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Abstract

Recently, as the complexity of software has increased, model checking
has become an increasingly important topic in the field of computer sci-
ence. In the last three decades model checking has emerged as a pow-
erful approach towards formally verifying programs. Given an abstract
model of a program, a model checker verifies whether the model meets
a given specification. A particularly expressive logic used for specify-
ing programs is a type of temporal logic known as the modal µ-calculus.
Determining whether a given model satisfies a modal µ-calculus formula
is known as the modal µ-calculus model checking problem. A popular
method for solving this problem is by solving parity games. These are
a type of two player infinite game played on a finite graph. Determin-
ing a winner for such a game has been shown to be polynomial time
equivalent to the modal µ-calculus model checking problem.

This dissertation concentrates on comparing algorithms which solve a
specialised type of parity game known as a Büchi game. This type
of game can be used to solve the model checking problem for a useful
fragment of the modal µ-calculus. Implementations of three Büchi game
solving algorithms are given and are compared. These are also compared
to existing parity game solvers. In addition to this, a description of their
integration into the model checker Thors is given.
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1 Introduction

As the complexity of software increases, so does the need for automatic verifi-
cation. In the case of safety critical software such as that for nuclear reactors
and air traffic control systems this is particularly apparent. In order to ver-
ify such software formally, a technique known as model checking can be used.
Given an abstract model of a system, a model checker verifies automatically
whether the model meets a given specification. This abstract model should
therefore describe the relevant behaviours of the corresponding system. In the
case of systems where there is an ongoing interaction with their environment
(known as reactive systems), transition systems are usually used as models.
The specification for such a system is usually given in the form of a logical
formula.

The modal µ-calculus is a logic which extends modal logic with fixpoint oper-
ators. The fixpoint operators are used in order to provide a form of recursion
for specifying temporal properties. It was first introduced in 1983 by Dexter
Kozen [10] and has since been the focus of much attention due to its expressive
power. In fact, the modal µ-calculus subsumes most other temporal logics such
as LTL, CTL, and CTL*. It is extensively used for specifying properties of
transition systems and hence much time has been invested into finding efficient
solutions to the corresponding model checking problem.

Given a transition system T , an initial state s0 and a modal µ-calculus formula
ϕ, the model checking problem asks whether the property described by ϕ holds
for the transition system T at state s0. The problem was shown to be in NP
[5] and thus, since it is closed under negation, it is in NP∩co-NP. It is not
yet known whether this class of problems is polynomial and currently the best
known algorithms for solving the model checking problem are exponential in
the alternation depth.

The alternation depth of a formula, informally, is the maximum number of
alternations between maximum and minimum fixpoint operators. Formulas
with a high alternation depth are well known to be difficult to interpret and in
practice, formulas of alternation depth greater than 2 are not frequently used.

One popular method of solving the model checking problem for the modal µ-
calculus is by using parity games since it can be shown that determining the
winner of a parity game is polynomial time equivalent to this model checking
problem.

A parity game is a two-player infinite game played on a finite directed graph.
Each vertex in the graph is owned by one of the two players called Elöıse and
Abelard. Play begins at a given initial state and proceeds as follows: If a vertex
is owned by Elöıse then Elöıse picks a successor vertex and play continues from
there, whereas if a vertex is owned by Abelard then Abelard picks a successor
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1 INTRODUCTION

vertex. A play either terminates at a vertex with no successors or it does not
terminate, resulting in an infinite play. If a play terminates then the winner
of the game is the player who does not own the final vertex. If a play does not
terminate then the winner is determined using a given priority function which
maps the set of vertices to the natural numbers. The set of vertices which
occur infinitely often is calculated and the minimum priority of those vertices
is found. If this minimum priority is even then Elöıse wins the game whereas
if the minimum priority is odd then Abelard wins the game.

When considering the model checking problem, the number of priorities in the
corresponding parity game is equal to the alternation depth of the modal µ-
calculus formula. Thus, in terms of complexity, the best algorithms for solving
parity games are exponential in the number of priorities used. For example, a
classical algorithm introduced by McNaughton in [12] has a time complexity
of O(mnp−1) where m is the number of edges, n is the number of vertices
and p is the number of priorities. This was later improved by Jurdziński [7]
to O(pm(n/p)p/2). More recently, an algorithm was presented by Schewe [15]
which has a time complexity of approximately O(mnp/3) for games with at
least 3 priorities. Currently, for games with 2 priorities, however, the time
complexity of O(mn) using McNaughton’s algorithm has not been improved
upon.

Parity games with no more than 2 priorities are divided into two types of
games: Büchi games and co-Büchi games. Büchi games correspond to games
where the priorities 0 and 1 are used and co-Büchi games correspond to games
where the priorities 1 and 2 are used. These types of games are vital in
relation to the model checking problem since they correspond to a fragment of
the modal µ-calculus in which formulas have alternation depth 2 or less. As
previously remarked, it is rare to use a formula with greater alternation depth
and notably, this fragment of the modal µ-calculus subsumes the popular logic
CTL∗. In addition to this, co-Büchi games can easily be solved using Büchi
games, thus finding efficient algorithms for solving Büchi games is useful.

In [2], Chatterjee, Henzinger and Piterman investigated this topic, presenting
new algorithms specifically for solving Büchi games. Although these algo-
rithms do not improve on the time complexity of O(mn), they do provide an
alternative approach for solving these games, with a marked improvement in
complexity for specific families of Büchi games. In one algorithm presented,
for a specific family of Büchi games with a fixed number of outgoing edges, the
time complexity was shown to be O(n) in comparison to the time complexity
of O(n2) for the classical algorithm. Also, it was shown that this algorithm
performs at worst O(m) more work than the classical algorithm.

For the interest of comparison of these different approaches for solving Büchi
games, this dissertation implements two of the algorithms from [2] and also
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implements the more classical approach to solving Büchi games in OCaml. The
advantages and disadvantages of each is investigated, and all are compared to
an implementation [6] of three parity game solvers [18, 7, 16]. These have
worst case time complexities O(mn2), O(mn) and O(2mmn) when restricted
to Büchi games. Although one of these solvers has the same worst case time
complexity as the algorithms for solving Büchi games, the specialisation of
the latter should result in a faster performance. In addition to comparing
the algorithms against parity game solvers, they are integrated into the model
checker Thors [14]. Thors is used for model checking higher-order recursion
schemes (HORS). Currently, a construction of this problem to a subset of
Büchi games called weak Büchi games is used, allowing for model checking
against the alternation-free modal µ-calculus. By integrating a Büchi game
solver, HORS can be checked against modal µ-calculus formulas of alternation
depth 2.

Section 2 introduces the concepts of parity games and the modal µ-calculus and
shows how the model checking problem can be represented by a parity game. It
then relates this to Büchi games. Section 3 describes the algorithms presented
in [2] and explains their correctness and complexity. Section 4 describes the
implementation of the Büchi game solving algorithms. Section 5 describes the
integration of a solver into Thors and Section 6 tests the efficiency of each
of the solvers comparing them against each other and against existing parity
game solvers. Finally, Section 7 draws conclusions about the findings of this
dissertation.
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2 Preliminaries

This section begins by defining the modal µ-calculus, parity games and the
concepts associated with them. It then shows how the model checking prob-
lem for the modal µ-calculus can be represented as a parity game and for
which fragment of the modal µ-calculus the model checking problem can be
represented by a Büchi game.

2.1 The Modal µ-Calculus

The modal µ-calculus [10] is a general and expressive logic that subsumes logics
such as PDL, CTL, and CTL∗. It is an extension of modal logic with least
and greatest fixpoint operators and is useful for specifying the properties of
transition systems which are defined below as given in [1].

Definition 2.1 A Labelled transition system over a set of propositions P
and a set of labels L is a directed graph whose edges are labelled with elements
of L and whose vertices are labelled with elements of 2P . More formally, a
labelled transition system is a triple T = 〈S,→, ρ〉 where:

• S is the set of states.

• →⊆ S×L×S is the transition relation (This is usually written as s
a
−→ t

for each (s, a, t) ∈→).

• ρ : P −→ 2S is an interpretation of the propositional variables where
each propositional variable is mapped to the set of states where it holds
true.

Definition 2.2 Given a set V ar of variables, the set of modal µ-calculus
formulas (denoted by Lµ) is defined inductively as follows (as given in [1]) :

• All p ∈ P are in Lµ

• All Z ∈ V ar are in Lµ

• If ϕ1 and ϕ2 are in Lµ then ϕ1 ∨ ϕ2 and ϕ1 ∧ ϕ2 are in Lµ.

• If ϕ ∈ Lµ then for all a ∈ L, [a]ϕ and 〈a〉ϕ are in Lµ.

• If ϕ ∈ Lµ then ¬ϕ is in Lµ

• If Z ∈ V ar and ϕ(Z) is a formula in Lµ then µZ.ϕ(Z) and νZ.ϕ(Z) are
formulas in Lµ. (A variable is defined to be free or bound in the usual
sense where µ and ν are the binding operators.)
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2.1. The Modal µ-Calculus

The symbols µ and ν are known as least and greatest fixpoint operators re-
spectively.

The semantics of this logic, given a transition system T , maps formulas to sets
of states in P(S). Thus, given a variable Z, a formula ϕ(Z) can be viewed as
a function from P(S) to itself.

We require that ϕ(Z) is a monotonic function with respect to Z, so as to
ensure the existence of unique minimal and maximal fixpoints for ϕ. In order
to guarantee monotonicity, we require that all formulas are in positive normal
form.

A formula is in positive form if negation is only applied to atomic propositions.
It is in positive normal form if it is in positive form and additionally all bound
variables are distinct (i.e. for fixpoint operators σ1 and σ2, if σ1X.ψ1 and
σ2Y.ψ2 both occur in a positive normal formula ϕ, then X += Y ). By using De
Morgan laws and renaming bound variables if required, we can assume that
all modal µ-calculus formulas are in positive normal form. This assumption is
made during the construction of an equivalent parity game in Section 2.3.

Definition 2.3 Given a labelled transition system T and a valuation of vari-
ables V al : V ar −→ 2S, we can define the semantics of formulas in Lµ

inductively as follows (as given in [1]):

||p||TV al := ρ(p)

||Z||TV al := V al(Z)

||ϕ1 ∨ ϕ2||
T
V al := ||ϕ1||

T
V al ∪ ||ϕ2||

T
V al

||ϕ1 ∧ ϕ2||
T
V al := ||ϕ1||

T
V al ∩ ||ϕ2||

T
V al

||[a]ϕ||TV al := {s | ∀t ∈ S, s
a
−→ t =⇒ t ∈ ||ϕ||TV al}

||〈a〉ϕ||TV al := {s | ∃t ∈ S s.t. s
a
−→ t ∧ t ∈ ||ϕ||TV al}

||¬ϕ||TV al := S\||ϕ||TV al

||µZ.ϕ||TV al :=
⋂

{U ⊆ S | ||ϕ||TV al[Z #→U ] ⊆ U}

||νZ.ϕ||TV al :=
⋃

{U ⊆ S | ||ϕ||TV al[Z #→U ] ⊇ U}

The valuation V al[Z 1→ U ] is given by:

V al[Z 1→ U ](X) :=

{

U If X = Z
V al(X) If X += Z

Given a state s ∈ S and a modal µ-calculus formula ϕ, we say that s !T
V al ϕ if

s ∈ ||ϕ||TV al.
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2.1. The Modal µ-Calculus

The semantics of all these formulas are fairly intuitive except for those of the
least and greatest fixpoint operators which are notoriously difficult to interpret.
The expressive power of the modal µ-calculus lies in the use of these fixpoint
operators which are used to express temporal properties recursively.

Informally, the µ fixpoint operator is used for finite looping, whereas ν is used
for looping. For example, consider the following two properties we may want
to express:

1. “On all a-labelled paths, φ holds until ϕ holds” (and ϕ does eventually
hold).

2. “On all a-labelled paths, φ holds while ϕ does not hold” (ϕ does not
have to eventually hold).

Thus, property 1 holds for states where a finite number of a-transitions are
made to states where φ holds, after which an a-transition is made where ϕ
holds. This requirement of a finite number of a-transitions indicates the use
of the µ fixpoint operator.

Conversely, property 2 holds for states where either an infinite number of
a-transitions are made to states where φ holds, or property 1 holds. This
indicates the use of the ν fixpoint operator.

Suppose, given a transition system T , that Z1 is a variable with a valuation
corresponding to the set of states on which property 1 holds and Z2 is a variable
that corresponds to the set of states on which property 2 holds.

The set ||Z1||TV al can be expressed recursively as follows. For a state z, if ϕ
holds then z ∈ ||Z1||TV al. Also, if φ holds and all a-labelled transitions go to a
state contained in the valuation of Z1 then z ∈ ||Z1||TV al. Thus:

z ∈ ||Z1||
T
V al ⇐= z ∈ ||ϕ||TV al or (z ∈ ||φ||TV al and z ∈ ||[a]Z1||

T
V al)

or:

||Z1||
T
V al ⊇ ||ϕ ∨ (φ ∧ [a]Z1)||

T
V al

Sets like ||Z1||TV al for which this condition holds are pre-fixed points for the
function ψ(U) := ||ϕ∨(φ∧[a]Z)||TV al[Z #→U ]. More precisely, ||Z1||TV al corresponds
to the least such pre-fixed point or rather

||Z1||
T
V al =

⋂

{U ⊆ S | U ⊇ ||ϕ ∨ (φ ∧ [a]Z)||TV al[Z #→U ]}

:= ||µZ.ϕ ∨ (φ ∧ [a]Z)||TV al
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2.1. The Modal µ-Calculus

In the case of property 2, the complement of the set ||Z2||TV al can be expressed
recursively as follows. For a state z, if ϕ does not hold and φ does not hold
then z /∈ ||Z2||TV al. Also, if ϕ does not hold and there exists an a-transition to
a state in the complement of ||Z2||TV al then z /∈ ||Z2||TV al. Thus:

z /∈ ||Z2||
T
V al ⇐= (z /∈ ||ϕ||TV al and z /∈ ||φ||TV al) or (z /∈ ||ϕ||TV al and z /∈ ||[a]Z2||

T
V al)

Taking the contrapositive we get:

z ∈ ||Z2||
T
V al =⇒ z ∈ ||ϕ||TV al or (z ∈ ||φ||TV al and z ∈ ||[a]Z2||

T
V al)

or:

||Z2||
T
V al ⊆ ||ϕ ∨ (φ ∧ [a]Z2)||

T
V al

Sets for which this condition holds are post-fixed points for the function ψ(U) :=
||ϕ∨ (φ∧ [a]Z)||TV al[Z #→U ]. In particular, ||Z2||TV al is the greatest such post-fixed
point and hence:

||Z2||
T
V al =

⋃

{U ⊆ S | ||ϕ||TV al[Z #→U ] ⊇ U}

:= ||νZ.ϕ ∨ (φ ∧ [a]Z)||TV al

Thus, property 1, an instance of finite looping, is expressed using the µ fixpoint
operator, whereas property 2 is expressed using the ν fixpoint operator.

