Higher-Order Model Checking

Il: Recursion Schemes and their Algorithmics

Luke Ong

University of Oxford
http://www.cs.ox.ac.uk/people/luke.ong/personal/
http://mjolnir.cs.ox.ac.uk

Estonia Winter School in Computer Science, 3-8 Mar 2013

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 1/26

http://www.cs.ox.ac.uk/people/luke.ong/personal/
http://mjolnir.cs.ox.ac.uk

A challenge problem in higher-order verification

Example: Consider [G] on the right P f\
@ 1 = “Infinitely many f-nodes are reachable”. a P f\
@ ¢y = "Only finitely many g-nodes are reachable”. g f
y 2N p
a

Every node on the tree satisfies ©1 V @2.

L < 0y < 0y

Let RecSchTree, be the class of >-labelled

trees generated by order-n recursion schemes.

Is the “MSO Model-Checking Problem for RecSchTree," decidable?
@ INSTANCE: An order-n recursion scheme G, and an MSO formula ¢
@ QUESTION: Does the X-labelled tree [G] satisfy (7

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 2 /26

Why study monadic second-order (MSO) logic?

Because it is the gold standard of logics for describing correctness
properties.
@ MSQO is very expressive.
Over graphs, MSO is more expressive than the modal mu-calculus,
into which all standard temporal logics (e.g. LTL, CTL, CTLx, etc.)
can embed.
@ It is hard to extend MSO meaningfully without sacrificing decidability
where it holds.

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 3 /26

Monadic Second-Order Logic (for X-labelled trees)

Fix a vocabulary. Three types of predicate symbols:

@ Parent-child relationship between nodes: d;(x,y) = "y is i-child of x"

@ Node labelling: ps(x) = “x has label " where f is a X-symbol
© Set-membership: x € X

First-order variables: x,y, z, etc. (ranging over nodes)
Second-order variables: X, Y, Z, etc. (ranging over sets of nodes)

MSO formulas are generated from three kinds of atomic formulas:
di(Xay)v pf(X)7 xeX

and closed under boolean connectives, first-order quantification
(Vx.—,3x.—) and second-order quantifications: (VX.—,3X.—).

A X-labelled tree t : dom(t) — X is represented as a structure
(dom(t), (dj:1<i<m), (pr:feX))

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013

4 /26

Examples of MSO-definable properties

Our version of MSOL is parsimonious. Several useful predicates are
definable:

@ Set inclusion (and hence equality): X CY = Vx:xe X = x €Y.

@ ‘Is-an-ancestor-of" or prefix ordering x < y (and hence x = y):

PrefCI(X)
X<y

= Vx,y:yeX AVi;di(x,y) - xeX
= VX :PrefCI(X)AyeX — xe X

© Reachability property: “X is a path”

Path(X) = ¥x,yeX:x<yVy<x A
Vx,y,z:xe€XNzeXAx<y<z > yeX

MaxPath(X) = Path(X) A
VY :Path(Y)AXCY — Y CX.

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 5/ 26

Example: “A tree has infinitely many f-labelled nodes”

A set of nodes is a cut if (i) no two nodes in it are <-compatible, and (ii)
it has a non-empty intersection with every maximal path.

Cut(X) = Vx,yeX:a(x<yVy<x) A
VZ : (MaxPath(Z) — Jze€ Z:z € X)

Lemma. A set X of nodes in a finitely-branching tree is finite iff there is a
cut C such that every X-node is a prefix of some C-node.

Finite(X) = 3Y : (Cut(Y) A VxeX:TyeY:x<y)

Hence “there are finitely many nodes labelled by " is expressible in MSOL
by

3X : (Finite(X) A Vx:pr(x) = x € X)
But “MSOL cannot count”: E.g. “X has twice as many elements as Y" is
not expressible in MSQO.

