
Higher-Order Model Checking
I: Relating Families of Generators of Infinite Structures

Luke Ong

University of Oxford
http://www.cs.ox.ac.uk/people/luke.ong/personal/

http://mjolnir.cs.ox.ac.uk

Estonia Winter School in Computer Science, 3-8 Mar 2013

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 1 / 27

http://www.cs.ox.ac.uk/people/luke.ong/personal/
http://mjolnir.cs.ox.ac.uk

Model checking and computer-aided verification

Beginning in the 80s, computer-aided algorithmic verification—notably
model checking—of finite-state systems (e.g. hardware and communication
protocols) has been a great success story in computer science.

Clarke, Emerson and Sifakis won the 2007 ACM Turing Award

“for their rôle in developing model checking into a highly effective
verification technology, widely adopted in hardware and software
industries”.

Focus of past decade: transfer of these techniques to software verification.

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 2 / 27

What is (software) model checking?

A Verification Problem: Given a system Sys (e.g. an OS), and a
correctness property Spec (e.g. deadlock freedom), does Sys satisfy Spec?

The model checking approach:

1 Find an abstract model M of the system Sys.

2 Describe property Spec as a formula ϕ of a decidable logic.

3 Exhaustively check if ϕ is violated by M.

Huge strides made in verification of 1st-order imperative programs.

Many tools: SLAM, Blast, Terminator, SatAbs, etc.

Two key techniques: State-of-the-art tools use

1 abstraction refinement techniques, as exemplified by CEGAR
(Counter-Example Guided Abstraction Refinement)

2 acceleration methods such as SAT- and SMT-solvers.

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 3 / 27

Higher-Order Functional Programming

Examples: OCaml, F#, Haskell, Lisp/Scheme, JavaScript, and Erlang;
even C++.

Why higher-order functional languages?

1 Functional programs are succinct, less error-prone, easy to write and
maintain, good for prototyping.

2 λ-expressions and closures now basic in Javascript, Perl5, Python, C#
and C++0x, which are standard in web programming, hardware and
embedded systems design. [TIOBE index]

3 FL support domain-specific languages and organise data parallelism
well; increasingly prevalent in scientific applications and financial
modelling

4 Absence of mutable variables and use of monadic structuring
principles make FL attractive for concurrent programming, thanks to
growth of multi-core, GPGPU processing and cloud computing.

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 4 / 27

Verifying functional programs

Two standard approaches

1 Program analysis, often type-based
- sound, scalable but often imprecise
E.g. control flow analysis (kCFA), type and effect systems
(region-based memory management), refinement types, resource
usage (sized types), etc.

2 Theorem proving and dependent types
- accurate, typically requires human intervention; does not scale well
E.g. Coq, Agda, etc.

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 5 / 27

Model checking higher-order functional programs

By comparison with 1st-order imperative program, the model checking of
higher-order programs is in its infancy. Some theoretical advances in
recent years; very little tool development.

Model-checking higher-order programs is hard

1 Infinite-state and extremely complex: Even without recursion,
higher-order programs over a finite base type are infinite-state.

Many other sources of infinity: data structures and manipulation, control

structures (with recursion), asynchronous communication, real-time and

embedded systems, systems with parameters etc.

2 Models of higher-order features as studied in semantics – are typically
too “abstract” to support any algorithmic analysis.

A notable exception is game semantics.

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 6 / 27

Aims of the lecture course
1 We introduce a systematic approach to the algorithmics of infinite

structures generated by families of higher-order generators.

2 We present an approach to verifying higher-order functional programs
by reduction to the model checking of recursion schemes.

References for the course
http://www.cs.ox.ac.uk/people/luke.ong/personal/EWSCS13

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 7 / 27

http://www.cs.ox.ac.uk/people/luke.ong/personal/EWSCS13

A reminder: simple types

Types A ::= o | (A→ B)

Every type can be written uniquely as

A1 → (A2 · · · → (An → o) · · ·), n ≥ 0

often abbreviated to A1 → A2 · · · → An → o.