The fact that ψ(U) := ||ϕ ∨ (φ ∧ [a]Z)||TV al[Z #→U ] is monotonic, guarantees the
existence of a least pre-fixed point and a greatest post-fixed point. It can be
proved that these points coincide with the least and greatest fixed points, hence
µ and ν are referred to as least and greatest fixpoint operators respectively.

Modal µ-calculus formulas become more difficult to interpret (and more pow-
erful) when fixpoint operators are nested inside other fixpoint operators. For
example, consider the following formula as given in [1]:

||µY.νZ.(P ∧ [a]Y ) ∨ (¬P ∧ [a]Z)||T

After some thought, this can be seen to correspond to the set of states in T
from which “on any a-path, P is true only finitely often”.

As described in [17], an important property of a modal µ-calculus formula
is its fixpoint alternation depth defined later in this section. In particular,
it is relevant to the complexity of algorithms for solving the model checking
problem.

The model checking problem for the modal µ-calculus is defined as follows:
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2.1. The Modal µ-Calculus

Given a transition system T , an initial state s0 ∈ S and a modal
µ-calculus formula ϕ, is it true that s0 !T

V al ϕ?

The best known algorithms for this model checking problem are exponential
in the alternation depth.

In its simplest form, the alternation depth of a formula is defined as the max-
imum number of alternations between nested least and greatest fixpoint op-
erators. The definition used here (as in [17]) was introduced by Niwinski [13]
and is a stronger and more useful definition then simply counting syntactic
alternations.

We begin with the following definition using the notation ϕ1 ≥ ϕ2 to denote
that ϕ2 is a subformula of ϕ1 and ϕ1 > ϕ2 to denote that ϕ2 is a proper
subformula of ϕ1:

Definition 2.4 An alternating chain is a sequence 〈σ1Z1.ψ1, σ2Z2.ψ2, ..., σlZl.ψl〉
such that:

• σ1Z1.ψ1 > σ2Z2.ψ2 > ... > σlZl.ψl

• For all 1 ≤ i < l, if σi = µ then σi+1 = ν and similarly if σi = ν then
σi+1 = µ.

• For all 1 ≤ i < l, the variable Zi occurs free in every formula ψ with
ψi ≥ ψ ≥ ψi+1

Using this definition, the alternation depth of a formula is defined as follows:

Definition 2.5 The alternation depth of a formula ϕ is the length of the
longest alternating chain contained in ϕ.

Using this, we can classify modal µ-calculus formulas as follows:

Definition 2.6 (Niwinski [13]) The classes Σµ
n and Πµ

n for each n ∈ N are
defined as follows:

• A formula ϕ is said to be in the classes Σµ
0 and Πµ

0 if ϕ contains no
fixpoint operators.

• For each n > 0, ϕ is said to be in Σµ
n (respectively Πµ

n) if ϕ has alternation
depth n or less and all alternating chains of length n contained in ϕ begin
with a µ (respectively ν) fixpoint formula.
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2.2. Parity Games

For example, consider the following formulas:

ϕ1 := νX.µY.[a]Y ∨ (p ∧ 〈a〉X)

ϕ2 := νX.(µY.[a]Y ) ∨ (p ∧ 〈a〉X)

Using the definition given, ϕ1 has alternation depth 2 and is in Πµ
2 but is not

in Σµ
2 since there exists an alternating chain of length 2, contained in ϕ1, which

begins with a ν fixpoint formula. The formula ϕ2, however, has alternation
depth 1 and is thus in both Πµ

2 and Σµ
2 . Notice that using the simple definition

of alternation depth, both formulas would have alternation depth 2 since the
µ fixpoint formula is nested within the ν fixpoint formula.

2.2 Parity Games

In this section, the notion of parity games is introduced and we demonstrate
how the model checking problem for the modal µ-calculus can be reduced to
the problem of solving a parity game. The definitions given in this section are
similar to those given in [2].

Definition 2.7 A game graph G = (V, E,λ) is a directed graph where V is
the set of vertices and E is the set of edges. λ : V → {∃, ∀} is a mapping that
identifies an owner for each vertex from one of two players. If λ(v) = ∃ then
v is owned by the player Elöıse and if λ(v) = ∀ then v is owned by the player
Abelard.

We use E(v) to denote the set of all successor vertices for v i.e. E(v) = {u ∈
V |(v, u) ∈ E}

Definition 2.8 A parity game is a tuple (G, v0,Ω) where G = (V, E,λ) is
a game graph, v0 ∈ V is the initial vertex and Ω : V → {0, ..., P} for some
P ∈ N is the priority function.

Given a parity game G = (G, v0,Ω), a play is a path in the game graph
beginning at the initial vertex v0. For each vertex v ∈ V , the path is extended
as follows: if v is an Elöıse vertex then Elöıse chooses which u ∈ E(v) to
traverse next, whereas if v is an Abelard vertex then Abelard chooses (provided
that E(v) += ∅). If a vertex has no outgoing edges then play terminates and the
path is finite. If this does not occur, then the corresponding path is infinite.

More formally, each play is represented by either a finite or infinite sequence
of vertices ω = 〈v0, v1, v2, ...〉 such that for all vi in the sequence, vi ∈ E(vi−1).
If the sequence is finite with final element vn for some n ∈ N then E(vn) = ∅.
If E(vi) += ∅ then if λ(vi) = ∃, Elöıse chooses vi+1 else Abelard chooses.

Definition 2.9 A play ω is defined to be winning for Elöıse in the following
cases:
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2.2. Parity Games

• If ω is finite and the play ends in an Abelard vertex.

• If ω = 〈v0, v1, v2, ...〉 is infinite and the minimum number in the set
{i | i occurs in the sequence Ω(v0),Ω(v1),Ω(v2)... infinitely many times}
is even (This value is denoted by min(inf{Ω(v0),Ω(v1),Ω(v2), ...}).

A play ω is defined to be winning for Abelard if it is not winning for Elöıse.

Definition 2.10 A strategy for Elöıse is a mapping σ : V ∗ · {v | λ(v) =
∃} → V that defines how Elöıse should extend the current play. In particular
σ(〈v0, v1, ...vn〉) ∈ E(vn). A strategy π for Abelard is similarly defined.

Thus, given a strategy σ for Elöıse and a strategy π for Abelard, there exists
a unique play ω(σ, π) = 〈v0, v1, v2, ...〉 such that for each vi in the play, if
λ(vi−1) = ∃ then σ(〈v0, v1, v2, ...vi−1〉) = vi. Similarly, if λ(vi−1) = ∀ then
π(〈v0, v1, v2, ...vi−1〉) = vi.

Definition 2.11 A strategy is said to be memoryless if each move only de-
pends on the current vertex. More specifically, in the case of Elöıse, a strategy
is memoryless if it can be defined as a function σ : {v | λ(v) = ∃}→ V where
σ(v) ∈ E(v) (A memoryless strategy for Abelard is analogously defined).

Definition 2.12 Given a parity game G = (G, v0,Ω), Elöıse is said to have a
winning strategy if there exists a strategy σ such that for all possible Abelard
strategies π, the corresponding play ω(σ, π) is winning for Elöıse. A winning
strategy for Abelard can be similarly defined.

In particular, it was shown in [4] that for a parity game, a memoryless winning
strategy always exists for one of the players.

The purpose of solving a parity game is to determine which player has a win-
ning strategy given the initial vertex v0. In some definitions, the solution of
a parity game is defined as determining which player has a winning strategy
for all possible initial vertices in the game graph. For such a global solution,
the sets WE and WA are given which partition the set of vertices V into ver-
tices from which Elöıse and Abelard have winning strategies respectively. In
addition to this, the corresponding winning strategy may be given in some
solutions. For the purposes of implementing the game solver into the model
checker Thors, we will concentrate on solving games where an initial vertex
is specified. In Section 6.2, however, it is necessary to provide a global solution
and return the corresponding winning strategy so that a fair comparison to
existing parity game solvers can be made.

Definition 2.13 A Büchi game is a game GB = (G, v0, F ) where G is a
game graph, v0 is an initial vertex and F ⊆ V is the accepting set. A play is
defined analogously to that of a parity game.
A play is defined to be winning for Elöıse in the following cases:
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2.2. Parity Games

• ω is finite and the play ends in an Abelard vertex.

• ω = 〈v0, v1, v2, ...〉 is infinite and inf(v0, v1, v2, ...) ∩ F += ∅

If neither of these cases holds then the play is defined to be winning for Abelard.

Note that a Büchi game GB = (G, v0, F ) can easily be shown to be equivalent
to a restricted type of parity game G = (G, v0,Ω) where Ω maps each vertex
to a priority of 1 or 0 (i.e. Ω : V → {0, 1}). More specifically, if v ∈ F then
Ω(v) = 0 and if v /∈ F then Ω(v) = 1.

In order to demonstrate a Büchi game consider the following example:

0E

1A2E3E4A

The game GB = (G, v0, F ), with G = (V, E,λ) where V and E are as shown
in the diagram. For v ∈ {1A, 4A}, λ(v) = ∀ else λ(v) = ∃. The initial vertex
v0 = 0E and the accepting set F = {1A, 4A}. A play, therefore, begins at the
vertex 0E and so Elöıse makes the first move. She has three successor vertices
to choose from. If Elöıse selects 2E , then Abelard wins the game since 2E

is owned by Elöıse and has no successor vertices. If Elöıse selects 1A, then
Abelard owns this vertex and hence makes the next move. The vertex 2E is a
successor of 1A, so Abelard could select 2E resulting in a win for him. Thus at
the beginning of the game, two of the three vertices Ëloise can pick from result
in a win for Abelard provided he employs the correct strategy. It remains to
consider the final successor vertex of 0E. If Elöıse moves to 3E, then since
this vertex is owned by her, she makes the next move. From 3E, Eloise has
two choices. Either move back to 0E , or move to 4A. In the first case, if she
continues with the same strategy then play will loop between 0E and 3E. Since
neither of these vertices are accepting this would result in a win for Abelard.
If Elöıse moves to 4A from 3E then the next move is determined by Abelard.
If Abelard chooses to move to 0E, then by repeating the same strategy the
play ends up in an infinite loop of vertices including the vertex 4A which is
accepting. This is similarly the case if Abelard chooses to move to 3E . Thus
if the initial vertex is 0E then Elöıse has a winning strategy. Provided that at
0E, Elöıse moves to 3E and at 3E, Elöıse moves to 4A, Elöıse will always win
regardless of what strategy Abelard employs.

Definition 2.14 A co-Büchi game is a game GCB = (G, v0, F ) where G is a
game graph, v0 is an initial vertex and F ⊆ V . A play is defined analogously
to that of a parity game.
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In contrast to that of a Büchi game, however, a play is defined to be winning
for Elöıse in the following cases:

• If ω is finite and the play ends in an Abelard vertex.

• If ω = 〈v0, v1, v2, ...〉 is infinite and inf(v0, v1, v2, ...) ∩ F = ∅

As with Büchi games, if neither of these cases holds then the play is defined to
be winning for Abelard.

Note that, similarly to the case of Büchi games, a co-Büchi game GCB =
(G, v0, F ) can be shown to be equivalent to a restricted type of parity game
G = (G, v0,Ω) where Ω maps each vertex to a priority of 1 or 2. In particular
Ω(v) = 2 for each v ∈ V \F and Ω(v) = 1 for each v ∈ F .

2.3 Parity Games in Relation to the Modal µ-Calculus

We now demonstrate how the model checking problem for the modal-µ calculus
can be reduced to the problem of solving a parity game. The explanation given
is similar to that in [17].

Given a closed modal µ-calculus formula ϕ in positive normal form, with al-
ternation depth D, a labelled transition system T = (S,→, ρ) and an initial
state s0, we define the parity game G = (G, v0,Ω) as follows, using Sub(ϕ) to
denote the set of all subformulas for ϕ:

• G = (V, E,λ) where V = Sub(ϕ)× S.

• For each v ∈ V , E(v) is defined as follows:

– If v = (p,s), (¬p,s), then E(v) = ∅

– If v = (ψ1 ∨ ψ2, s) or (ψ1 ∧ ψ2, s) then E(v) = {(ψ1, s), (ψ2, s)}

– If v = ([a]ψ, s) or (〈a〉ψ, s) then E(v) = {(ψ, t)|s
a
−→ t}

– If v = (σZ.ψ, s) for a fixpoint operator σ then E(v) = {(Z, s)}

– If v = (Z, s) for a bound variable Z, where σZ.ψ is the corresponding
fixpoint subformula of ϕ, then E(v) = {(ψ, s)}.

• For each v ∈ V , λ(v) is defined as follows:

– If v = (p, s), where s /∈ ρ(p) or v = (¬p, s) where s ∈ ρ(p) then
λ(v) = ∃

– If v = (ψ1 ∨ ψ2, s) then λ(v) = ∃

– If v = (〈a〉ψ, s) then λ(v) = ∃
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– For any other v ∈ V , λ(v) = ∀. (Note that since the vertices of type
(Z, s) and (σZ.ψ, s) have exactly one outgoing edge these vertices
can be owned by either player)

• v0 = (ϕ, s0)

• For each v ∈ V , Ω(v) is defined as follows:

– If σZ.ψ is a subformula of ϕ then Ω((Z, s)) depends on l, where l is
the position of σZ.ψ in the longest alternating chain it appears in
within ϕ. If the initial element of this longest alternating chain is a µ
fixpoint formula then Ω((Z, s)) = l. If, however, the initial element
of this alternating chain is a ν fixpoint formula, then Ω((Z, s)) =
l − 1.

– For all other subformulas ψ of ϕ, if there exists an alternating
chain in ϕ of length D that begins with a µ fixpoint formula then
Ω(ψ, s) = D else Ω(ψ, s) = D−1, where D is the alternation depth
of ϕ.

This parity game corresponds to the model checking problem in the sense that
if Elöıse has a winning strategy then s0 !T ϕ and if Abelard has a winning
strategy then s0 !T ϕ. Thus, the task of the player Elöıse is to try and prove
the property ϕ holds for the transition system T and the task of the player
Abelard is to disprove the property holds.

Essentially, for each vertex (ψ, s), Elöıse tries to prove the property ψ holds
from state s and Abelard tries to disprove this. Beginning at the initial vertex
(ϕ, s0), by traversing the graph, the problem is reduced to proving the property
ψ for state s for the current vertex (ψ, s).

This reduction of the problem is guided by Elöıse and Abelard in such a way
that if an existential property needs to be proved (i.e the formula is of the
form (〈a〉ψ, s) or (ψ1 ∨ ψ2, s)) then Elöıse picks the next vertex. Conversely
if a universal property needs to be proved (i.e. the formula is of the form
([a]ψ, s) or (ψ1∧ψ2, s)) then Abelard picks the next vertex. This ensures that,
provided the correct strategy is employed, the truth of whether the original
property holds is maintained along each vertex travelled.

