
Higher-Order Model Checking
II: Recursion Schemes and their Algorithmics

Luke Ong

University of Oxford
http://www.cs.ox.ac.uk/people/luke.ong/personal/

http://mjolnir.cs.ox.ac.uk

Estonia Winter School in Computer Science, 3-8 Mar 2013

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 1 / 26

http://www.cs.ox.ac.uk/people/luke.ong/personal/
http://mjolnir.cs.ox.ac.uk

A challenge problem in higher-order verification

f
zz $$

a f
{{ ##

g
��

f
|| ""

a g

��
f

g
��

...

a

Example: Consider [[G]] on the right

ϕ1 = “Infinitely many f -nodes are reachable”.

ϕ2 = “Only finitely many g -nodes are reachable”.

Every node on the tree satisfies ϕ1 ∨ ϕ2.

Let RecSchTreen be the class of Σ-labelled
trees generated by order-n recursion schemes.

Is the “MSO Model-Checking Problem for RecSchTreen” decidable?

INSTANCE: An order-n recursion scheme G , and an MSO formula ϕ

QUESTION: Does the Σ-labelled tree [[G]] satisfy ϕ?

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 2 / 26

Why study monadic second-order (MSO) logic?

Because it is the gold standard of logics for describing correctness
properties.

MSO is very expressive.
Over graphs, MSO is more expressive than the modal mu-calculus,
into which all standard temporal logics (e.g. LTL, CTL, CTL∗, etc.)
can embed.

It is hard to extend MSO meaningfully without sacrificing decidability
where it holds.

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 3 / 26

Monadic Second-Order Logic (for Σ-labelled trees)

Fix a vocabulary. Three types of predicate symbols:
1 Parent-child relationship between nodes: di (x , y) ≡ “y is i-child of x”
2 Node labelling: pf (x) ≡ “x has label f ” where f is a Σ-symbol
3 Set-membership: x ∈ X

First-order variables: x , y , z , etc. (ranging over nodes)
Second-order variables: X ,Y ,Z , etc. (ranging over sets of nodes)

MSO formulas are generated from three kinds of atomic formulas:

di (x , y), pf (x), x ∈ X

and closed under boolean connectives, first-order quantification
(∀x .−,∃x .−) and second-order quantifications: (∀X .−,∃X .−).

A Σ-labelled tree t : dom(t) −→ Σ is represented as a structure

〈 dom(t), 〈di : 1 ≤ i ≤ m 〉, 〈pf : f ∈ Σ 〉 〉

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 4 / 26

Examples of MSO-definable properties

Our version of MSOL is parsimonious. Several useful predicates are
definable:

1 Set inclusion (and hence equality): X ⊆ Y ≡ ∀x : x ∈ X → x ∈ Y .

2 “Is-an-ancestor-of” or prefix ordering x ≤ y (and hence x = y):

PrefCl(X) ≡ ∀x , y : y ∈ X ∧
∨m

i=1 di (x , y) → x ∈ X
x ≤ y ≡ ∀X : PrefCl(X) ∧ y ∈ X → x ∈ X

3 Reachability property: “X is a path”

Path(X) ≡ ∀x , y ∈ X : x ≤ y ∨ y ≤ x ∧
∀x , y , z : x ∈ X ∧ z ∈ X ∧ x ≤ y ≤ z → y ∈ X

MaxPath(X) ≡ Path(X) ∧
∀Y : Path(Y) ∧ X ⊆ Y → Y ⊆ X .

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 5 / 26

Example: “A tree has infinitely many f -labelled nodes”

A set of nodes is a cut if (i) no two nodes in it are ≤-compatible, and (ii)
it has a non-empty intersection with every maximal path.

Cut(X) ≡ ∀x , y ∈ X : ¬(x ≤ y ∨ y ≤ x) ∧
∀Z : (MaxPath(Z) → ∃z ∈ Z : z ∈ X)

Lemma. A set X of nodes in a finitely-branching tree is finite iff there is a
cut C such that every X -node is a prefix of some C -node.

Finite(X) ≡ ∃Y : (Cut(Y) ∧ ∀x ∈ X : ∃y ∈ Y : x ≤ y)

Hence “there are finitely many nodes labelled by f ” is expressible in MSOL
by

∃X : (Finite(X) ∧ ∀x : pf (x)→ x ∈ X)

But “MSOL cannot count”: E.g. “X has twice as many elements as Y ” is
not expressible in MSO.

