic Büchi automaton recognizing the language consisting of ω-
words u ∈ {a, b}ω where there are only finitely many occurrences of the string aa.

r0, r1, r2

r2 r1

0 1

r0, r1, r2

∅ r2

0 1

r0, r1, r2

∅ r2 r1, r2

∅ r2

0 1 2

0 0

r0, r1, r2

∅ r2 r1

∅ r2

0 1 2

0 0

r0, r1, r2

r2 r1

1 2

r0, r1, r2

r2 r1

0 1
step 1 step 2 step 3 step 4 step 5

Figure 1.5: Updating history tree on input letter a for automaton in Figure 1.4.

• ordered if xd ∈ dom(t) implies that xd′ ∈ dom(t) for all d′ ≤ d.

A history tree for a non-deterministic Büchi automaton (Q,Σ, q0, δ, F) is a (P(Q) \ ∅)-
labelled ordered finite tree such that

• the label of each node is a proper superset of its children, and

• the labels of the children of each node are disjoint.

Note that because of these restrictions, there are only finitely many history trees for a
given non-deterministic Büchi automaton.

An enriched history tree has additional labels to indicate whether each node is stable or
if it is a breakpoint (to be defined below).

Updating history trees

Given history tree t for A = (Q,Σ, q0, δ, F) and σ ∈ Σ, construct a new enriched history tree
t′ as follows:

1. Update: for all x ∈ dom(t), let t′(x) =
⋃
q∈t(x) δ(q, σ);

2. Create: for all x ∈ dom(t′), create new youngest child xd of x with t′(xd) = t′(x) ∩ F ;

3. Horizontal merge: for all x ∈ dom(t′) and all q ∈ Q, if q occurs in an older sibling of
x then remove q from t′(x) and all of its descendants;

4. Vertical merge: for all x ∈ dom(t′),

• if t′(x) = ∅, then remove node x,

• if t′(x) =
⋃
d∈N t

′(xd) then remove nodes xd (call this a breakpoint for x);

5. Repair order: rename to restore order (call nodes that are not renamed stable);

In these notes, represent breakpoint positions, and represent unstable positions.

Figure 1.5 provides an example of a history tree update for the automaton in Figure 1.4.
Please refer to Schewe (2009) for more description of these steps, and a detailed example of
a history tree update.

20 CHAPTER 1. BÜCHI AUTOMATA

a,b a

b a
b

a

b
b

a

r0

r0, r1

r1

0

r0, r1, r2

r2 r1

0 1

r0, r1

r1

0

r0, r1, r2

r2 r1

0 1




r0, r1, r2

r2 r1

0 1

 ,


r0, r1

r1

0 ,
r0, r1, r2

r2 r1

0 1



Ω =

Figure 1.6: Deterministic Rabin automaton obtained using the construction in Schewe (2009)
on the non-deterministic Büchi automaton in Figure 1.4.

Constructing equivalent deterministic Rabin automaton

Let A = (Σ, Q, q0, δ, F) be a non-deterministic Büchi automaton. We construct a deterministic
Rabin automaton D = (Σ, S, s0, δD,Ω) such that

• S is the finite set of enriched history trees for A,

• s0 is the history tree such that dom(s0) = {ε} and s0(ε) = {q0},
• δD removes any markers for stable nodes and breakpoints, and then updates the history

tree as described above,

• the Rabin acceptance condition is given by Ω = {(Ex, Fx) : x ∈ J} where

– Ex is the set of enriched history trees where x is unstable or not in the domain,

– Fx is the set of enriched history trees where there is a breakpoint for x,

– J is the set of positions for history trees in S.

In other words, the acceptance condition says:

there is some position x that is eventually always stable and always eventually a
breakpoint.

Figure 1.6 shows the deterministic Rabin automaton obtained using this construction
applied to the non-deterministic Büchi automaton in Figure 1.4.

We now sketch the proof that D recognises the same language as A.

Proposition 1.6. L(D) = L(A).

Proof. L(A) ⊆ L(D): Fix an accepting run ρA = q0q1 . . . of A on some u ∈ L(A). Let ρD be
the run of D on u.

Since ρA is infinite, the root is always stable. If the root has infinitely many breakpoints,
then ρD is accepting.

Otherwise, consider the first position i1 after the final breakpoint for the root where
qi1 ∈ F . For j ≥ i1, the states qj must always be in the label of one of the children of the
root (since no vertical merges to the root are possible after i1). Horizontal merges can only
transfer states to older siblings in the tree, so eventually the states in ρA are in a subtree of
a stable child x1 of the root. If x1 has infinitely many breakpoints, then ρD is accepting.

1.5. DETERMINISATION AND MCNAUGHTON’S THEOREM 21

Otherwise, consider the first position i2 after the final breakpoint for x1 where qi2 ∈ F .
As before, eventually the states in ρA are in a subtree of a stable child x2 of x1. If x2 has
infinitely many breakpoints, then ρD is accepting. Otherwise...

Since history trees have depth at most |Q| and xi < xi+1, if we continue to reason like
this, then we must eventually reach a depth d such that xd is stable and has infinitely many
breakpoints, so u ∈ L(D).

L(D) ⊆ L(A): Fix u ∈ L(D) and let ρD be the accepting run of D on u. Then there is x ∈ J
such that x is eventually always stable, and has infinitely many breakpoints.

Let Ri be the label at position x for the i-th breakpoint at x (after x is stable), and let
ui be the infix of u read between the i-th breakpoint and (i+ 1)-st breakpoint. Let u0 be the
prefix of u read before R1.

For all r ∈ R1, there is a partial run of A on u0 that ends in state r.
Likewise, for all r ∈ Ri, there is a state q ∈ Ri−1 such that there is a partial run of A on

ui starting in q, ending in r, and passing through at least one state in F .
Arrange these runs in a Q-labelled tree. By the observation above, there are infinitely

many positions in this tree. We can now take advantage of König’s lemma.

Lemma 1.3 (König’s lemma). A finitely branching infinite tree contains an infinite path.

The infinite branch guaranteed by König’s lemma can be used to construct a run of A on
u that visits F infinitely often, so u ∈ L(A).

Complexity of determinisation

Given a NB with n states:

1. Safra (1988) constructed an equivalent DR with at most (12)n n2n states and 2n pairs
in the acceptance condition.

2. Piterman (2007) modified Safra trees to construct equivalent deterministic parity au-
tomata of size at most 2nnn n!.

3. By a finer analysis of Piterman, Liu and Wang (2009) obtained an upper bound of
2n (n!)2.

4. Schewe (2009) gave a NB to DR construction with state complexity o((2.66n)n), but
requiring 2n−1 Rabin pairs.

5. Colcombet and Zdanowski (2009) proved that Schewe’s construction is optimal for state
complexity.

22 CHAPTER 1. BÜCHI AUTOMATA

Problems

1.1 Let Σ be a finite alphabet. Prove that every w ∈ Σω can be factorised as w = u v where
u ∈ Σ∗ and v ∈ Σω and each letter in v occurs infinitely often in w.

1.2 Construct Büchi automata that recognise the following ω-languages over Σ = { a, b, c }:

(a) The set of words in which after each a, there is a b.

(b) The set of words in which a appears only at odd, or only at even positions.

1.3 Construct Büchi automata that recognise the following ω-languages over Σ = { a, b, c }:

(a) The set of ω-words in which abc appears as a segment at least once.

(b) The set of ω-words in which abc appears as a segment infinitely often.

(c) The set of ω-words in which abc appears as a segment only finitely often.

1.4 Prove that every nonempty Büchi-recognisable language contains an ultimately periodic
word (i.e. an infinite word of the form u vω for finite words u and v).

1.5 Prove or disprove the following: for U, V ⊆ Σ+

(a) (U ∪ V)ω = Uω ∪ V ω

(b) lim(U ∪ V) = limU ∪ limV

(c) Uω = limU+

(d) lim(U · V) = U · V ω.

(e) (U + V)ω ≡ (U∗V)ω + (U + V)∗Uω

(f) (UV)ω ≡ U(V U)ω

(g) For all n > 0, (Un)ω ≡ (U+)ω ≡ Uω

(h) Uω ≡ U+Uω.

1.6 Prove that the ω-language L = {uω : u ∈ { 0, 1 }+ } is not recognised by any Büchi
automaton.

[Hint. Consider the word (01n)ω where n is a number greater than the number of states
of A.]

1.5. DETERMINISATION AND MCNAUGHTON’S THEOREM 23

1.7 Prove the following (from first principles):

(a) If U ⊆ Σ∗ is regular then Uω is Büchi-recognisable.

(b) If U ⊆ Σ∗ is regular and L ⊆ Σω is Büchi-recognisable then U ·L is Büchi-recognisable.

1.8 Prove the following.

(i) ∼A saturates L

(ii) ∼A saturates Σω \ L.

1.9 Prove that an ω-language is deterministic Büchi-recognisable iff it is of the form limU
for some regular U .

1.10 (Hard) A quasi order (i.e. reflexive and transitive binary relation) . over a set X is
called a well quasi ordering (w.q.o.) if every infinite sequence a1, a2, · · · from X is saturated,
meaning that there exist i < j such that ai . aj .

Let Σ be a finite alphabet. The subword ordering . ⊆ Σ∗ ×Σ∗ is defined as: u1 · · ·um .
v1 · · · vn just if there exist 1 ≤ i1 < i2 < · · · < im ≤ n such that for each 1 ≤ j ≤ m, uj = vij .
Prove that (Σ∗,.) is a w.q.o.

[Hint. Suppose, for a contradiction, there is an infinite sequence of words w1, w2, · · · that is
unsaturated. For an appropriate notion of “minimal”, choose a minimal such sequence. Then
consider the derived sequence v1, v2, · · · whereby wi = aivi and ai ∈ Σ, for each i.]

1.11 Consider the ω-language

L := {α ∈ { 0, 1 }ω | α contains 00 infinitely often, but 11 only finitely often }.

(a) Construct a Büchi automaton that recognises L. Explain why it works.

(b) Show that L is not recognisable by a deterministic Büchi automaton.

(c) We say that a ω-automaton co-Büchi recognises an ω-word α if there is a run ρ of the
automaton on α such that from some point onwards, only final states will be visited
i.e. there is an n ≥ 0 such that for every i > n, ρ(i) is a final state.

Is L recognisable by a deterministic co-Büchi automaton? Justify your answer.

1.12

(a) Let L be an ω-language over the alphabet Σ. Define right-congruence ∼L ⊆ Σ∗×Σ∗ by

u ∼L v := ∀α ∈ Σω.u α ∈ L↔ v α ∈ L.

Prove that every deterministic Muller automaton that recognises L needs at least as
many states as there are ∼L-equivalence classes.

Show that there is a ω-language L, which is not ω-regular, such that ∼L has only finitely
many equivalence classes.

Hence, or otherwise, state (without proof) a result about regular ∗-languages (i.e. sets
of finite words) that does not generalise to ω-regular ω-languages.

24 CHAPTER 1. BÜCHI AUTOMATA

(b) Is it true that an ω-language is ω-regular if and only if it is expressible as a Boolean
combination of languages of the form limU where U is a regular ∗-language? Justify
your answer.

1.13 Apply Safra’s construction (as described in Section 1.5) to obtain a deterministic Rabin
automaton that is equivalent to the following non-deterministic Büchi automaton:

r0 r1
a,b

a,b b

Chapter 2

Linear-time Temporal Logic

Synopsis1

Kripke structures. Examples of correctness properties of reactive systems. LTL: syntax and
semantics. Transformation of LTL formulas to generalised Büchi automata. LTL model check-
ing is PSPACE-complete: Savitch’s algorithm; encoding polynomial-space Turing machines
in LTL. Expressivity of LTL: Kamp’s theorem.

2.1 Motivating Example: Mutual Exclusion Protocol

The model checking problem: Given a system Sys and a specification Spec on the runs
of the system, does Sys satisfy Spec?

Example 2.1 (Mutual exclusion protocol). A MUX protocol is modelled by a transition
system over state-space B5:

Process 0: Repeat

00: <non-critical region 0>

01: wait unless turn = 0

10: <critical region 0>

11: turn := 1

Process 1: Repeat

00: <non-critical region 1>

01: wait unless turn = 1

10: <critical region 1>

11: turn := 0

A state is a bit-vector “a1 a2 b1 b2 t” where a1 a2 are b1 b2 are line no. of processes 0 and
1 respectively, and t is the value of shared variable turn; the initial state is 00000. Some
examples of correctness properties Spec:

(i) Safety: The state 1010t is never reached.

1The contributions of past guest lecturers, Matthew Hague and Anthony Lin, are gratefully acknowledged.

25

26 CHAPTER 2. LINEAR-TIME TEMPORAL LOGIC

(ii) Liveness: It is always the case that whenever 01b1b2t is reached, 10b′1b
′
2t
′ is eventually

reached (similarly for a1a201t and a′1a
′
210t′).

Temporal Logic in Computer Science

Amir Pnueli (1941–2009) won the ACM Turing Award 1996

“For seminal work introducing temporal logic into computing science and for out-
standing contributions to program and system verification.”

A landmark publication is (Pnueli, 1977).

2.2 Kripke Structures

Fix a set { p1, · · · , pn } of atomic propositions. We use Kripke structures K to model reactive
systems.

Definition 2.1. A Kripke structure over a fixed set of atomic propositions { p1, · · · , pn } is a
quadruple (S,R, λ, s0) with

- a finite state-set S, and s0 ∈ S is the initial state

- a transition relation R ⊆ S × S, and

- a labelling function λ : S → P({ p1, · · · , pn }), associating with each s ∈ S the set of those
pi that are satisfied at s.

A Kripke structure is just a directed graph whose nodes are labelled by elements of the
power set, P({ p1, · · · , pn }), as given by λ.

Notation We often write λ(s) as a bit vector


b1
...

bn

 ∈ Bn such that bi = 1 iff pi ∈ λ(s).

A path through a Kripke structure (S,R, λ, s0) is an infinite sequence of states, s0s1s2 · · · ,
where for each i ≥ 0, (si, si+1) ∈ R. The corresponding label sequence is the ω-word over the
alphabet Bn: λ(s0)λ(s1)λ(s2) · · · .

Example 2.2. Fix atomic propositions p1 and p2.(
1
0

) **

(
0
0

) tt
//
(

1
1

) 11

--
(

0
1

)
JJ

2.3. SYNTAX AND SEMANTICS 27

Example label sequences:

(i)
(

1
1

)(
1
0

)(
0
1

)(
1
0

)(
0
0

)(
0
0

)
· · ·

(ii)
(

1
1

)(
0
1

)(
1
0

)(
0
1

)(
1
0

)(
0
0

)(
0
0

)
· · ·

What are the differences between Büchi automata and Kripke structures?

Correctness Properties of Reactive Systems: Examples

When a reactive system is modelled as a Kripke structure, runs of the system correspond to
label sequences of K, which are ω-words over (Bn)ω. Correctness properties of the reactive
system are thus naturally expressed as properties of ω-words. In other words, they are path
properties.

The model checking problem asks: given a correctness property ϕ expressed as a property
of ω-words, does every label sequence of K satisfy ϕ?

Example 2.3 (MUX protocol revisited). For i = 0, 1, let

- pi+1 stand for “Process i is waiting (to enter the critical region)”

- pi+3 stand for “Process i is in critical region”

Consider the following ϕ:

(i) “It is always the case that when p1 holds then sometime later p3 holds” which means: for
any label sequence, when letter (1, b2, b3, b4) occurs, subsequently a letter (b′1, b

′
2, 1, b

′
4)

occurs.

(ii) “p3 and p4 never hold simultaneously” which means: no label sequence contains the
letter (b1, b2, 1, 1).

Example 2.4 (Sequence properties). Fix state properties p1 and p2. Label sequences are
ω-words over B2 = {

(
0
0

)
,
(

0
1

)
,
(

1
0

)
,
(

1
1

)
}.

(i) Recurrence: “p1 holds again and again (i.e. infinitely often).”

(ii) Periodicity : “p1 is true initially and precisely at every third moment.”

(iii) Request-response: “It is always the case that whenever p1 holds, p2 will hold sometime
later.”

(iv) Obligation: “p1 eventually holds but p2 never does.”

(v) Until condition: “It is always the case that when p1 holds, sometime later p1 will be
true again, and in the meantime p2 is always true.”

(vi) Fairness: “If p1 is true again and again (infinitely often), then the same is true of p2”.

2.3 Syntax and Semantics

In our present modelling framework, correctness properties are path properties. We present
Linear-time Temporal Logic, a logical system for expressing properties of ω-words.

28 CHAPTER 2. LINEAR-TIME TEMPORAL LOGIC

LTL-formulas, over atomic propositions p1, · · · , pn, are defined by the grammar:

ϕ ::= pi atomic proposition

| ¬ϕ negation

| ϕ ∧ ψ conjunction

| ϕ ∨ ψ disjunction

| Xϕ next

| ϕU ψ until

Intuitively

Xϕ “ϕ is true at the next time-step”

ϕU ψ “ϕ is true until ψ is true (and ψ holds eventually)”

(Picture of time-line)

Two additional constructs

Fϕ “ϕ is eventually true”

i.e. ϕ is true at some point in the future (starting from the present)

Gϕ “ϕ is always true”

i.e. ϕ is true at every point in the future (including the present)

They are expressible in LTL by

Fϕ := true U ϕ

Gϕ := ¬(F¬ϕ)

(Henceforth we regard the above as definitions.)
LTL-formulas over atomic propositions p1, · · · , pn are interpreted as sets of ω-words α

over the alphabet Bn.

Notation Let α = α(0) α(1) α(2) · · · ∈ (Bn)ω:

- αi stands for α(i) α(i+ 1) α(i+ 2) · · · , so α = α0.

- (α(i))j is the j-th component of the vector α(i).

Definition 2.2 (Satisfaction). Let i ≥ 0. Define αi � ϕ by recursion over the syntax of ϕ:

αi � pj := (α(i))j = 1

αi � ¬ϕ := ¬(αi � ϕ)

αi � ϕ ∨ ψ := αi � ϕ ∨ αi � ψ

αi � ϕ ∧ ψ := αi � ϕ ∧ αi � ψ

αi � Xϕ := αi+1 � ϕ

αi � ϕU ψ := ∃j ≥ i :
(
αj � ψ ∧ ∀i ≤ k ≤ j − 1 : αk � ϕ

)
We say that α � ϕ, read α satisfies ϕ, just if α0 � ϕ.

2.3. SYNTAX AND SEMANTICS 29

Examples of LTL-definable Correctness Properties

Example 2.5 (Sequence properties revisited). (i) Recurrence: p1 holds again and again
(i.e. infinitely often).

G (F p1)

(ii) Periodicity : p1 is true initially and precisely at every third moment.

p1 ∧ X¬p1 ∧ XX¬p1 ∧ G (p1 ↔ XXX p1)

(iii) Request-response: It is always the case that whenever p1 holds, p2 will hold sometime
later.

G (p1 → XF p2)

(iv) Obligation: Eventually p1 holds but p2 never does.

F p1 ∧ ¬F p2

(v) Until condition: It is always the case that when p1 holds, sometime later p1 will hold
again, and in the meantime p2 is always true.

G (p1 → X (p2 U p1))

(vi) Fairness: If p1 is true again and again, then the same is true of p2.

GF p1 → GF p2

Exercise 2.1. Verify the following:

(i) αi � Fϕ ↔ ∃j ≥ i : αj � ϕ

(ii) αi � Gϕ ↔ ∀j ≥ i : αj � ϕ

Definition 2.3. (i) An ω-language L ⊆ (Bn)ω is LTL-definable just if there is an LTL-
formula ϕ over p1, · · · , pn such that L = {α ∈ (Bn)ω | α � ϕ }. We say that L is
definable by ϕ.

(ii) We say that two LTL-formulas ϕ and ψ are equivalent, written ϕ ≡ ψ, if they define the
same ω-language.

(iii) A Kripke structure K = (S,R, λ, s0) satisfies an LTL-formula ϕ, written K � ϕ, just if
every label sequence of K satisfies ϕ.

Translating LTL formulas into Büchi automata We consider the translation of LTL
formulas into equivalent Büchi automata by examples.

Example 2.6.

α � F (p1 ∧X (¬p2 U p1))

iff for some j ≥ 0 : αj � p1 and αj+1 � ¬p2 U p1

iff for some j ≥ 0 : αj � p1 and for some j′ ≥ j + 1: αj
′
� p1 and

for all j + 1 ≤ k ≤ j′ − 1 : αk � ¬p2

iff for some j and some j′ > j : α(j) and α(j′) have 1 in the 1st

component, and for all j < k < j′, α(k) has 0 in 2nd component

iff α has two occurrences of
(

1
∗
)

between which only letters

of the form
(∗

0

)
occur.

30 CHAPTER 2. LINEAR-TIME TEMPORAL LOGIC

Exercise Draw a Büchi automaton that recognises the same ω-language.

Example 2.7. (i) G (F p1)

// •

(0∗)

��
(1∗)

((• (1∗)
yy

(0∗)

hh

(ii) p1 ∧ X¬p1 ∧ XX¬p1 ∧ G (p1 ↔ XXX p1)

// •
(1∗)

((•
(0∗)

((•

(0∗)

gg

(iii) G (p1 → XF p2)

// q1

(0∗)

�� (1∗)
**
q2

(∗0)

��
(11)

**

(01)

jj q3

(11)

��

(01)

\\
(∗0)

jj

At state q1, the automaton has no obligation to read a
(∗

1

)
; q2 means that it is obliged

to, but has not yet, read a
(∗

1

)
since the last

(
1
∗
)
; q3 is reached after reading

(
1
1

)
.

Exercise 2.2. Translate the following to Büchi automata:

(i) (F p1) ∧ ¬F p2

(ii) G (p1 → X (p2 U p1))

2.4 Translating LTL to Generalised Büchi Automata

We can systematically translate a given LTL formula to an equivalent (generalised) Büchi
automaton. In fact, we shall utilise such an automaton construction to design a decision
procedure for the LTL model checking problem.

Definition 2.4. A generalised Büchi automaton (GBA) is a 5-tuple

(Q,Σ,∆, q0, {F0, · · · , Fl−1 })

with final state-sets F0, · · · , Fl−1 ⊆ Q. A run ρ is accepting just if for each i, there is some
state in Fi which occurs infinitely often in ρ i.e.

∧
i(inf(ρ) ∩ Fi 6= ∅).

Proposition 1. Given a generalised Büchi automaton A = (Q,Σ,∆, q0, {F0, · · · , Fl−1 }),
define Büchi automaton

A′ = (Q× { 0, 1, · · · , l − 1 },Σ,∆′, (q0, 0), F0 × { 0 })

with ∆′ consisting of

2.4. TRANSLATING LTL TO GENERALISED BÜCHI AUTOMATA 31

- ((p, i), a, (q, i)) if p 6∈ Fi
- ((p, i), a, (q, (i+ 1) mod l)) if p ∈ Fi

assuming that (p, a, q) ∈ ∆. Prove that A and A′ recognise the same ω-language over Σ.

Exercise 2.3. Prove the proposition.

The rest of the section is concerned with the proof of the following theorem.

Theorem 2.1 (Translating LTL to GBA). Let ϕ be an LTL formula over p1, · · · , pn. Suppose
m is the number of distinct non-atomic subformulas of ϕ. There is a generalised Büchi
automaton Aϕ with state-set { q0 } ∪ Bn+m that is equivalent to ϕ i.e. the language definable
by ϕ coincides with the language recognised by Aϕ. Further the translation ϕ 7→ Aϕ is effective.

Evaluating LTL-formula ϕ over α ∈ (Bn)ω Given ω-word α over (Bn)ω, and LTL-formula
ϕ over p1, · · · , pn. Define formulas ϕ1, ϕ2, · · · , ϕn+m where

- ϕ1 = p1, · · · , ϕn = pn, and

- ϕn+1, · · · , ϕn+m = ϕ are all the distinct non-atomic subformulas of ϕ, listed in non-
decreasing order of size.

We construct a two-dimensional semi-infinite array of truth values, β ∈ (Bn+m)ω, defined by:
(β(i))j = 1 (i.e. j-th row, i-th column is 1) if and only if αi � ϕj . In particular α � ϕ ↔
(β(0))m+n = 1. We call β ∈ (Bn+m)ω the ϕ-expansion of α.

Example 2.8. Take ϕ = F (¬p1 ∧X (¬p2 U p1)) and α =
(

1
0

) (
0
1

) (
1
1

) (
0
0

) (
1
0

) (
0
1

)
· · · . We

construct β ∈ (B2+6)ω, the ϕ-expansion of α:

ϕ1 = p1

ϕ2 = p2

1

0

0

1

1

1

0

0

1

0

0

1
· · ·

ϕ3 = ¬p1 0 1 0 1 0 1 · · ·
ϕ4 = ¬p2 1 0 0 1 1 0 · · ·

ϕ5 = ¬p2 U p1 1 0 1 1 1 0 · · ·
ϕ6 = X (¬p2 U p1) 0 1 1 1 0 · · · ·

ϕ7 = ¬p1 ∧X (¬p2 U p1) 0 1 0 1 0 · · · ·
ϕ8 = F (¬p1 ∧X (¬p2 U p1))︸ ︷︷ ︸

ϕ

1 1 1 1 · · · · ·

Note that the 3rd (resp. 4th) row is the negation of the 1st (resp. 2nd) row.

Finite characterisation of the ϕ-expansion of an ω-word α The semantics of an
LTL formula ϕ over an ω-word α is captured by the ϕ-expansion of α, which is an infinite
object. We first characterise ϕ-expansions by a finite set of compatibility conditions, and then
construct a generalised Büchi automaton that guesses the ϕ-expansion of α, as α is read. We
divide these rules into local and global as follows.

32 CHAPTER 2. LINEAR-TIME TEMPORAL LOGIC

Local compatibility conditions: Local in the sense that the conditions relate contiguous
letters (qua column vectors) of β ∈ (Bm+n)ω.