The game can only enter an infinite play for vertices corresponding to sub-
formulas of a fixpoint formula. In particular, if such an play occurs then the
winner is determined by the vertices of the type (Z, s) that occur infinitely
often (for Z ∈ V ar). Each of the corresponding variables for each of these
vertices is bound to a fixpoint operator. Note that by construction of the
game, the fixpoint operators binding these variables will be nested within one
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another. The variable bound to the outermost fixpoint operator, of those that
occur infinitely often, determines the winner of the game.

The priority function Ω of the game is defined so that if the variable bound
to the outermost fixpoint operator is a µ fixpoint operator then Abelard wins
and if it is a ν fixpoint operator then Elöıse wins. This corresponds to the fact
that µ is for finite looping.

For example, consider the formula µZ.p ∨ (q ∧ 〈a〉Z) which is similar to a
previously discussed example and is used to describe the property “There exists
an a-labelled path where q holds until p holds”.

Consider the following labelled transition system:

0 1

a

a

Let ρ(q) = {0} and ρ(p) = {1}. Clearly the property holds for the state 0
since q holds at 0 and there is an a-transition to the state 1 where p holds.
The corresponding game graph is shown in figure 1.

For this graph Ω(v) = 1 for all v ∈ V since the longest alternating chain is of
length 1 and this uses a µ fixpoint formula.

As would be expected Elöıse can win the game by employing a strategy where
σ((p ∨ (q ∧ 〈a〉Z), 0)) = (q ∧ 〈a〉Z, 0), σ((〈a〉Z, 0)) = (Z, 1) and σ((p ∨ (q ∧
〈a〉Z), 1)) = (p, 1).

For the formula µZ.p ∨ (q ∧ [a]Z), the graph would have the same structure
as the previous example but Abelard would get to pick the next vertex at
([a]Z, 0) which would replace (〈a〉Z, 0). Abelard could therefore employ a
strategy where π(([a]Z, 0)) = (Z, 0), resulting in a infinite play that Abelard
would win. This corresponds to the fact that the property µZ.p ∨ (q ∧ [a]Z)
does not hold on the given transition system since by traversing the a-transition
from 0 to itself, the property p never holds.

Note that using this construction, Büchi games can be used to solve the model
checking problem for any modal µ-calculus formula contained in the class Πµ

2

and similarly, co-Büchi games can be used to solve the model checking problem
for any formula contained in the class Σµ

2 .

Also, given that co-Büchi games can be easily solved using Büchi games, Büchi
games can be used to solve all modal µ-calculus formulas contained in Πµ

2 ∪Σ
µ
2 .

This is notable since the logic CTL∗ embeds into Πµ
2 ∪ Σµ

2 [3].
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Figure 1: Example parity Game

(µZ.p ∨ (q ∧ 〈a〉Z), 0)

(p ∨ (q ∧ 〈a〉Z), 0)E

(p, 0)E (q ∧ 〈a〉Z, 0)A

(q, 0)A

(〈a〉Z, 0)E

(Z, 0)

(Z, 1)

(p ∨ (q ∧ 〈a〉Z), 1)E

(p, 1)A (q ∧ 〈a〉Z, 1)A

(q, 1)E (〈a〉Z, 1)E
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3 Algorithms for Solving Büchi Games

In this section we present the algorithms from [2] that are to be implemented
along with an explanation of their correctness. It is important to note that
the algorithms assume that all vertices in the game graph have at least one
outgoing edge so that play never terminates. Since it is trivial to convert all
Büchi games to this form, these algorithms can be used to solve all Büchi
games.

We start by defining closed sets and attractors as given in [2], since these
notions play an integral role in the definition and analysis of the algorithms.

Definition 3.1 Given a game graph G = (V, E,λ), an Elöıse closed set is a
set U ⊆ V of vertices such that the following two properties hold:

1) For all u ∈ U , if λ(u) = ∃ then E(u) ⊆ U .
2) For all u ∈ U , if λ(u) = ∀ then E(u) ∩ U += ∅.

Thus a set U ⊆ V is closed for Elöıse if there exists a strategy for Abelard
such that whenever a game starts from some u ∈ U , the play remains within
U . (The definition for an Abelard closed set is analogous to this).

Definition 3.2 Given a game graph G = (V, E,λ) and a set U ⊆ V , the
Elöıse attractor set for U (denoted AttrE(U, G)) is the set of all states from
which Elöıse can employ a strategy such that, regardless of Abelard’s strategy,
the play will always eventually reach an element of U . This can be defined
formally using the following inductive definition:

AttrE(U, G) :=
⋃

i≥0 Si where:

• S0 := U

• Si := Si−1 ∪ {v ∈ V | λ(v) = ∃ and E(v) ∩ Si−1 += ∅}

∪{v ∈ V | λ(v) = ∀ and E(v) ⊆ Si−1}

(AttrA(U, G) can be defined analogously.)

Thus, an attractor set for some set U ⊆ V can be computed by performing a
backward search from all the vertices in U and thus can be computed in O(m)
time where m = |E|.

Notice that V \AttrE(U, G) is an Elöıse closed set (and similarly V \AttrA(U, G)
is Abelard closed).
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3.1. Algorithm 1

3.1 Algorithm 1

We begin by presenting the first algorithm which is usually regarded as the
classical method for solving Büchi games:

Informal description of algorithm 1. The algorithm proceeds as follows:
Given the Büchi game G = (G, v0, F ), consider the underlying game graph
G = (V, E,λ). Begin by computing R0 := AttrE(F, G). This corresponds
to the set of vertices from which Elöıse has a strategy to reach an accepting
vertex at least once.

Let T0 := V \R0. Clearly this set of vertices is winning for Abelard. We then
compute the set W0 of all vertices from which Abelard has a strategy to reach
T0, namely W0 := AttrA(T0, G). Clearly W0 is also winning for Abelard and so
the winning set of vertices for Elöıse must be contained in the reduced game
graph G1 = (V1, E1,λ) := G\W0.

Note that V1 := V \AttrA(T0, G) and so is Abelard closed in G. Also, a winning
play for Elöıse must remain in this set and thus when considering the set of
winning vertices for Elöıse, we need only consider the game on the reduced
graph G1.

We continue by repeating the process for the reduced game graph G1, com-
puting R1 := AttrE(F1, G1) (where F1 := F ∩ V1), T1 := V1\R1 and W1 :=
AttrA(T1, G1) and then we reduce the game graph again to G2 := G1\W1. We
keep repeating this process until Ti = ∅ for some i ∈ N in which case the set
of vertices in the remaining game is the set of winning vertices for Elöıse.

Thus, by checking if v0 is in this set we can ascertain whether Elöıse has a
winning strategy in the original game or not. Since each attractor computation
takes O(m) time, each iteration of the algorithm takes O(m) time and thus
since the algorithm does not run for more than O(n) iterations, where n = |V |,
the worst case running time for this algorithm is O(mn).

The algorithm can be described more formally as follows:
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Figure 2: Algorithm 1
Input: G := (G, v0, F ) where G = (V, E,λ)
Output: True or False
1. G0 = (V0, E0,λ) := (V, E,λ) = G, F0 := F , i := 0
2. Ri := AttrE(Fi, Gi)
3. Ti := Vi\Ri

4. If Ti = ∅ go to step 8 else continue to step 5.
5. Wi := AttrA(Ti, Gi)
6. Gi+1 := Gi\Wi, Fi+1 := Vi+1 ∩ Fi, i := i + 1
7. Go to step 2
8. return True if v0 ∈ Vi else False

AttrE(U, G) can be computed using the following algorithm:

Figure 3: Elöıse attractor algorithm
Input: G = (V, E,λ), U ⊆ V
Output: K ⊆ V
1. P (v) := |E(v)| for each v ∈ V
2. I(v) := {z | v ∈ E(z)}
3. K0 := U , i := 0
4. Ki+1 := ∅
5. For each k ∈ Ki:

5.1 For each v ∈ I(k):
5.1.1 If λ(v) = ∃ or P (v) = 1, Ki+1 := Ki+1 ∪ {v} else P (v) := P (v)− 1

6. i:= i+1
7. If (Ki ∪

⋃i−1
j=0 Kj) =

⋃i−1
j=0 Kj continue to step 8 else go to step 4

8. return K =
⋃i

j=0 Kj

(AttrA(U, G) can be similarly computed)

Note that both step 1 and 2 of the attractor algorithm can be computed by
considering each edge in the graph in turn and hence both steps have a running
time of O(m). Similarly, step 5 iterates over elements of {I(z) | z ∈ V } and
at each iteration, all elements of I(z) are considered. Since

∑

z∈V |I(z)| = m,
the total running time for this step is O(m). The worst case running time for
the computation of an attractor set is therefore O(m).

Thus in algorithm 1, at each iteration, step 2 has a worst case running time of
O(m). Also, since Ri can be at worst of size O(n), and similarly for Vi, step 3
has a worst case running time of O(n). Over all iterations of algorithm 1, step
5 has a total running time of O(m), since any edges considered in the attractor
calculation are removed from the game graph in step 6, and thus these edges
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are not considered again in step 5 in a later iteration. Due to step 2 and since
n ≤ m, each iteration of the algorithm does at most O(m) work. Since the
algorithm iterates at most O(n) times, the worst case time complexity for this
algorithm is therefore O(mn).

The algorithm is demonstrated using the following example:

0E

1E

2A 3E

4E

5A 6E

7E

1. G0 = (V0, E0,λ) where V0 = {0E, 1E, 2A, 3E, 4E, 5A, 6E, 7E},
E0 = {(0E, 1E), (0E, 2A), (1E, 0E), (1E, 2A), (2A, 3E), (3E, 4E), (3E, 5A), (4E, 3E),

(4E , 5A), (5A, 6E), (6E, 7E), (7E, 6E)},
λ(v) = ∃ if v ∈ {0E, 1E, 3E, 4E, 6E, 7E} else λ(v) = ∀,
F0 = {1E, 2A, 5A} and i=0

2. R0 = AttrE(F0, G0) = F0 ∪ {0E, 3E, 4E}
3. T0 = V0\R0 = {6E, 7E}
4. T0 += ∅ go to step 5
5. W0 = AttrA(T0, G0) = T0 ∪ {5A}
6. G1 = G0\W0, F1 = {1E, 2A}, i=1.

Hence G1 is the following game graph:

0E

1E

2A 3E

4E

7. Go to step 2
2. R1 = F1 ∪ {0E}
3. T1 = {3E, 4E}
4. T1 += ∅. Go to step 5
5. W1 = T1 ∪ {2A}
6. G2 = G1\W1, F2 = {1E}, i=2

Hence G2 is the following game graph:

0E

1E

7. Go to step 2
2. R2 = F2 ∪ {0E}
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3. T2 = ∅
4. Go to step 8
8. If v0 ∈ {0E, 1E} return True else False

The correctness of the algorithm can be verified using the following results:

Proposition 3.1 For Wi += ∅, the set Wi is winning for Abelard where i ∈ N.

Proof (By induction) As explained in the description of the algorithm and by
the definition of attractors, W0 is winning for Abelard.

Now assume that the result holds for Wi for all 0 ≤ i < k for some k ∈ N.
Thus consider Tk. This corresponds to the set of vertices from which Elöıse
does not have a strategy to reach an accepting vertex in the remaining game
graph. Thus, in the original game the only accepting states that Elöıse can
possibly have a strategy to reach, beginning from an element of Tk, are those
that have already been removed (i.e. are contained in Wi for some 0 ≤ i < k)
and thus are winning for Abelard by the inductive hypothesis. Hence all the
elements of Tk are winning for Abelard so Wk := AttrA(Tk, Gk) is also winning
for Abelard.

Proposition 3.2 If Ti = ∅ then Vi is the set of winning vertices for Elöıse.

Proof Ti = ∅ =⇒ Ri = Vi. Hence, since Ri := AttrE(Fi, Gi), from any
v ∈ Vi, Elöıse has a strategy to reach an accepting vertex, and the correspond-
ing play is contained in the reduced game graph Gi. Thus any infinite play
employing this strategy must reach an accepting vertex in Fi infinitely often
and hence the strategy is winning for Elöıse since the game graph is such that
all plays are infinite. By Proposition 3.1, any vertex that has previously been
removed from the game graph is winning for Abelard and hence Vi is the set
of winning vertices for Elöıse in G.

The following result can be used to confirm the complexity of the algorithm:

Proposition 3.3 If Ti+1 += ∅ then Fi ∩Wi += ∅.

Proof Since Ri is the Elöıse attractor for Fi and Wi is the Abelard attractor
for V \Ri, if Fi ∩Wi = ∅ then Ri ∩Wi = ∅. If Ri ∩Wi = ∅ then Vi+1 = Ri and
hence Ri+1 = Ri which implies that Ti+1 = ∅.

From this proposition we can conclude that the algorithm iterates at most
O(b) times where b = |F |. Hence if b = O(n), since each iteration has O(m)
running time, the worst case time complexity for this algorithm is O(mn).
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3.2 Algorithm 2

We now present an algorithm given in [2]. Although this algorithm has the
same worst case time complexity as the first algorithm, it improves on algo-
rithm 1 in certain examples and is at worst O(m) slower. A notable improve-
ment is demonstrated for a particular family of graphs. In this case the second
algorithm has a linear O(n) time complexity whereas the first has a quadratic
O(n2) time complexity.

Informal description of algorithm 2. The algorithm proceeds as follows:
Given the Büchi game G = (G, v0, F ), consider the underlying game graph
G = (V, E,λ). The algorithm begins by considering the set C0

1 of non-accepting
vertices that are owned by Elöıse and have all outgoing edges going to non-
accepting vertices and the set C0

2 of non-accepting vertices that are owned by
Abelard and have an outgoing edge to a non-accepting vertex.

The union of these two sets is the set of candidate vertices to be included in the
set T0 from algorithm 1. More precisely T0 ⊆ (C0

1∪C0
2 ). The Abelard attractor

set X0 for the union of these two sets is found (X0 := AttrA(C0
1 ∪C0

2 , G)). This
corresponds to the set of all vertices from which Abelard can force the play to
reach one of the candidates for the set T0.

The algorithm then proceeds by finding the intersection of X0 with the set of
non-accepting vertices (call this set Z0). The set D0 is then calculated which
is the union of the set X0\Z0 and the set of all vertices in Z0 from which Elöıse
can force the game to leave Z0 in the next move. Clearly, the set D0 is disjoint
from T0.

The Elöıse attractor set of D0 restricted to the vertices in X0 is then computed
(call it L0). Note that although X0 is not a closed set, since all vertices in
X0\D0 have at least one outgoing edge contained in G\(V \X0), it is valid to
compute the Elöıse attractor of D0 on G\(V \X0). L0 therefore corresponds to
the set of all vertices in X0 from which Elöıse has a strategy to force the play
to either reach an accepting vertex in X0 or to leave X0 altogether.