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 6 /26

Lecture 3

Recapitulation
@ Two families of generators: HORS and HOPDA

o

Today’s lecture
o

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 7 /26

A (selective) survey of MSO-decidable structures: up to 2002

@ Rabin 1969: Infinite binary trees and regular trees. “Mother of all
decidability results in algorithmic verification.”

@ Muller and Schupp 1985: Configuration graphs of PDA.

o Caucal 1996 Prefix-recognisable graphs (e-closures of configuration
graphs of pushdown automata, Stirling 2000).

e Knapik, Niwiriski and Urzyczyn (TLCA 2001, FOSSACS 2002):
PushdownTree,> = Trees generated by order-n pushdown automata.
SafeRecSchTree,X = Trees generated by order-n safe rec. schemes.

@ Subsuming all the above:
Caucal (MFCS 2002). CaucalTree,X and CaucalGraph,X.
Theorem (KNU-Caucal 2002)

For n > 0, PushdownTree,> = SafeRecSchTree,> = CaucalTree,X;
and they have decidable MSO theories.

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 8 /26

What is the safety constraint on recursion schemes?

Safety is a set of constraints on where variables may occur in a term.

Definition (Damm TCS 82, KNU FoSSaCS'02)
An order-2 equation is unsafe if the RHS has a subterm P s.t.
Q Pisorderl

@ P occurs in an operand position (i.e. as 2nd argument of application)

© P contains an order-0 parameter.

Consequence: An order-i subterm of a safe term can only have free
variables of order at least i.

Example (unsafe rule).

F:(0o—s0)—0—0—0,f:0°—=o0, x,y:o.

Fexy = f(F(Fey)y(px))a
The subterm F ¢ y has order 1, but the free variable y has order 0.
Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013

9 /26

What is the point of safety?

Safety does have an important algorithmic advantage!

Theorem (KNU 02, Blum + O. TLCA 07, LMCS 09)

Substitution (hence (-red.) in safe \-calculus can be safely implemented
without renaming bound variables! Hence no fresh names needed.

Theorem

@ (Schwichtenberg 76) The numeric functions representable by
simply-typed \-terms are multivariate polynomials with conditional.

@ (Blum + O. LMCS 09) The numeric functions representable by
simply-typed safe A-terms are the multivariate polynomials.

(See (Blum + O. LMCS 09) for a study on the safe lambda calculus.)

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 10 / 26

Infinite structures generated by recursion schemes: key questions

© MSO decidability: Is safety a genuine constraint for decidability?
l.e. do trees generated by (arbitrary) recursion schemes have
decidable MSO theories?

@ Machine characterisation: Find a hierarchy of automata that
characterise the expressive power of recursion schemes.
I.e. how should the power of higher-order pushdown automata be
augmented to achieve equi-expressivity with (arbitrary) recursion
schemes?

© Expressivity: Is safety a genuine constraint for expressivity?
l.e. are there inherently unsafe word languages / trees / graphs?

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013

11/ 26

Infinite structures generated by recursion schemes: key questions

4 Graph families:
@ Definition: What is a good definition of “graphs generated by
recursion schemes”?
® Model-checking properties: What are the decidable (modal-) logical
theories of the graph families?

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 12 /26

Q1. Do trees in RecSchTree,X have decidable MSO theories?

Some progress:

Theorem (Aehlig, de Miranda + O. TLCA 2005)

Y -labelled trees generated by order-2 recursion schemes (whether safe or
not) have decidable MSO theories.

Theorem (Knapik, Niwinski, Urczyczn + Walukiewicz, ICALP 2005)

Modal mu-calculus model checking problem for homogenously-typed
order-2 schemes (whether safe or not) is 2-EXPTIME complete.

What about higher orders?
Yes: MSO decidability extends to all orders (O. LICS06).

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 13 /26

Q1. Do trees in RecSchTree,X> have decidable MSO theories? Yes

Theorem (O. LICS 2006)

For n > 0, the modal mu-calculus model-checking problem for
RecSchTree X (i.e. trees generated by order-n recursion schemes) is
n-EXPTIME complete. Thus these trees have decidable MSO theories.