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 6 / 26

Lecture 3

Recapitulation

Two families of generators: HORS and HOPDA

Today’s lecture

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 7 / 26

A (selective) survey of MSO-decidable structures: up to 2002

Rabin 1969: Infinite binary trees and regular trees. “Mother of all
decidability results in algorithmic verification.”

Muller and Schupp 1985: Configuration graphs of PDA.

Caucal 1996 Prefix-recognisable graphs (ε-closures of configuration
graphs of pushdown automata, Stirling 2000).

Knapik, Niwiński and Urzyczyn (TLCA 2001, FOSSACS 2002):
PushdownTreenΣ = Trees generated by order-n pushdown automata.
SafeRecSchTreenΣ = Trees generated by order-n safe rec. schemes.

Subsuming all the above:
Caucal (MFCS 2002). CaucalTreenΣ and CaucalGraphnΣ.

Theorem (KNU-Caucal 2002)

For n ≥ 0, PushdownTreenΣ = SafeRecSchTreenΣ = CaucalTreenΣ;
and they have decidable MSO theories.

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 8 / 26

What is the safety constraint on recursion schemes?

Safety is a set of constraints on where variables may occur in a term.

Definition (Damm TCS 82, KNU FoSSaCS’02)

An order-2 equation is unsafe if the RHS has a subterm P s.t.

1 P is order 1

2 P occurs in an operand position (i.e. as 2nd argument of application)

3 P contains an order-0 parameter.

Consequence: An order-i subterm of a safe term can only have free
variables of order at least i .

Example (unsafe rule).

F : (o → o)→ o → o → o, f : o2 → o, x , y : o.

F ϕ x y = f (F (F ϕ y) y (ϕ x)) a

The subterm F ϕ y has order 1, but the free variable y has order 0.
Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 9 / 26

What is the point of safety?

Safety does have an important algorithmic advantage!

Theorem (KNU 02, Blum + O. TLCA 07, LMCS 09)

Substitution (hence β-red.) in safe λ-calculus can be safely implemented
without renaming bound variables! Hence no fresh names needed.

Theorem
1 (Schwichtenberg 76) The numeric functions representable by

simply-typed λ-terms are multivariate polynomials with conditional.

2 (Blum + O. LMCS 09) The numeric functions representable by
simply-typed safe λ-terms are the multivariate polynomials.

(See (Blum + O. LMCS 09) for a study on the safe lambda calculus.)

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 10 / 26

Infinite structures generated by recursion schemes: key questions

1 MSO decidability: Is safety a genuine constraint for decidability?
I.e. do trees generated by (arbitrary) recursion schemes have
decidable MSO theories?

2 Machine characterisation: Find a hierarchy of automata that
characterise the expressive power of recursion schemes.
I.e. how should the power of higher-order pushdown automata be
augmented to achieve equi-expressivity with (arbitrary) recursion
schemes?

3 Expressivity: Is safety a genuine constraint for expressivity?
I.e. are there inherently unsafe word languages / trees / graphs?

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 11 / 26

Infinite structures generated by recursion schemes: key questions

4 Graph families:
1 Definition: What is a good definition of “graphs generated by

recursion schemes”?
2 Model-checking properties: What are the decidable (modal-) logical

theories of the graph families?

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 12 / 26

Q1. Do trees in RecSchTreenΣ have decidable MSO theories?

Some progress:

Theorem (Aehlig, de Miranda + O. TLCA 2005)

Σ-labelled trees generated by order-2 recursion schemes (whether safe or
not) have decidable MSO theories.

Theorem (Knapik, Niwinski, Urczyczn + Walukiewicz, ICALP 2005)

Modal mu-calculus model checking problem for homogenously-typed
order-2 schemes (whether safe or not) is 2-EXPTIME complete.

What about higher orders?

Yes: MSO decidability extends to all orders (O. LICS06).

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 13 / 26

Q1. Do trees in RecSchTreenΣ have decidable MSO theories? Yes

Theorem (O. LICS 2006)

For n ≥ 0, the modal mu-calculus model-checking problem for
RecSchTreenΣ (i.e. trees generated by order-n recursion schemes) is
n-EXPTIME complete. Thus these trees have decidable MSO theories.