By definition, from the set of vertices in V \X0, Elöıse has a strategy to reach an
accepting vertex. Thus X0\L0 (and analogously Z0\L0) corresponds exactly
to those vertices in V from which Elöıse cannot force the play to reach an
accepting vertex in G, i.e. T0 = X0\L0 (or Z0\L0) and thus the algorithm can
proceed as in algorithm 1. W0 := AttrA(T0, G) and G1 := G\W0 and then the
algorithm is repeated again on the reduced game graph G1 as before and the
algorithm continues until Ti = ∅ for some i ∈ N. As is given in [2], algorithm
2 can be described more formally as shown in figure 4.
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Figure 4: Algorithm 2
Input: G := (G, v0, F ) where G = (V, E,λ)
Output: True or False
1. G0 = (V0, E0,λ) := (V, E,λ) = G, i := 0
2. C0 := V0\F
3. Ci

1 := {v ∈ Vi | λ(v) = ∃ and E(s) ∩ Vi ⊆ Ci}
4. Ci

2 := {v ∈ Vi | λ(v) = ∀ and E(s) ∩ Ci += ∅}
5. Xi := AttrA(Ci

1 ∪ Ci
2, Gi)

6. Zi := Xi ∩ Ci

7. Di := {v ∈ Zi | λ(v) = ∃ and E(s) ∩ (Vi\Zi) += ∅} ∪ {v ∈ Zi | λ(v) =
∀ and E(s) ∩ Vi ⊆ (Vi\Zi)} ∪ (Xi\Zi)
8. Li := AttrE(Di, Gi\(Vi\Xi))
9. Ti := Zi\Li

10. If Ti = ∅ go to step 14 else continue to step 11.
11. Wi := AttrA(Ti, Gi)
12. Gi+1 := Gi\Wi, Ci+1 := Vi+1 ∩ Ci, i := i + 1
13. Go to step 3
14. return True if v0 ∈ Vi else False

Since the attractor computations have a worst case time complexity of O(m),
in each iteration steps 5 and 8 have at worst a time complexity of O(m).

In step 7, the algorithm works on the edges of the vertices in Zi. The work
done at each iteration in step 7 is therefore also at worst O(m). Similarly, the
work done for steps 3 and 4 at each iteration is at worst O(m).

Also, it is clear that the work done at each iteration for steps 6 and 9 are
no worse than O(n) and hence since there could be at worst O(n) iterations,
similarly to algorithm 1, algorithm 2 has a worst case time complexity of
O(mn).

The following example demonstrates algorithm 2:

0E

1A

2A 3A

4E

5A

6E

7E

1. G0 = (V0, E0,λ) where V0 = {0E, 1A, 2A, 3A, 4E, 5A, 6E, 7E},
E0 = {(0E, 0E), (0E, 2A), (1A, 2A), (1A, 4E), (2A, 3A), (2A, 4E), (3A, 4E), (3A, 5A),

(4E, 4E), (4E, 5A), (4E, 6E), (5A, 4E), (5A, 6E), (6E, 6E), (7E, 5E), (7E, 6E)},
λ(v) = ∃ if v ∈ {0E , 4E, 6E, 7E} else λ(v) = ∀,
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F0 = {2A, 5A} and i=0
2. C0 = {0E, 1A, 3A, 4E, 6E, 7E}
3. C0

1 = {6E}
4. C0

2 = {1A, 3A}
5. X0 := AttrA(C0

1 ∪ C0
2 , G0) = (C0

1 ∪ C0
2) ∪ {2A, 5A, 7E}

6. Z0 := X0 ∩ C0 = {1A, 3A, 6E, 7E}
7. D0 = {7E} ∪ {1A} ∪ {2A, 5A}
8. L0 := AttrE(D0, G0\{0E, 4E}) = {1A, 2A, 3A, 5A, 7E}
9. T0 := Z0\L0 = {6E}
10. T0 += ∅. Continue to step 11.
11. W0 := AttrA(Ti, Gi) = {1A, 2A, 3A, 5A, 6E , 7E}
12. G1 = G0\W0, C1 = {0E , 4E}, i = 1

Hence G1 is the following game graph:

0E

4E

13. Go to step 3
3. C0

1 = {0E, 4E}
4. C0

2 = ∅
5. X1 = {0E, 4E}
6. Z1 = {0E , 4E}
7. D1 = ∅
8. L1 = ∅
9. T1 = {0E, 4E}
10. T1 += ∅. Continue to step 11.
11. W1 = {0E, 4E}
12. G2 = G1\W1 = (∅, ∅,λ), C2 = ∅, i = 2

Clearly on the next iteration the algorithm will terminate and since V2 = ∅,
the algorithm will return false for any vertex in the graph.

A proof of correctness of algorithm 2 is included in [2], though a informal
explanation for the correctness of the algorithm is given as follows:

Whereas algorithm 1 finds all the vertices from which Elöıse can force the play
to reach an accepting vertex and then takes the complement of this to obtain
Ti, algorithm 2 focuses on finding Ti in a more direct manner by examining a
well chosen superset of Ti, namely Ci

1 ∪ Ci
2. In order to decide which vertices

in Ci
1 ∪Ci

2 are not in Ti, it is necessary to expand this superset to the Abelard
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attractor set Xi of Ci
1 ∪ Ci

2. The algorithm then continues by computing the
vertices in Xi which are not included in Ti.

Zi is calculated as the intersection between Xi and Ci since if a vertex is not
in Ci then it is an accepting vertex and thus cannot be a member of Ti. Using
Zi, the set Di is calculated which corresponds to the elements of Xi which are
either not in Zi or are vertices from which Elöıse can force the play to leave Zi

in one move, preventing such a vertex from being in Ti. The Elöıse attractor
(Li) of Di on the graph restricted to the vertices in Xi is then calculated so as
to determine from which vertices in Xi Elöıse can force the play to leave the
subset Zi thus identifying such vertices as not being in Ti.

By removing Li from Xi, the remaining vertices are Elöıse closed, and thus
since Xi\Li contains no accepting vertices, this set must be included in Ti.
Since Li and Ti are disjoint and Ti ⊆ Xi, we therefore have that Ti = Xi\Li.
From the proof of correctness of algorithm 1, the correctness of algorithm 2
now follows.

Algorithm 2 is preferable to algorithm 1 when the superset Xi is relatively
small, thus implying that the set Ri in algorithm 1 is relatively large. If Ri

is relatively small, however, then Ti is large, implying that Xi is large thus
making algorithm 1 preferable to algorithm 2. It is worth noting, however,
that as proved in [2], algorithm 2 performs at most O(m) more work than
algorithm 1 whereas there exist examples of Büchi games where algorithm 1
runs in quadratic time whereas algorithm 2 runs in linear time.

As given in [2], consider the following example:

nA 2A 1A 0A

nE 2E 1E 0E

Clearly the graph has O(n) vertices and O(n) edges, and at each iteration of
both algorithms Ti = {iE} and Wi = {iE , iA} hence at each iteration Vi =
{iE, iA, (i + 1)E, (i + 1)A, (i + 2)E, (i + 2)A, ..., nE, nA}.

Using algorithm 2, Ti is obtained as follows:

• Ci
1 = {iE} and Ci

2 = ∅

• Xi = {iE , iA}

• Zi = {iE}

• Di = {iA}

• Li = {iA}
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• Ti = Zi\Li = {iE}

In order to calculate Xi, algorithm 2 works on the incoming edges of iE and iA
thus this step is completed in constant time. The computation of Di and Li is
restricted to the edges of the vertices in Xi thus these sets are also obtained in
constant time. Clearly Zi can be decided in constant time and hence at each
iteration, Ti can be decided in constant time.

Since Wi = {iE , iA}, it is decided by working on the edges in {iE, iA} and hence
each iteration of algorithm 2 of this graph is completed in constant time.

Since the algorithm iterates O(n) times before terminating, the total work
for algorithm 2 is O(n). When using algorithm 1, however, Ti is obtained as
follows:

• Ri = {iA, (i + 1)E , (i + 1)A, (i + 2)E, (i + 2)A, ..., nE, nA}

• Ti = Vi\Ri = {iE}

In order to calculate Ri, algorithm 1 must work on the incoming edges of the
vertices in Ri, thus the total work for each iteration is at least O(n− i). Since
the algorithm continues for O(n) iterations, the total work for algorithm 1 on
this graph is at least Σn−1

i=1 (n− i) = O(n2).

3.3 Algorithm 3

As has been established in the previous section, when Ri is small it is faster to
use algorithm 1, whereas when Xi is small it is faster to use algorithm 2. It is
not necessarily true, however, that given a Büchi game, over all the iterations
of the algorithms, either Ri or Xi is consistently small. It may be that for
some iterations Ri is relatively small whereas for others Xi is. Hence, for some
graphs, it would be an preferable to use algorithm 1 for some iterations and
algorithm 2 for others.

In order to address this, since it is too expensive to determine at the start of
each iteration which algorithm would be faster, the following is suggested in
[2]: Use an algorithm that dovetails algorithm 1 and 2 at the start of each
iteration until Ti is obtained by one of the algorithms and then proceed by
calculating Wi as before.

In the cases where it varies between iterations whether algorithm 1 or 2 is
preferable, this third algorithm may outperform both of the previous algo-
rithms. An added advantage is that even with a Büchi game where one algo-
rithm is consistently better than the other, although algorithm 3 will perform
worse than the preferred algorithm, it will likely perform better (possibly sig-
nificantly so) than the other algorithm.
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Algorithm 3 will perform less well however, in the case of Büchi games where
at each iteration both algorithms 1 and 2 are comparable in speed, thus the
advantage of dovetailing would be lost.

The performance of Algorithm 3 along with Algorithm 2 and 1 will be tested
in Section 6.

3.4 Generating Winning Strategies

In Section 6, the performance of the algorithms will be compared to several
parity game solvers from [6]. In [6], however, a solution is given in the form of
Abelard and Elöıse winning regions and a corresponding winning strategy for
each player. In order to make a fair comparison to these parity game solvers,
therefore, it is necessary modify the algorithms so that they also produce this
type of solution. All three of the algorithms solve Büchi games in a global
manner and thus Abelard and Elöıse winning regions can easily be produced.
More precisely the Abelard winning region for a Büchi game will be

⋃

i≥0 Wi

and the Elöıse winning region is the complement of such a set. Hence, in order
to allow for a fair comparison against the parity game solvers in [6], it remains
to consider a method of generating a winning strategy.

Given a game graph G = (V, E,λ) and an accepting set F ∈ V , we wish to
compute the strategies σ : {v ∈ V | λ(v) = ∃} → V and π : {v ∈ V | λ(v) =
∀} → V such that for all v ∈ V , if v is winning for Elöıse then the play
ωv(σ, π), starting from v corresponding to those strategies results in a win for
Elöıse. Similarly, if v is winning for Abelard then ωv(σ, π) results in a win for
Abelard.

We begin with the following definition:

Definition 3.3 Given an attractor set Attrθ(U, G), an attractor strategy

is a strategy for player θ ∈ {∃, ∀}, for vertices v ∈ {u ∈ V | λ(u) = θ} ∩
Attrθ(U, G), such that from any v ∈ Attrθ(U, G), a play corresponding to that
strategy always reaches a vertex in the set U .

This can be computed as follows:

Given v ∈ {u ∈ V | λ(u) = θ} ∩ Attrθ(U, G), let i ∈ N be the smallest i such
that v ∈ Si where Si is as given in the definition of attractor sets. Then for
an attractor strategy σθ, σθ(v) ∈ {w ∈ E(v) | w ∈ Si−1}.

An attractor strategy can thus be computed at the same time as the corre-
sponding attractor set is decided. While searching backwards through the
graph, when a vertex v is added to the attractor set, σ(v) is assigned to the
successor vertex whose inspection caused v to be added.
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At each iteration i of algorithms 1 to 3, the set Ti is calculated which corre-
sponds to an Elöıse closed set on which, from all vertices in Ti, Abelard has
a winning strategy. Thus, there are no accepting vertices in Ti and hence an
Abelard winning strategy for v ∈ Ti ∩ {u ∈ V | λ(u) = ∀} can be calculated
simply by setting π(v) equal to any successor vertex that is a member of Ti.
Note that since Ti is Elöıse closed and is winning for Abelard, it is irrelevant
what σ(v) is set to for v ∈ Ti such that λ(v) = ∃. Thus for such v, σ(v) can
be set to any successor vertex.

From Ti, the attractor set Wi := AttrA(Ti, Gi) is then calculated, which is
also a set of vertices that are winning for Abelard. The correct strategy for
Abelard on the vertices in Wi\Ti can be computed simply by computing the
attractor strategy during the computation of Wi. This is because employing
this strategy results in Abelard forcing the play to reach an element of Ti from
which a winning strategy for Abelard has already been decided. Again, for
v ∈ Wi\Ti such that λ(v) = ∃, σ(v) can be set equal to any successor vertex.

Since all Abelard winning vertices are contained in one of Wi during algorithms
1-3, it remains to calculate the correct strategy for the Elöıse winning vertices.
In the final iteration (say l ∈ N) of each of the algorithms, exactly the Elöıse
winning vertices remain. Thus from each v ∈ Vl, Elöıse can force the play to
reach one of f ∈ F ∩ Vl. The set is Abelard closed and hence for any v ∈ Vl

such that λ(v) = ∀, π(v) can be set to any successor vertex. Also, since only
Elöıse winning vertices remain, for each f ∈ F ∩ Vl such that λ(f) = ∃, σ(v)
can be set to any successor vertex in Vl. It remains to consider the strategy
for vertices in v ∈ Vl\F such that σ(v) = ∃. These have to be calculated by
computing the attractor strategy for the attractor set AttrE(F ∩ Vl, Gl) which
is equivalent to the set Vl.

Note that in algorithm 1, the set AttrE(Fi, Gi) is calculated at each iteration
and so the attractor strategy for this Elöıse attractor set can be calculated
simultaneously. However, since algorithm 2 only works on the edges of vertices
in Xi for each iteration, an extra attractor computation will have to be made
at the end of the algorithm in order to identify the correct strategy for Elöıse.
This could significantly affect its performance in comparison to algorithm 1.
For the same reasons, an extra attractor computation will also have to be made
at the end of algorithm 3.

Although computing winning strategies affects the performance of algorithm
2 to a larger degree than that of algorithm 1, it could still be preferable to use
algorithm 2 (or 3). In particular, when there are a large number of iterations,
the effect of the extra attractor computation in the final iteration would be
reduced. Note also that except for Section 6.2 when a comparison to parity
game solvers is made, winning strategies will not be computed.
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4 Implementation

This section describes the implementation in OCaml of the Büchi game solving
algorithms from Section 3.

4.1 Büchi Game Structure

In order to implement these algorithms while maintaining a time complexity
of O(mn), it is important to choose appropriate data structures.