Cases Local conditions

ϕj = ¬(ϕk) (β(i))j = 1↔ (β(i))k = 0

ϕj = ϕk ∧ ϕl (β(i))j = 1↔ [(β(i))k = 1 and (β(i))l = 1]

ϕj = ϕk ∨ ϕl (β(i))j = 1↔ [(β(i))k = 1 or (β(i))l = 1]

ϕj = Xϕk (β(i))j = 1↔ (β(i+ 1))k = 1

ϕj = ϕk U ϕl (β(i))j = 1↔ (β(i))l = 1 or [(β(i))k = 1 and (β(i+ 1))j = 1]

The last clause can be explained by the equivalence: ϕU ψ ≡ ψ ∨ (ϕ ∧X (ϕU ψ)).

Global compatibility condition ϕj = ϕk U ϕl: There is no m such that for all n ≥ m,
we have (β(n))j = 1 and (β(n))l = 0.

If α ∈ (Bn)ω and γ ∈ (Bm)ω, let α(γ denote the ω-word over (Bn+m)ω obtained by
stacking α on top of γ.

Lemma 2.1. β := α(γ ∈ (Bn+m)ω satisfies the compatibility conditions if and only if it is
the ϕ-expansion of α.

Proof. “⇐” direction is obvious. “⇒”: Let Bj be the statement ∀i ≥ 0 : (β(i))j = 1↔ αi |=
ϕj . We prove ∀j ≥ 1 : Bj by induction on j.

Base case: ϕj = pj . Vacuously true.
Inductive case: The only less obvious case is when ϕj = ϕk U ϕl. If (β(i0))l = 1 then for

all i ≤ i0, the entry (β(i))j is “correct”, because of ϕkUϕl = ϕl ∨ (ϕk ∧X (ϕk U ϕl)) and the
induction hypothesis as k, l < j. It follows that if (β(i))l = 1 for infinitely many i, then the
entry (β(i))j is “correct” for all i ≥ 0. Now suppose for some i0, we have (β(i))l = 0 for all
i ≥ i0. We claim that for all i ≥ i0, (β(i))j = 0, and hence the entry is correct; for otherwise
we have (β(i))j = 1 for all i ≥ i1, for some i1 ≥ i0 (because of local compatibility for until
formulas), and so, violating global compatibility.

Proof of Theorem 2.1

Lemma 2.2. The generalised Büchi automaton

Aϕ = ({ q0 } ∪ Bn+m, Bn, ∆, q0, {F1, · · · , Fp }),

defined as follows, accepts α ∈ (Bn)ω if and only if α � ϕ.

Proof. Write non-initial state xy = (x1, · · · , xn, y1, · · · , ym). The transition relation ∆ is
defined as follows: for xy and x′y′ ranging over Bn+m

- q0
x−→ xy provided xy satisfies the local compatibility conditions and ym = 1

- xy
x′−→ x′y′ provided xy and x′y′ satisfy the local compatibility conditions (i.e. xy corre-

sponds to the i-column and x′y′ to the (i + 1)-column in the table of local compatibility
conditions).

For each until subformula ϕj = ϕk U ϕl, a final state-set F containing all states with j-
component = 0 or l-component = 1. Let F1, · · · , Fp be all such sets, one for each until
subformula of ϕ. Thus we have

2.5. THE LTL MODEL CHECKING PROBLEM AND ITS COMPLEXITY 33

Aϕ accepts α ∈ (Bn)ω

iff {Definition of acceptance }
for some Aϕ-run ρ ∈ (Bn+m)ω on α, each Fj is visited infinitely often

iff {Lemma 2.1 }
ρ is the ϕ-expansion of α, and (ρ(0))m+n = 1

iff {Definition of ϕ-expansion of α }
α = α0 � ϕm+n = ϕ

as desired.

2.5 The LTL Model Checking Problem and its Complexity

Definition 2.5. A Kripke structure K = (S,R, λ, s0) over AP = {p1, . . . , pn} satisfies an
LTL-formula ϕ over AP , written K � ϕ, if every label sequence of K satisfies ϕ.

LTL Model-Checking Problem Given a Kripke structure K = (S,R, λ, s0) over the
atomic propositions p1, · · · , pn, and an LTL-formula ϕ, does K satisfy ϕ?

The approach is to verify the negation: Is there a label sequence through K that does not
satisfy ϕ? Note that P ⊆ Q iff P ∩Q = ∅.

Label sequences of a given Kripke structure are Büchi recognisable Given a
Kripke structure K = (S,R, λ, s0) over p1, · · · , pn. Construct a Büchi automaton AK =
(S,Bn, s0,∆, S) whereby

(s, (b1, · · · , bn), s′) ∈ ∆ ↔ (s, s′) ∈ R and λ(s) = (b1, · · · , bn)

Thus each transition of AK has the label of the source state, and every state is final. Then
AK recognises the language of label sequences of K.

Example 2.9. The Büchi automaton on the right recognises the set of label sequences of the
Kripke structure on the left.

(
1
0

) **

��

(
0
0

) tt
//
(

1
1

)
66

(((0
1

)

KK
•

(10)
((

(10)

		

• (00)
yy

// •

(11) 33

(11)
++ •

(01)

II

Proposition 2. The LTL Model Checking Problem is solvable in time polynomial in the size
of the Kripke structure K and exponential in the size of the formula ϕ.

Proof. We give the model checking algorithm as follows.

34 CHAPTER 2. LINEAR-TIME TEMPORAL LOGIC

LTL Model Checking: Given a Kripke structure K and an LTL formula ϕ, does
K � ϕ?

Algorithm:

1. Construct a Büchi automaton AK that recognises the ω-language of all label
sequences through K.

2. Construct a generalised Büchi automaton A¬ϕ that recognises the ω-language of
all label sequences that do not satisfy ϕ.

3. Construct the intersection automaton AK × A¬ϕ i.e. the Büchi automaton that
recognises L(AK) ∩ L(A¬ϕ).

4. Check for non-emptiness of AK ×A¬ϕ.

Stages 1, 3 and 4 are all polytime. Stage 2 require exponential time in the size of ϕ.

Theorem 2.2 (Sistla and Clarke 1985). The LTL Model Checking Problem is PSPACE-
complete in the size of the formula.

We present a proof of a result due to Sistla and Clarke (1985). To prove that LTL model
checking is solvable in PSPACE, we improve the EXPTIME algorithm of Theorem 2.1. For
PSPACE-hardness, we encode polynomial space Turing machines.

An Interlude: Savitch’s Algorithm We review the famous result of Savitch (1970); see
(Sipser, 2005, Ch. 8 Space Complexity) or (Papadimitriou, 1994).

In time complexity, non-determinism is exponentially more expensive than determinism.
But in space complexity, thanks to Savitch, non-determinism is only quadratically more ex-
pensive than determinism. Savitch proved that if a nondeterministic Turing machine can
solve a problem using f(n) space, then a deterministic Turing machine can solve the same
problem in the square of that space bound.

Savitch’s insight lies in a method to decide graph reachability which, though wasteful
in time, is highly efficient in space. The well-known depth-first and breadth-first graph
search algorithms are linear in the size of the graph. Savitch’s algorithm could be viewed
as “middle-first search” based on the fact that every path of length 2i has a mid-way point
which is reachable from the start, and from which the end is reachable, in no more than 2i−1

steps.

2.5. THE LTL MODEL CHECKING PROBLEM AND ITS COMPLEXITY 35

Savitch’s Algorithm
Input: A finite digraph G = (V,E), vertices u, v ∈ V , i ∈ N
Output: YES iff there is a path in G from u to v of length at most 2i

Path(G, u, v, i) =

if i = 0

if u = v or (u, v) ∈ E
return YES

else return NO

for all vertices w ∈ V
if Path(G, u,w, i− 1) and Path(G,w, v, i− 1)

return YES

return NO

Theorem 2.3 (Savitch 1970). Reachability (given a graph G = (V,E) and vertices u, v ∈ V ,
is there a path from u to v?) can be solved by calling Path(G, u, v, log |V |), which is computable
in space O(log2 |V |).

To obtain theO(log2 |V |) space bound, we use a Turing machine to implement the recursive
program Path(G, u, v, log |V |), with its work tape acting like the stack of activation records.
At any time, the work tape contains log |V | or fewer triples of the form (x, y, j) where x, y ∈ V
and j ≤ log |V |, where each triple has length at most 3 log |V |. For a proof, see for example
(Papadimitriou, 1994, p. 149-150).

Corollary 2.1 (Savitch 1970). For every function f(n) ≥ log(n)

NSPACE (f(n)) ⊆ DSPACE (f(n)2).

It follows that PSPACE = NPSPACE.

Proof. Let P be a problem in NSPACE (f(n)). Let M be a nondeterministic Turing machine
with space usage bounded by f(n) and accepting P . To determine whether x ∈ P , check
whether the configuration graph of M has a path of length at most 2O(f(|x|)) from the initial
to an accepting configuration. This can be done in DSPACE (O(f(|x|)2)).

LTL Model Checking is in PSPACE

The idea is to use the algorithm of Proposition 2 without building the intersection automaton
AK×A¬ϕ in full; rather we compute the states of the automaton on demand. From Savitch’s
algorithm, we know that if the space required to store a state and decide a given transition
q → q′ is polynomial in the size of the input, so is the space required to decide reachability
q →∗ q′.

States of the intersection automaton AK ×A¬ϕ, which are elements of the shape

(s, x y, i) ∈ S × Bn+m × { 1, · · · , l },

can be stored in space polynomial in |ϕ| and |K|. Note that m, l = O(|ϕ|). To decide
(s, x y, i)→ (s′, x′ y′, j), we need to verify:

36 CHAPTER 2. LINEAR-TIME TEMPORAL LOGIC

- x y and x′ y′ satisfy the local compatibility conditions, such as [(β(i))k = 1 or (β(i))l = 1];
since there are only linearly many conditions, they are easy to check.

- i, j are as determined by the global compatibility condition

- Finally s→ s′ is a transition in AK.

Thus transitions can be decided in space polynomial in |ϕ|. It follows from Savitch that we
can decide (s, x y, i)→∗ (s′, x′ y′, j) in polynomial space.

To decide non-emptiness of L(AK × A¬ϕ), we seek a “lasso” on a final state (s, x y, i) in
the intersection automaton i.e.

(s0, q0, 0)→∗ (s, x y, i)→+ (s, x y, i)

by the following algorithm:

for all (s, x y, i)

if (s, x y, i) is final and (s0, q0, 0)→∗ (s, x y, i)

for all (s, x y, i)→ (s′, x′ y′, j)

if (s′, x′ y′, j)→∗ (s, x y, i)

return YES

return NO

Thus we conclude that LTL model checking is in PSPACE.

LTL Model Checking is PSPACE-hard

Let T be a Turing machine with space usage bounded by a polynomial function s(n). WLOG,
assume that T loops at each accepting configuration. We shall build a Kripke structure K
and an LTL formula ϕ such that K 2 ϕ iff T can reach an accepting state.

(1) Runs of T can be represented as ω-words.

(2) K tries to construct all runs of T .

(3) The LTL formula ϕ asserts that the run in question is non-accepting (or malformed).

Runs as ω-words An accepting run of T can be written as a sequence of configurations ci,
separated by a marker 8 as follows.

8 c0 8 c1 8 · · · 8 ck 8 ck 8 ck 8 ck · · ·

Each ci, which has the shape a0 a1 · · · (q, aj) · · · as(n) where 0 ≤ j ≤ s(n) and ai ranging over
input symbols, represents the configuration comprising the tape

a0 a1 · · · as(n)−1 as(n) 2 2 2 2 · · ·

with control state q and tape head position j. The initial configuration, c0, is the sequence
(q0,2) 2 · · ·2︸ ︷︷ ︸

s(n)

. Further, for all i, ci+1 follows from ci, and the control state in ck is accepting.

Thus an accepting run is an ω-word of a certain shape.

2.5. THE LTL MODEL CHECKING PROBLEM AND ITS COMPLEXITY 37

K constructs every run by generating every possible ω-word.

// • ∗
yy

Recognising a bad run We want ϕ to characterise exactly the non-accepting or malformed
ω-words. Such a word is

(i) either not a sequence of configurations. For example a 8 (q, b) 8 8 a a a 8 (q, a) (q, b) · · ·
(ii) or it does not start with the initial configuration

(iii) or it does not reach a final configuration

(iv) or for some i, ci+1 cannot follow from from ci.

Then ϕ is the disjunction of the formulas describing the respective cases above. We consider
them in turn.

Not a sequence of configurations The ω-word is not of the form 8 · · ·︸ ︷︷ ︸
s(n)

8 · · ·︸ ︷︷ ︸
s(n)

8 · · ·

¬

8 ∧ G

8⇒

Xs(n)+1 8 ∧
∧

1≤i≤s(n)

Xi ¬8


or some configuration does not contain exactly one head.

¬G [8⇒ X (Cell U (Head ∧X (Cell U 8)))]

where

Head :=
∨
q,a

(q, a)

Cell :=
∨
a
a

Initial and final conditions The ω-word:

- does not start with the initial configuration (q0,2) 2 · · · 2.

¬

X (q0,2) ∧
∧

2≤i≤s(n)

Xi2


(Why don’t we test for 8 characters?)

- or does not reach a final configuration.

¬F

 ∨
q final,a

(q, a)



38 CHAPTER 2. LINEAR-TIME TEMPORAL LOGIC

Some ci+1 does not follow from ci Let r range over the transitions of T .

¬G

(
8⇒

∨
r

Followsr

)

Let (q, a) be the head of r, q′ the next state, b the character to write, d ∈ {−1, 0, 1 } is
the direction of the head movement. Then

Followsr :=
∨

1≤i≤s(n)


 Xi (q, a) ∧

Xs(n)+1+i Char(b) ∧
Xs(n)+1+i+d State(q′)

 ∧
∧
j 6=i

∨
a

(
Xj Char(a)∧
Xs(n)+1+j Char(a)

) 
where

Char(b) := b ∨
∨
q′′

(q′′, b)

State(q′) :=
∨
c

(q′, c)

Putting all of the above together, we have K 2 ϕ iff T has an accepting run.

Further considerations:

- What if the formula is fixed?

- What if the model is fixed?

2.6 Expressive Power of LTL

We say that L ⊆ Σω non-counting just if there is an n0 ≥ 0 such that for every n ≥ n0 and
for every u, v ∈ Σ∗ and β ∈ Σω, we have u vn β ∈ L ↔ u vn+1 β ∈ L. I.e. if L contains an
infinite word that embeds a finite word repeated sufficiently often (i.e. more often than the
threshold), then for every n larger than the threshold, L contains such an embedded word in
which the finite word is repeated n-times.

For example, (0 0)∗ 1ω is not non-counting: for each n ≥ 0, 02n1ω matches (0 0)∗ 1ω, but
02n+11ω does not.

Proposition 3. Every LTL-definable ω-language is non-counting. It follows that there are
Büchi recognisable ω-languages that are not LTL-definable. �

Some FAQs

(1) What does “linear time” in LTL mean?

Linear-time specifications set same conditions on every infinite path through system mod-
elled by Kripke structure. Branching-time specifications are conditions on the structure
of tree formed by all paths through a Kripke structure. Well-known logics for describing
branching-time properties are computational tree logic (CTL) and CTL*. See (Vardi,
2001) for a readable study on linear-time versus branching-time logics.

(2) Is LTL a “robust” logic? Are there nice characterisations of the LTL-definable languages?

A star-free regular expression over Σ is an expression built up using ε, symbols a ∈
Σ, concatenation, union and complementation with respect to Σ∗. A star-free regular
language is a language that matches a star-free regular expression.

2.6. EXPRESSIVE POWER OF LTL 39

Theorem 2.4 (Characterisations of LTL Definability). Let L ⊆ Σω. The following are
equivalent.

(i) L is definable in LTL

(ii) L is star-free ω-regular i.e. a finite union of ω-languages of the form L1 · Lω2 where
L1, L2 ⊆ Σ∗ are star-free regular

(iii) L is a finite union of ω-languages of the form limL1∩(Σω\limL2) where L1, L2 ⊆ Σ∗

are star-free regular. �

(3) What is Kamp’s Theorem?

In his UCLA PhD thesis, Kamp (1968) proved that an ω-language is LTL-definable if
and only if it is definable in FO(<, (Pa)a∈Σ) i.e. first-order logic with a binary predicate
symbol < and a unary predicate Pa for each a ∈ Σ. We write Mα = (ω,<, (Pa)a∈Σ) for
the obvious structure determined by α ∈ Σω where for each a ∈ Σ, n ∈ Pa ↔ α(n) = a.

Theorem 2.5 (Kamp 1968). Let α be an ω-word over Σ and n ∈ ω.

(i) For each LTL formula ϕ there exists a formula χϕ(x) in FO(<, (Pa)a∈Σ) with a free
variable x such that

αn � ϕ ↔ Mα � χϕ(n).

(ii) For each formula χ(x) in FO(<, (Pa)a∈Σ), there exists an LTL formula ϕχ such
that

Mα � χ(n) ↔ αn � ϕχ.

It follows that for each FO sentence χ there exists an LTL formula ϕχ such that
Mα � χ↔ α0 � ϕχ. �

See (Rabinovich, 2012) for a new proof of Kamp’s theorem.

(4) Can we extend LTL to make it equi-expressive with Büchi automata (for ω-languages)?

Yes. µLTL: LTL augmented by (a least µ, and hence also greatest ν) fixpoint operators.

Theorem 2.6 (Characterisations of ω-Regularity). Let L ⊆ Σω. The following are
equivalent.

(i) L is ω-regular

(ii) L is definable in µLTL

(iii) L is definable in S1S (see the following chapter)

(iv) L is definable in Weak S1S. �

(5) Is there a characterisation of the subclass of Büchi automata that is equivalent to LTL?

The automata that are equi-expressive with LTL formulas are called linear weak alter-
nating automata. For details see (Löding and Thomas, 2000; Gastin and Oddoux, 2001;
Hammer et al., 2005).

40 CHAPTER 2. LINEAR-TIME TEMPORAL LOGIC

Problems

2.1 Consider the following properties for the lift system introduced in the introductory
chapter:

(A1) Every requested level will be served eventually.

(A2) The lift will return to level 1 again and again.

(A3) Whenever the top level is requested, the lift serves it immediately and does not stop on
the way there.

(A4) It is always the case that while moving in one direction, the lift will stop at every
requested level, unless the top level is requested.

Assume that the lift serves only four levels. By introducing appropriate atomic propositions
(ten should suffice), describe the above properties as LTL-formulas. You should begin by
constructing the state-transition graph.

2.2 Let ϕ,ψ and χ be LTL-formulas. We say that two formulas are equivalent if they define
the same language. For each of the following, prove or disprove each of the two implications:

(a) FGϕ ≡ GFϕ

(b) X (ϕ ∧ ψ) ≡ Xϕ ∧Xψ

(c) (ϕ ∨ ψ) U χ ≡ (ϕU χ) ∨ (ψU χ)

(d) (ϕU ψ) U χ ≡ ϕU (ψU χ)

2.3 Let ϕ and ψ be LTL-formulas. Consider the following temporal operators:

(a) “at next” ϕAXψ: When ψ next2 holds (if it does), so does ϕ.

(Note that ψ may never hold.)

(b) “while” ϕWψ: ϕ holds for at least as long as ψ does.

(Note that ψ is not assumed to hold at the beginning.)

(c) “before” ϕBψ: When ψ next holds (if it does), ϕ does so before.

(Note that ψ may never hold.)

For each construct, find an equivalent LTL-formula.

2We do not mean “when ϕ hold at the next time step”, but rather “when ϕ holds at some point in the
future”.

2.6. EXPRESSIVE POWER OF LTL 41

2.4 Translate the following LTL formulas to Büchi automata:

(a) F p1 ∧ ¬F p2

(b) G (p1 → X (p2 U p1))

(c) GF p1 → FG p2.

2.5 We define a sublogic T (U) of LTL consisting of formulas that are built up from the
atomic propositions, using conjunction, negation and the until-operator ϕ U ψ. (Thus we
may write LTL as T (X, U).)

Suppose there is only one atomic proposition, p1. Consider the label sequence

α = (1)(1)(0)(0) · · ·

(a) Prove, by structural induction on formulas, that for all ϕ ∈ T (U), we have α0 � ϕ iff
α1 � ϕ.

(b) Find an LTL-formula ψ satisfying α0 � ψ and α1 6� ψ.

(c) Hence prove that T (U) is strictly less expressive than LTL.

2.6 Prove that for each generalised Büchi automaton

A = (Q,Σ,∆, q0, {F0, · · · , Fl−1 })

there is an equivalent Büchi automaton A′ i.e. they recognise the same ω-language.

2.7 Consider the LTL-formula ϕ = p1 U (X p2).

(a) Let α ∈ ({ 0, 1 }2)ω. Formulate the compatibility conditions for the ϕ-expansion of α.

(b) Construct a generalised Büchi automaton A equivalent to ϕ. What are the final states
of A?

(c) Construct directly a Büchi automaton recognising L = {α ∈ ({ 0, 1 }2)ω : α � ϕ }.

2.8

(a) Show that the ω-language L1 = { (01)ω } is non-counting.

(b) Show that the ω-language L2 = { 01(0101)∗0ω } is counting.

2.9 An ω-language L over an alphabet Σ is said to be stuttering if for each letter a ∈ Σ, we
have

u aβ ∈ L ↔ u a a β ∈ L
(where u ranges over Σ∗ and β over Σω). Which of the following are true? Justify your
answers.

(a) If ϕ is an LTL formula then L(ϕ) is stuttering.

(b) If ϕ is an LTL formula without X (-) then L(ϕ) is stuttering.

42 CHAPTER 2. LINEAR-TIME TEMPORAL LOGIC

2.10 Let p be the only atomic proposition. For n ≥ 0, let γn be the infinite word 1n01ω.
Thus if i 6= n then γin � p, and γnn 2 p.

Let ϕ be an LTL-formula. Prove, by structural induction, that if ϕ has no more than n
occurrences of X (−), then for all i, j > n, we have γj � ϕ iff γi � ϕ.

[Hint. For the inductive case of ϕ = ϕ1 U ϕ2: γi � ϕ means that for some l ≥ 0, we have
γli � ϕ2, and γki � ϕ1 for all 0 ≤ k < l. Consider the cases of l ≤ i and l > i in turn. In the
former case, analyse the cases of i− l > n and i− l ≤ n. Note that γli = γi−l if l ≤ i. What
is γli if l > i?]

2.11 †We define a sublogic T (X, G) of LTL consisting of formulas that are built up from the
atomic propositions, using conjunction, negation, next-time operator Xϕ, and the always-
modality Gϕ. We shall prove:

Theorem 2.7. T (X, G) is strictly less expressive than LTL.

Consider a Kripke structure (over atomic propositions p1, p2) that has states s0, · · · , s4m−1

and the transition relation is specified by:

si → sj ⇐⇒ j = i+ 1 or (i = 4m− 1 and j = 2m).

The proposition p1 is assumed to hold for all states except s3m, and p2 is assumed to hold for
just the states s2m−1 and s4m−1. Let α be the uniquely determined label sequence starting
in state s0. I.e.

α =

(
1

0

)
· · ·
(

1

0

)(
1

1

)
︸ ︷︷ ︸

2m


(

1

0

)
· · ·
(

1

0

)
︸ ︷︷ ︸

m

(
0

0

)(
1

0

)
· · ·
(

1

0

)(
1

1

)
︸ ︷︷ ︸

2m



ω

(a) List the elements of the set { 0 ≤ l ≤ 4m− 1 : αl � p1 U p2 }.

(b) Prove that for all ϕ ∈ T (X, G) containing fewer than m− 1 occurrences of X, we have

α0 � ϕ ⇐⇒ α2m � ϕ.

(c) Observe that α0 � p1 U p2 and α2m 2 p1 U p2. Hence or otherwise prove that T (X, G)
is strictly less expressive than LTL.

2.12 The aim of the problem is to establish the co-NP-hardness of the LTL Model Checking
Problem. We will do this by reducing 3-UNSAT (a co-NP-complete problem) to it.

Given an instance of the 3-UNSAT problem, we want to produce in polynomial time
an instance of the LTL Model Checking Problem. More precisely, we want to prove that a
propositional formula ψ in conjunctive normal form (with three literals per clause, where a
literal is a variable or the negation of a variable) can be transformed in polynomial time into

2.6. EXPRESSIVE POWER OF LTL 43

a Kripke structure Kψ and an LTL-formula Fψ such that ψ is satisfiable if, and only if, the
pair (Kψ, Fψ) is a no-instance of the LTL Model Checking Problem.

Take ψ = (x1 ∨¬x2 ∨ x3)∧ (¬x1 ∨¬x2 ∨¬x3) which can be satisfied with the assignment
x1 7→ 1, x2 7→ 0, x3 7→ 0.

Consider the following Kripke structure Kψ

x1

(10)

""

x2

(00)

""

x3

(10)

""// y0

<<

(00)

""

y1

<<

(00)

""

y2

<<

(00)

""

y3

(00)

yy

¬x1

(01)

<<

¬x2

(11)

<<

¬x3

(01)

<<

The labels are defined as follows: the j-component of the label of the literal ` is 1 just if `
occurs in the j-clause of ψ. The idea is that an assignment determines a path through the
Kripke structure.

(a) What is Fψ for the above example?

(b) By giving the construction ψ 7→ Kψ and the corresponding formula Fψ, prove that there
is a polynomial reduction of the desired kind.

Thus conclude that the LTL Model Checking Problem is co-NP-hard.

44 CHAPTER 2. LINEAR-TIME TEMPORAL LOGIC

Chapter 3

S1S

Synopsis

Examples. Syntax and semantics. Büchi-recognisable languages are S1S-definable. S1S-
definable languages are Büchi-recognisable.