Proof Idea. Two key ingredients:
Generated tree [[G]] satisfies mu-calculus formula ϕ

⇐⇒ { Emerson + Jutla 1991}
APT Bϕ has accepting run-tree over generated tree [[G]]

⇐⇒ { I. Transference Principle: Traversal-Path Correspondence}
APT Bϕ has accepting traversal-tree over computation tree λ(G)

⇐⇒ { II. Simulation of traversals by paths }
APT Cϕ has an accepting run-tree over computation tree λ(G)

which is decidable because λ(G) is regular.

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 14 / 26

Transference principle, based on a theory of traversals

G :

{
S = F H

F ϕ = ϕ (F ϕ)
H z = fzz

7→ G :

{
S = λ.@F (λx .@H λ.x)
F = λϕ.ϕ(λ.@F (λy .ϕ(λ.y))))
H = λz .f (λ.z)(λ.z)

[[G]] λ(G)

λ

f @

f f λϕ λx

f f f f ϕ

;;

@
...

...
...

... λ λz λ

@ f x

jj

λϕ λy λ λ

ϕ

::
ϕ

gg

z

33

z

ll

λ λ
... y

ZZ

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 15 / 26

Idea: β-reduction is global (i.e. substitution changes the term being
evaluated); game semantics gives an equivalent but local view.
A traversal (over the computation tree λ(G)) is a trace of the local
computation that produces a path (over [[G]]).

Theorem (Path-traversal correspondence)

Let G be an order-n recursion scheme.

(i) There is a 1-1 correspondence between maximal paths p in (Σ-labelled)
generated tree [[G]] and maximal traversals tp over computation tree
λ(G).

(ii) Further for each p, we have p � Σ = tp � Σ.

Proof is by game semantics.

Explanation (for game semanticists):

Term-tree [[G]] is (a representation of) the game semantics of G .
Paths in [[G]] correspond to plays in the strategy-denotation.
Traversals tp over computation tree λ(G) are just (representations of) the
uncoverings of the plays (= path) p in the game semantics of G .

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 16 / 26

Four different proofs of the MSO decidability result

1 Game semantics and traversals (O. LICS06)
- variable profiles. E.g. a profile of (o → o)→ o is
({ ({ q }, q), ({ q, q′ }, q′) }, q)

2 Collapsible pushdown automata (Hague, Murawski, O. & Serre
LICS08)
- equi-expressivity theorem + rank aware automata

3 type-theoretic characterisation of APT (Kobayashi & O. LICS09)
- intersection types. E.g. (q → q) ∧ (q ∧ q′ → q′)→ q

4 Krivine machine (Salvati & Walukiewicz ICALP11)
- residuals

A common pattern

1 Decision problem equivalent to solving an infinite parity game.

2 Simulate the infinite parity game by a finite parity game.

3 Key ingredient of the game: variable profiles / automaton
control-states / intersection types / residuals.

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 17 / 26

Q2: Machine characterisation: collapsible pushdown automata

Order-2 collapsible pushdown automata [HOMS, LiCS 08a] are essentially
the same as 2PDA with links [AdMO 05] and panic automata [KNUW 05].

Idea: Each stack symbol in 2-stack “remembers” the stack content at the
point it was first created (i.e. push1ed onto the stack), by way of a pointer
to some 1-stack underneath it (if there is one such).

Two new stack operations: a ∈ Γ (stack alphabet)

push1 a: pushes a onto the top of the top 1-stack, together with a
pointer to the 1-stack immediately below the top 1-stack.

collapse (= panic) collapses the 2-stack down to the prefix pointed to
by the top1-element of the 2-stack.

Note that the pointer-relation is preserved by push2.

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 18 / 26

Collapsible pushdown automata: extending to all finite orders

In order-n CPDA, there are n− 1 versions of push1, namely, pushj
1 a, with

1 ≤ j ≤ n − 1:

pushj
1 a: pushes a onto the top of the top 1-stack, together with

a pointer to the j-stack immediately below the top j-stack.