To aid the implementation of these algorithms, it is assumed that the graph is
given in the form of an array where each element of the array is a record that
corresponds to a vertex. Each vertex is represented by an integer and each
record is used to store a list of the predecessor vertices for that vertex and a
data type that determines whether the vertex is owned by Elöıse or Abelard.
It would be sensible to receive the graph in this form since the attractor calcu-
lation in the algorithm requires that we search backwards through the graph
and thus we will need to iterate through the set of incoming edges of vertices
as they are added to the attractor set.

Since the predecessor vertices for each vertex are stored in a list, when a
vertex is removed from the graph during the algorithm, it will not be removed
from any list of predecessor vertices that it appears in since this would be too
expensive. Instead, when computing each attractor, while checking through
the incoming edges of a vertex, a check will be made for each corresponding
predecessor vertex to see if it has been removed from the game graph before
considering adding it to the current attractor set. This will not affect the
overall complexity of the algorithms since each attractor computation will still
take at worst O(m) time provided that the check whether a vertex has been
removed can be made in constant time.

In the example given in Section 3 to demonstrate algorithm 1 therefore, the
graph would be received in the following form:

!!7 {owner : El, incoming : [6]}

!!6 {owner : El, incoming : [5, 7]}

!!5 {owner : Ab, incoming : [3, 4]}

!!4 {owner : El, incoming : [3]}

!!3 {owner : El, incoming : [2, 4]}

!!2 {owner : Ab, incoming : [0, 1]}

!!1 {owner : El, incoming : [0]}

!!0 {owner : El, incoming : [1]}

A game will therefore be given as a record that stores a graph in the form
given above and a list of accepting vertices.
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4.2 Data Structures for Algorithm 1

As mentioned above, as the algorithm progresses, vertices are removed from
the graph, so we will need a data structure that stores which vertices are
included in the current iteration. This would initially correspond to the set
V0 and then be modified to correspond to Vi at each iteration i by removing
appropriate vertices. For each iteration, in step 6 of algorithm 1 in figure 2,
we could be removing O(n) vertices, thus the vertex set will need to be stored
in a data structure such that each removal can be performed in constant time.

Also, when computing an attractor set, we will need to check whether vertices
considered for addition to this set are contained in the current vertex set
by referring to this data structure. Again, since we will need to examine at
worst O(n) vertices for each attractor calculation, we will need to be able to
ascertain whether a vertex is in the current vertex set in constant time. In
addition to this, Vi is used to compute Ti\Ri in algorithm 1. This computation
of Ti should be completed in no worse than O(n) time. The structure of Vi

therefore depends on the structure required for Ti and vice-versa.

For Vi, an array of length n will be used, that stores Boolean values correspond-
ing to whether a vertex is in the current vertex set. Thus, the membership of
a vertex in the current vertex set can be ascertained in constant time, and can
also be altered in constant time using this data structure.

Initially, this will be an array of length n where each entry is set to true and
when a vertex is removed the corresponding boolean value in the array can be
set to false.

Since Ti is used as the input of an attractor calculation, we will need to iterate
through all the elements of Ti in order to check their predecessor vertices.
In order to achieve this efficiently, it would be sensible to store Ti in a list.
This means that in order to compute Ti we will need to iterate through the
elements of Vi, checking their membership in the set Ri and adding them
to Ti accordingly. Iterating through elements of Vi using the Boolean array
data structure would be inefficient since it would involve iterating over all
elements of the length n array. Thus computing Ti would always take O(n)
time regardless of how many vertices were left in the graph. For this reason, a
second data structure will be used for Vi that allows the iteration of elements
in Vi to take time proportional to the cardinality of the set Vi. In order to
update the vertex set at each iteration, it will also be necessary to remove
vertices from the data structure in constant time.

Thus the following data structure will be used. An integer array of length
n + 1 will be used to store the vertices (the vertex array) and an integer array
of length n will be used to store the location of each vertex in the vertex array
(the location array). The last element in the vertex array will correspond to the
size of the current vertex set (some 0 ≤ k ≤ n) and the first k elements in the
vertex array will correspond to the vertices in the vertex set (not necessarily in
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numerical order). To facilitate the removal of elements from the vertex array,
the position of each vertex will be stored in the location array. Thus, a vertex
can be removed by checking the position of the vertex and replacing it with
the last vertex of the set stored in the vertex array. The cardinality of the set
would then be reduced by one (by reducing the value of the last element in
the vertex array). The following example demonstrates this:

The vertex set {2, 1, 5, 4} out of the possible set {0, 1, 2, 3, 4, 5, 6} of 7 vertices
could be represented by the following arrays:

0
2

1
1

2
5

3
4

4
8

V

5
8

6
8

7
4

0
7

1
1

2
0

3
7

4
3

V loc

5
2

6
7

The first four elements of the array V correspond to the desired set. The last
element of V corresponds the cardinality of the set and the remaining elements
of V , which are not being used, are by default set equal to the length of the
array. In V loc, the entries corresponding to vertices not included in the set
are by default set to the length of V loc. The other entries correspond to the
position of each vertex in V .

If we wanted to remove vertex 1 from this set, V and V loc would be altered
to the following:

0
2

1
4

2
5

3
4

4
8

V

5
8

6
8

7
3

0
7

1
1

2
0

3
7

4
1

V loc

5
2

6
7

Vertex 1 in V is replaced with the last element in the set, namely vertex 4,
and the location for 4 in V loc is altered accordingly. Also the cardinality of
the set is reduced by one.

If instead, we wished to remove vertex 4 from the original set then V and V loc
would be altered to the following form:

0
2

1
1

2
5

3
4

4
8

V

5
8

6
8

7
3

0
7

1
1

2
0

3
7

4
1

V loc

5
2

6
7

Vertex 4 occurs last in the set and so cannot be replaced in the same way as
before. Instead the only alteration required is to reduce the cardinality by one.

Notice that the vertex location of those vertices removed is not altered. This
is because no vertex is removed from any set more than once in the algorithm
and the vertex location of a removed vertex is never referred to again.
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Using this data structure, the elements of Vi can now be iterated through in
time proportional to their size. This is achieved by iterating through the vertex
array up to the index that is one less than the cardinality of the vertex set.

Similarly to Ti, Fi is also used as the input of an attractor calculation and thus
a data structure allowing efficient iteration through its elements is required.
Unlike Ti though, at the end of each iteration, the set Fi+1 needs to be cal-
culated by removing elements from Fi. Elements in Fi therefore need to be
removed in constant time as was the case with Vi. In order to achieve both of
these requirements, the same data structure as the second structure for Vi will
be used.

Additionally, when considering algorithm 1, a data structure that stores Ri

for each iteration is required. Ri is an attractor set and thus is computed by
adding vertices inductively to a set. In the worst case, O(n) vertices are added.
For this reason, Ri needs to be stored in a data structure such that a vertex
can be added to Ri in constant time. Also, we will need to check membership
of vertices in Ri in order to compute Ti := Vi\Ri. To execute this in the most
efficient manner, it is therefore appropriate to store each Ri as an array of
boolean values like the first structure used for Vi.

The most appropriate data structure for Wi is a list since it is necessary to
iterate through the elements of Wi in order to remove them from the game
graph.

For algorithm 1, it now remains to consider the data structures required for
the attractor computations:

For each iteration of algorithm 1, two attractor sets are computed. Throughout
an attractor computation, over all v ∈ V , the value of P (v) (initially equal to
|E(v)|) is considered at worst O(m) times. Hence for all v, the value of P (v)
must be accessed in constant time in order to maintain the correct complexity.
Thus this information will be stored in an array of length n where each entry
in the array contains P (v) for the vertex corresponding to that entry in the
array. Because P (v) is modified during each attractor computation, in order to
prevent having to re-calculate |E(v)| each time an attractor set is computed,
this data will be managed in four arrays instead of one. One array will be
used to store |E(v)| for each v and will be initialised at the start of the main
algorithm. It will then be fixed and not modified until the end of each iteration
of the algorithm, when the value of |E(v)| changes. The second and third arrays
will be used to store which iteration of the main algorithm each vertex was last
considered during the first and second attractor set computations respectively.
The fourth array will store the current ‘working value’ of P (v) for each v.
That is, at each iteration, when a vertex is considered in the first attractor
calculation, the corresponding entry for that vertex in the second array will be
checked. For the second attractor calculation the third array will be checked.
If the value in this array is not equal to the current iteration then the vertex
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has not yet been considered in the current attractor set computation. In
this case the value of P (v) from the first array will be copied into the fourth
and then this entry in the fourth array will be modified during the attractor
calculation. If the value is equal to the current iteration number then the
vertex has previously been considered in the current attractor computation
and thus the algorithm will inspect and modify the value stored in the fourth
array.

I(v) can already be accessed in the inputted graph as a list, so no data structure
needs to be considered for this.

In the algorithm, when computing the attractor set for a set U , the set K0

(as defined in the attractor set algorithm) is assigned as equivalent to U . In
the main algorithm, Fi and Ti are the inputs for the attractor computations
at each iteration, where one is a list and the other is stored in an array as
described above. For continuity and transparency of the attractor implemen-
tation however, the input of the attractor computation will correspond to a
list. Fi will therefore be converted into a list before being inputted into the
attractor calculation. Since all the elements of Fi will be considered during the
attractor calculation anyway, this should not noticeably affect the efficiency of
the implementation.

Also, since the output of the attractor computation is the union of all Ki for
each iteration i, the output of the attractor computation will be a list. This
matches the data structure required for Wi, however for Ri this will have to
be translated into a boolean array. Again, this does not affect the efficiency of
the implementation too much since it can be achieved in time proportional to
the size of the outputted list.

4.3 Algorithm 1 Implementation

Using the data structures given, algorithm 1 is given in figure 5.

The function Initialise calculates the number of successor vertices for each
vertex and stores this count in the array P . It iterates through each list of
predecessor vertices in the array I, and increments the value of P [i] by one for
each vertex i that appears in a list.

The function InitialiseF iterates through the list of accepting vertices F list,
and adds them to the F , F loc data structure as described in the previous
section. For each i ∈ F list, the current number of vertices in F is determined
by referring to F [n]. The vertex i is then added to F at position F [n] and the
value of F [n] is incremented by one. The position of i in F is then recorded in
F loc[i] to allow for removal of the vertex at a later stage. Note that in contrast
to F and F loc, V and V loc are initialised to the correct value in step 2 since
all vertices are contained in the initial vertex set.
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Figure 5: Algorithm 1 Implementation

Input: Graph G := (I[n], Owner[n]), Integer list F list, Integer v0

Output: True or False

1. Create arrays isvert[n], V [n + 1], V loc[n], F [n + 1], F loc[n], R[n],
P [n], LookF [n], LookT [n], Work[n]

2. For 0 ≤ j ≤ n− 1:
isvert[j] := true, V [j] := j, V loc[j] := j, F [j] := n + 1,
F loc[j] := n, R[j] := false, LookF [j] := −1, LookT [j] := −1,
P [j] := 0, Work[j] := 0

4. V [n] := n, F [n] := 0

5. Initialise(P, G)

6. InitialiseF (F list, F, F loc)

7. MainAlgorithm(0,G,v0,isvert,V ,V loc,F ,F loc,R,P ,LookF ,LookT ,Work)

Once all the data structures have been initialised, the function MainAlgorithm
given in figure 6 implements the rest of the algorithm.

Figure 6: MainAlgorithm

Input: Integers: i, v0, Graph: G := (I[n], Owner[n]),
Boolean Arrays: isvert, R,
Integer Arrays: V, V loc, F, F loc, P, LookF, LookT, Work

Output: True or False

1. Create list F list of elements in array F

2. Rlist := Attractorcomp(i, isvert, P, Work, Eloise, LookB, F list, G)

3. For each j ∈ Rlist: R[j] := true

4. T := ComputeT (R, V )

5. W := Attractorcomp(i, isvert, P, Work, Abelard, LookT, T, G)

6. If W := [ ] then return true else continue to step 7

7. If v0 ∈ W then return false else continue to step 8

8. For each j ∈ W :

8.1. isvert[j] := false

8.2. Remove(j, V, V loc)

8.3. Remove(j.F, F loc)

8.4. For each v ∈ I[j]:

8.4.1 P [v] := P [v]− 1

9. For each j ∈ Rlist: R[j] := false

10. MainAlgorithm(i+1,G,v0,isvert,V ,V loc,F ,F loc,R,P ,LookF ,LookT ,Work)
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The list F list of accepting vertices is computed by iterating through the array
F up to the index F [n]− 1. The ComputeT (R, V ) function finds the list T by
iterating through the array V up to the index V [n] − 1. This corresponds to
the current vertex set. Each of these vertices is checked for membership in R
and added to T accordingly.

Once the list W is computed, step 8 updates the data structures by removing
vertices which are in W . The function Remove removes a vertex from the V ,
V loc data structure as described in the previous section. Also, if the vertex
location of a vertex is set to n then the function Remove does not attempt
to remove that vertex. Since, all values of F loc are initialised to n in step 2
of figure 5, if a vertex j is not contained in the set F , the function will not
attempt to remove it. In step 8.4, for each predecessor vertex of a vertex in
W , the outgoing edge count stored in P is decremented by one. In step 9, the
value of R[j] is reset to false for the next iteration.

The function Attractorcomp computes attractor sets and is described in figure
7.

Figure 7: Attractorcomp(i,isvert,P ,Work,Owns,Look,U ,G)

Input: Integer: i, Boolean array: isvert, Integer arrays: P , Work, Look,
Owns = Eloise or Abelard, Integer list: U ,
Graph: G = (I[n], Accept[n], Owner[n])

Output: Integer List

1. Process(i,Work,Look,U)

2. Attractor(i,isvert,P ,Work,Owns,Look,G,[ ],U ,[ ])

The function Process iterates through the vertices in U and alters the values
of Work and Look accordingly. For a vertex j ∈ U , Work[j] is set equal to 0
and Look[j] is set equal to the current iteration i. This prevents these vertices
being added more than once to the attractor set during the function Attractor.

Using the updated value of Work and Look, the function Attractor then com-
putes the attractor set as described in figure 8.
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Figure 8: Attractor(i,isvert,P ,Work,Owns,Look,G,Z,K,Y )

Input: Integer: i, Boolean array: isvert, Integer arrays: P, Work, Look,
Owns = Eloise or Abelard, Graph G = (I[n], Accept[n], Owner[n]),
Integer lists: Z, K, Y

Output: Integer list

1. If list K = [ ] then:

1.1 If list Z = [ ] then return Y

1.2 If list Z = z :: zs then:

1.2.1 Attractor(i,isvert,P ,Work,Owns,Look,G,[ ],Z,Y )

2. If list K = k :: ks then:

2.1. Z’ := Expand(i,isvert,P ,Work,Owns,Look,Owner,I[k],Z)

2.2 Attractor(i,isvert,P ,Work,Owns,Look,G,Z ′,ks,k :: Y )

The list K is used to store those vertices found to be in the attractor set on the
previous iteration of the attractor computation and Z is used to store those
vertices found so far in the current iteration. For each j ∈ K, the predecessor
vertices are checked using the function Expand and are added to the list Z if
they need to be added to the attractor set. Once the predecessor vertices of j
have been considered, j is added to the list Y , which is eventually the output
of the function. Once all the vertices in K have been considered, if Z is not
empty then the attractor function is called with the list K equal to Z and
Z equal to the empty list. If Z is also empty then the function terminates,
returning Y .