References (Büchi, 1960a; Elgot, 1961; Büchi, 1962; Muller, 1963)

3.1 Introduction

In this chapter, we will consider a logic called S1S that is equivalent in expressive power to
Büchi automata, i.e. it can define precisely the ω-regular languages.

S1S is the monadic second-order logic (MSO) of one-successor. Second-order means that
we allow quantification over relations; monadic means that quantification is restricted to
monadic (or unary) relations, namely, sets.

Why study S1S?

- Historical importance: the first time automata and logic connection is established and
exploited.

- Powerful decidable theory : many decisions problems can be shown decidable by reduction
to S1S.

- monadic second-order logic is considered a gold standard of logics for describing correctness
properties of reactive systems.

3.2 The logical system S1S

The vocabulary consists of a unary function symbol s and a binary predicate symbol ∈. The
corresponding logical structure is (ω, s,∈) where1 s is the successor function x 7→ x+ 1, and
∈ ⊆ ω × 2ω is the standard membership relation between elements and sets.

1We use the same LATEX-symbol for the function symbol s (in the vocabulary) and its interpretation (in the
logical structure) – it should be clear from the context which is intended; similarly for ∈.

45

46 CHAPTER 3. S1S

The logical system S1S is defined as follows.

- Variables. 1st-order variables (x, y, z, etc.) range over natural numbers (regarded as posi-
tions in ω-words). 2nd-order variables (X,Y, Z, etc.) range over sets of natural numbers.

- Terms. 1st-order variables are terms. If t is a term, so is s t.

- Formulas. Atomic formulas are of the shape t ∈ X where t is a term and X is a 2nd-order
variable.
S1S formulas are built up from atomic formulas using standard Boolean connectives, with
∀- and ∃-quantifications over 1st and 2nd-order variables.

Constructs definable in S1S Note that 0 and the atomic formulas s = t and s < t are
definable in terms of set-membership and successor.

- “x = y” := ∀X.x ∈ X ↔ y ∈ X
- “X ⊆ Y ” := ∀x.x ∈ X → x ∈ Y
- “X = Y ” := X ⊆ Y ∧ Y ⊆ X
- “x = 0” := ∀y.¬(x = s y) “x has no predecessor”

- “x = 1” := x = s 0

- “x ≤ y” := ∀X.(x ∈ X ∧ (∀z.z ∈ X → s z ∈ X)) → y ∈ X
“Every set X that contains x and is closed under successor (in particular, the smallest such
X) also contains y.”

- “X is finite” := ∃x.∀y.(y ∈ X → y ≤ x)

Subsystems of S1S

- First-order fragment: S1S1. Formulas are built up from atomic formulas (s ∈ X, s = t and
s < t where s and t are terms) using boolean connectives and first-order quantifiers.

- Existential S1S. Formulas are S1S1-formulas preceded by a block ∃Y1 · · ·Ym of existential
second-order quantifiers.

We remark that in these subsystems we will treat = and < as relations in their own right,
not as shorthand for the S1S formulas that define these relations using s, ∈, and second-order
quantifiers.

3.3 Semantics of S1S

Write ϕ(x1, · · · , xm, X1, · · · , Xn) to mean: ϕ has free 1st-order variables from x1, · · · , xm and
free 2nd-order variables from X1, · · · , Xn. Let ai ∈ ω and Pj ⊆ ω. For a = a1, · · · , am and
P = P1, · · · , Pn, we write

(ω, s,∈); a;P � ϕ(x1, · · · , xm, X1, · · · , Xn)

or simply a, P � ϕ, to mean “ the structure (ω, s,∈) with the assignment x 7→ a;X 7→ P
satisfies ϕ”.

Definition 3.1. We define the satisfaction relation

a;P � ϕ(x,X)

3.3. SEMANTICS OF S1S 47

by recursion over the syntax of ϕ:

a;P � s(· · · (s︸ ︷︷ ︸
k

xi) · · ·) ∈ Xj := ai + k ∈ Pj

a;P � ¬ϕ(x,X) := a;P 2 ϕ(x,X)

a;P � ϕ1(x,X) ∨ ϕ2(x,X) := a;P � ϕ1(x,X) or a;P � ϕ2(x,X)

a;P � ∃y.ϕ(x, y,X) := a, b;P � ϕ(x, y,X) for some b ∈ ω
a;P � ∃Z.ϕ(x,X,Z) := a;P ,Q � .ϕ(x,X,Z) for some Q ⊆ ω

Standardly ϕ1∧ϕ2 is equivalent to ¬ϕ1∨¬ϕ2, and ∀X.ϕ and ∀x.ϕ are equivalent to ¬(∃X.¬ϕ)
and ¬(∃x.¬ϕ) respectively.

Representing a set of natural numbers as an infinite word We represent any P ⊆ ω
by its characteristic word, written pPq ∈ Bω, defined by

pPq(i) = 1 ↔ i ∈ P.

E.g. the characteristic words of the set of multiples of 3 and the set of prime numbers are
respectively:

100100100100100100100100 · · ·
001101010001010001010001 · · ·

We represent a ∈ ω by the characteristic word of the singleton set { a }.
More generally the characteristic word of a tuple

(a1, · · · , am, P1, · · · , Pn) ∈ ωm × (2ω)n

written pa1, · · · , am, P1, · · · , Pnq, is an infinite word over the alphabet Bm+n such that each
of the m + n tracks (or rows) is the characteristic word of the corresponding component of
the tuple (a, P).

Defining ω-languages by S1S formulas We say L ⊆ Bω is S1S-definable by ϕ(X) just if
L = { pPq ∈ Bω : P � ϕ(X) }. I.e. Each P that satisfies ϕ(X) contains exactly the numbers
denoting the positions of ‘1’ in an ω-word in L ⊆ Bω.

Example 3.1. (i) The set L1 = {α ∈ Bω : α has infinitely many 1s } is first-order defin-
able by ϕ1(X) = ∀x.∃y.x < y ∧ y ∈ X.

(ii) (00)∗1ω is definable by

ϕ2(X) = ∃Y.∃x.


0 ∈ Y

∧ ∀y.y ∈ Y ↔ s y 6∈ Y
∧ x ∈ Y
∧ ∀z.z < x→ z 6∈ X
∧ ∀z.x ≤ z → z ∈ X


(What is Y ?) Recall that (00)∗1ω is a “counting” language, hence not LTL-definable.

48 CHAPTER 3. S1S

Translating LTL to S1S Fix atomic formulas p1, · · · , pn. We say S1S-formula ϕ(X1, · · · , Xn)
is equivalent to an LTL-formula ψ just if [[ψ]] = { pPq ∈ (Bn)ω : P � ϕ(X) }.

Example 3.2. (i) XX (p2 → F p1)

ϕ3(X1, X2) = s s 0 ∈ X2 → ∃x.(s s 0 ≤ x ∧ x ∈ X1)

(ii) F (p1 ∧X (¬p2 U p1))

ϕ4(X1, X2)

= ∃x.


x ∈ X1

∧ ∃y.

 sx ≤ y
∧ y ∈ X1

∧ ∀z.(sx ≤ z ∧ z < y)→ ¬(z ∈ X2)




3.4 Büchi-Recognisable Languages are S1S-Definable

Definition 3.2. An ω-language L ⊆ (Bn)ω is S1S definable just if there is an S1S-formula
ϕ(X1, · · · , Xn) such that L = { pP1, · · · , Pnq ∈ (Bn)ω : P � ϕ(X) }.

Theorem 3.1 (Büchi). For every Büchi automaton A over the alphabet Bn, there is an S1S
formula ϕA(X1, · · · , Xn) such that for every (P1, · · · , Pn) ∈ (2ω)n, we have P � ϕA(X) if and
only if A accepts pP1, · · · , Pnq.

The proof idea is simple: take a Büchi automaton A = (Q,Σ, q1,∆, F) where Σ = Bn,
and construct an S1S-formula ϕA(X1, · · · , Xn) that asserts “there is an accepting run of A
on input given by the characteristic word of (X1, · · · , Xn)”.

Proof. The aim is to code a run. Suppose Q = { q1, · · · , qm }. A run ρ(0)ρ(1) · · · ∈ Qω is
coded by m subsets of ω, namely Y1, · · · , Ym, such that

i ∈ Yk ↔ ρ(i) = qk

Clearly Y1, · · · , Ym form a partition of ω. Each tuple “Y1, · · · , Ym” describes an infinite word
over Q, α, whereby each

Yj = { positions in α with symbol qj }.

Define partition(Y1, · · · , Ym) to be

∀x.

(
m∨
i=1

x ∈ Yi

)
∧ ¬

∃y.∨
i 6=j

(y ∈ Yi ∧ y ∈ Yj)



Coding letters of the alphabet Bn For a =


b1
...

bn

 ∈ Bn, introduce shorthand

x ∈ Xa := [b1](x ∈ X1) ∧ [b2](x ∈ X2) ∧ · · · ∧ [bn](x ∈ Xn)

3.5. S1S-DEFINABLE LANGUAGES ARE BÜCHI-RECOGNISABLE 49

where

[bi](x ∈ Xi) :=

{
x ∈ Xi if bi = 1

¬(x ∈ Xi) otherwise

Given a Büchi automaton A = ({ 1, · · · ,m },Bn, 1,∆, F), define ϕA(X1, · · · , Xn) to be

∃Y1 · · ·Ym .


partition(Y1, · · · , Ym)

∧ 0 ∈ Y1

∧ ∀x.
∨

(i,a,j)∈∆(x ∈ Yi ∧ x ∈ Xa ∧ sx ∈ Yj)
∧ ∀x.∃y.(x < y ∧

∨
i∈F y ∈ Yi)


Thus for every (P1, · · · , Pn) ∈ (2ω)n, A accepts pP1, · · · , Pnq iff P � ϕA(X1, · · · , Xn).

Observe that ϕA(X1, · · · , Xm) is an existential S1S-formula (recall that in this subsystem,
we treat < as an atomic relation).

3.5 S1S-Definable Languages are Büchi-Recognisable

Theorem 3.2 (Büchi). For every S1S formula ϕ(x1, · · · , xm, X1, · · · , Xn), there is an equiv-
alent non-determinstic Büchi automaton Aϕ over alphabet Bm+n, in the sense that

L(Aϕ) = { pa1, · · · , am, P1, · · · , Pnq ∈ (Bm+n)ω | a, P � ϕ }

Proof. The proof is by induction on the size of ϕ. An atomic formula has the form s (s · · · (s︸ ︷︷ ︸
k

xi) · · ·) ∈

Xj . We build a Büchi automaton to read the tracks i and m + j only (corresponding to xi
and Xj respectively), performing the following check: if the unique 1 of the xi-track is at
position l (say), then the Xj-track has a 1 in position l + k.

Disjunction: Consider ϕ1(x,X) ∨ ϕ2(x,X). By the induction hypothesis, suppose au-
tomata Aϕ1 and Aϕ2 are equivalent to ϕ1 and ϕ2 respectively. Set Aϕ1∨ϕ2 to be the Büchi
automaton that accepts the union of (the respectively ω-languages of) Aϕ1 and Aϕ2 .

Negation: Consider ¬ϕ(x,X). By the induction hypothesis, suppose Aϕ is equivalent to
ϕ. Set A¬ϕ to be the automaton that recognises the complement of L(Aϕ).

Second-order existential quantification: Consider ∃Y.ϕ(x,X, Y). By the induction hy-
pothesis, suppose Aϕ is the Büchi automaton equivalent to ϕ(x,X, Y). I.e. for all (a, P ,Q) ∈
ωm × (2ω)n+1,

a, P ,Q � ϕ ↔ Aϕ accepts pa, P ,Qq

We construct A∃Y.ϕ by replacing each transition label


b1
...

bm+n

b

 in Aϕ by


b1
...

bm+n

 thus

introducing (further) non-determinacy.

50 CHAPTER 3. S1S

Consequently a transition via


b1
...

bm+n

 in A∃Y.ϕ corresponds to a transition via


b1
...

bm+n

0



or


b1
...

bm+n

1

in Aϕ. Hence

A∃Y.ϕ accepts pa, Pq ∈ (Bm+n)ω

iff for some c0c1 · · · ∈ Bω, we have Aϕ accepts
(
α(0)
c0

) (
α(1)
c1

)
· · ·

(Suppose c0c1 · · · = pQq and α = pa, Pq.)

iff for some Q ⊆ ω we have a, P ,Q � ϕ(x,X, Y)

iff a, P � ∃Y.ϕ(x, Y)

First-order existential quantification: Consider ∃y.ϕ(x, y,X). Exactly the same as above.

The theory S1S The theory S1S is the set of S1S sentences that are satisfied in the
structure (ω, s,∈). For instance, ∀X.∃Y.∀x.(x ∈ X → x ∈ Y) is part of the theory, but
∀X.∃y.∀x.(x ∈ X → x < y) is not.

A corollary of the previous theorem (and the decidability of non-emptiness for Büchi
automata) is that given an S1S sentence ϕ, it is decidable whether or not ϕ is in the theory
S1S, by constructing Aϕ and testing whether L(Aϕ) is non-empty.

Corollary 3.1 (Büchi). The theory S1S is decidable.

However, there is no elementary time decision procedure for membership in the theory
S1S. That is, there is no (fixed) h ≥ 0 such that for all S1S sentences ϕ, it is decidable in time
bounded by exph(n) whether ϕ is in the theory, where exph(n) is the tower-of-exponentials
function of height h:

exp0(n) := n exph+1(n) := 2exph(n).

3.5. S1S-DEFINABLE LANGUAGES ARE BÜCHI-RECOGNISABLE 51

Problems

3.1 Consider the following Büchi automaton A:

// q0

1
((
q1

1
''

0

ii q2
0

hh

(a) Construct an Existential S1S-formula equivalent to A.

(b) Construct an LTL-formula equivalent to A.

(c) A star-free ω-regular language over an alphabet Σ is a finite union of ω-languages of the
form U · V ω, where U and V are (regular) languages constructed from a finite set of
finite words over Σ using the Boolean operations, namely, complementation, union and
concatenation.

Prove that A recognises a star-free regular ω-language.

3.2 Let A be the following Büchi automaton A:

//q0
1 //q1

0

EE

1)) q2

0

hh

Construct an S1S-formula ϕ(X) such that α ∈ Bω satisfies ϕ iff A accepts α.

3.3

(a) Prove that for every LTL formula ϕ over a single proposition p, there is a formula ϕ̃(X)
in S1S1 such that ϕ and ϕ̃(X) define the same ω-language.

(b) Prove that equi-cardinality of sets, that is, the predicate

EqCard(A,B) := A,B ⊆ ω have the same cardinality

cannot be expressed in S1S.

3.4 Give S1S-formulas ϕ1(X1, X2) and ϕ2(X1, X2) for the following ω-languages:

(a) L1 =
(

1
1

)(
1
0

)∗(1 0
1 0

)ω
(b) L2 =

(
1 1 1
1 1 1

)(
0
1

)ω
Explain the purpose of the main subformulas of ϕ1(X1, X2) and ϕ2(X1, X2).

52 CHAPTER 3. S1S

3.5 Show that (natural numbers) addition x = y + z is not definable in S1S.

[Hint. Show that S1S-definability of addition would imply that the language { anbncω :
n ≥ 0 } is Büchi recognizable.]

3.6 Presburger arithmetic is first-order logic over the structure (ω,+) where

+ = { (a, b, c) ∈ ω3 : a+ b = c }.

For example, ∃y.∀x.(x+ y = x) is a sentence of Presburger arithmetic that holds in (ω,+).
The goal in this question is to use the decidability of S1S to prove that Presburger arith-

metic is decidable. The idea is to encode numbers in the Presburger arithmetic formulas using
sets in an S1S formula. A number can be represented as a finite set of numbers corresponding
to the positions of 1s in its (reverse) binary representation. For instance, we could represent
the number 9 by the set P = { 0, 3 }, since the characteristic word of P is pPq := 10010ω, the
reverse binary representation of 9.

(a) Show that there is an S1S formula ϕ(X,Y, Z) asserting that the numbers a, b and c
represented respectively by the finite sets X,Y and Z are related by the equation a+b =
c. For instance, the sets X = { 0, 3 }, Y = { 0, 1 }, and Z = { 2, 3 } should satisfy the
formula ϕ since X represents 9, Y represents 3, and Z represents 12.

(b) Deduce that formulas of Presburger arithmetic can be translated into S1S.

Hence prove that Presburger arithmetic is decidable. Why does this not contradict the pre-
ceding question?

3.7 Weak monadic second-order theory of one successor, WS1S, is defined in the same way
as S1S except that second-order variables range over only finite sets of natural numbers.

(a) Fix a deterministic Muller automaton A. Since it is not possible to say anything in
WS1S about any complete run directly, we restrict ourselves to prefixes of runs. Note
that every ω-word that is accepted by a deterministic Muller automaton has a unique
accepting run.

Give a WS1S-formula that defines the ω-language recognized by A.

(b) Hence deduce that an ω-language is S1S-definable iff it is WS1S-definable.

Chapter 4

Modal Mu-Calculus

Synopsis

Knaster-Tarski fixpoint theorem. Syntax and semantics. Syntactic approximants via infini-
tary syntax. Intuitions from examples. A branching-time temporal logic: computational tree
logic (CTL).

References (Bradfield and Stirling, 2001, 2007; Stirling, 2001, 1997) For a primer on ordi-
nals and Knaster-Tarski Theorem, see (Kozen, 2006, pp. 35-43).

Background Modal mu-calculus’s defining feature – use of least and greatest fixpoint op-
erators. The idea goes back a long way:

- Fixpoints in program logics: de Bakker, Park and Scott (late 60s).

- Fixpoints in modal logics of programs: Pratt (1980), Emerson and Clark (1980), Kozen
(1983).

Formulas of modal mu-calculus are notoriously hard to read. A good intuitive appreciation
is essential for understanding the theory.

4.1 Knaster-Tarski Fixpoint Theorem

Posets, Supremums and Infimums: A Revision A partially-ordered set is a pair 〈L,≤〉
such that ≤ is a binary relation over L that is

(i) reflexive: for every x ∈ L, x ≤ x
(ii) antisymmetric: for every x, y ∈ L, if x ≤ y and y ≤ x then x = y

(iii) transitive: for every x, y, z ∈ L, if x ≤ y and y ≤ z then x ≤ z

Let M ⊆ L. An element l ∈ L is the least upper bound (LUB, or supremum) of M , written∨
M , just if:

(i) for all x ∈M , x ≤ l
(ii) for all y ∈ L, if for all x ∈M we have x ≤ y, then l ≤ y.

Similarly for greatest lower bound (GLB, or infimum), written
∧
M .

53

54 CHAPTER 4. MODAL MU-CALCULUS

Complete lattices and monotone functions A complete lattice is a partially-ordered
set 〈L,≤〉 in which every subset M ⊆ L has a least upper bound

∨
M and a greatest lower

bound
∧
M in L. Every such L has a greatest

∨
L (=

∧
∅) and least element

∧
L (=

∨
∅).

Example 4.1. (i) Is 〈ω,≤〉 a complete lattice? No, because
∨
ω = ω 6∈ ω.

(ii) 〈 P(S),⊆〉 is a complete lattice. For every U ⊆ P(S), we have∨
U =

⋃
U := { s ∈ S : ∃U ∈ U . s ∈ U }.

The least and greatest elements are ∅ and S respectively.

A function from L to L is said to be monotone just if f(x) ≤ f(y) whenever x ≤ y. An
element x ∈ L is a fixpoint of f just if f(x) = x. We say x is a postfixed point of f just if
x ≤ f(x); x is a prefixed point of f if f(x) ≤ x.

Example 4.2. (i) Reals: 〈R,≤〉
(ii) 〈N ∪ {ω },≤〉

(iii) Divisibility: 〈Z \ { 0 }, | 〉 where x | y := ∃u . x× u = y.

(iv) Words ordered by prefix: 〈Σ∗,≤pref 〉. E.g. a b <pref a b b a.

(v) Lexicographical: 〈Σ∗,≤lexico 〉. E.g. a b b a <lexico a b c (assuming that Σ is linearly
ordered).

(vi) Subword: 〈Σ∗,≤subw 〉, with a b a ≤subw b a a b b a a

Poset Complete Lattice

〈R,≤〉 Y N

〈N ∪ {ω },≤〉 Y Y

〈Z \ { 0 }, | 〉 N N

〈Σ∗,≤pref 〉 Y N

〈Σ∗,≤lexico 〉 Y N

〈Σ∗,≤subw 〉 Y N

Least prefixed and greatest postfixed points

Lemma 4.1. Let L be a complete lattice and f : L→ L be a monotone function.

(i) The least prefixed point of f , denoted lpr(f), exists, and is
∧
{x ∈ L : f(x) 6 x }.

(ii) The greatest postfixed point of f exists and is
∨
{x ∈ L : x 6 f(x) }.

Proof. (i) Let pref (f) := {x ∈ L : f(x) 6 x } be the set of prefixed points of f . It suffices
to show that

∧
pref (f) is a prefixed point. Let x ∈ pref (f). Then

∧
pref (f) ≤ x. Since

f is monotone we have f(
∧

pref (f)) ≤ f(x), but f(x) ≤ x because x ∈ pref (f). Hence
f(
∧

pref (f)) ≤ x for every x ∈ pref (f). Since f(
∧

pref (f)) is an lower bound, we have
f(
∧

pref (f)) ≤
∧

pref (f) as required. (ii) Exercise.

4.1. KNASTER-TARSKI FIXPOINT THEOREM 55

Construction of fixpoints Let 〈L,6 〉 be a complete lattice, and f : L −→ L is monotone.
Define, by transfinite induction, a family of elements of L, indexed by ordinals:

fα+1 := f(fα)

fλ :=
∨
α<λ f

α for λ a limit ordinal

We then set f∗ :=
∨
α∈Ord f

α.
(Base case — f0 = ⊥ — is included in the case for limit ordinal.)

Lemma 4.2. If α ≤ β then fα ≤ fβ.

Proof. We prove by transfinite induction on α. Two cases:

(i) α = α0 + 1 is successor ordinal. Two cases of β:

- If β = β0 + 1 then fα := f(fα0) ≤ f(fβ0) = fβ, by monotonicity of f and IH.

- If β =
∨
β0<β

β0, then α0 ≤ β0 for some β0 < β, and so by monotonicity of f and IH

fα := fα0+1 ≤ fβ0+1 ≤
∨
δ<β

f δ = fβ.

(ii) α is a limit ordinal. For each α0 < α < β, by IH, fα0 ≤ fβ. Because fβ is an upper
bound, we have

fα :=
∨
α0<α

fα0 ≤ fβ.

Thanks to the Lemma, we have a chain:

⊥ = f0 ≤ f1 ≤ f2 ≤ · · · ≤ fn ≤ · · · ≤ fω ≤ · · ·

Since Ord is a class (not a set), the map Ord −→ L defined by α 7→ fα cannot be injective,
and so, the chain must “plateau out” at some point.

The closure ordinal of f is defined to be the smallest ordinal κ such that fκ = fκ+1.
Hence f∗ = fκ where κ is the closure ordinal.

Theorem 4.1 (Knaster-Tarski). Let 〈L,6 〉 be a complete lattice. If f : L −→ L is a
monotone function, the least prefixed point of f , written lpr(f), is f∗.

Proof. Recall f∗ :=
∨
α∈Ord f

α = fκ, where κ is the closure ordinal.
“lpr(f) ≤ f∗”: It suffices to prove that f∗ is a prefixed point of f . We have f(fκ) =

fκ+1 = fκ.
“lpr(f) ≥ f∗”: We shall prove by transfinite induction that fα ≤ lpr(f), for all ordinals

α. This is sufficient, since f∗ :=
∨
α∈Ord f

α ≤ lpr(f). For successor ordinals α+ 1:

fα+1 = f(fα)

≤ f(lpr(f)) induction hypothesis

≤ lpr(f) definition of lpr(f)

For limit ordinals λ, we have fα ≤ lpr(f) for all α < λ by the IH; therefore

fλ :=
∨
α<λ

fα ≤ lpr(f)

56 CHAPTER 4. MODAL MU-CALCULUS

Exercise 4.1. State and prove a corresponding version of the Theorem for greatest postfixed
points.

Lemma 4.3. lpr(f) exists, and coincides with the least fixpoint of f , denoted lfp(f). Simi-
larly greatest fixpoint exists and coincides with greatest postfixed point.

Proof. By definition f(lpr(f)) ≤ lpr(f). Since f monotone, f(lpr(f)) is also a prefixed point.
Hence lpr(f) ≤ f(lpr(f)). I.e. lpr(f) is a fixpoint of f . That lpr(f) is the least fixpoint
follows from the fact that every fixpoint is also a prefixed point.

Fixpoints as recursion Given a state transition system (graph) 〈S,R ⊆ S×S 〉. We give
the semantics of a basic state-based modal logic by the mapping

ϕ 7→ ||ϕ|| := { s ∈ S : s � ϕ }

I.e. denotation of a formula is an element of P(S). Hence ϕ(Z), with a free second-order
variable Z that ranges over P(S), can be viewed as a function fϕ : P(S) −→ P(S). Recall:

(i) 〈 P(S),⊆〉 is a complete lattice.

(ii) If fϕ : P(S) −→ P(S) is monotone, by Knaster-Tarski, fϕ has unique least and greatest
fixpoints, denoted µfϕ and νfϕ respectively.

Thus we can extend modal logic by

- least fixpoint operator, µZ.ϕ(Z), interpreted as µfϕ, and

- greatest fixpoint operator, νZ.ϕ(Z), interpreted as νfϕ.

Fixpoints give a semantics of recursion, as in domain theory. Recursive modal logic
formulas give succinct expressions of the usual operators of temporal logic.

4.2 Syntax of the Modal Mu-Calculus

Given

- V ar, a set of 2nd-order variables, ranged over by X,Y, Z, etc.