Order of a type: measures “nestedness” on LHS of →.

order(o) = 0
order(A→ B) = max(order(A) + 1, order(B))

Examples. N→ N and N→ (N→ N) both have order 1;
(N→ N)→ N has order 2.

Notation. e : A means “expression e has type A”.

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 8 / 27

Higher-order recursion schemes [Par68, Niv72, NC78, Dam82,...]

An order-n recursion scheme = closed ground-type term definable in
order-n fragment of simply-typed λ-calculus with recursion and
uninterpreted order-1 constant symbols.

Example: An order-1 recursion scheme. Fix ranked alphabet
Σ = { f : 2, g : 1, a : 0 }.

G :

{
S → F a

F x → f x (F (g x))

Unfolding from the start symbol S :

S → F a
→ f a (F (g a))
→ f a (f (g a) (F (g (g a))))
→ · · ·

The (term-)tree thus generated, [[G]], is f a (f (g a) (f (g (g a))(· · ·))).
Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 9 / 27

Representing the term-tree [[G]] as a Σ-labelled tree

[[G]] = f a (f (g a) (f (g (g a))(· · ·))) is the term-tree

f

a f

g f

a g f

g
...

a

We view the infinite term [[G]] as a Σ-labelled tree, formally, a map
T −→ Σ, where T is a prefix-closed subset of { 1, · · · ,m }∗, and m is the
maximal arity of symbols in Σ.

Term-trees such as [[G]] are ranked and ordered.

Think of [[G]] as the Böhm tree of G .

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 10 / 27

Definition: Order-n (deterministic) recursion scheme G = (N ,Σ,R,S)

Fix a set of typed variables (written as ϕ, x , y etc).

N : Typed non-terminals of order at most n (written as upper-case
letters), including a distinguished start symbol S : o.

Σ: Ranked alphabet of terminals: f ∈ Σ has arity ar(f) ≥ 0

R: An equation for each non-terminal F : A1 → · · · → Am → o of
shape

F ϕ1 · · · ϕm → e

where the term e : o is constructed from
I terminals f , g , a, etc. from Σ
I variables ϕ1 : A1, · · · , ϕm : Am from Var ,
I non-terminals F ,G , etc. from N .

using the application rule: If s : A→ B and t : A then (s t) : B.

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 11 / 27

The tree generated by a recursion scheme: value tree

Given a term t, define a (finite) tree t⊥ by

t⊥ :=


f if t is a terminal f
t⊥1 t⊥2 if t = t1 t2 and t⊥1 6= ⊥
⊥ otherwise

We extend the flat partial order on Σ (i.e. ⊥ ≤ a for all a ∈ Σ) to trees by:

s ≤ t := ∀α ∈ dom(s) . α ∈ dom(t) ∧ s(α) ≤ t(α)

E.g. ⊥ ≤ f⊥⊥ ≤ f⊥b ≤ fab.

For a directed set T of trees, we write
⊔
T for the lub of T w.r.t. ≤.

Let G be a recursion scheme. We define the tree generated by G by

[[G]] :=
⊔
{ t⊥ | S →∗ t }

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 12 / 27

Order-0 examples

Infinite full binary trees

1 Σ→ { a : 2 }
S → a S S

2 { a : 2, b : 2 } 
S → b (b A A) (a A B)
A → a A A
B → b B B

Is it true that “every path has only finitely many b”?
No. There is a path b a bω.

3 { a : 2, b : 2 } 
S → b (b A A) (a A A)
A → a A A
B → b B B

Is it true that “every path has only finitely many b”?
Yes. Every path matches b (b + a) aω.