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 19 / 26

Example: Urzyczyn’s Language U over alphabet { (,), ∗ }

Definition (Aehlig, de Miranda + O. FoSSaCS 05) A U-word has 3 segments:

(· · · (· · · (︸ ︷︷ ︸
A

(· · ·) · · · (· · ·)︸ ︷︷ ︸
B

∗ · · · ∗︸ ︷︷ ︸
C

Segment A is a prefix of a well-bracketed word that ends in (, and the
opening (is not matched in the entire word.
Segment B is a well-bracketed word.
Segment C has length equal to the number of (in segment A.

Examples

1 (() (() (()) ∗ ∗ ∗ is a U-word
2 For each n ≥ 0, we have ((n)n (∗n ∗ ∗ is a U-word.

Hence by “uvwxy Lemma”, U is not context-free.

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 20 / 26

Recognising U by a (det.) 2CPDA. E.g. (() (() ∗ ∗ ∗ ∈ U
(Ignoring control states for simplicity)

Upon reading Do
(push2 ; push1a
) pop1

first ∗ collapse
subsequent ∗ pop2

[[]]

([[] [a]]

([[] [a] [a a
{{

]]

) [[] [a] [a]]

([[] [a] [a] [a a
zz

]]

([[] [a] [a] [a a
zz

] [a avv a
yy

]]

) [[] [a] [a] [a a
zz

] [a avv
]] Collapse!

∗ [[] [a] [a]]

∗ [[] [a]]

∗ [[]]

What does the depth of the top 1-stack mean?
Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 21 / 26

Is order-n CPDA strictly more expressive than order-n PDA?

Does the collapse operation add any expressive power?

Lemma (AdMO FoSSaCS05): Urzyczyn’s language U is quite telling!

1 U is not recognised by a 1PDA.

2 U is recognised by a non-deterministic 2PDA.

3 U is recognised by a deterministic 2CPDA.

Question

Is U recognisable by a deterministic 2PDA? or by nPDA for any n?

If true, there is an associated tree that is generated by an order-2 recursion
scheme, but not by any order-2 safe recursion scheme.

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 22 / 26

Q2: Machine characterization: order-n RS = order-n CPDA

Theorem (Equi-expressivity [Hague, Murawski, O. & Serre LICS08])

For each n ≥ 0, order-n collapsible PDA and order-n recursion schemes are
equi-expressive for Σ-labelled trees.

Proof idea

From recursion scheme to CPDA: Use game semantics.
Code traversals as n-stacks.
Invariant: The top 1-stack is the P-view of the encoded traversal.

From CPDA to recursion scheme:
Code configuration c as Σ-term Mc , so that c → c ′ implies Mc

rewrites to Mc ′ .

CPDA are a machine characterization of simply-typed lambda calculus
with recursions.
A direct proof (without game semantics) [Carayol & Serre LICS12].

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 23 / 26

Q3: Is safety a genuine constraint on expressivity?

Question (Safety, KNW FoSSaCS02)

Are there inherently unsafe word languages / trees / graphs?

Word languages? Yes

Theorem (Parys STACS11, LICS12)

There is a language (similar to U) recognised by a deterministic 2CPDA
but not by any deterministic nPDA for all n ≥ 0.

Proof uses a powerful pumping lemma for HOPDA.

(Another pumping lemma for nCPDA is used to prove a hierarchy theorem
for collapsible graphs and trees [Kartzow & Parys, MFCS12])
Trees? Yes

Corollary (Parys STACS11, LICS12)

There is a tree generated by an order-2 recursion scheme but not by any
safe HORS.
Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 24 / 26

Graphs? Yes.

Theorem (Hague, Murawski, O and Serre LICS08)

1 Solvability of parity games over order-n CPDA graphs is n-EXPTIME
complete.

2 There is an 2CPDA configuration graph with an undecidable MSO
theory.

Corollary

There is a 2CPDA whose configuration graph (semi-infinite grid) is not
that of any nPDA, for any n.

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 25 / 26

A safety question for non-determinacy

Question (Safety non-determinacy)

Is there a word language recognised by a order-n CPDA which is not
recognisable by any non-deterministic HOPDA?

For order 2, the answer is no.

Theorem (Aehlig, de Miranda and O. FoSSaCS 2005)

For every order-2 recursion scheme, there is a safe non-deterministic
order-2 recursion scheme that generates the same word language.

Luke Ong (University of Oxford) Higher-Order Model Checking 3-8 March 2013 26 / 26