- Prop, a set of atomic propositions, ranged over by P,Q, etc.

- L, a set of labels, ranged over by a, b, etc.

modal mu-calculus formulas are defined by the grammar:

ϕ ::= P | Z | ϕ1 ∧ ϕ2 | [a]ϕ | ¬ϕ | νZ.ϕ

The last case, namely, formation of νZ.ϕ, is subject to the requirement that each free occur-
rence of Z in ϕ be positive i.e. in the scope of an even number of negations (so that ϕ(Z)
denotes a monotone function in Z).

Notation. If ϕ is written ϕ(Z), subsequent writing of ϕ(ψ) means “ϕ with ψ substituted
for all free occurrences of Z”.

4.3. LABELLED TRANSITION SYSTEMS 57

Positive, and positive normal forms Derived operators:

ϕ1 ∨ ϕ2 := ¬(¬ϕ1 ∧ ¬ϕ2)

〈a〉ϕ := ¬([a]¬ϕ)

µZ.ϕ := ¬νZ.¬ϕ(¬Z)

A modal mu-calculus formula is in positive form if it is written, using derived operators
where necessary, so that ¬ is only applied to atomic propositions and free variables. A formula
ϕ is in positive normal form if, in addition, all bound variables are distinct. I.e. if σX.ψ and
σ′Y.χ are distinct subterms of ϕ (where σX.− and σ′Y.− are fixpoint operators), then X 6= Y .
E.g. µZ.¬P ∨ νY.(Y ∧ 〈a〉Z)

Operator precedence

[a]−
〈a〉−

> Booleans >
µZ.−
νZ.−

Reading: If [a]− and ∧ contend for a formula, then [a]− wins. For example [a]ϕ ∧ ψ means
([a]ϕ)∧ψ, and µZ.Z ∧ ϕ means µZ.(Z ∧ ϕ). Thus the scope of a fixpoint extends as far right
as possible.

Note that every formula can be converted to positive normal form using de Morgan laws,
and α-conversion: replacing a bound name by a fresh name.

4.3 Labelled Transition Systems

A modal mu-calculus structure over (Prop,L) is a labelled transition system (LTS), namely,
a triple T = 〈S,→, ρ 〉 with

- a set S of states

- a transition relation → ⊆ S × L× S (as usual we write s
a−→ t to mean (s, a, t) ∈ →)

- a function ρ : Prop −→ P(S) interpreting the atomic propositions.

Observe that an LTS is just a directed graph, whose edges are labelled by elements of L,
and vertices are labelled by elements of P(Prop) i.e. each x ∈ S is labelled by {P ∈ Prop :
x ∈ ρ(P) }.

Definition 4.1. Given an LTS T , and a valuation (or assignment) V : V ar −→ P(S), we
define:

||P ||TV := ρ(P)

||Z||TV := V (Z)

||¬ϕ||TV := S \ ||ϕ||TV
||ϕ1 ∧ ϕ2||TV := ||ϕ1||TV ∩ ||ϕ2||TV
||[a]ϕ||TV := { s | ∀t ∈ S . s a−→ t =⇒ t ∈ ||ϕ||TV }
||νZ.ϕ||TV :=

⋃
{U ⊆ S | U ⊆ ||ϕ||TV [Z 7→U] }

where the valuation V [Z 7→ U] is defined by:

V [Z 7→ U](X) :=

{
U if X = Z

V (X) if X 6= Z.

N.B.
⋃
{Ui ⊆ S : i ∈ I } := {x ∈ S : x ∈ Ui for some i ∈ I }

58 CHAPTER 4. MODAL MU-CALCULUS

Remark 4.1. (i) Generally let K ⊆ L, define

||[K]ϕ||TV := { s | ∀a ∈ K . ∀t ∈ S . s a−→ t =⇒ t ∈ ||ϕ||TV }

Write [−]ϕ to mean [L]ϕ, similarly for 〈−〉ϕ.

(ii) Equivalently we can define
||νZ.ϕ||TV := gfp(fϕ,Z,V)

where fϕ,Z,V : P(S) −→ P(S) is the function U 7→ ||ϕ||TV [Z 7→U].
Note that fϕ,Z,V is monotone. By two lemmas (greatest fixpoint equals greatest postfixed
point, which is the supremum of all postfixed points), we have

gfp(fϕ,Z,V) =
∨
{U ∈ P(S) : U ≤ fϕ,Z,V (U) }

=
⋃
{U ⊆ S : U ⊆ ||ϕ||TV [Z 7→U] }.

Exercise 4.2. Prove the following.

||ϕ1 ∨ ϕ2||TV = ||ϕ1||TV ∪ ||ϕ2||TV
||〈a〉ϕ||TV = { s | ∃t ∈ S . s a−→ t ∧ t ∈ ||ϕ||TV }
||µZ.ϕ||TV =

⋂
{U ⊆ S | ||ϕ||TV [Z 7→U] ⊆ U }

=
∧
{U ∈ P(S) : fϕ,Z,V (U) ≤ U } = lfp(fϕ,Z,V)

Note that
⋂
{Ui ⊆ S : i ∈ I } := {x ∈ S : x ∈ Ui for every i ∈ I }

Since µZ.ϕ = ¬νZ.¬ϕ(¬Z), we have

||µX.ϕ||TV =
⋃
{U : U ⊆ ||¬ϕ(¬Z)||TV [Z 7→U] }

=
⋂
{U : U ⊆ ||¬ϕ(Z)||TV [Z 7→U] }

=
⋂
{U : ||ϕ(Z)||TV [Z 7→U] ⊆ U }

=
⋂
{U : ||ϕ(Z)||TV [Z 7→U] ⊆ U }

Notations

(i) We sometimes write s �TV ϕ := s ∈ ||ϕ||TV .
In case T is understood, and ϕ is closed, we simply write s � ϕ.

(ii) We often write t := νZ.Z and f := ¬t.
What are ||νZ.Z||TV and f ≡ µZ.Z?

(iii) For closed formulas ϕ, and ψ, we write ϕ ≡ ψ to mean “for all LTS T , ||ϕ||T∅ = ||ψ||T∅”.

4.4 Syntactic Approximants Using Infinitary Syntax

The fixpoint formulas of the modal mu-calculus denote fixpoints of monotone functions in a
complete lattice. When reasoning about fixpoints, it is convenient to introduce a notation for
approximants of these fixpoints. To this end, we introduce an infinitary syntax.

Let λ range over limit ordinals

µ0Z.ϕ(Z) := f

µα+1Z.ϕ(Z) := ϕ(µαZ.ϕ(Z))

µλZ.ϕ(Z) :=
∨
α<λ µ

αZ.ϕ(Z)

4.4. SYNTACTIC APPROXIMANTS USING INFINITARY SYNTAX 59

The semantics of these infinitary terms are defined as:

||µα+1Z.ϕ(Z)||TV := ||ϕ(Z)||T
V [Z 7→||µαZ.ϕ(Z)||TV]

||µλZ.ϕ(Z)||TV :=
∨
α<λ ||µαZ.ϕ(Z)||TV

Thus ||µZ.ϕ(Z)||TV = ||µκZ.ϕ(Z)||TV where κ is the closure ordinal. If ||µαZ.ϕ(Z)||TV = ||µα+1Z.ϕ(Z)||TV
then ||µαZ.ϕ(Z)||TV = ||µZ.ϕ(Z)||TV .

Similarly for approximants of the greatest fixpoints:

ν0Z.ϕ(Z) := t

να+1Z.ϕ(Z) := ϕ(ναZ.ϕ(Z))

νλZ.ϕ(Z) :=
∧
α<λ ν

αZ.ϕ(Z)

and

||να+1Z.ϕ(Z)||TV := ||ϕ(Z)||T
V [Z 7→||ναZ.ϕ(Z)||TV]

||νλZ.ϕ(Z)||TV :=
∧
α<λ ||ναZ.ϕ(Z)||TV

Note that the infinitary terms να+1Z.ϕ(Z), νλZ.ϕ(Z), µα+1Z.ϕ(Z), etc. are not part of
the modal mu-calculus. They are notations denoting subsets of the state-set that are useful
for calculations.

Lemma 4.4 (Approximation). Let T = 〈S,→, ρ 〉 be an LTS. For any s ∈ S, we have

(i) s ∈ ||µZ.ϕ(Z)||TV iff s ∈ ||µαZ.ϕ(Z)||TV for some α.

(ii) s ∈ ||νZ.ϕ(Z)||TV iff s ∈ ||ναZ.ϕ(Z)||TV for all α.

Proof. (i) We have ||µZ.ϕ(Z)||TV = lfp(fϕ,Z,V) by definition. Note that for each ordinal

α, ||µαZ.ϕ(Z)||TV coincides with fαϕ,Z,V i.e. the element of P(S) in the chain f0
ϕ,Z,V , f

1
ϕ,Z,V , · · ·

indexed by α. Hence, by Knaster-Taski

||µZ.ϕ(Z)||TV =
∨

α∈Ord

fαϕ,Z,V =
⋃

α∈Ord

||µαZ.ϕ(Z)||TV .

(ii) Exercise

Lemma 4.5. Let T = 〈S,→, ρ 〉 be an LTS. For any s ∈ S, we have

(i) If s ∈ ||µZ.ϕ(Z)||TV then there is a least ordinal α such that s ∈ ||µαZ.ϕ(Z)||TV but

s 6∈ ||µβZ.ϕ(Z)||TV for all β < α.

(ii) If s 6∈ ||νZ.ϕ(Z)||TV then there is a least ordinal α such that s 6∈ ||ναZ.ϕ(Z)||TV but s ∈
||µαZ.ϕ(Z)||TV for all β < α.

Hint for (3) and (4). Make use of the fact that the class of ordinals is well-founded: A binary
relation, R, is well-founded on a class X just if every non-empty subset of X has a minimal
element with respect to R. Equivalently, there is no infinite descending R-chain of elements
from X.

60 CHAPTER 4. MODAL MU-CALCULUS

4.5 Intuitions from Examples

Correctness properties of reactive systems are often classified into safety or liveness properties.
Intuitively

- safety properties say that “something bad will never happen”

- liveness properties say that “something good will eventually happen”.

Useful Slogans

1. “ν is looping, whereas µ is finite looping”

2. “µ is liveness and ν is safety”.

Example 4.3 (“ν is looping”). (i) νZ.P ∧ [a]Z relativized ‘always’ formula. “P is true
along every a-path”.

(ii) νZ.Q ∨ (P ∧ [a]Z) relativized ‘while’ formula. “On every a-path, P holds while Q
fails”. The formula is true if either Q holds, or P holds and wherever we go next (via a), the
formula is true, and In particular, if P is always true, and Q never holds, the formula is
true. Cf. µZ.Q ∨ (P ∧ 〈a〉Z)—next slide.

Mu-formulas require something to happen (i.e. to exit the loop), and are thus liveness
properties.

Example 4.4 (“µ is finite looping”). (i) µZ.P ∨ [a]Z: “On all a-paths, P eventually holds”.
(ii) µZ.Q ∨ (P ∧ 〈a〉Z): “On some a-path, P holds until Q holds (and Q must eventually

hold).” I.e. we are not allowed to repeat the unfolding forever, so we must eventually “bottom
out” through the Q disjunct.

Example 4.5. Consider the simple transition system

T1 = s

a

BB

with state-set S = { s } and a single transition s
a−→ s. We have s � νZ.(〈a〉Z ∨ [a]f).

Intuitively this is because from s it is always possible to do an a-transition and then an
a-transition and then an a-transition ... ad infinitum.

Example 4.6. Take T1 as before. We show that s 2 µZ.(〈a〉Z ∨ [a]f). If s satisfies µZ.(〈a〉Z ∨ [a]f)
to hold, then it must be possible for s to do a finite1 number of a-transitions and then satisfy
[a]f, but the latter is impossible since there is always an a-transition from s. I.e. s can never
satisfy 〈 a 〉(· · · (〈 a 〉︸ ︷︷ ︸

finite times

([a]f))). Now we calculate. Note that µ1Z.(〈a〉Z ∨ [a]f) = (〈a〉f ∨ [a]f).

Now ||〈a〉f|| = ∅ and ||[a]f|| = ∅. So ||µ1Z.(〈a〉Z ∨ [a]f)|| = ∅. Similarly ||µ2Z.(〈a〉Z ∨ [a]f)|| =
∅. Hence ||µZ.(〈a〉Z ∨ [a]f)|| = ∅

Alternatively consider the function

f : U 7→ ||〈a〉Z ∨ [a]f||T∅[Z 7→U]

= ||〈a〉Z||T∅[Z 7→U] ∪ ||[a]f||
= U ∪∅

which is the identity map on P(S). Hence ||µZ.(〈a〉Z ∨ [a]f)|| = lfp(f) = ∅.

1Because S is finite, the closure ordinal of any monotone function on P(S) is finite.

4.6. ALTERNATION DEPTH HIERARCHY 61

Example 4.7. Take the transition system

T2 = 0
a
&&1

b //
a
ff 2

with state-set S = { 0, 1, 2 }. We show that 0 � νZ.µY.[a]((〈b〉t ∧ Z) ∨ Y). First note ||〈b〉t|| =
{ 1 }. Set

F (U) = ||µY.[a]((〈b〉t ∧ Z) ∨ Y)||[Z 7→U].

W.t.p. 0 ∈ gfp(F). By abuse of notation, we have

F{ 0, 1, 2 } = F{ 0, 1 } = F{ 1 } = ||µY.[a]({ 1 } ∨ Y)||.

Intuitively s ∈ ||µY.[a]({ 1 } ∨ Y)|| if and only if every a-labelled path from s reaches 1. What
is ||µY.[a]({ 1 } ∨ Y)||? We have

||µ1Y.[a]({ 1 } ∨ Y)|| = { 0, 2 }
||µ2Y.[a]({ 1 } ∨ Y)|| = [a]({ 1 } ∨ { 0, 2 }) = { 0, 1, 2 }
||µ3Y.[a]({ 1 } ∨ Y)|| = [a]({ 1 } ∨ { 0, 1, 2 }) = { 0, 1, 2 }.

I.e. F{ 0, 1, 2 } = { 0, 1, 2 }. Hence gfp(F) = { 0, 1, 2 }.

4.6 Alternation Depth Hierarchy

Consider the following modal mu-calculus formulas.

• µX.ϕ ∨ [−]X: all paths eventually satisfy ϕ

• νY.[µZ.P ∨〈−〉Z]∧〈−〉Y : there exists an infinite path along which P is always reachable

• νY µZ.(P ∨ 〈−〉Z) ∧ 〈−〉Y : there exists a path along which P holds infinitely often

The fixed point quantifiers provide great expressive power. Liveness and safety can be ex-
pressed readily and by allowing more nested fixpoint quantifiers (depth) we can express com-
plex fairness constraints. Thus it natural to define a measure of expressiveness in this term.

The alternation depth of a formula is the maximum number of µ/ν alternations in a chain
of nested fixed points. The simple hierarchy counts the syntactic alternation. The Niwiński
hierarchy considers genuine dependency between the fixed points.

Formally the Niwiński hierarchy is defined as follows. A formula ϕ is in the classes Πµ
0

and Σµ
0 if it contains no fixpoint operators i.e. it is a formula of modal logic. The class Σµ

n+1

is the closure of Σµ
n ∪Πµ

n under the following rules.

• If ϕ,ψ ∈ Σµ
n+1, then ϕ ∧ ψ,ϕ ∨ ψ, [a]ϕ, 〈a〉ϕ ∈ Σµ

n+1.

• If ϕ ∈ Σµ
n+1 and X positive in ϕ, then µX.ϕ ∈ Σµ

n+1.

• If ϕ(X), ψ ∈ Σµ
n+1, then ϕ(ψ) ∈ Σµ

n+1, provided no free variable of ψ becomes bound
by a fixpoint quantifier in ϕ.

62 CHAPTER 4. MODAL MU-CALCULUS

Σµ
1

Πµ
1

Σµ
2

Πµ
2

Σµ
3

Πµ
3

Σµ
k

Πµ
k

Σµ
k+1

Πµ
k+1

Σµ
0 = Πµ

0

Figure 4.1: Alternation-depth hierarchy.

The class Πµ
n+1 is defined analogously.

It is known that indeed arbitrary alternation is necessary to capture all expressible prop-
erties, in other words the modal mu-calculus alternation hierarchy is strict (Bradfield 1996).

There is a price to pay for this expressive power and that is complexity. The most notable
open problem in modal mu-calculus is the complexity of model checking.

Model Checking Problem: Given an LTS T , a state s, and a closed modal mu-calculus
formula ϕ, does s ∈ ||ϕ||T∅ hold?

The best algorithms to date are all essentially exponential in the depth of the formula ϕ
and the best known bound is NP ∩ co-NP. The problem is conjectured to be in P. The
harder problem of satisfiability is known to be EXPTIME-complete.

Satisfiability Problem: Given a closed modal mu-calculus formula ϕ, is it satisfiable? I.e. is
there an LTS T with a state s such that s ∈ ||ϕ||T∅?

Although modal mu-calculus is a decidable logic, it is too expressive for real use. Its
importance comes mainly from providing a meta-language to establish results about other
temporal logics. Most temporal logics such as LTL and CTL and their extension can be
interpreted into modal mu-calculus using two nested quantifiers.

4.7 An Interlude: Computational Tree Logic (CTL)

ϕ ::= P | ¬ϕ | ϕ1 ∧ ϕ2 | [K]ϕ | A(ϕU ψ) | E(ϕU ψ)

where P ∈ Prop and K ⊆ L.

CTL is a branching time logic; LTL is a linear-time logic.

4.7. AN INTERLUDE: COMPUTATIONAL TREE LOGIC (CTL) 63

Semantics of CTL We interpret CTL formulas in the same structures as modal mu-
calculus. Let T = 〈S,−→ ⊆ S × L× S, ρ : Prop −→ 2S 〉 be an LTS.

s � P := s ∈ ρ(P)

s � ¬ϕ := s 2 ϕ
s � ϕ1 ∧ ϕ2 := s � ϕ1 and s � ϕ2

s � [K]ϕ := for all finite or infinite runs s
a1−→ s1

a2−→ s2 · · · ,
if a1 ∈ K, then s1 � ϕ.

s � A(ϕU ψ) := for all finite or infinite runs s = s0
a1−→ s1

a2−→ s2 · · · ,
there is i ≥ 0 with si � ψ and for all 0 ≤ j < i, sj � ϕ

s � E(ϕU ψ) := for some finite or infinite runs s = s0
a1−→ s1

a2−→ s2 · · · ,
there is i ≥ 0 with si � ψ and for all 0 ≤ j < i, sj � ϕ

In LTL, we write Fϕ := t Uϕ and Gϕ := ¬(F¬ϕ). In CTL, we write A Fϕ := A(t Uϕ)
and A Gϕ := ¬E(t U ¬ϕ); similarly for E Fϕ and E Gϕ.

Example 4.8. (i) s � E FP . There is a path from s on which P is eventually true.

(ii) s � A F E GP . On every path from s, there is a state from which there is a path where
P holds everywhere.

(iii) s � E G A FP . There is a path from s such that every state t on it satisfies the property
that on every path from t, P is eventually true.

Example 4.9. What does the mu-formula µZ.[L]Z mean? We use approximants to analyse
the formula.

- µ0Z.[L]Z := ∅
- µ1Z.[L]Z := [L]∅, which is the set of terminal or “deadlocked” states.

- · · ·
- µi+1Z.[L]Z := [L]· · · [L]∅ (i+ 1 nested boxes), which is the set of states s such that every

path from s has length at most i and necessarily ends at a “deadlocked” state.

Hence µZ.[L]Z describes the set of states s of an LTS such that every path from s necessarily
ends in a deadlocked state. In fact we have µZ.[L]Z ≡ A F ([L]f).

Example 4.10. CTL formula ∀Gϕ: “for every path (or run), ϕ always holds on it”. It is
the property X such that ϕ is true now, and for every successor, X remains true. I.e. X
satisfies the modal equation:

X = ϕ ∧ [−]X

where [−]X means “X is true at every successor”.

Which fixpoint? If a state satisfies any solution of the equation then surely it satisfies
∀Gϕ. So the “equation” should be

X ⇒ ϕ ∧ [−]X

or more precisely, ||X|| ⊆ ||ϕ ∧ [−]X||. Thus the meaning is the greatest postfixed point
νX.ϕ ∧ [−]X.

64 CHAPTER 4. MODAL MU-CALCULUS

Example 4.11. CTL formula ∃Fϕ: “there exists a path on which ϕ eventually holds”. It is
the property Y such that either ϕ holds now, or there is some successor on which Y is true.
I.e. Y satisfies the modal equation:

Y = ϕ ∨ 〈−〉Y

where 〈−〉Y means “Y is true at some successor”.
We can argue: if a state satisfies ∃Fϕ, then it surely satisfies any solution of the equation;

and so, we want the least solution of

Y ⇐ ϕ ∨ 〈−〉Y

or more precisely ||Y || ⊇ ||ϕ ∨ 〈−〉Y ||. I.e. the meaning is the least prefixed point µY.ϕ ∨ 〈−〉Y .

4.7. AN INTERLUDE: COMPUTATIONAL TREE LOGIC (CTL) 65

Problems

4.1 Let ϕ be a monotone function on the powerset of S. Let U ⊆ S. Prove

U ⊆ gfp(ϕ) ⇔ U ⊆ ϕ(gfp(ϕU))

where ϕU : P(S)→ P(S) is the function given by V 7→ U ∪ ϕ(V).

4.2 Prove the following:

(a) If s ∈ ||µZ.ϕ||TV then there is a least ordinal α such that s ∈ ||µαZ.ϕ||TV , and for all β < α,

s 6∈ ||µβZ.ϕ||TV .

(b) If s 6∈ ||νZ.ϕ||TV then there is a least ordinal α such that s 6∈ ||ναZ.ϕ||TV , and for all β < α,

s ∈ ||νβZ.ϕ||TV .

4.3 Prove that if the state-set S has n elements, then for any s ∈ S

(a) s �V νZ.ϕ iff s ∈ ||νnZ.ϕ||TV

(b) s �V µZ.ϕ iff s ∈ ||µnZ.ϕ||TV

4.4 We say that ϕ and ψ are equivalent just if for any T and for any V , we have ||ϕ||TV = ||ψ||TV .

Prove

(a) µZ.ϕ(Z) and ϕ(µZ.ϕ) are equivalent (similarly νZ.ϕ and ϕ(νZ.ϕ) are equivalent).

(b) µZ.ϕ(Z) and ¬νZ.¬ϕ(¬Z) are equivalent.

4.5 Is there a labelled transition system T and a valuation V such that for every modal
mu-calculus formula ϕ, ||µZ.ϕ||TV = ||νZ.ϕ||TV ?

4.6

(a) Show that s0 ∈ ||µZ.[a]Z||TV iff there is no infinite transition sequence

s0
a−→ s1

a−→ s2
a−→ · · ·

(b) What is the meaning of νZ.[a]Z?

66 CHAPTER 4. MODAL MU-CALCULUS

4.7 Consider the transition system

T2 = 0
a
&&1

b //
a
ff 2

with state-set S = { 0, 1, 2 }.

(a) Compute ||µY.νZ.[a]((〈b〉t ∨ Y) ∧ Z)||.

(b) Prove or disprove the following by drawing the game graph and argue by the existence
(or not) of a winning strategy.

i. 0 � µZ.νY.[a]((〈b〉t ∨ Y) ∧ Z).

ii. 2 � µZ.νY.[a]((〈b〉t ∨ Y) ∧ Z).

4.8 We say that variable Z in a formula ϕ is guarded if every occurrence of Z in ϕ is in the
scope of some modal operator [a]− or 〈a〉−. We say that a formula is guarded if for every
subformula σZ.ψ of ϕ, Z is guarded in ψ (where σ = µ, ν). Prove Kozen’s Lemma: Every
modal mu-calculus formula is equivalent to some positive guarded formula.

4.9 What properties are expressed by the following modal mu-calculus formulas?

(a) µZ.[L]Z

(b) νZ.〈a〉Z ∧ 〈b〉Z

4.10 Fix a set L of labels. Express the following in modal mu-calculus formulas.

(a) Along some path P is always true

(b) There is a path along which P holds continuously and Q holds infinitely often.

Chapter 5

Games and Tableaux for Modal
Mu-Calculus

[We gratefully acknowledge Bahareh Afshari’s contribution to the section on tableaux for modal
mu-calculus.]

Synopsis

Modal mu-calculus model checking games. Streett and Emerson’s Fundamental Semantic
Theorem. 2-person infinite games. Memoryless winning strategies. Signature and signature
decrease lemma. Tableaux. Tree model property. Finite model property. Parity games.
Computing winning regions. Parity is in NP∩co-NP. Determinacy for finite parity games.

References (Streett and Emerson, 1989; Bradfield and Stirling, 2007; Stirling, 1997, 2001;
Niwinski and Walukiewicz, 1997)

5.1 Game Characterisation of Model Checking

Modal Mu-Calculus Model Checking Problem Given a state s0 of a labelled transition
system T , a valuation V , and a mu-calculus formula ϕ, does s0 �TV ϕ hold?.

We aim to give a game characterisation of the problem. We shall consider games played
by players V (Verifier) and R (Refuter) on directed graphs of a certain kind. Given a state
s0 of a transition system T , a valuation V and a modal mu-calculus formula ϕ, we define
a game between V and R, GTV (s0, ϕ), such that s0 �TV ϕ if, and only if, there is a winning
(memoryless) strategy for V in GTV (s0, ϕ).

The characterisation may be viewed as a version of the Fundamental Semantic Theorem
of Streett and Emerson (Streett and Emerson, 1989).

Some preliminaries on syntax We assume that ϕ is positive normal i.e.

(i) Negation is only applied to atomic propositions and free variables.

(ii) If σ1Z1 and σ2Z2 are two different occurrences of binders in ϕ, then Z1 6= Z2.