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 13 / 27

An order-2 example

Σ = { f : 2, g : 1, a : 0 }.
S : o, B : (o → o)→ (o → o)→ o → o, F : (o → o)→ o

G2 :


S = F g

B ϕψ x = ϕ (ψ x)
F ϕ = f (ϕ a) (F (B ϕϕ))

The generated tree, [[G2]] : { 1, 2 }∗ −→ Σ, is:

f

g f

a g f

g g f

a g
...

g

g
a

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 14 / 27

An Order-3 Example: Fibonacci Numbers

fib generates an infinite spine, with each member (encoded as a unary
number) of the Fibonacci sequence appearing in turn as a left branch from
the spine.
Non-terminals: Write Ch as a shorthand for (o → o)→ o → o

S : o
Z : Ch
U : Ch
F : Ch→ Ch→ o
P : Ch→ Ch→ (o → o)→ o → o

fib


S → F Z U

Z ϕ x → x
U ϕ x → ϕ x

F n1 n2 → c (n1 s z) (F n2 (P n1 n2))
P n1 n2 ϕ x → n1 ϕ (n2 ϕ x)

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 15 / 27

Lecture 2

Recapitulation

Introduction

HORS (Higher-Order Recursion Schemes) as generators of Σ-labelled
trees

Synopsis of today’s lecture: 5 March 13

HORS as generators of word languages

Higher-order Pushdown Automata (HOPDA) as generators of word
languages (and trees). Maslov Hierarchy.

Relating the two families of generators. Safe Lambda Calculus.

Monadic second-order (MSO) logic of Σ-labelled trees

Model checking trees against MSO formulas

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 16 / 27

Using recursion schemes as generators of word languages

Idea: A word is just a linear tree.

Represent a finite word “a b c” (say) as the applicative term a (b (c e)),
viewing a, b and c as symbols of arity 1, where e is the arity-0 end-of-word
marker.

Fix an input alphabet Σ. We can use a (non-deterministic) recursion
scheme to generate finite-word languages, with ranked alphabet

Σ := { a : 1 | a ∈ Σ } ∪ { e : 0 }.

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 17 / 27

Examples

Recall: in word-generating recursion schemes, letters a, b : 1 (i.e. of arity
1) and e : 0 is the end-of-word.

1 The regular language (a (a + b)∗ b)∗ is generated by the order-0
recursion scheme:{

S → e | a F
F → a F | b F | b S

2 The context-free language { an bn | n ≥ 0 } is generated by the
order-1 recursion scheme:{

S → F e
F x → a (F (b x)) | x

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 18 / 27

Regular languages are exactly order-0

Lemma

A word language is regular iff it is generated by an order-0
(non-deterministic) recursion scheme.

Take a NFA (Q,∆ ⊆ Q × (Σ ∪ { ε })× Q, qI ,F ⊆ Q). Define an order-0
RS (Σ, {Fq | q ∈ Q },FqI ,R) where R has following rules:

For each (q, a, q′) ∈ ∆, introduce a rewrite rule:

Fq → a Fq′

For each (q, ε, q′) ∈ ∆, introduce a rewrite rule:

Fq → Fq′

For each qf ∈ F , introduce

Fqf → e

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 19 / 27

Exercise

1 Prove the following:

Lemma

A word language is context-free (equivalently, recognisable by a
non-deterministic pushdown automata) iff it is generated by an order-1
(word-language) recursion scheme.

2 Find an order-2 (word-language) recursion scheme that generates

{ aibic i | i ≥ 0 }.

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 20 / 27

Revision: Pushdown Automata (PDA)

A PDA is a finite-state machine equipped with a pushdown (LIFO) stack.
Transition

(q, a, γ, q′, θ) ∈ Q × Σ× Γ× Q × Op1

where Op1 = { push γ | γ ∈ Γ } ∪ { pop }.

push1 γ : [γ1 · · · γn] 7→ [γ1 · · · γn γ]

pop1 : [γ1 · · · γn γn+1] 7→ [γ1 · · · γn]

(Top of stack is the righthand end.)