The function Expand, given a list of predecessor vertices, determines which
need to be added to the attractor set and thus added to the list Z. This
is achieved by considering the values of isvert, P , Work, Owns, Look and
Owner. First, for each vertex j in the list of predecessor vertices, the value of
isvert[j] is checked. If this is false then j is not added to Z. Next, the owner of
j is checked using the array Owner. If the owner of the vertex matches Owns
then the value of Look[j] is checked. If this matches the current iteration i
then the vertex has already been added to the attractor set and thus is not
added this time. If it does not match i then it is added to Z and Look[j] is set
equal to i to prevent the vertex being added again. If the owner of the vertex
j does not match Owns then the outgoing edges of j need to be considered.
First, the value of Look is examined. If this equals i then the corresponding
outgoing edge count P [j] has already been copied to the array Work. If it
does not equal i then Work[j] is set equal to P [j]. The value of Work[j] is
then considered. If Work[j] = 1 then all successor vertices have been added to
the attractor set and thus j is added to Z. If Work[j] += 1 then there remain
some successor vertices that are not included in the attractor set. In this case,
the value of Work[j] is decremented by one and j is not added to Z.
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4.4 Data Structures for Algorithm 2

We now consider the additional data structures required for the implementa-
tion of algorithm 2. The structures required for Ti and Wi for algorithm 2 is
analogous to that required in algorithm 1, thus both will be stored as a list.

Since Vi is not used in the computation of Ti in this algorithm, it suffices to
just use the boolean array structure from the first algorithm

Note that Xi is the output of an attractor computation and thus will initially
be in the form of a list. It is used as the set of vertices the graph is restricted to
in the attractor computation in step 8 of algorithm 2. Thus, a data structure
for Xi is required such that membership of vertices in Xi can be checked in
constant time during the attractor computation. For this purpose, Xi will be
stored as a boolean array, which can be computed in time proportional to the
size of Xi from the list structure of Xi.

Note also that, during the attractor computation in step 8, a separate count
of successor vertices will have to be used that counts only those successor
vertices contained in Xi. This can be done by storing such a count in an array
initialised to the same value as the original count of successor vertices. When
the list Xi is given, this count is calculated by iterating through the successor
vertices of vertices in Xi and decrementing the count accordingly by checking
the membership of each successor vertex in Xi using the boolean array. For
this purpose, since we could be considering O(m) edges, it will be necessary
to iterate through the sets of successor vertices in time linearly proportional
to their size. Hence, when the count of successor vertices is calculated at the
beginning of the algorithm, an array storing lists of successor vertices will also
need to be calculated.

In order to calculate Ti in list form efficiently, Zi will need to be stored in the
form of a list in order to iterate through its elements in time linearly propor-
tional to its size. Additionally, it is used in the calculation of Di, where, in
order to make sure the work required for this step is at worst O(m), member-
ship of vertices in Zi need to be checked in constant time. This is because, in
the computation of Di, successor vertices of elements of Zi need to be checked
for membership in Zi and at worst O(m) checks could be made. Thus, Zi, as
with Xi, will additionally be stored in the form of a boolean array.

Similarly, Li will also initially be in the form of the list due to it being the out-
put of an attractor computation. Li is used to obtain the set Ti by computing
Zi\Li, thus, as with Ri in the computation Vi\Ri, Li will also be stored as a
boolean array.

Ci+1
1 and Ci+1

2 can be computed at each iteration using Wi as follows:

Clearly Ci+1
2 = Ci

2\Wi hence Ci+1
2 can be computed by removing the appro-

priate vertices from the set Ci
2.

Ci+1
1 can be calculated by removing elements from Ci

1 that are in Wi as with
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4.5. Algorithm 2 Implementation

Ci+1
2 and keeping a count of accepting successor vertices for each vertex in

Ci
1. At the end of each iteration, this count can be decremented by iterating

through the predecessor vertices of vertices in Wi and decrementing the count
for each vertex accordingly. (Note the count is only decremented if the vertex
in Wi is accepting.) When the count reaches 0, the corresponding vertex is
added to Ci+1

1 . This count can be initialised in the first iteration at the same
time that the count of successor vertices is calculated by checking whether
successor vertices are accepting or not, and is similarly stored in an array. For
this purpose, Ci will be stored as a boolean array. This data structure will
also facilitate the computation of Zi = Xi ∩ Ci.

Thus, it remains to consider the data structures required for Ci
1 and Ci

2. Since
both can be computed by adding and removing elements at the end of each
iteration and since only their union is used in the algorithm, only Ci

1∪Ci
2 will be

stored. Since we could be adding or removing O(n) elements at each iteration,
both of these operations should take a constant amount of time. Also, since
Ci

1 ∪ Ci
2 is used as the input of an attractor computation, in order to be most

efficient it would be preferable to iterate though its elements in time linearly
proportional to its size. For this purpose, the vertex array, vertex location
array structure used for Vi and Fi in the previous implementation will be used.

Finally, the data structures required for the computation of Di need to be
considered. Since Di will be used as input to an attractor computation, it will
be sensible to store it as a list. Note that Xi\Zi can be obtained efficiently in
list form using the list of Xi and the boolean array of Zi, hence no additional
data structures are required for this part of Di. The remaining part of Di is
calculated by iterating through the successor vertices of vertices in Zi, hence
the list structure of Zi will be required. Also, since we could be considering
O(m) edges it will be necessary to iterate through the successor vertices in
time linearly proportional to their size. For this purpose, the array storing the
lists of successor vertices will be used.

4.5 Algorithm 2 Implementation

Using the data structures given, figure 9 outlines algorithm 2.

The function Initialise′ calculates the number of successor vertices for each
vertex and stores this count in the array P , similarly to the function Initialise.
It also initialises the array Out which stores lists of successor vertices. This is
achieved by iterating through each list of predecessor vertices in the array I.

The function Initialise2 iterates through the vertices in F list and sets the
corresponding value in the array coBuchi to false. In addition to this, the
arrays CountC and PX are set equal to the array P .
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Figure 9: Algorithm 2 Implementation

Input: Graph G := (I[n], Owner[n]), Integer list F list, Integer v0

Output: True or False

1. Create arrays isvert[n], P [n], PX[n], coBuchi[n], X[n],
Z[n], L[n], CountC[n], C[n + 1], Cloc[n], LookC[n], LookD[n], LookT [n],
work[n], Out[n]

2. For 0 ≤ j ≤ n− 1: isvert[j] := true, P [j] := 0, PX[j] := 0,
coBuchi[j] := true, X[j] := false, Z[j] := false, L[j] := false,
CountC[j] := 0, C[j] := n + 1, Cloc[j] := n, LookC[j] := −1,
LookD[j] := −1, LookT [j] := −1, Work[j] := 0, Out[j] := [ ]

3. C[n] := 0

4. Initialise′(P, Out, G)

6. Initialise2(P, coBuchi, PX, CountC, F list)

7. ComputeC(Outgoing, coBuchi, CountC, C, Cloc, G)

8. MainAlgorithm2(0, G, v0, isvert, C, Cloc, P, PX, coBuchi, X, Z

L, CountC, LookC, LookD, LookT, Work, Out)

The function ComputeC is used to initialise the C, Cloc structure. It iterates
through all lists of predecessor vertices stored in the array I. If for a vertex
j and a predecessor vertex k, coBuchi[j] and coBuchi[k] are both true (i.e.
neither are accepting) then the owner of vertex k is checked. If k is owned
by Elöıse then CountC[k] is decremented by one whereas if it is owned by
Abelard then CountC[k] is set equal to 0. Once all lists of predecessor vertices
have been considered, the value of CountC for each vertex is checked. If for a
vertex j, CountC[j] = 0, then j is added to the data structure C, Cloc and
CountC[j] is set equal to -1. This prevents j being added to C a second time
later in the implementation. If CountC[j] += 0 then the vertex is not added to
C.

The function MainAlgorithm2 is described in figure 10.

Given the set X, the function CountOutX sets the count PX of successor
vertices restricted to the set X to the correct value. It achieves this by iterating
through Xlist. For each j ∈ Xlist, the list of successor vertices Out[j] is
considered. For every k in this list of successor vertices for which X[k] is false,
the value of PX[j] is decremented by one.

The function ComputeZ returns the list Zlist by iterating through Xlist and
adding a vertex j to Zlist if coBuchi[j] is true.
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Figure 10: MainAlgorithm2

Input: Integer: i, v0, Graph: G := (I[n], Owner[n])
Boolean Arrays: isvert, coBuchi, X, Z, L
Integer Arrays: P , PX, CountC, C, Cloc,

LookC, LookD, LookT , Work
Integer List Array: Out

Output: True or False

1. Create list Clist of elements in array C

2. Xlist := Attractorcomp(i, isvert, P, Work, Abelard, LookC, Clist, G)

3. For each j ∈ Xlist: X[j] := true

4. CountOutX(PX, Out, Xlist, X)

5. Zlist := ComputeZ(coBuchi, Xlist)

6. For each j ∈ Zlist: Z[j] := true

7. D := InitD(Xlist, Z)

8. D := ComputeD(G, isvert, Out, Zlist, Z, D)

9. Llist := Attractorcomp(i, X, PX, Work, Eloise, LookD, D, G)

10. For each j ∈ Llist: L[j] := true

11. T := ComputeT2(Zlist, L)

12. W := Attractorcomp(i, isvert, P, Work, Abelard, LookT, T, G)

13. If W = [ ] then return true else continue to step 14

14. If v0 ∈ W then return false else continue to step 15

15. For each j ∈ W :

15.1 isvert[j] := false

15.2 Remove(j, C, Cloc)

15.3 For each v ∈ I[j]:

15.3.1. P [v] := P [v]− 1

15.3.2. AddToC(isvert, coBuchi, CountC, C, Cloc, v, j)

16. ReinitXZL(Xlist, X, Zlist, Z, Llist, L, PX, P )

17. MainAlgorithm2(i + 1, G, v0, isvert, C, Cloc, P, PX, coBuchi, X,

Z, L, CountC, LookC, LookD, LookT, Work, Out)

The function InitD finds the complement of X and Z using Xlist. This is
then returned as a list which corresponds to the first vertices to be added to
D. The function ComputeD is then called to compute the remaining vertices
in the list D. This process is outlined in figure 11. In step 11, ComputeT2
returns the list T using Zlist and L.

Once the list W has been computed, step 15 updates the data structures by
removing vertices that are in W . In addition to this, in step 15.3.2, vertices
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are considered for addition into the set C using the function AddToC. Given
a vertex j to be removed from the graph and its predecessor k, if isvert[k] is
true, the value of coBuchi[j] is considered. If this is false then CountC[k] is
decremented by 1. If CountC[k] is now 0 then k is added to C and CountC[k]
is set to -1 to prevent k being added more than once.

In step 16, ReinitXZL uses Xlist, Zlist and Llist, to reinitialise X, Z, L,
and PX for the next iteration. In order to set PX to the correct value for the
next iteration, for each vertex j ∈ Xlist, PX[j] is set to the value of P [j].

Figure 11: ComputeD

Input: Graph: G = (I[n], Owner[n]), Boolean Array: isvert,
Integer List Array: Out, Integer Lists: Zlist, D, Boolean Array: Z

Output: Integer List

1. If list Zlist = [ ] then return D

2. If list Zlist = z :: zs then:

2.1 If Check(isvert, Z, Out, Owner, z) = true then
ComputeD(G, isvert, Out, zs, Z, z :: D)

2.2 If Check(isvert, Z, Out, Owner, z) = false then
ComputeD(G, isvert, Out, zs, Z, D)

ComputeD iterates through the vertices j ∈ Zlist adding them to the list D if
the function Check returns true. This function begins by considering the owner
of the vertex in question. If Owner[j] = Eloise then Check iterates through
the successor vertices Out[j] of j. If there exists a successor vertex k such that
Z[k] is false and isvert[k] is true then Check returns true. If no such vertex
exists then false is returned. In the case where Owner[j] = Abelard, Check
also iterates through Out[j]. This time, however, if there exists a successor
vertex k such that Z[k] is true and isvert[k] is true then Check returns false.
If no such vertex exists then true is returned.

4.6 Algorithm 3 Implementation

Clearly the data structures used for algorithm 3 are inherited from the im-
plementations of algorithms 1 and 2. Due to the nature of algorithm 3, all
the data structures used in both algorithm 1 and 2 have to be initialised and
updated at each iteration. Thus it remains to consider how to dovetail the two
algorithms.

In order to simplify the process, only the more expensive computations are
dovetailed. More precisely only those processes with O(m) time complexity are
computed simultaneously at each iteration. Those with O(n) time complexity
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are computed individually when required. As well as simplifying the imple-
mentation, this allows the algorithm that is progressing faster to be affected
less by the simultaneous computation of the other algorithm. Thus only the
attractor set and the Di set computations are dovetailed. We therefore need
to implement the following two functions: A function which dovetails two at-
tractor computations and a function which dovetails an attractor computation
with a Di set computation. The computation of attractor sets and Di both
progress by inspecting the edges of the game graph. Thus the function pro-
viding simultaneous computation operates by alternating between algorithms
each time an edge is inspected.

During two simultaneous attractor/Di set computations, when one completes,
it is noted which algorithm this corresponds to and any subsequent O(n) com-
putations for that algorithm are carried out. If Ti has still not been returned
then algorithm 3 resumes computing both algorithms simultaneously. For the
algorithm corresponding to the computation that completed previously, the
next attractor/Di computation is begun. For the algorithm corresponding
to the computation that did not complete previously, the partialy completed
attractor/Di set computation is continued.

4.7 Winning Strategy Implementation

As described in Section 3, winning strategies for all three algorithms are com-
puted using attractor strategies. These attractor strategies are decided during
attractor computations. Every time a vertex is added to an attractor set, the
strategy for that vertex needs to be altered to the successor that caused the
vertex to be added. Thus in order not to interfere with the time complexity of
the algorithms, the strategy for each vertex needs to be updated in constant
time. For this purpose, a strategy will be represented by an integer array. An
integer stored in index i of the array corresponds to the move the owner of
vertex i should make at that vertex.
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5 Integration Into THORS Model Checker

In this section, the integration of a Büchi game solver into the model checker
Thors [14] is outlined.

For the verification of higher-order functional programs, the purpose of Thors

is to model check higher-order recursion schemes (HORS) against the alternation-
free modal µ-calculus. The alternation-free modal µ-calculus corresponds to
formulas of the modal µ-calculus which have an alternation depth of 1 or less.
By integrating a Büchi game solver, Thors will be able to solve the model
checking problem for HORS against the Πµ

2 ∪ Σµ
2 fragment of the modal µ-

calculus.