(iii) Free variables are disjoint from bound variables.

67

68 CHAPTER 5. GAMES AND TABLEAUX FOR MODAL MU-CALCULUS

Every formula can be converted into positive normal form using de Morgan laws and by
renaming bound variables. For example

µZ.〈J〉Y ∨ (〈b〉Z ∧ µY .νZ.([b]Y ∧ [K]Z))

can be rewritten

µZ.〈J〉Y ∨ (〈b〉Z ∧ µX.νU.([b]X ∧ [K]U))

Let Sub(ϕ) be the set of subformulas of ϕ. For example, Sub(µX.νY.([b]X ∧ [K]Y)) is the
set

{ µX.νY.([b]X ∧ [K]Y), νY.[b]X ∧ [K]Y , [b]X ∧ [K]Y, [b]X, [K]Y, X, Y }

If ϕ is (positive) normal and σZ.ψ ∈ Sub(ϕ), then the (bound) variable Z can be used to
identify this subformula.

For σ1X1.ψ1, σ2X2.ψ2 ∈ Sub(ϕ), we say that X1 subsumes X2, written X1 < X2, just if
σ2X2.ψ2 ∈ Sub(σ1X1.ψ1). In the example above, X subsumes Y (but not vice versa).

Lemma 5.1. Assume a positive normal ϕ.

(i) If X subsumes Y and Y subsumes Z, then X subsumes Z.

(ii) If X subsumes Y and X 6= Y , then it is not the case that Y subsumes X.

Definition 5.1 (Model Checking Game GTV (s, ϕ)). Fix a transition system T = 〈S, → ⊆
S × L × S, ρ : Prop → P(S) 〉, a state s0 ∈ S, a valuation V, and a positive normal ϕ. The
two players are Refuter (R) and Verifier (V).

- R attempts to show s0 2TV ϕ, whereas

- V attempts to show s0 �TV ϕ.

We define the graph underlying GTV (s0, ϕ). The vertices (also called positions, or moves) are
pairs (t, ψ) where t ∈ S and ψ ∈ Sub(ϕ). The initial vertex is (s0, ϕ). Edges are organised
into three groups according to the shape of the subformula.

- Boolean subformulas. For each ψ1 ∨ ψ2, ψ1 ∧ ψ2 ∈ Sub(ϕ), s ∈ S, i ∈ { 1, 2 }, the following
are edges:

(s, ψ1 ∨ ψ2)→ (s, ψi), (s, ψ1 ∧ ψ2)→ (s, ψi)

- Modal subformulas. For each K ⊆ L, a ∈ K, and each state t where s
a−→ t, the following

are edges:

(s, [K]ψ)→ (t, ψ), (s, 〈K〉ψ)→ (t, ψ)

- Fixpoint subformulas. For each σZ.ψ ∈ Sub(ϕ), each s ∈ S, the following are edges:

(s, σZ.ψ)→ (s, Z), (s, Z)→ (s, ψ)

Observe that the size of ψ decreases in (s, ψ)→ (s′, ψ′) in all cases except when ψ is a fixpoint
variable.

Plays There are no out-going edges from (s, ψ) where ψ is an atomic proposition (P or
¬P), or free variable Z (i.e. does not identify any fixpoint subformula). Certain vertices are

5.1. GAME CHARACTERISATION OF MODEL CHECKING 69

“owned” by one of the two players; as for the rest of the variables (all of which have out-degree
1), it is unimportant who owns them.

V R Ownership is irrelevant (say, V)

(s, ψ1 ∨ ψ2) (s, ψ1 ∧ ψ2)

(s, 〈K〉ψ) (s, [K]ψ) (s, Z) for bound Z

(s, P), s 6∈ ρ(P) (s, P), s ∈ ρ(P) (s, σZ.ψ)

(s, Z), s 6∈ V (Z) (s, Z), s ∈ V (Z)

A play of GTV (s0, ϕ) is a path in the game graph that starts from the initial vertex (s0, ϕ),
namely, (s0, ϕ), (s1, ϕ1), (s2, ϕ2), · · · , such that for each i, if (si, ϕi) has label V (resp. R), then
V (resp. R) chooses (si+1, ϕi+1).

Example 5.1. Take the transition system with state-set S = { s } with L = { a, b }, and a
transition s

a−→ s.
T1 = s

a

BB

The game GT1∅ (s, νZ.[b]f ∧ 〈a〉Z) has the following game graph:

(s, νZ.[b]f ∧ 〈a〉Z)

��
(s, Z)

��
(s, [b]f ∧ 〈a〉Z) R

tt ++
R (s, [b]f) (s, 〈a〉Z) V

ii

Winning conditions R wins a play just if

(i) The play is (s0, ϕ0), (s1, ϕ1), · · · , (sn, ϕn) and

a. ϕn = P and sn 6∈ ρ(P) or

b. ϕn = Z and Z is free in ϕ0 and sn 6∈ V (Z), or

c. ϕn = 〈K〉ψ and { t : sn
a−→ t and a ∈ K } = ∅

(ii) The play (s0, ϕ0), (s1, ϕ1), · · · , (sn, ϕn), · · · is infinite, and the unique fixed point vari-
able X, which occurs infinitely often and which subsumes all other variables occuring
infinitely often, identifies a least fixpoint subformula of ϕ.

V wins a play just if

(i) The play is (s0, ϕ0), (s1, ϕ1), · · · , (sn, ϕn) and

a. ϕn = P and sn ∈ ρ(P), or

b. ϕn = Z and Z is free in ϕ0 and sn ∈ V (Z), or

c. ϕn = [K]ψ and { t : sn
a−→ t and a ∈ K } = ∅

(ii) The play (s0, ϕ0), (s1, ϕ1), · · · , (sn, ϕn), · · · is infinite, and the unique fixed point vari-
able X, which occurs infinitely often and which subsumes all other variables occuring
infinitely often, identifies a greatest fixpoint subformula of ϕ.

70 CHAPTER 5. GAMES AND TABLEAUX FOR MODAL MU-CALCULUS

It follows from the winning condition that given a maximal play (either finite and terminal,
or infinite), exactly one of V and R wins.

Proposition 4. If (s0, ϕ0), (s1, ϕ1), · · · , (sn, ϕn), · · · is an infinite play of the game GTV (s0, ϕ),
then there is a unique variable X that

(i) occurs infinitely often (i.e. ϕj = X for infinitely many j), and

(ii) if Y also occurs infinitely often, then X subsumes Y .

Proof. Because ϕi decreases in size except when it is a fixpoint variable, there are infinite
variable occurrences in an infinite play. Suppose, for a contradiction, X and Y are maximal
among the infinitely occurring variables and none subsumes the other. It follows that:

(i) The respective fixpoint subformulas named by X and Y occur in different branches of a
conjunction or disjunction.

(ii) Further the conjunction (say) is in the scope of some fixpoint subformula named by Z
(say), for otherwise, at most one of X and Y can occur infinitely often.

Hence Z subsumes both X and Y and occurs infinitely often in the play, which is a contra-
diction.

Example 5.2 (T1 revisited).

(s, νZ.[b]f ∧ 〈a〉Z)

��
(s, Z)

��
(s, [b]f ∧ 〈a〉Z) R

uu **
R (s, [b]f) (s, 〈a〉Z) V

gg

Who wins the game? Two cases according to R’s move:

- R chooses the left branch: V wins.

- R chooses the right branch: If an infinite play should arise, since Z identifies a ν-fixpoint,
V wins.

Hence V wins.

Is it always the case that exactly one of R and V has a winning strategy?

Example 5.3 (T2 revisited). GT2∅ (0, µY.νZ.[a]((〈b〉t ∨ Y) ∧ Z)) where

T2 = 0
a
&&1

b //
a
ff 2

with state-set S = { 0, 1, 2 }. Who wins the game? (See the picture on the next page)
R has a winning strategy:

- At (1, (〈b〉t ∨ Y) ∧ Z): choose right branch

- At (0, (〈b〉t ∨ Y) ∧ Z): choose right branch

5.1. GAME CHARACTERISATION OF MODEL CHECKING 71

(0, µY.νZ.[a]((〈b〉t ∨ Y) ∧ Z))
��

(0, Y)
��

(0, νZ.[a]((〈b〉t ∨ Y) ∧ Z))
��

(0, Z)
��

(0, [a]((〈b〉t ∨ Y) ∧ Z)) R
��

(1, (〈b〉t ∨ Y) ∧ Z) R

rr ,,
V (1, 〈b〉t ∨ Y)

�� ,,

(1, Z)
��

V (1, 〈b〉t)
��

(1, Y)
��

(1, [a]((〈b〉t ∨ Y) ∧ Z)) R
��

V wins! R (2, t) (1, νZ.[a]((〈b〉t ∨ Y) ∧ Z))

22

(0, (〈b〉t ∨ Y) ∧ Z) R

,,

]]

V (0, 〈b〉t ∨ Y)
��

kk

V loses! V (0, 〈b〉t)

Figure 5.1: Game graph of T2

At (0, 〈b〉t ∨ Y):

- V loses at once if he chooses the left disjunct.

- V also loses if he chooses the right disjunct all the time, since the infinitely occurring and
subsuming variable identifies a µ-fixpoint.

Hence R has a winning strategy.

Example 5.4. We present the game graph GT2∅ (0, µY.νZ.[a]((〈b〉t ∨ Y) ∧ Z)) in Figure 5.1.

A strategy for a player is a set of rules telling the player how to move. A player uses
strategy π in a play provided all his moves in the play obey the rules in π. Memoryless
strategies (often called history-free strategies in the literature) are strategies that depend only
on the last move or position of the play. It follows that for player R, rules have the form:

- at position (s, ϕ1 ∧ ϕ2) choose (s, ϕi) where i = 1 or i = 2

- at position (s, [K]ϕ) such that { t : s
a−→ t and a ∈ K } 6= ∅, choose (t, ϕ) where s

a−→ t
and a ∈ K.

Similarly for player V, rules have the form:

- at position (s, ϕ1 ∨ ϕ2) choose (s, ϕi) where i = 1 or i = 2

- at position (s, 〈K〉ϕ) such that { t : s
a−→ t and a ∈ K } 6= ∅, choose (t, ϕ) where s

a−→ t
and a ∈ K.

A strategy π for a player is winning if the player wins every play in which he uses π
(regardless of how his opponent plays). We aim to prove:

72 CHAPTER 5. GAMES AND TABLEAUX FOR MODAL MU-CALCULUS

Theorem 5.1 (Fundamental Semantic Theorem). s0 �TV ϕ if and only if player V has a
memoryless winning strategy for GTV (s0, ϕ).

We shall establish the Theorem by proving the following:

(i) If s0 �TV ϕ then player V has a memoryless winning strategy for GTV (s0, ϕ).

(ii) If s0 2TV ϕ then player R has a (memoryless) winning strategy for GTV (s0, ϕ).

It follows from the definition that if one player has a winning strategy, then the other
does not. I.e. at most one player has a winning strategy for a given game GTV (s0, ϕ). Thus it
follows from statements (i) and (ii) in the preceding that at least one player has a winning
strategy for a given game.

A class of games is said to be determined if for every game, there is a winning strategy for
exactly one of the players. Thus model checking games of the kind, GTV (s0, ϕ), are determined.
We shall see shortly that these games are parity games. In 1975, Donald A. Martin proved
that all Borel games (which include parity games) are determined.

5.2 Proof of the Fundamental Semantic Theorem

Assume s0 �TV ϕ. We aim to show that V is always able to preserve the “truth of game
positions” by making judicious choices, so winning every play.

We list all the fixpoint subformulas of ϕ, in decreasing order of size, as follows:

σ1Z1.ψ1, σ2Z2.ψ2, · · · , σnZn.ψn

It follows that:

(i) if i < j then it is impossible for Zj to subsume Zi

(ii) if Zi subsumes Zj then i ≤ j.

A position in the game GTV (s, ϕ0) has the form (t, ψ) where ψ may contain free variables
in {Z1, · · · , Zn }. Our strategy is to show that V can play in such a way that if it reaches
(s′, ψ) then s′ �TV ψ. An immediate problem is that since some of the Zis may occur free in

ψ, ||ψ||TV may not be defined!

True positions and valuations We first define valuations V0, · · · , Vn by induction on n:

V0 := V

Vi+1 := Vi[Zi+1 7→ ||σi+1Zi+1.ψi+1||TVi]

The idea is Vi maps Z1, · · · , Zi to their respective (correct) denotations. E.g. V1 : Z1 7→
||σ1Z1.ψ1||TV0 . Note that V = V0 is not well-defined on Z1, Z2, · · · , Zn, but this is ok since
σ1Z1.ψ1—as Z1 is the most subsuming—does not contain any free occurrence of Z2, · · · , Zn.
Similarly, ||σ2Z2.ψ2||TV1 is well-defined since it does not contain free occurrences of Z3, · · · , Zn,

and so on. Thus Vn captures the semantics of all bound variables Zis i.e. ||ψ||TVn is well-defined
for every ψ ∈ Sub(ϕ).

We say that (t, ψ) is a true position just if t �TVn ψ. Note that (s0, ϕ0) is a true position,
by assumption.

5.2. PROOF OF THE FUNDAMENTAL SEMANTIC THEOREM 73

Next we give a more refined valuation that identifies the smallest least fixpoint approximant
making a given position true. Let

µY1.χ1, µY2.χ2, · · · , µYm.χm

be the set of least fixpoint subformulas of ϕ, again in decreasing order of size.

A signature is just an m-long vector of ordinals. We say that signatures r < r′ if r
lexicographically precedes1 r′.

Given a signature r = α1 · · ·αm and a valuation V, we define valuations V r
0 , · · · , V r

n by
induction:

V r
0 := V

V r
i+1 := V r

i

[
Zi+1 7→

{
||σi+1Zi+1.ψi+1||TV ri if σi+1 = ν

||µY αj
j .χj ||TV ri else if σi+1Zi+1 = µYj

]

Thus we use a signature r = α1 · · ·αm to interpret the least fixpoint subformulas in ϕ so that
the j-th such is interpreted by its αj-th approximant.

µ-signature of a true position

Lemma 5.2. If t �TVn ψ then there is a smallest signature r such that t �TV rn ψ.

Thus given a true position (t, ψ), we define its µ-signature (or simply signature), written
sigµ(t, ψ), to be the least r such that t �TV rn ψ holds.

Notation Let r and r′ be signatures. We write

- r(k) to mean the kth component of the signature r, and

- r =k r
′ to mean that the first k components of the signatures r and r′ are identical.

The µ-signature is unchanged or decreases when passing through boolean, modal or ν-
variable dependencies / edges, and when passing through (−, Yj), it strictly decreases in the
jth-component and is unchanged in each of the 1, · · · , j − 1 component.

Lemma 5.3 (Signature Decrease). Whenever the LHS of the relation in question is defined,
we have

(i) sigµ(s, ϕ1 ∨ ϕ2) = sigµ(s, ϕi), for some i ∈ { 1, 2 }.
(ii) sigµ(s, ϕ1 ∧ ϕ2) ≥ max(sigµ(s, ϕ1), sigµ(s, ϕ2))

(iii) sigµ(s, 〈a〉ϕ1) = sigµ(t, ϕ1), for some t such that s
a→ t

(iv) sigµ(s, [a]ϕ1) ≥ sigµ(t, ϕ1), for all t such that s
a→ t

(v) Assuming Zi is a ν-variable, sigµ(s, νZi.ψi) = sigµ(s, Zi) = sigµ(s, ψi).

(vi) Assuming Zi = Yj is a µ-variable

(a) sigµ(s, µYj .χj) =j−1 sigµ(s, Yj)

(b) sigµ(s, Yj)(j) > sigµ(s, χj)(j) and sigµ(s, Yj) =j−1 sigµ(s, χj).

Proof. Exercise.

1We define a1 · · · am < b1 · · · bm iff a1 < b1, or (a1 = b1 and a2 · · · am < b2 · · · bm).

74 CHAPTER 5. GAMES AND TABLEAUX FOR MODAL MU-CALCULUS

Winning memoryless stratregy for V Finally we simultaneously give the memoryless
strategy for V and prove that it is winning, by appealing to the Signature Decrease Lemma.

Suppose (sm, ϕm) is the current position in the play. Assume that it is a true position,
and so, sm �V rmn ϕm where rm = sigµ(sm, ϕm). If (sm, ϕm) is a final position, then V is the
winner. Therefore either V wins or the play is not yet complete. In the latter, we show how
the play is extended to (sm+1, ϕm+1) by a case analysis on ϕm.

- ϕm = ψ1 ∧ ψ2: Then R chooses ψi for some i ∈ { 1, 2 } as the next move, and the next
position (sm+1, ϕm+1) = (sm, ψi) remains true, and sm+1 �V rm+1

n
ϕm+1 with rm+1 ≤ rm,

by the Lemma.

- ϕm = [K]ψ: Then R chooses as the next move (sm+1, ϕm+1) = (t, ψ), for some t and some
a ∈ K such that sm

a→ t. Since sm ∈ ||[K]ψ||TV rmn , we have sm+1 ∈ ||ψ||TV rmn , so (sm+1, ϕm+1)
is true and rm+1 ≤ rm by the Lemma.

Applying the Signature Decrease Lemma

- ϕm = ψ1 ∨ ψ2: V chooses one of ψ1 and ψ2 that holds; if both hold, then she chooses the
one (say, ψ1) with the least signature. The next position (sm+1, ϕm+1) = (sm, ψ1) remains
true. By the Lemma, rm+1 = rm.

- ϕm = 〈K〉ψ: similar to above.

- ϕm = σiZi.ψi. Then (sm+1, ϕm+1) = (sm, Zi). Two cases:

- σi = ν: (sm+1, ϕm+1) is a true position, and rm+1 = rm.

- σi = µ: (sm+1, ϕm+1) is a true position, but rm+1 =i−1 rm.

- ϕm = Zi. Then (sm+1, ϕm+1) = (sm, ψi). Two cases:

- σi = ν: (sm+1, ϕm+1) is a true position, and rm+1 = rm.

- σi = µ: (sm+1, ϕm+1) is a true position, with rm+1 < rm and rm+1 =i−1 rm.

The case of infinite plays Take an infinite play (s0, ϕ0), (s1, ϕ1), · · · in which after (say)
(sk, ϕk), every occurrence of a fixpoint variable is subsumed by Zi. Suppose, for a contradic-
tion, Zi = Yj which identifies a least fixpoint subformula µYj .χj .

Let k1, k2, · · · be the positions in the play where Yj occurs. The move from (ski , Yj) to
(ski+1, χj) causes a strict decrease of the µ-signature. We show that the remaining moves
between ki and ki+1 cannot cancel this decrease out.

We only need to worry about (s, µYl.χl)→ (s, Yl), as this is the only case which may cause
an increase in the µ-signature. By assumption Yl is subsumed by Yj ; it follows that l > j.
Note that the transition (t, µYj .χj) to (t, Yj) is not possible in the segment from ki to ki+1

because Yj is assumed to be subsuming. Hence the increase in µ-signature occurs after the
l-th component, and so, there is still an overall decrease in the respective j-prefix of rz as z
progresses from ki to ki+1. This contradicts the well-foundedness of (fixed-length vectors of)
ordinals.

A duality We use a “symmetric” argument to establish the other direction: If s 2TV ϕ then
player R has a memoryless winning strategy for GTV (s, ϕ).

Specifically

5.3. TABLEAUX FOR MODAL MU-CALCULUS 75

- For a position (t, ψ) that is false (i.e. s /∈ ||ψ||TV), define its ν-signature, written sigν(t, ψ),
to be the least r such that t 2TV rn ψ holds.

- Establish a corresponding Signature Decrease Lemma for ν-signatures.

- Define a memoryless winning strategy for R.

Hence V has a memoryless winning strategy for GTV (s, ϕ) iff s �TV ϕ.

Lemma 5.4. A player does not have a memoryless winning strategy for GTV (s, ϕ) if and only
if he has a memoryless strategy for GTV (s, ϕ̃), where ϕ̃ is the positive normal form of ¬ϕ.

Proof. We consider V; the situation for R is exactly dual.

V has no memoryless winning strategy for GTV (s, ϕ)

iff s 2TV ϕ

iff s �TV ¬ϕ
iff V has a memoryless winning strategy for GTV (s, ϕ̃)

5.3 Tableaux for modal mu-calculus

Preliminaries We will not distinguish between different labels namely only consider for-
mulas [L]ϕ and 〈L〉ϕ which we will denote with 2ϕ and 3ϕ. Note that this is not a necessary
condition for the following but makes for concise presentation. From now on we will only
consider closed formulas. Since every formula can be written in positive normal form, we will
work with unlabelled mu-formulas defined inductively by:

ϕ ::= P | ¬P | Z | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | 2ϕ | 3ϕ | µZ.ϕ | νZ.ϕ

All formulas considered are also assumed to be guarded. We say that variable Z in a
formula ϕ is guarded if every occurrence of Z in ϕ is in some modal subformula [a]χ or 〈a〉χ
of ϕ. We say that a formula is guarded if for every subformula σZ.ψ of ϕ, Z is guarded in
ψ (where σ = µ, ν). For example µZ.Z ∨ ϕ is equivalent to the guarded formula µZ.ϕ and
νY.(Q ∧ (µZ.Y ∧3Z)) ∨3Y is equivalent to the guarded formula νY.(Q ∧ µZ.3Z) ∨3Y .

Satisfaction and Models We say a transition system T = (S,→, λ) with a distinguished
node s0 satisfies the formula ϕ of modal mu-calculus, if s0 |=T ϕ (i.e. s0 ∈ ‖ϕ‖T). In this case
we call T a model of ϕ and say that ϕ is satisfiable.

Tableaux: an informal view Consider the formula ϕ = νY.µX.(22P ∧3X)∨(¬P ∧3Y).
We want to ask if ϕ is satisfiable. We aim to find a model of ϕ namely a transition system

76 CHAPTER 5. GAMES AND TABLEAUX FOR MODAL MU-CALCULUS

T = (S,→, λ) and s0 ∈ S such that s0 |=T ϕ. We can proceed as follows.

s0 |= νY.µX.(22P ∧3X) ∨ (¬P ∧3Y)

s0 |= (22P ∧3X) ∨ (¬P ∧3Y)

s0 |= 22P ∧3X

s0 |= {22P,3X}
∃s1 : s0 → s1 s1 |= {2P,X}

s1 |= {2P, (22P ∧3X) ∨ (¬P ∧3Y)}
s1 |= {2P,¬P ∧3Y }
s1 |= {2P,¬P,3Y }

∃s2 : s1 → s2 s2 |= {P, Y }
s2 |= {P, (22P ∧3X) ∨ (¬P ∧3Y)}
s2 |= {P,22P ∧3X}
s2 |= {P,22P,3X}

∃s3 : s2 → s3 s3 |= {2P,X}
...

This “model search” naturally gives rise to the transition system illustrated in Figure 5.2.
This search for satisfiability (or soundness) can be formalised using tableaux. The idea is to
encapsulate all possible plays on an arbitrary transition system as a tree where each node is
labelled by a subset of Sub(ϕ).

s0
// s1

// s2
// · · ·

where s2i ∈ ρ(P) and s2i+1 /∈ ρ(P)

Figure 5.2: A model of νY.µX.(22P ∧3X) ∨ (¬P ∧3Y).

Trees and Paths

Definition 5.2. A tree (over Σ) is a triple t = (V,→, λ) with a distinguished node rt ∈ V
which satisfies the following conditions.

- (V,→) is a connected directed graph.

- There are no transitions into rt.

- For every v ∈ V \ {rt} there is exactly one v0 ∈ V such that v0 → v.

- λ : V → P(Σ) is called the labelling function of t.

The node rt is referred to as the root of the tree and any node without outgoing transitions
is a leaf. We use subscripts to emphasise which tree they refer to.

Note that a tree can be viewed as a special case of a transition system.

If t = (V,→, λ) is a tree then a path through t is an enumerable set P ⊆ V such that
rt ∈ P, if v0 → v ∈ P then v0 ∈ P, and for every v ∈ P either v is a leaf or there exists

5.3. TABLEAUX FOR MODAL MU-CALCULUS 77

exactly one v′ ∈ V such that v → v′ and v′ ∈ P. Hence a path can be visualised as a sequence
rt = v0 → v1 → v2 → . . .→ vn → . . . and we write P(n) to denote vn.

Tableaux

Recall Prop is a (possibly infinite) set of propositions from which the syntax of µ-calculus is
defined. Let Prop¬ = {¬P : P ∈ Prop}. Uppercase Greek letters such as Γ and ∆ denote
sequents, finite sets of formulas. 2Γ abbreviates the set {2ϕ : ϕ ∈ Γ} and 3Γ is defined
analogously. We write Γ, ϕ to mean Γ ∪ {ϕ}, and Γ,∆ to denote Γ ∪∆.

Γ, ϕ0 ∧ ϕ1(∧)
Γ, ϕ0, ϕ1

Γ, ϕ0 ∨ ϕ1(∨0)
Γ, ϕ0

Γ, ϕ0 ∨ ϕ1(∨1)
Γ, ϕ1

Γ, µZ.ϕ
(µ)

Γ, Z

Γ, νZ.ϕ
(ν)

Γ, Z

Γ, Z
(Z) (Z identifies σZ.ϕ)

Γ, ϕ

2Γ,3{δ1, · · · , δn},Θ
(mod) (Θ ⊆ Prop ∪ Prop¬ is consistent)

Γ, δ1 Γ, δ2 · · · Γ, δn

Table 5.1: Rules for generating pre-tableaux.

Definition 5.3. A pre-tableau for Ξ is a tree t = (V,→, λ) over
⋃
ϕ∈Ξ Sub(ϕ) generated by

the rules given below from the sequent Ξ, in which every finite branch terminates by reaching
a sequent of the form 2Γ,3∆,Θ where ∆ is empty or Θ ⊆ Prop ∪ Prop¬ is inconsistent.