Proof Idea. Two key ingredients:
Generated tree [G] satisfies mu-calculus formula ¢
<= { Emerson + Jutla 1991}
APT B, has accepting run-tree over generated tree [G]
<= { I. Transference Principle: Traversal-Path Correspondence}
APT B, has accepting traversal-tree over computation tree A\(G)
<= { Il. Simulation of traversals by paths }

APT C,, has an accepting run-tree over computation tree A(G)
which is decidable because A(G) is regular.

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 14 / 26

Transference principle, based on a theory of traversals

S = FH _ S = AQOF(Ax.@HAX)
G:q Fo = ¢(Fyp) — G: ¢ F = Xp.p(A.QF (Ay.p(A.y)))
Hz = fzz H = Xz.f(Az)(A\.2)
[cl A(6)
A
f (¢
f f Ap AX _
/N /N 7 S [
f f f f T C
. . . . [VRN
A > AZ < >\
| s
- @ N p f N P
Ap Ay
7 | | ‘\ | |
¥ L2 z z
A A
|
y

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 15 / 26

Idea: [-reduction is global (i.e. substitution changes the term being
evaluated); game semantics gives an equivalent but local view.

A traversal (over the computation tree A\(G)) is a trace of the local
computation that produces a path (over [G]).

Theorem (Path-traversal correspondence)
Let G be an order-n recursion scheme.

(i) There is a 1-1 correspondence between maximal paths p in (X-labelled)
generated tree [G| and maximal traversals t, over computation tree
A(G).

(it) Further for each p, we have p | ¥ =t, | X.

Proof is by game semantics.

Explanation (for game semanticists):

@ Term-tree [G] is (a representation of) the game semantics of G.

@ Paths in [G] correspond to plays in the strategy-denotation.

e Traversals t, over computation tree A(G) are just (representations of) the
uncoverings of the plays (= path) p in the game semantics of G.

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 16 / 26

Four different proofs of the MSO decidability result

© Game semantics and traversals (O. LICS06)
- variable profiles. E.g. a profile of (0 — 0) — o is

{{a},9).{qed},d)}q)

@ Collapsible pushdown automata (Hague, Murawski, O. & Serre
LICS08)
- equi-expressivity theorem -+ rank aware automata

@ type-theoretic characterisation of APT (Kobayashi & O. LICS09)
- intersection types. E.g. (¢ > q)A(gA g — ¢') — g

© Krivine machine (Salvati & Walukiewicz ICALP11)
- residuals

A common pattern
@ Decision problem equivalent to solving an infinite parity game.
@ Simulate the infinite parity game by a finite parity game.

© Key ingredient of the game: variable profiles / automaton
control-states / intersection types / residuals.

v

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 17 / 26

Q2: Machine characterisation: collapsible pushdown automata

Order-2 collapsible pushdown automata [HOMS, LiCS 08a] are essentially
the same as 2PDA with links [AdMO 05] and panic automata [KNUW 05].

Idea: Each stack symbol in 2-stack “remembers” the stack content at the
point it was first created (i.e. push;ed onto the stack), by way of a pointer
to some 1-stack underneath it (if there is one such).

Two new stack operations: a € [(stack alphabet)

@ pushy a: pushes a onto the top of the top 1-stack, together with a
pointer to the 1-stack immediately below the top 1-stack.

@ collapse (= panic) collapses the 2-stack down to the prefix pointed to
by the top;-element of the 2-stack.

Note that the pointer-relation is preserved by push,.

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 18 / 26

Collapsible pushdown automata: extending to all finite orders

In order-n CPDA, there are n — 1 versions of push;, namely, push{L a, with
1< <n-1:

push’i a: pushes a onto the top of the top 1-stack, together with
a pointer to the j-stack immediately below the top j-stack.

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 19 / 26

Example: Urzyczyn’'s Language U over alphabet { (,),*}

Definition (Aehlig, de Miranda + O. FoSSaCS 05) A U-word has 3 segments:

(- (() () ek
A B 9

@ Segment A is a prefix of a well-bracketed word that ends in (, and the
opening (is not matched in the entire word.