5.1 The Model Checking Problem for HORS and the
Modal µ-Calculus

In order to define HORS, we begin by introducing the set of kinds which is
defined by the grammar A ::= o | A1 → A2. For a given term t, we write
t : A to denote that t has kind A. Note that it is more usual to use the word
type for this definition, however, to avoid a clash of terminology later in this
section, the word kind is used instead. The order and arity of a kind are
defined inductively as follows:

• ord(o) := 0

ord(A1 → A2) := max(ord(A1) + 1, ord(A2))

• arity(o) := 0

arity(A1 → A2) := arity(A2) + 1

We give the following definition from [9]:

A higher-order recursion scheme R := (Σ,N ,R, S) where:

• Σ is a finite, ranked alphabet of symbols known as terminals (i.e. each
terminal a ∈ Σ has a kind of order 1 or 2).

• N is a finite set of kinded symbols known as non-terminals.

• S is a special non-terminal called the start symbol and has kind o.

• R is a map from N to λ terms of the form λx1 · · ·xn.e where e is a kinded
term constructed from non-terminals, terminals and variables as defined
below. Each xi : Ai ∈ V ar where V ar is a set of kinded variables.

We define the set of kinded terms inductively as follows:
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• Terminals, non-terminals and variables of kind A are terms of kind A

• Given a term t1 : A1 → A2 and a term t2 : A1, their application t1 t2 is
a term of kind A2.

• Given F ∈ N , where R(F ) = λx1 · · ·xn.e, the terms F x1 · · ·xn and
e must be terms of kind o and the variables that occur in e must be
contained in {x1 · · ·xn}.

Given a HORS R, the rewriting relation → is defined inductively as follows:

Given terms s1 · · · sn ∈ Σ and F ∈ F we write

• F s1 · · · sn → ([s1/x1], · · · , [sn/xn])e if R(F ) = λx1 · · ·xn.e

• If t → t′ then t s → t′ s and s t → s t′

In order to demonstrate this, consider the following HORS:

R := (N ,Σ,R, S) where:

• Σ = {f : o → o → o, g : o → o, a : o} with respective arities 2, 1 and 0.

• N = {S : o, B : (o → o) → (o → o) → o → o, F : (o → o) → o}

• The set of rewrite rules R is defined as follows:

S → F g

F x1 → f (x1 a) (F (B x1 x1))

B x1 x2 x3 → x1 (x2 x3)

Thus by expanding S using the rewriting relation, we get

S → F g → f (g a)(F (B g g)) → f (g a)(f (g (g a))(F (B (B g g)(B g g)))) → · · ·

which gives rise to the following infinite tree:

f

f

f

f

g

a g

g

a

g

g

g

g

a
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Thus HORS can be used to define a family of finitely branching infinite trees.

We now define an alternating parity tree automata, beginning with the follow-
ing definition as given in [14]:

The set B+(X) of positive boolean formulas over a set X is defined inductively
as follows:

• t, f and x ∈ B+(X) for all x ∈ X

• For each θ1, θ2 ∈ B+(X), θ1 ∨ θ2 and θ1 ∧ θ2 ∈ B+(X)

A set Y ⊆ X is said to satisfy a formula θ ∈ B+(X) if assigning all the elements
of Y to true and all the elements of X\Y to false results in θ being true. Thus
consider an alternating parity tree automaton A:

A := 〈Σ, Q, δ, q0,Ω〉 where:

• Σ is a ranked alphabet. Let m ∈ N be the largest arity of the elements
of this alphabet

• Q is a finite set of states

• δ : Q × Σ → B+({1, ..., m}× Q) is the transition function such that for
each a ∈ Σ and q ∈ Q, δ(q, a) ∈ B+({1, ..., k}× Q) where k is the arity
of a.

• q0 ∈ Q is the initial state.

• Ω : Q → N is the priority function

A Σ labelled tree t can be thought of as a function t : dom(t) → Σ where
dom(t) ⊆ {0, ..., m}∗. Thus a sequence α = α0α1, ... ∈ {0, ..., m}∗ represents a
path in the tree where αi represents which branch of the tree the path travels
down at depth i. The value of t(α) then represents the label at that point in
the tree and t(ε) represents the root of the tree.

A run-tree of an alternating parity automaton on such a tree t, is a (dom(t)×
Q)-labelled tree r such that:

• ε ∈ dom(r) with r(ε) = (ε, q0)

• If β ∈ dom(r) with r(β) = (α, q) then there exists a possibly empty set
S such that S satisfies δ(q, t(α)) and for each (i, q′) in S there exists a j
such that βj ∈ dom(r) and r(βj) = (αi, q′).
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A run-tree is said to be accepting if for a labelled infinite path (α0, q0), (α1, q1), ...
in the tree, the minimum priority that occurs infinitely often in Ω(q0),Ω(q1), ...
is even. Thus a tree t is accepted by A, if there exists an accepting run-tree.

As might be expected, this definition specialises to an alternating Büchi tree
automaton when the priority function maps all states to 0 (an accepting state)
or 1 (a non-accepting state). This can be specialised further to an alternating
weak Büchi tree automaton if there exists a partial order ≤ over a partition
{Q1, ..., Qn} of Q such that for each i ∈ {1, ..., n}, states in Qi are either all
labelled as accepting or all labelled as non-accepting. Also, if a state q′ ∈ Qj

occurs in δ(q, a) for some q ∈ Qi and a ∈ Σ, then Qi ≤ Qj . Thus, all infinite
paths in a valid run-tree will eventually remain in some element Qi of the
partition.

To demonstrate an alternating Büchi tree automaton, consider the following
example:

A = 〈Σ, Q, δ, q0,Ω〉 where:

• Σ = {f, g, a} with respective arities 2, 1 and 0.

• Q = {q0, q1, q2}

• δ(q0, f) = (1, q0) ∧ (2, q0), δ(q0, g) = (1, q1), δ(q0, a) = t

δ(q1, f) = f, δ(q1, g) = (1, q2), δ(q1, a) = f

δ(q2, f) = (1, q0) ∧ (2, q0), δ(q2, g) = (1, q1), δ(q2, a) = t

• Ω(q0) = 0, Ω(q1) = 1, Ω(q2) = 1

A accepts a Σ labelled tree t if in every path of t, whenever g occurs, it occurs
a finite, even number of consecutive times. For a tree t, a run tree is in state
q0 when g is not occurring. It is in state q1 when an odd number of g’s have
occurred consecutively and q2 when an even number of g’s have occurred. Note
that the priorities of the states are such that in an infinite path, the state q0

must occur infinitely often for the corresponding tree to be accepted. Thus
a tree with an infinite path where eventually only the symbol g occurs is not
accepted. The tree corresponding to the example HORS given above is not
accepted since there is a branch of the tree where one g occurs.

Note that in the above alternating Büchi tree automaton A, if all occurrences
of ∧ were replaced with ∨ then A would check for the property that there exists
a path where whenever g occurs, it occurs a finite, even number of consecutive
times rather than checking all paths. In this case, the example tree given above
would be accepted.
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The purpose of Thors is to check whether the infinite tree defined by a higher-
order recursion scheme is accepted by an alternating weak Büchi tree automa-
ton. This can be shown in [11] to be equivalent to checking whether a property
specified by an alternation free modal µ-calculus formula holds for an infinite
tree.

It has been shown in [17] that solving the model checking problem for the
modal µ-calculus can be translated into solving the acceptance problem for
alternating parity tree automata. The states of the alternating parity tree
automata resulting from this translation are subformulas of modal µ-calculus
formulas. In particular, the priority of these states is inherited from a modal
µ-calculus formula according to the alternation depth in such a way that the
translation of a formula in the Πµ

2∪Σ
µ
2 fragment of the modal µ-calculus results

in an alternating Büchi tree automata.

In [14], by modifying a result from [9], given an alternating weak Büchi tree
automaton A, and a HORS R, the acceptance problem is solved by construct-
ing an intersection type system λA

∧ such that the infinite tree associated with
R is accepted by A if and only if R is well-typed in λA

∧ . We define R to be
well-typed in λA

∧ if Elöıse has a winning strategy for a corresponding Büchi
game GR

λA
∧

defined later. In fact, due to the fact that the alternating Büchi
tree automaton is weak, this game is a weak Büchi game. A Büchi game is
defined to be weak if there exists a partition {V1, ..., Vn} of vertices such that:
(i) The vertices in a given element of the partition are either all accepting
or all not accepting, (ii) For a vertex v ∈ Vi, all successor vertices of v are
contained in one of Vi, Vi+1, ...Vn so that a play must eventually remain in one
of the elements of the partition. In order to solve the acceptance problem for
alternating weak Büchi tree automata, Thors uses a weak Büchi game solver
which runs in linear time in the worst case.

For solving the acceptance problem for HORS on all alternating Büchi tree
automata, the intersection type system used in [14] can be easily altered al-
though the corresponding Büchi game will no longer be weak. Hence inte-
grating a Büchi game solver into Thors will facilitate the solving of the ac-
ceptance problem for all alternating Büchi tree automata and thus solve the
model checking problem for HORS against the Πµ

2 ∪Σ
µ
2 fragment of the model

µ-calculus.

In order to define this corresponding Büchi game we introduce the following
definitions from [14]:

Given A and R, for the type system λA
∧ , types are defined by the grammar:

θ ::= τ → θ where q ∈ Q

τ ::=
∧

{θ1, ..., θk} where k ≥ 0
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Thus types are formed from the states of A and are of the form θ = τ1 → · · ·→
τn → q. The state of θ is defined to be q and is written state(θ). The notion of
well-kindedness for these types is defined using the following inductive rules:

q0 :: o

τ :: A1 θ :: A2

τ → θ :: A1 → A2

θi :: A for each i ∈ {1, ...k}
∧k

i=1 θi :: A

A type environment Γ is a set of type bindings F : θ where F is a non-terminal
of a given HORS and θ is a type. Thus we say that a type judgement Γ 6 t : θ,
where t is a λ-term, is valid if it satisfies the rules of the given type system λA

∧ .

A type binding F : θ for F ∈ N is said to be R-consistent if for some kind A,
F : A and θ :: A.

Thus given an alternating Büchi tree automata A := 〈Σ, Q, δ, q0,Ω〉, and a
HORS R := 〈Σ,N ,R, S〉, a corresponding Büchi game is constructed using
the type system λA

∧ as follows:

GR
λA
∧

:= (G, v0, F ) with G = (V, E,λ) where:

• V := VE ∪ VA where:

– VE := {(F : θ) | F : θ is R-consistent }

– VA := {(Γ, q) | ∃F : θ s.t. Γ 6 R(F ) : θ and q = state(θ)}

• E := {((F : θ), (Γ, state(θ))) | Γ 6 R(F ) : θ}∪{((Γ, q), (F : θ)) | F : θ ∈
Γ}

• λ(v) = ∃ for v ∈ VE else λ(v) = ∀

• v0 := (S : q0)

• For v = (F : θ) ∈ VE , if Ω(state(θ)) = 0 then v ∈ F else v /∈ F

• For v = (Γ, q) ∈ VA, if Ω(q) = 0 then v ∈ F else v /∈ F

If the alternating Büchi tree automaton is weak then the type system is such
that the derived Büchi game is also weak.

As previously mentioned, a HORS is well-typed in λA
∧ if Elöıse has a winning

strategy in the corresponding game. Elöıse attempts to prove that it is well
typed, and Abelard attempts to prove it is not. At each Elöıse vertex, Elöıse
has to provide a type environment for which R(F ) has type θ. Abelard then
picks an element F ′ : θ′ of the type environment for which Elöıse must similarly
provide a type environment in which R(F ′) has type θ′ and the game continues
in this way.
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It turns out that constructing the Büchi game directly as described above is
unnecessarily expensive. This is due to the fact that it contains all possible
type bindings (F : θ), many of which are not reachable from the initial vertex.

Though still in development, the idea of Thors is to reduce the size of this
game, by restricting the possible vertices to those contained in a reachable
part of the game which corresponds to a valid run-tree. Thors extends the
approach in [8], in which a type environment is inferred which witnesses the
existence of some valid run-tree. In Thors, once such a type environment
Γ is found, in order to determine acceptance, a reduced Büchi game GR

Γ is
constructed and solved. This is achieved by computing a function TEnvΓ

which maps the bindings F : θ to their successor vertices {∆ ⊆ Γ | ∆ 6
R(F ) : θ}:

GR
Γ := (G, v0, F ) with G = (V, E,λ) where:

• V is defined inductively as follows:

– (S : q0) ∈ V

– Given (F : θ) ∈ V , if ∆ ∈ TEnvγ(F : θ) then (∆, state(θ)) ∈ V

– Given (∆, q) ∈ V , all (F : θ) ∈ ∆ are in V

• E := {((F : θ), (∆, state(θ))) | ∆ 6 R(F ) : θ} ∪ {((∆, q), (F : θ)) | F :
θ ∈ ∆}

• λ(v) = ∃ for v ∈ VE else λ(v) = ∀

• v0 := (S : q0)

• For v = (F : θ) ∈ V , if Ω(state(θ)) = 0 then v ∈ F else v /∈ F

• For v = (∆, q) ∈ V , if Ω(q) = 0 then v ∈ F else v /∈ F

If Elöıse does not have a winning strategy then the run-tree witnessed by the
type environment Γ is not accepting and a type environment Γ′ is found that
contains Γ and witnesses additional run-trees. The corresponding game for Γ′

is then calculated and solved.

Thus given an alternating Büchi tree automaton A and a HORS R, the ap-
proach of Thors to this acceptance problem is as follows:

1. Construct a type environment Γ from the intersection type system λA
∧

which witnesses some run-tree of the infinite tree defined by R on A. If
no such Γ exists then no valid run-trees exist and thus R is not accepted
on A.
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2. Using Γ, construct a Büchi game that is considerably smaller than the
game derived directly from λA

∧ and corresponds to some run-tree so that
Elöıse has a winning strategy for this game if and only if the run-tree is
accepting.

3. Repeat if Elöıse does not have a winning strategy, constructing a larger
type environment Γ′.

If a recursion scheme R is accepted by A then this process will terminate. If,
however, it is not accepted then it is possible this process will not terminate. In
order to solve this problem we consider the automata A′ which accepts exactly
those trees which A does not accept. Such an automata can be constructed
from A. If given R, the process given above does not terminate for A then it
will terminate for A′. Thus, Thors runs the process given above on A and
its complement A′ in parallel. If Elöıse is found to have a winning strategy in
the first case then R is accepted by A. If Elöıse has a winning strategy in the
second case then R is not accepted.