Notice that a pre-tableau is a finitely branching tree and branching only occurs at a
(mod)-rule. For each rule in Table 5.1 that is not the mod rule, the distinguished formulas
in the upper and lower sequents are called respectively the principal and residual formulas of
the rule.

The tableau rules are read top-down thus our trees grow downwards. For example, in the
(∨)-rule from the sequent Γ, ϕ0∨ϕ1 we may proceed to either Γ, ϕ0 or Γ, ϕ1. If the (mod)-rule
can be applied to a sequent, then no other rule is applicable to that sequent.

Proposition 5. Every infinite path in a pre-tableau passes through a (mod)-rule infinitely
often.

Proof. Exercise 5.3.

Definition 5.4. Fix a pre-tableau t = (V,→, λ) for Γ and a path P through t. A finite trace
(through P) is a sequence of formulas ϕ0, ϕ1, . . . , ϕn, where, for each i, ri is the rule that
applies at P(i), satisfying the following:

(i) ϕi ∈ λ(P(i)) for each i ≤ n;

(ii) If i < n and ri is not the mod rule, then

(a) if ϕi is the principal formula of the rule ri, then ϕi+1 is a residual formula of ri

(b) if ϕi is not the principal formula of the rule ri, then ϕi+1 = ϕi

(iii) If i < n and ri is a mod rule instance with premise

2γ1, · · · ,2γl,3δ1, · · · ,3δm,Θ

then

78 CHAPTER 5. GAMES AND TABLEAUX FOR MODAL MU-CALCULUS

(a) if ϕi = 2γj then m ≥ 1 and ϕi+1 = γj

(b) if m ≥ 1 and ϕi = 3δj then ϕi+1 = δj

In (iii)(a), ϕi+1 refers to the occurrence of γj in the child-sequent of ri chosen by the
path P; similarly for (b). Note that the case of ϕi = P is not possible (because i < n).

An infinite sequence of formulas ϕ0, ϕ1, . . . is a trace if every finite initial sequence is a
trace.

Lemma 5.5. For each infinite trace there exists a variable that appears infinitely often in the
trace and subsumes all other infinitely occurring variables.

Proof. Exercise.

In each infinite trace the unique variable identified by Lemma 5.5 will be referred to as the
most significant variable of the trace. We call an infinite trace a µ-trace if its most significant
variable is a µ-variable; otherwise it is a ν-trace.

Definition 5.5. A pre-tableau is a tableau if

(i) the sequent at the leaf of each finite branch is of the form 2Γ,Θ where Θ is a consistent
set of propositions, and

(ii) every infinite trace though every path in the pre-tableau is a ν-trace.

Lemma 5.6. Let t = (V,→, λ) be a tableau. Then for every v ∈ V we have λ(v) ∩ (Prop ∪
Prop¬) is consistent.

Proof. Exercise 5.3.

Example 5.5. Of the four pre-tableaux given below for the formula µZ.Q ∨ (P ∧3Z) only
the first three are tableaux. The fourth one which is assumed to always pick the right disjunct
in Q ∨ (P ∧3Z) is not a tableau.

µZ.Q ∨ (P ∧3Z)
(µ)

Z(Z)
Q ∨ (P ∧3Z)

(∨)
Q

µZ.Q ∨ (P ∧3Z)
(µ)

Z(Z)
Q ∨ (P ∧3Z)

(∨)
P ∧3Z(∧)
P,3Z

(mod)
Z(Z)

Q ∨ (P ∧3Z)
(∨)

Q

µZ.Q ∨ (P ∧3Z)
(µ)

Z(Z)
Q ∨ (P ∧3Z)

(∨)
P ∧3Z(∧)
P,3Z

(mod)
Z(Z)

Q ∨ (P ∧3Z)
(∨)

P ∧3Z(∧)
P,3Z

(mod)
Z(Z)

Q ∨ (P ∧3Z)
(∨)

Q

µZ.Q ∨ (P ∧3Z)
(µ)

Z(Z)
Q ∨ (P ∧3Z)

(∨)
P ∧3Z(∧)
P,3Z

(mod)
Z(Z)

Q ∨ (P ∧3Z)
(∨)

P ∧3Z
...
Z
...

Soundness and Completeness

Lemma 5.7 (Soundness). If ϕ has a tableau then ϕ is satisfiable.

Proof. Let t = (V,→t, λ) be a tableau for ϕ. Define a transition system T = (S,→T , ρ) and
a map τ : V → S such that

5.3. TABLEAUX FOR MODAL MU-CALCULUS 79

(i) τ(rt) = s0 ∈ S

(ii) If v →t u and the tableau rule applied at v is (mod) then τ(v) →T τ(u), otherwise
τ(u) = τ(v).

(iii) s ∈ ρ(P) if and only if there exists v ∈ V such that τ(v) = s and P ∈ λ(v).

We will use t to define a winning strategy for Verifier in the model checking game GT (s0, ϕ),
whence the Fundamental Semantic Theorem yields s0 |=T ϕ.

Suppose we have a play, namely, (s0, ϕ0), (s1, ϕ1), . . . , (sn, ϕn), in the game GT (s0, ϕ),
and a corresponding trace ϕ′0, ϕ′1, . . ., ϕ′m in the tableau t such that

- there exists i0 = 0 < i1 < · · · < in < in+1 = m + 1 so that for every j ≤ n and every
k ∈ [ij , ij+1), ϕ′k = ϕj , and

- ϕ′m is principal in the node v of t associated to it, or a box or diamond formula in case of
mod rule, and τ(v) = sn.

Suppose ϕn /∈ Prop ∪ Prop¬. We show how the play and the trace can be extended.

Case I. It is Verifier’s move. Then either ϕn = ψ0 ∨ ψ1 or 3ψ0 respectively. As t is a
tableau and ϕ′m = ϕn the trace can be extended by ψ where ψ ∈ {ψ0, ψ1} or ψ = ψ0

respectively. If u denotes the node associated to ψ in this trace, set Verifier’s choice to
be (sn+1, ϕn+1) = (τ(u), ψ).

Case II It is Refuter’s move. Then for every choice of (sn+1, ϕn+1) by Refuter, the trace can
be extended accordingly.

This is in fact a winning strategy for Verifier. Suppose (s0, ϕ0), (s1, ϕ1), . . . , (sn, ϕn) is a finite
play using the above strategy. It follows that there exists a node v ∈ V such that τ(v) = sn
and ϕn ∈ λ(v) is principal at v. If ϕn ∈ Prop, this play is winning for Verifier by definition.
If ϕn = ¬P then since λ(v) ∩ (Prop ∪ Prop¬) is consistent, sn /∈ ρ(P) and Verifier wins this
play too. Furthermore, an infinite play corresponds to an infinite trace in the tableau. Since
every infinite trace is a ν-trace this implies that the play is winning for Verifier.

Lemma 5.8 (Completeness). If ϕ is satisfiable then ϕ has a tableau.

Proof. Let T be a transition system with distinguished node s0 such that s0 |=T ϕ. Use
Verifier’s winning strategy in GT (s0, ϕ) (given by the Fundamental Semantic Theorem) to
make your choices in defining a pre-tableau for ϕ. Then every infinite trace in the tableau
corresponds to an infinite play in the game and hence is a ν-trace. Moreover, every finite
branch in the pre-tableau will be of the form 2Γ,Θ where Θ is consistent as otherwise there
will be maximal plays that end in a position (s, P) with s 6|= P or (s,3ψ) which would be
losing for Verifier.

The Soundness and Completeness Lemmas give us a characterisation of satisfaction in
terms of the existence of tableaux:

Theorem 5.2. A formula is satisfiable iff it has a tableau.

Corollary 5.1 (Tree Model Property). If a formula ϕ of modal mu-calculus has a model then
it has a tree model.

Proof. Suppose ϕ is satisfiable. The Completeness Lemma 5.8 implies that ϕ has a tableau.
The proof of the Soundness Lemma 5.7 then shows how to extract a tree model for ϕ from
this tableau.

80 CHAPTER 5. GAMES AND TABLEAUX FOR MODAL MU-CALCULUS

5.4 Parity Games

Definition 5.6. A parity game is a tuple G = 〈N,E, vI , λ,Ω 〉 where

- 〈N,E ⊆ N ×N 〉 is a directed graph such that E is total (i.e. for each u, there is some v,
such that (u, v) ∈ E), and vI ∈ N is the start vertex

- λ : N −→ {V,R } labels each vertex with R (Refuter) or V (Verifier); λ(v) indicates which
player is responsible for moving from v

- Ω : N −→ { 0, · · · , p } assigns a priority (or colour) to each vertex v

A play begins with a token on the start vertex vI . When the token is on u and λ(u) = P ,
player P moves it along an outgoing edge (u, v) to v. A play is an infinite path vI v1 · · · vi · · ·
in the graph visited by the token.

The winner of a play is determined by the min-parity condition: if the least priority that
occurs infinitely often in the sequence Ω(vI) Ω(v1) Ω(v2) · · · is even then V wins; otherwise R
wins. There is an equivalent max-parity condition.

Example 5.6 (A parity game). V-moves are circled; R-moves are boxed. Prioities are indi-
cated in red after the colon. Who has a winning strategy starting from a?

a: 1 //

b: 2 //

��}}

c: 3

��vv
d: 2

JJ

//

!!

e: 3

aa

// f : 2

aa

yy
g: 3

88

Recall: V wins an infinite play just if the least infinitely occurring priority is even. Ans: V
has a winning strategy: b 7→ c, f 7→ g, d 7→ g.

Example 5.7.

a: 4 //

b: 2

��

// c: 3

��vv }}
d: 2

JJ

!!

// e: 1

aa

xx

// f : 0

aa

xx
g: 3

88OO

h: 3

88

i: 3

OO

From which vertices does V have a winning strategy? Equivalently, what is the winning region
of V?

Example 5.8. Parity Game GT2∅ [0, µY.νZ.[a]((〈b〉t ∨ Y) ∧ Z)] where T2 is defined in Exam-

5.5. SOLVABILITY AND DETERMINACY FOR FINITE PARITY GAMES 81

ple 5.3.

2 •
��

1 •
��

2 •
��

2 •
��

2 • R

��
2 • R

tt **
V 2 •
�� **

2 •
��

V 2 •
��

1 •

��

2 • R

��
V 0 • VV 2 •

66

2 • R

**

VV

2 •V

��

gg

1 • VHH

Every modal mu-calculus model checking instance determines a parity game. Precisely,

Proposition 6. The mu-calculus model checking problem reduces to the decision problem
Parity: given a parity game, does V have a winning solution?

5.5 Solvability and Determinacy for Finite Parity Games

Let G = 〈N,→, v0, λ,Ω 〉 be a parity game, and v ∈ N . Write G(v) := 〈N,→, v, λ,Ω 〉. Let
P ∈ {V,R }. The winning region of P , written WP , is the subset of G-vertices v such that P
has a winning strategy starting from v (i.e. in the game G(v)). It follows from the definition
that WR ∩WV = ∅. Trivially WR ∪WV ⊆ N .

Theorem 5.3 (Solvability). Let G = 〈N,→, v0, λ,Ω 〉 be a finite parity game. Both the
winning regions, WV and WR, and the corresponding memoryless winning strategies for V
and R are computable.

Intuitively ForceiP (X) is the set of vertices from which player P can force play to enter
the set X of vertices in at most i moves.

82 CHAPTER 5. GAMES AND TABLEAUX FOR MODAL MU-CALCULUS

Definition 5.7 (Force Sets). Let X ⊆ N .

Force0
P (X) := X for P ∈ {V,R }

Forcei+1
R (X) := ForceiR(X)

∪ { j : λ(j) = R ∧ ∃k ∈ ForceiR(X).j → k }
∪ { j : λ(j) = V ∧ ∀k.j → k ⇒ k ∈ ForceiR(X) }

Forcei+1
V (X) := ForceiV (X)

∪ { j : λ(j) = V ∧ ∃k ∈ ForceiV (X).j → k }
∪ { j : λ(j) = R ∧ ∀k.j → k ⇒ k ∈ ForceiV (X) }

ForceP (X) :=
⋃
i≥0 ForceiP (X)

Rank and Forcing Strategy The definition of force set provides a method for computing
it. As i increases, we calculate ForceiP (X) until it is the same as Forcei−1

P (X). Clearly this
must hold when i ≤ (|N | − |X|) + 1.

If j ∈ ForceP (X) and current position is j, then P can force play from j into X, regardless
of how the opponent moves. (Vertex j itself need not belong to X.) The rank of such a vertex
j is the least index i such that j ∈ ForceiP (X).

For each i ∈ ForceP (X) belonging to P , either i ∈ X or there is i→ k and k ∈ ForceP (X),
so the forcing strategy for P is to choose a k with the least rank.

Example 5.9 (Force Sets of a Parity Game). V-moves are circled; R-moves are boxed.
Prioities are indicated in red.

a: 4 //

b: 2

��

// c: 3

��vv
d: 2

JJ

!!

// e: 3

aa

// f : 2

aa

yy
g: 3

88

i ForceiV ({ f })
0 { f }
1 { f, g }
2 { f, g, d }
3 { f, g, d, c }
4 { f, g, d, c, b }
5 { f, g, d, c, b, a }
6 { f, g, d, c, b, a, e }

Since ForceV ({ f }) is the entire vertex set, and f has the least priority which is even, V has
a winning strategy from every vertex. V’s forcing strategy: f 7→ g, d 7→ g, b 7→ c

5.5. SOLVABILITY AND DETERMINACY FOR FINITE PARITY GAMES 83

Subgames If X ⊆ N , then G − X is the result of removing all vertices in X from G, all
edges from vertices in X, all edges into vertices in X.

The subgraph G−X may or may not be a parity game (because not all vertices may be
total). If it is, then G−X is a subgame of G.

Proposition 7. If G is a game and X is a subset of vertices, then the subgraph G−ForceP (X)
is a subgame.

Exercise 5.1. Prove the proposition.

Algorithmic Solution of Finite Parity Games WReg(G) computes G’s winning re-
gions, WV and WR. (The respective memoryless winning strategies can be extracted from the
correctness proof.) Assume the least priority is even; otherwise swap players in the algorithm.

Algorithm WReg(G). Output: WV and WR

1. Let v be a G-vertex of the least priority (assumed even). Set X := ForceV ({ v }).
2. If X = N then return WV := N and WR := ∅.

3. Else run WReg(G−X), and let W ′R and W ′V be the winning regions.

(a) If V can guarantee transition from v to W ′V ∪X, i.e.,{
(a) λ(v) = V ∧ ∃v′ . v → v′ ∧ v′ ∈ (W ′V ∪X), or

(b) λ(v) = R ∧ ∀v′ . v → v′ ⇒ v′ ∈ (W ′V ∪X)

}
then

return

{
WV := W ′V ∪X
WR := W ′R.

(b) Else set X ′ := ForceR(W ′R) in G. Run WReg(G − X ′), and let W ′′V and W ′′R be

the winning regions. Return

{
WR := W ′′R ∪X ′

WV := W ′′V .

Example 5.10 (Computing Winning Regions). Parity game G:

a: 4 //

b: 2

��

// c: 3

��vv }}
d: 2

JJ

!!

// e: 1

aa

xx

// f : 0

aa

xx
g: 3

88OO

h: 3

88

i: 3

OO

Run WReg(G): let winning regions be WV and WR. Set X = ForceV ({ f }) = { d, f, h, i }.
WReg(G−X) returns regions W ′V = ∅ and W ′R = (G−X).

Since f → h and h ∈ X, return WV = X and WR = W ′R.

Parity game G−X:

84 CHAPTER 5. GAMES AND TABLEAUX FOR MODAL MU-CALCULUS

a: 4 // b: 2

��

// c: 3

}}
e: 1

aa

xx
g: 3

88

In G−X, ForceR({ e }) = (G−X). Hence WReg(G−X) returns winning regions W ′V = ∅
and W ′R = (G−X).

Proof of Theorem 5.3: Correctness of WReg(G)

Proof. By induction on n = |N |. Base case n = 1 is trivial. Inductive case. G −X has less
than n vertices. By the induction hypothesis WReg(G−X) computes winning regions W ′V
and W ′R.

Case 1. V can guarantee transition from v to W ′V ∪X iff (a) or (b). Claim: (i) W ′V ∪X ⊆
WV ; and (ii) W ′R ⊆ WR; this is sufficient since W ′R ∪W ′V ∪ X = N . Thus the memoryless
V-strategy on W ′V ∪ X is: 1. On W ′V , play the winning strategy (thanks to the induction
hypothesis). 2. On X, play the “forcing” strategy, eventually reaching v. 3. From v, move
back toW ′V ∪X. For R, use the memoryless winning strategy given by the induction hypothesis
Proof of Claim (i): If the play eventually remains in W ′V then V wins by the induction
hypothesis; otherwise the play passes through v infinitely often, then V wins since the priority
of v, which is the least, is even. (ii) holds because, starting in W ′R, R can guarantee that the
play remains in W ′R (because no V-move in G−X can transition to X).

Case 2. R can guarantee transition from v to W ′R. Thus v ∈ X ′. By the induction
hypothesis WReg(G−X ′) computes the winning regions W ′′V and W ′′R. Claim: (i) W ′′R∪X ′ ⊆
WR (ii) W ′′V ⊆ WV . Proof of (i): R can move to W ′R from any move in X ′, and there he can
guarantee that the play remains in W ′R. From a move in W ′′R, V can choose to move to either
W ′′R or X ′. In both cases, R wins the play. (ii) is clear since V can guarantee that the play
remains in W ′′V .

In the worst case, WReg is called 2|N | times; thus running time is exponential in |N |.

Uniformly Winning Memoryless Strategies Let X ⊆ WV . A V-strategy is uniformly
winning on X just if it is winning for V from every v ∈ X.

Lemma 5.9. Given a parity game, if WV 6= ∅ then V has a memoryless strategy that is
uniformly winning on WV .

Proof. Exercise

Parity is the decision problem: Given a parity game G = 〈N,→, v0, λ,Ω 〉, is v0 ∈WV ?

Proposition 8. Parity ∈ NP ∩ co-NP

5.6. MULLER GAMES 85

Proof. We first show that Parity is in NP. Guess a uniformly winning V-strategy, which is
succinct i.e. its size is O(|N |). It can be verified in time polynomial in |G| whether v0 ∈WV .
Claim: v0 ∈WV iff in the strategy transition graph (i.e. one edge from V-vertices and all edges
from R-vertices), V cannot enter a loop from v0 such that the least priority is odd. Suppose
(w.l.o.g.) that the least odd and the largest priorities are 1 and p (even) respectively: just
verify for the subgraphs over

p⋃
i=1

Ω−1(i),

p⋃
i=3

Ω−1(i), · · · ,
p⋃

i=p−1

Ω−1(i)

whether they contain a strongly connected component reachable from v0 which meets the
priorities 1, 3, · · · , p respectively.

The complementary problem v0 ∈ (N −WV) is just v0 ∈ WR, which is in NP using the
same argument but with the players swapped.

At the moment, the best deterministic algorithms for solving Parity run essentially in
time O(|N |d) where d is the number of priorities (see Grädel et al. (2002) for an overview).

One of the best known open problem in the foundations of verification:

Conjecture 5.1. Parity ∈ P

Determinacy for Finite Parity Games

Theorem 5.4 (Determinacy). Let G = 〈N,→, v0, λ,Ω 〉 be a finite parity game. Then N ⊆
WV ∪WR. Further if v ∈WV (resp. WR) then V (resp. R) has a memoryless winning strategy
from v.

Proof. Suppose the image of Ω is { 0, 1, · · · , p− 1 }. Proof is by induction on p. Base case is
trivial. Inductive case: if least priority is odd, swap players. Let HFR be the set of vertices
from which R has a memoryless winning strategy, and let ρ be a memoryless R-strategy that
is uniformly winning on HFR. It suffices to show that V has a memoryless winning strategy
from every vertex in N −HFR.

Case 1. No vertex in G−HFR has the least priority, 0. Apply the induction hypothesis to
the subgame G−HFR, since no vertex in it has priority 0. I.e. G−HFR can be partitioned into
winning regions W ′V and W ′R in which memoryless winning strategies exist for the respective
players. Now WR = HFR ∪W ′R and WV = W ′V ; G is thus partitioned and the respective
players have the appropriate memoryless winning strategies.

Case 2. G − HFR contains a vertex with priority 0. Claim: V can guarantee that,
starting from a vertex in G − HFR, the play remains there. Now either the play stays in
(G −HFR) − ForceV (Ω−1(0)−HFR) or it visits ForceV (Ω−1(0)−HFR) infinitely often. In
the former case, V wins by the induction hypothesis with a memoryless strategy; in the
latter, V wins by infinitely many visits to a vertex with priority 0, also with a memoryless
strategy.

5.6 Muller Games

We can define other types of graph games by changing the winning condition. For instance,
a Muller game is a tuple G = 〈N,E, v0, λ,Win 〉 such that

86 CHAPTER 5. GAMES AND TABLEAUX FOR MODAL MU-CALCULUS

• N is a finite set of nodes with an initial vertex v0 ∈ N ,

• 〈N,E ⊆ N ×N 〉 is a directed graph such that E is total,

• λ : N → {V,R } labels each vertex with V (Verifier) or R (Refuter) to indicate which
player is responsible for moving from each position,

• Win = {F1, . . . , Fk } where Fi ⊆ N .

A play ρ ∈ Nω is winning if inf(ρ) ∈ Win (i.e. if the play satisfies the Muller condition
specified by {F1, . . . , Fk }).

We outline an approach to proving the following result.

Theorem 5.5 (Buchi and Landweber (1969)). Let G be a finite Muller game. Then the
winning regions WV and WR in G for each player are computable, and only finite memory is
required to implement the winning strategies.

Similar results hold for other games with ω-regular winning conditions.

Solving Muller games by reduction to parity games Fix some gameG = 〈N,E, v0, λ,Win 〉.
Given some parity automaton A = 〈Q,Σ, q0,∆,Ω 〉 over the alphabet Σ = N , the composition
game A ◦G is the parity game 〈Q×N,E′, q0 × v0, λ

′,Ω′ 〉 where

• ((q, v), (r, w)) ∈ E′ iff both (q, v, r) ∈ ∆ and (v, w) ∈ E,

• λ′((q, v)) = λ(v), and

• Ω′((q, v)) = Ω(q).

Proposition 9. Let A be a deterministic parity automaton recognizing precisely the plays in
Win. Then Verifier has a winning strategy in the parity game A◦G iff Verifier has a winning
strategy in G.

Proof. Exercise.

Hence, in order to show that Muller games are solvable, we must show that determin-
istic Muller automata are equivalent to deterministic parity automata. This was shown by
Gurevich and Harrington using a data structure known as the latest appearance record.

Theorem 5.6 (Gurevich and Harrington (1982)). Let A′ be a deterministic Muller automa-
ton. Then there is a deterministic parity automaton A with L(A′) = L(A).

The solvability of Muller games follows then from Proposition 9, Theorem 5.6, and the
fact that parity games are solvable.

Memory required in Muller games Like parity games, it can be shown that Muller
games are determined. Unlike parity games, Muller games do not always have memoryless
strategies.

Proposition 10. Muller games do not always have memoryless strategies.

Proof. Exercise 5.6.

5.6. MULLER GAMES 87

However, it can be shown that Muller games have finite memory strategies. Roughly
speaking, a finite memory strategy is a strategy that depends only on a finite summary of the
history of the play, rather than the entire history of the play.

We describe this formally using a memory structure. A memory structure M using a
finite set M of memory states has a

• next move function next : M ×NV → N (where NV is { v ∈ N : λ(v) = V }),

• memory update function: update : M ×N →M ,

• initial memory state m0 ∈M .

A play ρ = v0v1v2 . . . in the game is consistent withM if there is a sequence of memory states
m0m1 . . . such that mi = update(mi−1, vi) and if vi ∈ NV, then vi+1 = next(mi, vi). We say
a strategy σ for Verifier uses finite memory of size n if there is some memory structure M
with size(M) = n such that every play that is possible using the strategy is consistent with
M. Note that a memoryless strategy is a special case when M = ∅.

The fact that Muller games have finite memory strategies can be shown using an extension
of Proposition 9 and the fact that parity games have memoryless strategies. The idea is that
we can convert a memoryless strategy in the parity game A ◦G into a finite memory strategy
in the Muller game G, where the memory structure is based on A. We leave the details of
this conversion as an exercise.

88 CHAPTER 5. GAMES AND TABLEAUX FOR MODAL MU-CALCULUS

Problems

5.1 This question proves the basic result: modal mu-calculus is bisimulation invariant.
First a definition. We say that a relation B ⊆ S1 × S2 between the states of labelled

transition systems T1 and T2, where Ti = 〈Si,−→i, ρi 〉 (i = 1, 2), is a bisimulation just if
whenever (s, t) ∈ B

• for all P ∈ Prop, s ∈ ρ1(P) iff t ∈ ρ2(P)

• for all a ∈ L

– for all s′ ∈ S1, if s
a−→1 s

′ then there exists a state t′ ∈ S2 such that t
a−→2 t

′ and
(s′, t′) ∈ B, and

– for all t′ ∈ S2, if t
a−→2 t

′ then there exists a state s′ ∈ S1 such that s
a−→1 s

′ and
(s′, t′) ∈ B.

Two states s and t are bisimulation equivalent, written s ∼T1,T2 t, just if there is a bisimulation
relation B such that (s, t) ∈ B.

Prove that if s ∼T1,T2 t then for all modal mu-calculus sentences ϕ, we have s �T1 ϕ iff
t �T2 ϕ.

5.2 Prove the Signature Decrease Lemma: Whenever the left-hand side of the relation in
question is defined, we have:

(a) sigµ(s, ϕ1 ∨ ϕ2) = sigµ(s, ϕi), for some i ∈ { 1, 2 }.