@ Segment B is a well-bracketed word.

@ Segment C has length equal to the number of (in segment A.

Examples

Q@ (()(O)(())=* * xisa U-word
@ For each n >0, we have ((")" (*" xx is a U-word.
Hence by "uvwxy Lemma"”, U is not context-free.

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 20 / 26

Recognising U by a (det.) 2CPDA. E.g. (() (() * xx € U

(Ignoring control states for simplicity)

K N S S N S~

*

*

i
[l
Ll
Ll
i
Ll
Ll
Ll

i
Ll

[Upon reading | Do |
push, ; push;a
. pop;
first collapse
subsequent x pop,
11
el
Il alla a 11
1l allall
10altadl 2 all
Il alla”ll a a’lJl aa a 11
][a][ama]] Collapse!
1l allall
10 a 11
1]

What does the depth of the top 1-stack mean?

Luke Ong (University of Oxford)

Higher-Order Model Checking 3-8 March 2013

21 /26

Is order-n CPDA strictly more expressive than order-n PDA?

Does the collapse operation add any expressive power?

Lemma (AdMO FoSSaCS05): Urzyczyn's language U is quite telling!
@ U is not recognised by a 1PDA.
@ U is recognised by a non-deterministic 2PDA.
© U is recognised by a deterministic 2CPDA.

Question
Is U recognisable by a deterministic 2PDA? or by nPDA for any n?

If true, there is an associated tree that is generated by an order-2 recursion
scheme, but not by any order-2 safe recursion scheme.

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 22 /26

Q2: Machine characterization: order-n RS = order-n CPDA

Theorem (Equi-expressivity [Hague, Murawski, O. & Serre LICS08])

For each n > 0, order-n collapsible PDA and order-n recursion schemes are
equi-expressive for ¥-labelled trees.

Proof idea

@ From recursion scheme to CPDA: Use game semantics.
Code traversals as n-stacks.

Invariant: The top 1-stack is the P-view of the encoded traversal.
@ From CPDA to recursion scheme:

Code configuration ¢ as X-term M., so that ¢ — ¢’ implies M,
rewrites to M.

CPDA are a machine characterization of simply-typed lambda calculus
with recursions.

A direct proof (without game semantics) [Carayol & Serre LICS12].

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 23 /26

Q3: Is safety a genuine constraint on expressivity?

Question (Safety, KNW FoSSaCS02)

Are there inherently unsafe word languages / trees / graphs?

Word languages? Yes

Theorem (Parys STACS11, LICS12)

There is a language (similar to U) recognised by a deterministic 2CPDA
but not by any deterministic nPDA for all n > 0.

Proof uses a powerful pumping lemma for HOPDA.

(Another pumping lemma for nCPDA is used to prove a hierarchy theorem
for collapsible graphs and trees [Kartzow & Parys, MFCS12])
Trees? Yes

Corollary (Parys STACS11, LICS12)

There is a tree generated by an order-2 recursion scheme but not by any
safe HORS.

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 24 / 26

Graphs? Yes.

Theorem (Hague, Murawski, O and Serre LICS08)

@ Solvability of parity games over order-n CPDA graphs is n-EXPTIME
complete.

@ There is an 2CPDA configuration graph with an undecidable MSO
theory.

Corollary

There is a 2CPDA whose configuration graph (semi-infinite grid) is not
that of any nPDA, for any n.

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 25 /26

A safety question for non-determinacy

Question (Safety non-determinacy)

Is there a word language recognised by a order-n CPDA which is not
recognisable by any non-deterministic HOPDA?

For order 2, the answer is no.

Theorem (Aehlig, de Miranda and O. FoSSaCS 2005)

For every order-2 recursion scheme, there is a safe non-deterministic
order-2 recursion scheme that generates the same word language.

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 26 / 26