Example. { ai bi | i ≥ 0 } is recognisable by a PDA.
Idea: use the depth of stack to remember number of a already read.

q0 []
a // q0 [γ]

a // q0 [γ γ]
b // q0 [γ]

b // q0 []

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 21 / 27

Higher-order pushdown automata (HOPDA) [Maslov 74]

Order-2 pushdown automata
A 1-stack is an ordinary stack. A 2-stack (resp. n + 1-stack) is a stack of
1-stacks (resp. n-stack).

Operations on 2-stacks: si ranges over 1-stacks.

push2 : [s1 · · · si−1 [γ1 · · · γn]︸ ︷︷ ︸
si

] 7→ [s1 · · · si−1 si si]

pop2 : [s1 · · · si−1 [γ1 · · · γn]] 7→ [s1 · · · si−1]

push1 γ : [s1 · · · si−1 [γ1 · · · γn]] 7→ [s1 · · · si−1 [γ1 · · · γn γ]]

pop1 : [s1 · · · si−1 [γ1 · · · γn γn+1]] 7→ [s1 · · · si−1 [γ1 · · · γn]]

Idea extends to all finite orders: an order-n PDA has an order-n stack, and
has pushi and popi for each 1 ≤ i ≤ n.

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 22 / 27

Example: L := { an bn cn : n ≥ 0 } is recognisable by an order-2 PDA

L is not context free—thanks to the “uvwxy Lemma”.

Idea: Use top 1-stack to process an bn, and height of 2-stack to remember n.

q1 [[]]
a // q1 [[][z]]

a // q1 [[][z][zz]]

b
��

q2 [[][z][z]]

b
��

q3 [[]] q3 [[][z]]c
oo q2 [[][z][]]c

oo

q1
z

b→ pop1z

//

− a→ push2 ; push1z

��
q2

⊥ c→ pop2

//

z
b→ pop1

��
q3

z
c→ pop2

��

‘read a’ ‘read b’ ‘read c ’

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 23 / 27

Relating the two generator-families: word-language case

Theorem (Equi-expressivity)

For each n ≥ 0, the three formalisms

1 order-n pushdown automata (Maslov 76)

2 order-n safe recursion schemes (Damm 82, Damm + Goerdt 86)

3 order-n indexed grammars (Maslov 76)

generate the same class of word languages.

What is safety? (See later.)

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 24 / 27

Some Properties of the Maslov Hierarchy of Word Languages

(Maslov 74, 76)

1 HOPDA define an infinite hierarchy of word languages.

2 Low orders are well-known: orders 0, 1 and 2 are the regular, context
free, and indexed languages (Aho 68). Higher-order languages are
poorly understood.

3 For each n ≥ 0, the order-n languages form an abstract family of
languages (closed under +, ·, (−)∗, intersection with regular
languages, homomorphism and inverse homo.)

4 For each n ≥ 0, the emptiness problem for order-n PDA is decidable.

A recent result.

Theorem (Inaba + Maneth FSTTCS08)

All languages of the Maslov Hierarchy are context-sensitive.

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 25 / 27

Two Families of Generators of Infinite Structures

HOPDA can be used as recognising/generating device for

1 finite-word languages (Maslov 74) and ω-word languages

2 possibly-infinite ranked trees (KNU01), and generally languages of
such trees

3 possibly infinite graphs (Muller+Schupp 86, Courcelle 95, Cachat 03)

HORS (higher-order recursion schemes) can also be used to generate word
languages, potentially-infinite trees (and languages there of) and graphs.

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 26 / 27

Why study the two families of generators?

They are relevant to semantics and verification:

1 Recursion schemes are an old and influential formalism for the
semantical analysis of imperative and functional programs (Nivat 75,
Damm 82).
They are a compelling model of computation for higher-order
functional programs.

2 Pushdown automata characterise the control flow of 1st-order
(recursive) procedural programs.
Pushdown checkers (e.g. MOPED) are essential back-end engines of

state-of-the-art software model checkers (e.g. SLAM, Terminator).

3 Higher-order (collapsible) pushdown automata are highly accurate
models of computation of higher-order functional programs.

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 27 / 27