(b) sigµ(s, ϕ1 ∧ ϕ2) ≥ max(sigµ(s, ϕ1), sigµ(s, ϕ2))

(c) sigµ(s, 〈a〉ϕ1) = sigµ(t, ϕ1), for some t such that s
a→ t

(d) sigµ(s, [a]ϕ1) ≥ sigµ(t, ϕ1), for all t such that s
a→ t

(e) Assuming Zi is a ν-variable, sigµ(s, νZi.ψi) = sigµ(s, Zi) = sigµ(s, ψi).

(f) Assuming Zi = Yj is a µ-variable

(i) sigµ(s, µYj .χj) =j−1 sigµ(s, Yj)

(ii) sigµ(s, Yj)(j) > sigµ(s, χj)(j) and sigµ(s, Yj) =j−1 sigµ(s, χj) (and so sigµ(s, Yj) >
sigµ(s, χj)).

5.3 Write down a replacement (mod)-rule that captures satisfiability for Lµ-formulas with
labels.

5.4 Prove the following.

(i) Every infinite path in a pre-tableau passes through a (mod)-rule infinitely often.

(ii) Let t = (V,→, λ) be a tableau and suppose v ∈ V . Then for all P ∈ Prop we have
{P,¬P} * λ(v).

5.6. MULLER GAMES 89

5.5 Show in the proof of the Soundness Lemma 5.7 there is in fact a memoryless strategy
for verifier.

Hint: you need to address the following issue. If between two (mod)-rules a disjunction,
say ψ0 ∨ ψ1, is broken down more than once with a different disjunct chosen, what will a
successful strategy for Verifier pick without referring to the history of the play so far?

5.6 Prove that every mu-calculus model checking game GTV (s, ϕ) determines an equivalent
parity game namely define a parity game GTV [s, ϕ] such that Player P has a memoryless
winning strategy for GTV (s, ϕ) if and only if Player P has a memoryless winning strategy for
GTV [s, ϕ].

5.7 Assume the notations of the lecture course. Let s0 be a state of a finite labelled transition
system T . WLOG let ϕ be a closed formula in positive normal form with no occurrences of
atomic propositions. Suppose ϕ has n fixpoint variables; and m least fixpoint variables
Y1, · · · , Ym, naming subformulas µY1.χ1, · · · , µYm.χm in decreasing order of size.

Fix a memoryless V-strategy σ for the game GT∅(s0, ϕ). A signature assignment is an
assignment S of signatures (of length m) to each position (t, ψ). We say that a signature
assignment is σ-consistent just if for each position u

- if u = (s, Yj) then S((s, χj)) <j S(u) and S((s, χj)) =j−1 S(u)

- if u = (s, µYj .χj) then S((s, Yj)) =j−1 S(u)

- if u is a V-position then S(σ(u)) ≤ S(u)

- if u is a R-position then for all successor vertices v we have S(v) ≤ S(u).

(i) Prove that s �T∅ ϕ if, and only if, there is a memoryless V-strategy σ and a σ-consistent
signature assignment S.

(ii) Hence prove that the modal mu-calculus model checking problem is in NP ∩ co-NP.

5.8 The model checking problem of the modal mu-calculus can be given a game characteri-
zation:

(a) s �TV ϕ iff player V has a memoryless winning strategy for GTV (s, ϕ).

(b) s 2TV ϕ iff player R has a memoryless winning strategy for GTV (s, ϕ).

In the lectures, we proved (i). This question proves (ii).

Henceforth we fix a transition system T and a normal formula ϕ. Let

νY1.χ1, νY2.χ2, · · · , νYm.χm

be the set of greatest fixpoint formulas in ϕ, again in decreasing order of size.

We define valuations V0, · · · , Vn by induction:

V0 = V

Vi+1 = Vi[Zi+1 7→ ||σi+1Zi+1.ψi+1||TVi]

90 CHAPTER 5. GAMES AND TABLEAUX FOR MODAL MU-CALCULUS

Thus we can make sense of ||ψ||TVn ⊆ S, for any ψ ∈ Sub(ϕ).

Given a signature r = α1, · · · , αm and a valuation V , we define ν-valuations2 V r
0 , · · · , V r

n by
induction:

V r
0 = V

V r
i+1 = V r

i [Ei+1/Zi+1]

where

Ei+1 =

{
||σi+1Zi+1.ψi+1||TV ri if σi+1 = µ

||νY αj
j .χj ||TV ri if σi+1Zi+1 = νYj

Recall that if s 6∈ ||νZ.ψ||TV then there is an ordinal α such that s 6∈ ||νZα.ψ||TV and for all

β < α, we have s ∈ ||νZβ.ψ||TV .

Let ψ ∈ Sub(ϕ). If s 6∈ ||ψ||TV , we define the ν-signature of (s, ψ), written sigν(s, ψ), to be the

<-least signature r = α1 · · ·αm such that s 6∈ ||ψ||TV rn .

(a) Prove the Signature Decrease Lemma: Whenever the left-hand side of the equation or
inequality is defined:

i. sigν(s, ϕ1 ∧ ϕ2) = sigν(s, ϕ1) or sigν(s, ϕ1 ∧ ϕ2) = sigν(s, ϕ2)

ii. sigν(s, ϕ1 ∨ ϕ2) ≥ max(sigν(s, ϕ1), sigν(s, ϕ2))

iii. sigν(s, [a]ϕ1) ≥ sigν(t, ϕ1), for some t such that s
a→ t

iv. sigν(s, 〈a〉ϕ1) ≥ sigν(t, ϕ1) for all t such that s
a→ t, or s does not have an a-

transition

v. Assuming Zi is a µ-variable, sigν(s, µZi.ψi) = sigν(s, Zi) = sigν(s, ψi)

vi. Assuming Zi = Yj is a ν-variable, sigν(s, νYj .χj) is the same as sigν(s, Y) on the
first j − 1 components

vii. Assuming Zi = Yj is a ν-variable, sigν(s, Yj) > sigν(s, χj), and the first j − 1
components of the two signatures are the same but not the j-component.

(b) Hence prove that if s 6�TV ϕ then R has a memoryless winning strategy.

5.9 Let ϕ be a monotonic function on a powerset 2S . Prove that for every U ⊆ S,

U ⊆ νX.ϕ(X) ⇔ U ⊆ ϕ(νX.(U ∪ ϕ(X))).

5.10 Give a procedure to translate CTL-formulas (defined in Section 4.7) into equivalent
modal µ-calculus formulas. You may assume that the transition systems are total (i.e. every
node has at least one outgoing edge).

Based on this translation, prove that CTL model checking is decidable, and state an upper
bound on the complexity of CTL model checking.

5.11 Prove that Muller games do not always have memoryless strategies.
[Hint: Construct a particular Muller game for which Verifier has a finite memory winning

strategy, but any memoryless strategy for Verifier loses.]

2This is dual to, and not to be confused with, the µ-valuations as defined in the lectures.

Chapter 6

Tree Automata, Rabin’s Theorems
and S2S

[We gratefully acknowledge Michael Vanden Boom’s contribution to this chapter.]

Synopsis

Non-deterministic and alternating tree automata examples. Non-emptiness and Rabin’s Basis
Theorem. Complementation is straightforward for alternating automata. Alternating tree
automata can be simulated by non-deterministic tree automata. S2S/WS2S: syntax and
semantics. Expressivity of S2S/WS2S. Rabin’s Tree Theorem: S2S and WS2S are decidable.

References (Löding, 2011; Rabin, 1969, 1970; Muller and Schupp, 1987; Muller et al., 1986)

6.1 Trees and Non-deterministic Tree Automata

We are interested in infinite (full) binary trees whose nodes are labelled by letters of an
alphabet Σ. Formally a Σ-labelled binary tree is a function t : { 0, 1 }∗ → Σ i.e. the label of
the tree t at node u ∈ { 0, 1 }∗ is t(u).

•ε

ww ''•0

�� ��

•1

�� ��
•00

��

•01

��

•10

��

•11

��
...

...
...

...

We write TωΣ for the collection of Σ-labelled binary trees. Henceforth by a tree, we mean
an element of TωΣ. A tree language is just a subset T ⊆ TωΣ. A maximal path (or, simply,
path) of a tree t is a sequence π = u0 u1 u2 · · · of tree nodes whereby u0 = ε (the root of
the tree) and ui+1 = ui 0 or ui+1 = ui 1, for every i ≥ 0. The ω-word determined by π is
t(u0) t(u1) t(u2) · · · ∈ Σω.

91

92 CHAPTER 6. TREE AUTOMATA, RABIN’S THEOREMS AND S2S

Definition 6.1. A tree automaton A (for Σ-labelled binary trees) is a tuple (Q,Σ, q0,∆,Acc),
where

- Q is the finite set of states, q0 is the initial state

- ∆ ⊆ Q× Σ×Q×Q is the transition relation, and

- Acc is the acceptance condition (such as Büchi, Muller, Rabin and Parity).

The automaton is deterministic just if for every q and a, there is at most one transition (or
quadruple) in ∆ the first two components of which are q and a.

A run-tree of a tree automaton A over a tree t is an assignment of states to tree nodes
i.e. a function ρ : { 0, 1 }∗ → Q such that

- ρ(ε) = q0, and

- for all u ∈ { 0, 1 }∗, (ρ(u), t(u), ρ(u 0), ρ(u 1)) ∈ ∆.

Note that a run-tree is a Q-labelled binary tree.

Let Acc be an acceptance condition for automata over ω-words. A run-tree ρ is accepting
w.r.t. condition Acc just if every path of ρ is accepting w.r.t. Acc; we say that a tree automa-
ton A = (Q,Σ, q0,∆,Acc) accepts a given tree t just if there is run-tree of A over t which is
accepting w.r.t. Acc. Thus we have Büchi tree automata, Muller tree automata, Rabin tree au-
tomata, Parity tree automata, etc. For example, a Büchi tree automaton A = (Q,Σ, q0,∆, F)
accepts a tree t just if there exists a run-tree ρ of A over t such that in every path of ρ, a
final state from F occurs infinitely often.

The tree language recognised by the tree automaton A, denoted L(A), is the set of trees
accepted by A.

Example 6.1. Consider the language T1 of { a, b }-labelled binary trees t such that t has a
path with infinitely many a’s. The Büchi tree automaton ({ qa, qb,>}, { a, b }, qa,∆, { qa,>})
where

∆ :


(q∗, a) 7→ { (qa,>), (>, qa) }
(q∗, b) 7→ { (qb,>), (>, qb) }
(>, ∗) 7→ { (>,>) }

recognises the language T1 (where ∗ mean a or b). Clearly the automaton accepts every tree
from the state >. Observe that every run-tree has a single path labelled with states qa (and
possibly qb), and the rest of the run-tree is labelled with >. There are infinitely many states
qa on this path if and only if there are infinitely many vertices labelled by a on the path of the
input tree. Thus the non-deterministic automaton descends the input tree t guessing such a
path.

Example 6.2. Consider the language T2 := Tω{ a,b } \ T1. I.e. T2 consists of { a, b }-labelled
binary trees t such that every path of t has only finitely many a. Define a deterministic Muller
tree automaton ({ qa, qb }, { a, b }, qa,∆, { { qb } }) where

∆ :

{
(q∗, a) 7→ { (qa, qa) }
(q∗, b) 7→ { (qb, qb) }

Then, given a tree t, for each path π of t, there are infinitely many occurrences of b (re-
spectively a) on π if and only if the corresponding path of the unique run-tree ρ over t has

6.2. NON-DETERMINISTIC PARITY TREE AUTOMATA 93

infinitely many occurrences of qb (respectively qa); it follows that t ∈ T2 if and only if for
every path in the unique run-tree, the set of infinitely occurring states is { qb }. Hence the
automaton recognises T2.

In constrast to automata over ω-words, deterministic Muller tree automata and non-
deterministic Büchi tree automata are not equivalent.

Theorem 6.1. The language T2 (of Example 6.2) is not recognisable by any Büchi tree
automaton, whether deterministic or not.

Proof. Assume, for a contradiction, that the Büchi tree automaton A = (Q, { a, b }, q0,∆, F)
recognises T2. Let n = |F |+ 1. Consider the following { a, b }-labelled binary tree t:

t : u 7→

{
a u ∈ (1+ 0)i for i ∈ { 1, · · · , n }
b otherwise

Since t ∈ T2, there is a accepting run-tree ρ of A on t. On the path 1ω, a final state
is visited, say, at v0 = 1m0 . On the path 1m0 0 1ω, final states are visited infinitly often.
Suppose a final state is reached, for the first time after 0, at v1 = 1m0 0 1m1 . By repeated
the argument, we obtain visits to final states at the nodes v0 = 1m1 , v1 = 1m0 0 1m1 , · · · , vn =
1m0 0 1m1 0 · · · 0 1mn . Now, there exist i < j such that the same final state appears at vi and
vj . It follows from the definition of t that between vi and vj , at least one label a occurs (at
the node vi 0).

Construct a new tree t′ by copying the (respective labels of the) part between vi and vj
repeatedly. Similarly we construct the corresponding run-tree ρ′ form ρ. Thus A also accepts
t′ i.e. t′ ∈ T2, but in t′, infinitely many a occur on the new path π, which is a contradiction.

Notation Following Vardi and Kupferman, we use acronym XY Z where

- X ranges over automaton modes: deterministic, non-deterministic and alternating,

- Y ranges over acceptance / winning conditions: Büchi, Muller, Rabin, Streett, parity, and
weak,

- Z ranges over input structures: words and trees.

For example, DMW and NPT are shorthand for deterministic Muller word automaton and
non-deterministic parity tree automaton respectively.

6.2 Non-deterministic Parity Tree Automata

A parity tree automaton is a tuple A = (Q,Σ, qI ,∆,Ω) with priority map Ω : Q→ { 0, · · · , k }.
It accepts a tree t just if there is a run-tree ρ of A over t such that for every path of ρ, the
least priority that occurs infinitely often is even.

Example 6.3. Consider the parity tree automaton ({ qa, qb }, { a, b }, qa,∆,Ω) where ∆ is as
defined in Example 6.2, and Ω : qa 7→ 1; qb 7→ 2. For every path in a given tree, there are only
finitely many occurrences of a if, and only if, the there are finitely many occurrences of qa in
the corresponding path of the (unique) run-tree, which is so if, and only if, the least priority
that occurs infinitely often is 2. Thus the automaton recognises T2.

94 CHAPTER 6. TREE AUTOMATA, RABIN’S THEOREMS AND S2S

Theorem 6.2. (i) Given a DMW, there is an algorithm to construct an equivalent DPW,
and vice versa.

(ii) Given an NMT, there is an algorithm to construct an equivalent NPT, and vice versa.

Lemma 6.1. Consider the language consisting of { a, b }-labelled binary trees t such that t
has at least one vertex labelled with a. The language is not recognisable by a deterministic
tree automaton with any of the acceptance conditions we have considered.

Acceptance Parity Game Given a NPT A = (Q,Σ, qI ,∆,Ω) and a tree t, we define a
parity game, called the acceptance parity game, GA,t = (N,E, (ε, qI), λ,Ω

′) as follows. Writing
NV := λ−1(V) and NR := λ−1(R)

- NV = { 0, 1 }∗ ×Q
- NR = { 0, 1 }∗ × (Q×Q)

- for each vertex (v, q) ∈ NV , for each transition (q, a, q0, q1) ∈ ∆ with t(v) = a, we have

((v, q), (v, (q0, q1)) ∈ E

- for each vertex (v, (q0, q1)) ∈ NR, we have

((v, (q0, q1)), (v 0, q0)), ((v, (q0, q1)), (v 1, q1)) ∈ E.

- Ω′ : (v, q) 7→ Ω(q) and (v, (q0, q1)) 7→ max(Ω(q0),Ω(q1)).

It follows from the definition of the game GA,t that there is a one-one correspondence between
accepting run-trees of A over t and winning strategies for Verifier in GA,t.

Lemma 6.2. Verifier has a winning strategy in GA,t from vertex (ε, qI) if and only if t ∈ L(A).

The Non-emptiness Parity Game Given a NPT A = (Q,Σ, qI ,∆,Ω), we define a parity
game, called the non-emptiness parity game, GA = (N,E, qI , λ,Ω

′) as follows.

• NV = Q

• NR = ∆

• for each vertex q ∈ NV , and for each transition (q, a, q0, q1) ∈ ∆, we have

(q, (q, a, q0, q1)) ∈ E

• for each vertex (q, a, q0, q1) ∈ NR, we have

((q, a, q0, q1), q0), ((q, a, q0, q1), q1) ∈ E

• Ω′ : q 7→ Ω(q) and (q, a, q0, q1) 7→ Ω(q).

Lemma 6.3. Verifier has a winning strategy in GA from vertex qI if and only if L(A) 6= ∅.

One nice thing about viewing acceptance and non-emptiness of an NPT as a game is that
we can take advantage of the key result about memoryless determinacy of parity games.

6.3. ALTERNATING PARITY TREE AUTOMATA 95

Theorem 6.3 (Memoryless Determinacy). Let G be a parity game. From every vertex of G,
one of the two players has a memoryless winning strategy.

Proof. In descriptive set theory, the Borel determinacy theorem (Martin, 1975) states that
every Gale-Stewart game whose winning set is a Borel set is determined. Parity games lie
in the third level of the Borel Hierarchy, hence they are determined. Proofs of memoryless
determinacy of parity games can be found in (Emerson and Jutla, 1991; Mostowski, 1991;
Zielonka, 1998).

Recall that a non-empty regular ω-language contains an ultimately periodic ω-word. We
show a corresponding result for non-empty tree languages recognisable by parity tree au-
tomata.

Definition 6.2. A tree t ∈ TωΣ is said to be regular just if there is a deterministic finite
automaton (DFA) equipped with output, which gives, for every w ∈ { 0, 1 }∗, the label t(w) at
node w. The automaton has the form B = (QB, { 0, 1 }, qB0 , δB, fB) where δB : Q×{ 0, 1 } → Q
is the transition function, and fB : QB → Σ is the output function.

Theorem 6.4 (Rabin Basis Theorem). (i) The emptiness problem for NPT is decidable.

(ii) If a parity tree automaton accepts some tree then it accepts a regular tree.

Proof. (i) Consider the non-emptiness game GA. This is a parity game on a finite graph,
so using results from the previous chapter, there is an algorithm to determine the winning
region for each player. By the previous lemma, Verifier has a winning strategy from qI iff
L(A) 6= ∅.

(ii) Suppose L(A) 6= ∅. It follows that in the parity game GA, Verifier has a memoryless
winning strategy from qI . Construct a DFA B with output, using states Q. The memoryless
strategy in GA chooses for each state q a transition (q, a, q0, q1), so we set the output function
fB(q) = a and transition function δB(q, d) = qd. This DFA B generates a regular tree accepted
by A.

Closure properties of parity tree automata We would like to show that these non-
deterministic tree automata have good closure properties, like non-deterministic automata on
ω-words.

A major theorem of this chapter is the closure of NPT under complementation. The
result was first obtained by Michael Rabin in a landmark paper (Rabin, 1969). Gurevich
and Harrington (1982) used games to simplify the proof; they proved a bounded memory
theorem for the Rabin condition. A further simplification for the parity condition was proved
independently by Emerson and Jutla (1991) and by Mostowski (1991). These approaches
stayed always within non-deterministic forms of automata.

We take a different approach, following (Löding, 2011). In order to help us prove closure
of non-deterministic parity tree automata under union, intersection, complementation, and
projection, we take a detour through alternating tree automata.

6.3 Alternating Parity Tree Automata

Alternating tree automata are a generalisation of non-deterministic tree automata introduced
by Muller and Schupp (1987). Running an alternating automaton on a tree can be viewed as
a game (described below) between Refuter and Verifier.

96 CHAPTER 6. TREE AUTOMATA, RABIN’S THEOREMS AND S2S

The transition function of the alternating automaton describes which moves are controlled
by each player. Formally, the transition function δ maps a state and input letter to a positive
boolean formula B+({ 0, 1 }×Q) built up from atoms in { 0, 1 }×Q using ∧ and ∨. For instance,
if q, qb ∈ Q, then one possible positive boolean formula is (0, q) ∧ (1, q) ∧

(
(0, qb) ∨ (1, qb)

)
.

The idea is that each atom (d, r) ∈ { 0, 1 } × Q describes a direction d to go in the tree,
and the next state r of the automaton when it moves in that direction. The particular atom
from the formula is chosen by playing a game, with Verifier resolving disjunctions and Refuter
resolving conjunctions.

For instance, assume we are currently in node x in the tree with t(x) = a and the automa-
ton in state q. If δ(q, a) := (0, q) ∧ (1, q) ∧

(
(0, qb) ∨ (1, qb)

)
, then one possible move would

be for Refuter to choose the conjunct (0, qb) ∨ (1, qb), and then Verifier to choose the atom
(1, qb). The automaton would then move to the right successor of x (the node x1), change to
state qb, and continue the computation from there.

A play is a sequence of moves like this, and Verifier’s goal is to ensure that the acceptance
condition of the automaton is satisfied, regardless of how Refuter plays.

Before we describe formally the semantics in terms of the acceptance game, we give an
example (taken from Löding (2011)).

Example 6.4. Consider T3 := { t ∈ Tω{ a,b } : below every a-node there is a b-node } (by
this, we mean for every a-node u, there is a b in the subtree rooted at u; we do not re-
quire that there is an immediate successor of u that is labelled b). Define an APT A :=
({ q, qb,>}, { a, b }, q, δ,Ω) where

δ :



(q, a) 7→ (0, q) ∧ (1, q) ∧
(
(0, qb) ∨ (1, qb)

)
(q, b) 7→ (0, q) ∧ (1, q)

(qb, a) 7→ (0, qb) ∨ (1, qb)

(qb, b) 7→ (0,>)

(>, ∗) 7→ (0,>)

and Ω : q,> 7→ 0; qb 7→ 1.
Consider some tree t ∈ Tω{ a,b }.
In state q, Refuter chooses a path in t. Any time he sees an a on this path, he has the

option of switching to state qb, which represents a challenge to Verifier to witness a b below
the current a-node.

In state qb, Verifier chooses a path. If Verifier can witness a b, then she moves to a sink
state > with priority 0, so Verifier wins. If not, then Verifier remains forever in state qb with
priority 1, so Verifier loses.

We now proceed to a formal definition of an alternating automaton. Although we give
the definitions only for alternating parity automata, the definitions can be adapted for other
acceptance conditions.

Definition 6.3. An alternating parity tree automaton (APT) A is a tuple (Q,Σ, q0, δ,Ω)
where

- Q is the finite set of states, q0 is the initial state

- δ : Q× Σ→ B+({ 0, 1 } ×Q) is the transition function, and

- Ω : Q→ { 0, . . . , k } is the priority function.

6.3. ALTERNATING PARITY TREE AUTOMATA 97

Acceptance Game for Alternating Parity Automata Given APT A = (Q,Σ, qI , δ,Ω)
and tree t, we define the acceptance parity game, GA,t = (N,E, (ε, qI), λ,Ω

′) as follows.

Let M := { 0, 1 }∗ ×Q.

We set N := M ∪ ({ 0, 1 }∗ × B+({ 0, 1 } ×Q)).

Writing NV := λ−1(V) and NR := λ−1(R)

- NV is the set of nodes of the form (x, q) ∈M , or nodes of the form (x, ψ) for ψ a disjunction
or a single atom;

- NR is the set of nodes of the form (x, ψ) for ψ a conjunction;

- for each vertex q ∈ Q, x ∈ { 0, 1 }∗, d ∈ { 0, 1 }, and ψ ∈ B+({ 0, 1 } × Q), we have the
following edges in the game graph:

((x, q), (x, δ(q, t(x))) ∈ E
((x, ψ1 ∧ ψ2), (x, ψi)) ∈ E for i ∈ { 1, 2 }
((x, ψ1 ∨ ψ2), (x, ψi)) ∈ E for i ∈ { 1, 2 }

((x, (d, q)), (xd, q)) ∈ E

- the priority function defining the winning condition is:

Ω′ :

{
(x, q) 7→ Ω(q)

(x, ψ) 7→ max Ω(Q)

The main positions in the game are of the form (x, q) ∈M . In order to decide on the next
position of the form (xd, r) ∈ M , Verifier and Refuter play a game based on δ(q, t(x)), with
Verifier controlling disjunctions and Refuter controlling conjunctions. A play is winning for
Verifier if it satisfies the parity condition.

We define the language L(A) recognised by A to be the set of trees t such that Verifier has
a winning strategy in GA,t starting from vertex (ε, qI).

Strategies Fix a strategy σ for Verifier in GA,t. Given a path π ∈M∗ in GA,t ending in some
position of the form (x, q) ∈ M , we write next-positions(σ, π) to denote the set of possible
positions of the form (xd, r) ∈ M that are consistent with Verifier’s choices in σ when the
history of the play is π.

We can picture a strategy σ as a run tree or strategy tree where the root is labelled
with (ε, qI), and each node v labelled (x, q) has a children next-positions(σ, π) where π is the
sequence of labels from the root of the strategy tree to v. Note that the strategy tree can
have a different degree (i.e. even if the input is a binary tree, the number of children of each
node in the strategy tree need not be two).

Figure 6.1 shows a possible strategy tree from the acceptance game GA,t, for the pictured
tree t and the automaton in Example 6.4.

Special Types of Alternating Tree Automata Non-deterministic tree automata are a
special type of alternating automata where every transition is of the form

∨
i(0, q

i
0) ∧ (1, qi1).

Likewise, deterministic tree automata are a special type of alternating automata where every
transition is of the form (0, q0) ∧ (1, q1).

An alternating weak tree automaton (AWT) A = (Q,Σ, q1, δ,Ω) is a special type of APT
such that

98 CHAPTER 6. TREE AUTOMATA, RABIN’S THEOREMS AND S2S

a

a

a

b a

b

b a

b

a

a b

a

a a...

(ε, q)

(0, qb)

(01, qb)

(010,>)

· · ·

(0, q)

(01, qb)

(010,>)

· · ·

(00, q)

· · ·

(01, q)

(010, q)

· · · · · ·

(011, q)

· · ·

(1, q)

· · · · · ·

Figure 6.1: Input tree t, and possible strategy tree in GA,t for A as in Example 6.4.

• the range of Ω consists of one even priority called the accepting priority, and one odd
priority called the non-accepting priority,

and there is a partition of Q into Q1, . . . , Qk such that

• for all i, either Ω(q) is accepting for all q ∈ Qi, or Ω(q) is non-accepting for all q ∈ Qi,
and

• for all q ∈ Qi and a ∈ Σ, if (d, r) appears in δ(q, a), then r ∈ Qj for j ≥ i.

In other words, Ω classifies each partition Qi as accepting or non-accepting, and any move
consistent with δ must remain in the same partition, or move to a “higher” partition. This
means that any play in an acceptance game GA,t for an AWT A must either stabilise in an
accepting partition (winning for Verifier) or a non-accepting partition (winning for Refuter);
no play can switch infinitely many times between accepting and non-accepting priorities.

Note that Example 6.4 is actually an AWT, with partitions Q1 = { q } and Q2 = { qb }.

6.4 Closure Properties

We now seek to prove that APT and NPT are closed under the operations of union, intersec-
tion, complementation, and projection.

Closure under union and intersection is straightforward for alternating parity automata.

Lemma 6.4 (Closure under Union and Intersection). Given APT A1 and A2, there is an
algorithm to construct an APT for L(A1) ∪ L(A2) and an APT for L(A1) ∩ L(A2).

Proof. Exercise.

Complementation is also straightforward for alternating automata. This is one advantage
of using alternating automata instead of non-deterministic automata.

Theorem 6.5 (Closure under Complementation). Given an APT A, there is an algorithm
to construct an APT for Tω{ a,b } \ L(A).

Proof (Sketch). The idea is that we dualise the transition function and acceptance condition
of A = (Q,Σ, q0, δ,Ω).

The dual of a transition function δ : Q× Σ→ (B+({ 0, 1 } ×Q) is the transition function
δ̃ : Q× Σ→ (B+({ 0, 1 } ×Q) obtained by exchanging ∨ and ∧ in all of the formulas in δ.

The dual of the parity acceptance condition given by the priority function Ω, is the parity
acceptance condition given by Ω̃(q) := Ω(q) + 1.

6.4. CLOSURE PROPERTIES 99

Dualising like this switches the roles of Refuter and Verifier in the corresponding accep-
tance games. By determinacy of parity games (Theorem 6.3), this means Ã := (Q,Σ, q0, δ̃, Ω̃)
recognises Tω{ a,b } \ L(A).

Showing closure under projection is more challenging for alternating automata than it is
for non-deterministic automata. Recall that given s× t ∈ TωΓ×Σ, the Σ-projection of s× t is
the tree t, and the Σ-projection of the language T ⊆ TωΓ×Σ is denoted πΣ(T).

Projection is straightforward for non-deterministic automata, since the non-deterministic
automaton can guess the information that was removed during projection. Using this con-
struction directly on an alternating automaton does not work because there is no way to ensure
that Verifier guesses the same information in different “copies” of the alternating automaton
that are processing the same part of the tree.

However, we can show that any APT can be simulated by an NPT, and then apply the
projection construction from before to the NPT.

That is, we first show that alternating parity automata are no more powerful than non-
deterministic parity automata on infinite trees. The proof relies on two fundamental results:

(i) memoryless determinacy of parity games (Theorem 6.3), and

(ii) complementation and determinisation of NBW.

Theorem 6.6 (Simulation of APT by NPT). Given an APT A, there is an algorithm to
construct an NPT B such that L(A) = L(B).

Proof. Let A = (Q,Σ, δ, qI ,Ω) be an APT on Σ-labelled binary trees. We aim to construct an
equivalent NPT B. Informally speaking, on input t, B will “guess” a memoryless strategy for
Verifier in the acceptance game GA,t, and simultaneously check that this strategy is winning.
Correctness will follow from memoryless determinacy of parity games (Theorem 6.3).

A memoryless strategy σ for Verifier must specify how Verifier should move when in a
position (x, ψ) for x ∈ { 0, 1 }∗ and ψ ∈ B+({ 0, 1 }×Q) such that ψ = ψ1 ∨ψ2 (note that the
other positions controlled by Verifier have only one outgoing edge, so there is nothing for the
strategy to specify).

A key observation is that such a memoryless strategy can be represented as a LocStr -
labelled binary tree

f : { 0, 1 }∗ → LocStr

where LocStr is the finite set of partial functions σ̂ : B+({ 0, 1 } × Q) → B+({ 0, 1 } × Q)
describing local strategies for Verifier such that for each ψ = ψ1 ∨ ψ2, either σ̂(ψ) = ψ1 or
σ̂(ψ) = ψ2.

Take such a strategy function f and consider the tree t × f : { 0, 1 }∗ → Σ × LocStr , in
which the node u has label (t(u), f(u)). This is a tree annotated with the memoryless strategy
described by f .

Let Σ′ = Σ × LocStr × { 0, 1 }. Consider a word α = (a0, f0, d0) (a1, f1, d1) · · · over Σ′,
such that a0 = t(ε) and f0 = f(ε), and ai+1 = t(d0 · · · di) and fi+1 = f(d0 · · · di). The word
α specifies a path d0d1 · · · , as well as the local strategies on this path. Formally, we say that
a play over α is a word (v0, q0) (v1, q1) · · · ∈Mω such that

- v0 = ε and q0 = qI

- vi+1 = d0 · · · di
- (vi+1, qi+1) ∈ next-positions(fi, (vi, qi))

100 CHAPTER 6. TREE AUTOMATA, RABIN’S THEOREMS AND S2S

Thus a play over α is a play in the acceptance game GA,t on d0d1 · · · when Verifier makes her
choices according to f (technically, it is the restriction of a play to the positions in M).

It is straightforward to construct a NBW C that accepts exactly those words α over Σ′

such that there is a play over α that does not satisfy the parity condition. The idea is that C
guesses a play consistent with f over the branch described by α, and checks that the parity
condition is not satisfied on this play. By McNaughton’s Theorem, there is a DPW D that is
equivalent to the complement of C, i.e. D accepts those words α ∈ (Σ′)ω for which all plays
over α satisfy the original parity condition from A.

A strategy function f is winning for Verifier in GA,t if, and only if, every play is winning
for Verifier when she plays according to f , regardless of Refuter’s choices. Observe that a
path in the tree t × f specifies a word α ∈ (Σ′)ω. It follows that f is a winning strategy for
Verifier if, and only if, each α specified by a path in the tree t× f is accepted by D.

Thus the NPT tree automaton B recognising A operates as follows: given an input tree t,
it guesses an annotation of t with a memoryless strategy function f , and runs D on the
annotated tree t × f . By memoryless determinacy of parity games (Theorem 6.3), this is
enough to capture precisely the language of A. This completes our proof of Theorem 6.5.

We can now prove closure under projection.

Lemma 6.5 (Closure under Projection). Given an APT recognising the language T of (Γ×Σ)-
labelled binary trees, there is an algorithm to construct an APT recognising πΣ(T).

Proof. Given an APT A over Γ×Σ, construct an equivalent NPT B using Theorem 6.6. Then
define an NPT C over Σ which does, in any step, the following. For input letter b ∈ Σ guess
the Γ-component a and proceed by a B-transition for the input letter (a, b).

Because we have shown that APT and NPT are equivalent, this means that both APT
and NPT are closed under union, intersection, complementation and projection.

6.5 S2S and Rabin’s Tree Theorem

The Logical System S2S The logical system S2S (monadic second-order logic of 2 suc-
cessors) is defined over first-order variables x, y, · · · ranging over { 0, 1 }∗ (nodes in the full
binary tree) and over second-order variables X,Y, · · · ranging over 2{ 0,1 }∗ (sets of nodes of
the full binary tree).

Terms are built up from first-order variables and ε by the two successors, represented as
concatenation with 0 and 1 respectively.

Let s and t be terms. The atomic formulas are

- X(s) “s is in X”

- s ≤ t “s is a prefix of t”

- s = t “s is equal to t”.

The formulas of S2S are built up from the atomic formulas using the standard boolean con-
nectives, and closed under first- and second-order quantifiers ∃ and ∀.

The structure of the infinite full binary tree is t2 = (B∗, ε, S0, S1) where Si is the i-th
successor function: S0(u) = u 0 and S1(u) = u 1 for u ∈ B∗. The theory S2S is the set of
S2S-sentences that are true in t2.

6.5. S2S AND RABIN’S TREE THEOREM 101

Semantics of S2S S2S-formulas ϕ(X1, · · · , Xn), with free second-order variables from
X1, · · · , Xn, are interpreted in expanded structures t̂ = (t2, P1, · · · , Pn). We write

t̂ � ϕ(X1, · · · , Xn)

just if t̂ satisfies ϕ(X). We identify t̂ with the infinite tree t ∈ TωBn whereby for each u ∈ B∗,
we have

t(u) = (b1, · · · , bn) where bi = 1 ↔ u ∈ Pi.
Given an S2S formula ϕ(X) the tree language defined by ϕ(X) is the set

L(ϕ) := { t ∈ TωBn | t̂ � ϕ }.

Example 6.5. Consider the S2S formula ϕ(X1) := ∃Y.infinite(Y)∧∀y.(Y (y)→ X1(y)), where
infinite(Y) is an S2S formula expressing that Y is an infinite set of nodes.

Then L(ϕ) := { t ∈ TωB : t̂ has infinitely many positions where P1 holds }.
Rabin (1969) showed a connection between NPT and S2S over infinite trees that parallels

the connection between NBW and S1S in the case of infinite words.

Theorem 6.7. A tree language is S2S-definable if and only if it is recognisable by a NPT.

The proof proceeds in a similar fashion as in the word case. Given an NPT, we can write
an equivalent S2S-formula: the formula asserts the existence of a run of the parity automaton
that satisfies the parity condition.

Likewise, given an S2S-formula, we can construct an equivalent automaton by induction
on the structure of the formula, taking advantage of the closure properties proven in the
previous section to deal with the different operators in the logic.

One important consequence of this connection between the logic S2S and NPT, is the
decidability of satisfiability for S2S, first shown by Rabin (1969).

Theorem 6.8 (Rabin Tree Theorem). The theory S2S is decidable.

The Logical System WS2S The logical system WS2S (weak monadic second-order logic
of 2 successors) has the same syntax as S2S, but quantified second-order variables range only
over finite sets of positions.

Example 6.6. Consider the WS2S formula ϕ(X1) := ∀Y.∃z.¬Y (z) ∧X1(z).
You can read this as saying, for all finite sets of nodes Y , there exists a node z outside

of Y where P1 holds.
In other words, this express that there are infinitely many P1 positions, so this is a way

to define the language from Example 6.5 in WS2S.

Every WS2S formula can be expressed in S2S, because it is possible to write an S2S formula
finite(X) that asserts that some set of nodes is finite. However, not every S2S formula can be
translated into WS2S.

Indeed, WS2S can be characterized as follows, based on the work of Rabin (1970) and
Muller et al. (1986).

Theorem 6.9. The following are equivalent for a tree language T ⊆ TωBn:

- T is definable in WS2S;

- T is recognisable using AWT;

- T and TωBn \ T are recognisable using NBT.

Theorem 6.10. The theory WS2S is decidable.

102 CHAPTER 6. TREE AUTOMATA, RABIN’S THEOREMS AND S2S

Problems

6.1 Construct a non-deterministic Büchi tree automaton for each of the following languages:

(a) { t ∈ Tω{ a,b } : t has exactly one a }

(b) { t ∈ Tω{ a,b } : every branch in t has at most one a }

6.2 Prove that every non-deterministic Muller tree automaton can be converted into an
equivalent non-deterministic parity tree automaton. [You may use the fact that deterministic
parity automata are equivalent to deterministic Muller automata over ω-words.]

6.3 Construct an alternating parity tree automaton for each of the following tree languages:

(a) { t ∈ Tω{ a,b } : there is some branch in t with finitely many a’s }.

(b) { t ∈ Tω{ a,b } : t has finitely many a’s }.

You should formally define the transition function for the automaton, and then explain the
role of both players as in Example 6.4.

What would change in order to define alternating automata for the complements of these
languages?

6.4 Prove that alternating parity tree automata are closed under union and intersection.

6.5

(a) Write an S2S formula on-branch(X) that expresses that X is a set of positions along a
single branch in the tree.

(b) Write an S2S formula finite-on-branch(X) that expresses that X is a finite set of posi-
tions along a single branch in the tree.

(c) Write an S2S formula ϕ(X1) defining

T2 := { t ∈ TωB : every branch of t has finitely many positions where P1 holds }.

6.6 Write a WS2S formula ϕ(X1, X2) defining

T := { t ∈ TωB2 : below every position in t where P1 holds,

there are finitely many positions where P2 holds }.

Bibliography

J. Bradfield and C. P. Stirling. Modal logics and mu-calculi. In A. Ponse and S. Smolka,
editors, Handbook of Process Algebra, pages 293–332. Springer-Verlag, 2001. 4

J. Bradfield and C. P. Stirling. Modal mu-calculi. In A. Ponse and S. Smolka, editors,
Handbook of Modal Logic, pages 721–756. 2007. Studies in Logic and Practical Reasoning
Volume 3. 0.1, 4, 5

J. R. Büchi. Weak second order arithmetic and finite automata. Zeitschrift für Maths. Logik
und Grundlagen Maths., 6:66–92, 1960a. 3

J. R. Büchi. On a decision method in restricted second order arithmetic. In Proc. International
Congress on Logic, Methodology and Philosophy of Science, pages 1–11. Stanford Univ.
Press, 1960b. 1.2

J. R. Büchi. Weak second order arithmetic and finite automata. In Proc. Int. Congr. Logic,
Methodology and Philosophy of Science, pages 1–12. Stanford University Press, 1962. 3

J. Richard Buchi and Lawrence H. Landweber. Solving sequential conditions by finite-state
strategies. Transactions of the American Mathematical Society, 138:pp. 295–311, 1969.
ISSN 00029947. URL http://www.jstor.org/stable/1994916. 5.5

Thomas Colcombet and Konrad Zdanowski. A tight lower bound for determinization of
transition labeled büchi automata. In ICALP(2), pages 151–162, 2009. 5

C. C. Elgot. Decision problems of finite automata design and related arithmetics. Trans.
Amer. Math. Soc., 98:21–52, 1961. 3

E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy. In FOCS,
pages 368–377, 1991. 6.2, 6.2

H. B. Enderton. Elements of Set Theory. Academic Press, 1977. A

Paul Gastin and Denis Oddoux. Fast LTL to büchi automata translation. In CAV, pages
53–65, 2001. 5

Erich Grädel, Wolfgang Thomas, and Thomas Wilke. Automata, Logics and Infinite Games.
Springer-Verlag, 2002. LNCS Vol. 2500. 0.1, 5.5

Y. Gurevich and L. Harrington. Tree, automata and games. In STOC, pages 60–65, 1982.
5.6, 6.2

Moritz Hammer, Alexander Knapp, and Stephan Merz. Truly on-the-fly LTL model checking.
In TACAS, pages 191–205, 2005. 5

103

http://www.jstor.org/stable/1994916

104 BIBLIOGRAPHY

Neil Immerman. Descriptive Complexity. Springer, New York, 1999. Graduate Texts in
Computer Science. 1.4, 1.2

H. W. Kamp. The temporal logic of programs. PhD thesis, University of California, Los
Angeles, 1968. 3

B. Khoussainov and A. Nerode. Automata Theory and its Applications, volume 21 of Progress
in Computer Science and Applied Logic. Birkhäuser, 2001. 0.1

D. Kozen. Theory of Computation. Springer-Verlag, 2006. 4

Wanwei Liu and Ji Wang. A tighter analysis of piterman’s büchi determinization. Inf. Pro-
cess. Lett., 109:941–945, 2009. 3

Christof Löding. Optimal bounds for transformations of omega-automata. In FSTTCS, pages
97–109, 1999. 1.5

Christof Löding. Automata on infinite trees, December 2011. Available at http://automata.
rwth-aachen.de/~loeding/inf-tree-automata.pdf,. 6, 6.2, 6.3

Christof Löding and Wolfgang Thomas. Alternating automata and logics over infinite words.
In IFIP TCS, pages 521–535, 2000. 5

D. A. Martin. Borel determinacy. The Annals of Mathematics, 102(2):363–371, 1975. 6.2

R. McNaughton. Testing and generating infinite sequences by a finite automaton. Information
and Control, 9:521–530, 1966. 1.5

A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular expressions with
squaring requires exponential time. In Proc. 13th IEEE Symp. on Swithcing and Automata
Theory, pages 125–129, 1972. 1.4

M. Michel. Complementation is more difficult with automata on infinite words. Technical
report, CNET, Paris, 1988. 1.5

A. W. Mostowski. Games with forbidden positions. Technical Report 78, 1991. 6.2, 6.2

D. Muller. Infinite sequences and finite machines. In Proc. 4th Ann. IEEE Symp. Switching
Circuit Theory and Logical Design, pages 3–16, 1963. 3

David E. Muller and Paul E. Schupp. Alternating automata on infinite trees. Theor. Comput.
Sci., 54:267–276, 1987. 6, 6.3

David E. Muller, Ahmed Saoudi, and Paul E. Schupp. Alternating automata. the weak
monadic theory of the tree, and its complexity. In ICALP, pages 275–283, 1986. 6, 6.5

D. Niwinski and I. Walukiewicz. Games for the mu-calculus. Theoretical Computer Science,
163:99–116, 1997. 5

C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994. 2.5, 2.5

J. P. Pécuchet. On the complementation of büchi automata. Theoretical Computer Science,
47:95–98, 1986. 1.4

http://automata.rwth-aachen.de/~loeding/inf-tree-automata.pdf
http://automata.rwth-aachen.de/~loeding/inf-tree-automata.pdf

BIBLIOGRAPHY 105

Nir Piterman. From nondeterministic büchi and streett automata to deterministic parity
automata. Logical Methods in Computer Science, 3, 2007. 2

Amir Pnueli. The temporal logic of programs. In Proc. 18th IEEE Symp. Found. of
Comp. Sci., pages 46–57, 1977. 2.1

M. O. Rabin. Decidability of second-order theories and automata on infinite trees.
Trans. Amer. Maths. Soc, 141:1–35, 1969. 6, 6.2, 6.5, 6.5

Michael Rabin. Weakly definable relations and special automata. In Mathematical Logic in
Foundations of Set Theory, pages 1–23. 1970. 6, 6.5

A. Rabinovich. A proof of Kamp’s theorem. In CSL, pages 516–527, 2012. 3

S. Safra. On the complexity of ω-automaton. In Proc. 29th IEEE Symp. Foundations of
Comp. Sc., pages 319–327, 1988. 1.5, 1

Walter J. Savitch. Relationships between nondeterministic and deterministic tape complexi-
ties. Journal of Computer and System Sciences, 4:177–192, 1970. 2.5

Sven Schewe. Tighter bounds for the determinisation of büchi automata. In FoSSaCS, pages
167–181, 2009. 1.5, 1.5, 1.6, 4

Michael Sipser. Introduction to the Theory of Computation. Thomson Course Technology,
2005. 1.4, 2.5

A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation problem for büchi automata
with applications to temporal logic. Theoretical Computer Science, 49:217–237, 1987. 1.4,
1.4

A. Prasad Sistla and Edmund M. Clarke. The complexity of propositional linear temporal
logics. J. ACM, 32(3):733–749, 1985. 2.5

C. P. Stirling. Bisimulation, model checking and other games. Notes for Mathfit instructional
meeting on games and computation, Edinburgh, 1997. 4, 5

C. P. Stirling. Modal and Temporal Properties of Processes. Springer-Verlag, 2001. Texts in
Computer Science. 0.1, 4, 5

Robert S. Streett and E. Allen Emerson. An automata theoretic decision procedure for the
propositional mu-calculus. Inf. Comput., 81(3):249–264, 1989. 5, 5.1

R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Computing, 1:146–160,
1972. 1.4

W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, Volume B, pages 134–191. Elsevier, 1990. 0.1, 1.2

W. Thomas. Languages, automata and logic. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, volume 3. Springer-Verlag, 1997. 0.1

M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In Proceedings of
Banff Higher Order Workshop, pages 238–266. Springer-Verlag, 1996. LNCS Vol. 1043. 0.1

106 BIBLIOGRAPHY

M. Y. Vardi. Branching vs linear time: final showdown. In ETAPS 2001. Springer-Verlag,
2001. 1

Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications to automata
on infinite trees. Theor. Comput. Sci., 200(1-2):135–183, 1998. 6.2

Appendix A

Ordinals and Transfinite Induction:
A Primer

Everybody is familiar with the set ω = { 0, 1, 2, · · · } of finite ordinals or natural numbers. A
standard mathematical tool is the Principle of Mathematical Induction on this set. How does
one count beyond the finite ordinals? Is there an associated induction principle?

Ordinals are certain sets of sets.

- There are two kinds: successors and limits.

- They are well-ordered.

- There are a lot of them.

- We can do induction on them, using the Principle of Transfinite Induction.

A good reference is Enderton’s book (Enderton, 1977).

We assume the axioms of Zermelo-Fraenkel set theory. It is impossible to understand
ordinals and transfinite induction properly outside the context of set theory.

Definition A.1. (i) A set C of sets is said to be transitive just if A ∈ C whenever A ∈ B
and B ∈ C. Equivalently C is transitive if every element of C is also a subset of C
i.e. C ⊆ 2C .

(ii) An ordinal is defined to be a set A such that A is transitive, and every element of A is
transitive. We use α, β, γ, · · · to refer to ordinals.

There are several equivalent definitions of ordinals. It follows that

(i) every element of an ordinal is an ordinal

(ii) every transitive set of ordinals is itself an ordinal.

The collection of all ordinals is not a set, but a proper class.

Ordinals are well-ordered A binary relation < on a set A is a linear order if it satisfies:

(i) Irreflexivity: ∀x ∈ A .¬(x < x)

(i) Transitivity: ∀x, y, z ∈ A . x < y ∧ y < z → x < z

(i) Trichotomy: ∀x, y ∈ A . x < y ∨ y < x ∨ x = y

107

108 APPENDIX A. ORDINALS AND TRANSFINITE INDUCTION: A PRIMER

A binary relation < on a class S is well-founded just if every non-empty subset of S has a
<-minimal element.

For ordinals α, β, define α < β just if α ∈ β. It follows that every ordinal is equal to the
set of all smaller ordinals i.e. α = {β : β < α }.

Proposition 11. (i) < is a well-founded linear ordering on the class of ordinals.

(ii) If α is an ordinal, so is α ∪ {α }, called the successor ordinal of α, which is denoted
α+ 1.

(iii) If A is a set of ordinals then
⋃
A is an ordinal; and it is the supremum of the ordinals

in A under ≤.

An ordinal is called a successor ordinal if it is of the form α + 1; otherwise it is a limit
ordinal. For example, the smallest few ordinals are

0 := ∅
1 := {∅ }
2 := {∅, {∅ } }
3 := {∅, {∅ }, {∅, {∅ } } }

...

The first infinite ordinal is ω := { 0, 1, 2, · · · }. The smallest limit ordinal is 0, the next smallest
is ω. In fact there are uncountably many countably infinite ordinals:

ω, ω + 1, ω + 2, · · · , ω + ω = ω · 2, · · · , ω · 3, · · · ,
ω · ω = ω2, · · · , ω3, · · · , ωω, · · · , ωωω , · · · , ωωω

ω

, · · · ,

ε0 = ωω
ωω
···

, · · ·

The set of all countable ordinals is the first uncountable ordinal, written ω1.

Principle of Transfinite Induction To prove that “for all ordinals α, the property Hα

holds”, we establish the following:

(i) Successor ordinal α+ 1: Assuming that Hα holds, then Hα+1 holds.

(ii) Limit ordinal λ: Assuming that Hα holds for all α < λ, then Hλ holds.

The validity of the principle ultimately rests on the well-foundedness of the relation ∈.

	Automata, Logic and Games
	Aims and Prerequisites
	Motivation
	Example: Modelling a Lift Control

	Büchi Automata
	Definition and Examples
	Closure Properties
	-Regular Expressions
	Decision Problems and their Complexity
	Determinisation and McNaughton's Theorem
	Problems

	Linear-time Temporal Logic
	Motivating Example: Mutual Exclusion Protocol
	Kripke Structures
	Syntax and Semantics
	Translating LTL to Generalised Büchi Automata
	The LTL Model Checking Problem and its Complexity
	Expressive Power of LTL
	Problems

	S1S
	Introduction
	The logical system S1S
	Semantics of S1S
	Büchi-Recognisable Languages are S1S-Definable
	S1S-Definable Languages are Büchi-Recognisable
	Problems

	Modal Mu-Calculus
	Knaster-Tarski Fixpoint Theorem
	Syntax of the Modal Mu-Calculus
	Labelled Transition Systems
	Syntactic Approximants Using Infinitary Syntax
	Intuitions from Examples
	Alternation Depth Hierarchy
	An Interlude: Computational Tree Logic (CTL)
	Problems

	Games and Tableaux for Modal Mu-Calculus
	Game Characterisation of Model Checking
	Proof of the Fundamental Semantic Theorem
	Tableaux for modal mu-calculus
	Parity Games
	Solvability and Determinacy for Finite Parity Games
	Muller Games
	Problems

	Tree Automata, Rabin's Theorems and S2S
	Trees and Non-deterministic Tree Automata
	Non-deterministic Parity Tree Automata
	Alternating Parity Tree Automata
	Closure Properties
	S2S and Rabin's Tree Theorem
	Problems

	Bibliography
	Ordinals and Transfinite Induction: A Primer