5.2 Integration Of A Büchi Game Solver

In order to integrate a Büchi game solver implemented in Section 4, using the
function TEnvΓ, it will be necessary to construct a game in the form used in
Section 4. Thus we need to construct a game where each vertex is represented
by an integer and the game is stored as an array of records. Each record will
contain the owner for that vertex and a list of predecessor vertices.

In order to achieve this, the set of vertices reachable from the initial vertex
(S : q0) need to be explored using TEnvΓ. Initially, the successor vertices
of (S : q0), which are type environment, state pairs, are found by evaluating
TEnvΓ(S : q0). The successor vertices of these are then known to be the set of
type bindings within each type environment. The successor vertices for these
type bindings are then found using TEnvΓ again and the graph continues to
be expanded in this manner until all reachable vertices have been found. All
reachable vertices have been found when TEnvΓ has been evaluated for all
type bindings found so far and all successor vertices found from these have
already been discovered.

Each time a new vertex is found, it needs to be assigned an individual vertex
number so that it has a location in the array structure of the game that is to be
constructed. For this purpose, when expanding the game graph with TEnvΓ,
we need to be able to identify which vertices have already been encountered.
This prevents a vertex being assigned more than one integer and thus being
added to the game more than once. Hence we need a data structure which
stores each vertex and for which membership of a vertex in this data structure
can be evaluated efficiently. For this purpose, initially, vertices which have
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been found will be stored in a hash table. In the hash table, each vertex
will be bound to the number it has been assigned. The advantages of using
a hash table are that the membership of a vertex in a hash table can be
checked efficiently and the exact number of vertices does not have to be known
initially. Note, however, that in order for the hash table to operate efficiently,
the approximate number of vertices has to be known. Since the size of the
game is restricted by the size of Γ, the number of vertices in the game graph
can be estimated in order to create a hash table with approximately the correct
size. The initial vertex is assigned the number 0 and as new vertices are found,
the number assigned to each vertex is incremented.

In addition to assigning each vertex a number, the set of predecessor vertices
also needs to be found for each vertex and stored as a list. These lists will
also be stored in the hash table bound to the corresponding vertex and are
computed by storing vertices paired with their predecessor vertices in a list
and processing that list as follows:

1. For a given vertex, find the successor vertices and add them, paired with
the original vertex, to the list of vertex, predecessor vertex pairs.

2. Iterate through the pairs of vertices stored in the list, checking whether
each successor vertex has already been added to the hash table.

(a) If a vertex has already been added then add the predecessor vertex
stored in the pair to the list of predecessor vertices stored in the
hash table.

(b) If a vertex has not been added, assign it a vertex number, add it to
the hash table with a list containing the paired predecessor vertex
and then go to step 1.

Thus it is possible to efficiently compute a unique vertex number and a list of
predecessor vertices for each vertex. Hence, by iterating though and counting
the number of elements in the hash table, we can create an array where each
vertex is placed in the array according to its vertex number. The array then
stores the list of predecessor vertices from the hash table and the owner of
each vertex. The owner is determined by simply observing whether a vertex
is a type binding or a non-terminal, state pair. For the former, the owner is
Elöıse and for the latter, the owner is Abelard.

In Thors the acceptance condition for a given alternating weak Büchi tree
automaton is stored as an array that corresponds to the partition of states.
Given a partition Q1, ..., Qn, the ith element of the corresponding array stores
a record that contains the set of states in Qi and whether that partition is
accepting or not. In Thors the given automaton is checked to observe whether
it has a valid partition and if this is the case, a weak Büchi game solver is used.
In order to expand the range of possible inputs to all alternating Büchi tree
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automata, if the automaton is not found to have a valid partition then the set
of all accepting states are found and stored as a list of states and the Büchi
game solver is used. The Büchi game solver requires the accepting vertices
to be stored in a list, which can be generated at the same time as the game
graph using the list of accepting states. When a vertex is added to the hash
table as described above, the vertex is checked to see whether it is accepting
or not. If it is accepting then its corresponding vertex number is added to
the list of accepting vertices. In the case of a vertex corresponding to a type
binding F : θ, it is determined whether the vertex is accepting by checking the
membership of state(θ) in the list of accepting states. If the vertex corresponds
to a non-terminal state pair (Γ, q), then the vertex is accepting if q is in the
list of accepting states.

The only remaining problem for generating the correct game is that not all
vertices are guaranteed to have a successor vertex. It is possible for a vertex to
have no successor vertices, such as when the type environment for an Abelard
vertex is empty. Recall that the algorithms for solving a Büchi game require
that all vertices have at least one successor vertex, thus the game graph is
currently not in a suitable form for the solver. This problem is easily addressed
by modifying the game graph as follows:

• When a terminating vertex is found add an extra vertex to the hash table
which has the terminating vertex and itself as predecessor vertices.

• If the terminating vertex is owned by Abelard, and therefore a play
reaching this point is winning for Elöıse, the extra vertex is added to the
list of accepting vertices.

Figure 12: Eliminating Terminating Vertices

A

E

(a) Before

A A

E E

(b) After

Clearly, the game graph is now in the correct form with no terminating vertices
while maintaining the same winning sets. Thus it is now possible to integrate
a Büchi solver from Section 4 into the model checker Thors.
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6 Testing

In this section, the efficiency of all three algorithms are compared and con-
trasted using various different Büchi games. Initially, the three algorithms
will be tested on Büchi games constructed specifically to demonstrate the ad-
vantages and disadvantages of each algorithm. Later, this will be extended
to testing on random Büchi games and finally the Büchi game solvers will be
compared with a selection of parity game solvers. For the purposes of test-
ing, in this section, all the Büchi game solvers will return a partition of the
vertices into Abelard and Elöıse winning sets as described in Section 3. This
is so as to ensure that the solvers run for the maximum number of iterations
on each example. All tests carried out in this section were run on a machine
using the operating system Fedora with kernal version-2.6.29.6, with an AMD
Athlon(tm) 64 X2 Dual Core Processor 4600+ and with 2GB of RAM.

6.1 Comparing Büchi Game Solvers

Recall the example given in Section 3.

nA 2A 1A 0A

nE 2E 1E 0E

It was noted that when algorithm 1 is used, this Büchi game is solved in O(n2)
time, whereas with algorithm 2, it is solved in O(n) time. Thus algorithm 3
should also solve this game in O(n) time. The results of running the imple-
mentations of all three algorithms on this example are shown in table 1. The
construct time is the time taken to initialise all data structures required at the
start of each implementation and the solve time is the time taken to solve the
game after such data structures have been initialised. All results are given in
seconds. If the total execution time is over 4 minutes then the corresponding
results are not recorded.

As expected, both algorithms 2 and 3 are considerably faster than algorithm
1. Although algorithm 3 is slower than algorithm 2, it is still running in linear
time. Thus, given this example, it would be preferable to use algorithm 2 or 3
over algorithm 1.
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6.1. Comparing Büchi Game Solvers

Table 1: Test 1 Algorithms 1-3
Construct Time (s) Solve Time (s) Total Time (s)

n 1 2 3 1 2 3 1 2 3
1000 0.01 0.02 0.02 2.15 0.09 0.13 2.16 0.11 0.15
2000 0.02 0.03 0.05 8.70 0.20 0.22 8.72 0.23 0.27
3000 0.02 0.06 0.07 19.77 0.29 0.23 19.79 0.35 0.30
5000 0.04 0.07 0.09 57.31 0.37 0.57 57.35 0.44 0.66
7000 0.07 0.12 0.16 114.38 0.61 0.80 114.45 0.73 0.96
9000 0.09 0.16 0.17 190.92 0.67 0.87 191.01 0.83 1.04
10000 0.10 0.14 0.17 235.51 0.88 1.25 235.61 1.02 1.42
50000 - 0.50 0.50 - 4.51 6.63 - 5.01 7.13
100000 - 0.84 0.98 - 9.23 12.61 - 10.07 13.59
1000000 - 8.47 11.53 - 93.1 130.54 - 101.57 142.07

It has previously been discussed that algorithm 1 is preferable when Ri is
relatively small. Note, however, that a small Ri implies that Ti is relatively
large and thus, at the iteration in question, a large proportion of vertices are
removed from the graph. Thus this limits the advantages of algorithm 1 since
Ri being small restricts the number of iterations required to solve the game.

The advantages of algorithm 1 are explored using the following examples:

Consider the following inductive definition of a game given t, s and l ∈ N:

• Gt,s,l := (Gt,s,l, v0, F ) where Gt,s,l := (Vt,s,l, Et,s,lλ)

• Vt,s,l := {0, ..., (sizet,s,l − 1)} where:

– sizet,s,1 := t

– sizet,s,l := s ∗ sizet,s,l−1 + sizet,s,l−1 for l > 1

• Et,s,l := E1
t,s,l ∪ E2

t,s,l where:

– E1
t,s,l := {(0, 1), (1, 2), ..., (n− 2, n− 1)} where n = sizet,s,l

– E2
t,s,l := {(sizet,s,1 − 1, sizet,s,1 − 1), (sizet,s,2 − 1, sizet,s,2 − 1), ...,

(n− 1, n− 1)}

• λ(v) = ∃ for all v ∈ Vt,s,l

• F := {0, sizet,s,1, sizet,s,2, ..., sizet,s,l−1}

Thus the graph consists of l sections, each s times the sum of the size of the
previous sections. The sections are connected by an incoming edge from the
last element of the previous section to the first element of the current section.
Each section is in the following form:
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E E E E

When solving this Büchi game, at the ith iteration, the ith section is removed.
Since the ith section is s times larger than that of the sum of all the previous
sections, Ti will be s times larger than Ri. Hence, for all l iterations, algorithm
1 should perform better than algorithm 2. Results for this type of game are
displayed in tables 2 and 3.

Table 2: Test 2.1, Algorithms 1-3 with s = 2 and t = 2
Construct Time (s) Solve Time (s) Total Time (s)

l 1 2 3 1 2 3 1 2 3
10 0.14 0.21 0.23 0.15 0.38 0.21 0.29 0.58 0.43
11 0.43 0.45 0.49 0.73 1.05 0.58 1.17 1.50 1.07
13 2.19 5.08 5.72 3.94 10.02 5.52 6.13 15.10 11.24
14 6.28 14.40 17.80 11.94 30.21 16.32 18.23 44.62 34.12

Table 3: Test 2.2, Algorithms 1-3 with s = 4 and t = 3
Construct Time (s) Solve Time (s) Total Time (s)

l 1 2 3 1 2 3 1 2 3
7 0.01 0.17 0.26 0.15 0.38 0.19 0.24 0.55 0.46
8 0.45 0.79 1.31 0.76 2.30 1.00 1.20 3.09 2.31
9 2.08 4.90 6.16 3.90 9.42 5.00 5.98 14.32 11.16
10 9.53 28.50 30.72 19.84 91.26 43.57 29.37 119.76 74.28

Firstly, the algorithms are compared using the Büchi game where s = 2 and
t = 2, thus the number of vertices in the earlier sections are relatively small
and each section is double the size of the sum of the previous sections, thus Ri

is always half the size of Ti.

As predicted, algorithm 1 is fastest with this example, and algorithm 2 is
slowest. Algorithm 3, though not as fast as algorithm 1, performs better than
algorithm 2.

Secondly, the algorithms are compared with the example where s = 4 and
t = 3, thus there is a greater difference between each section and the sum of
the size of the previous 3 sections. For this reason, there is a more significant
difference between the performance of algorithm 1 and 2 when l is sufficiently
large.
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6.1. Comparing Büchi Game Solvers

Notice, however, that the performance of algorithm 3 is significantly slower
than algorithm 1. This is partly due to the construct time. For algorithm 3,
the data structures for both algorithm 1 and 2 have to be initialised which
can be expensive. Also, at the end of each iteration of the algorithm, the data
structures from both algorithms have to be updated, regardless of which algo-
rithm was used. This can significantly increase the amount of work required
for each iteration.

In the case of the example above, due to the fact that the number of edges
is approximately equal to the number of vertices and since a number of the
data structures require at worst O(n) work to update, the managing of data
structures becomes a more significant factor in the solve time. This is in
comparison to when the edge to vertex ratio is high, when the managing of data
structures is much less significant in comparison to the attractor computations
which work on the edges of the game graph.

In order to explore the advantages of algorithm 1 further, the following graph
is considered:

• Gn := (Gn, v0, F ) where Gn := (Vn, En,λ) and n ∈ N

• Vn := {0, ..., n, n + 1}

• En := {(0, 0), (0, 1), (1, 2)}∪ (
⋃i=n+1

i=2 Ei) where:

– Ei := {(i, 2), (i, 3), ..., (i, n), (i, n + 1)}

• λ(v) = ∃ for all v ∈ Vn

• F := {1}

As an example, G3 is as follows:

E E E

E

E

Thus Gn is a graph of size n + 2 where the successor vertices for each of the
last n vertices is the set of the last n vertices. Since the only accepting vertex
is vertex 1, T0 := {2, 3, ..., n + 1} and thus R0 := {0, 1}. It is clear that the
algorithms terminate on the second iteration.
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Also, since the number of incoming edges in T0 equals O(n2) and the number
of incoming edges in R0 equals 2, algorithm 1 should perform better than al-
gorithm 2. This is because in order to compute T0, the attractor computations
in algorithm 2 will work on at least the incoming edges in T0, whereas the
attractor computation of algorithm 1 will work on those in R0.

Note, however, that in order to proceed to the final iteration of algorithm 1,
the incoming edges in T0 will still have to be inspected in order to calculate
W0 and in order to remove W0 from the game graph. Hence, although the
performance of algorithm 1 should be better, the first iteration will still take
O(m) time.

In contrast to test 2, this example has a fixed number of iterations (exactly 2)
and thus relies on algorithm 1 performing significantly better than algorithm
2 in the first iteration. Instead of just exploring the relative size differences
between the sets Ri and Ti, this test demonstrates how the size difference
between the set of incoming edges for Ti and Ri affects the performance of the
algorithms.

The results are displayed in table 4.

Table 4: Test 3, Algorithms 1-3
Construct Time (s) Solve Time (s) Total Time (s)

n 1 2 3 1 2 3 1 2 3
1000 0.28 0.94 0.87 0.53 1.66 0.53 0.81 2.60 1.40
3000 2.03 8.24 8.83 4.85 13.59 4.88 6.87 21.83 13.71
4000 3.58 16.04 16.37 8.74 26.75 8.64 12.33 42.79 25.01
5000 5.92 33.24 33.43 13.78 45.14 13.87 19.70 78.38 47.30
6000 8.51 45.22 47.09 20.04 65.11 19.76 28.55 110.33 66.86

As predicted, algorithm 1 performs significantly better than algorithm 2 and
algorithm 3 performs worse than algorithm 1 but better than algorithm 2.

The construct time for the second algorithm is significantly worse than that
for the first algorithm. This is because, when initialising data structures for
algorithm 1, only one data structure (the count of outgoing edges) involves
O(m) work. All the others take O(n) time. For algorithm 2, however, the
initialisation of the array of successor vertices and the computation of (C0

1∪C0
2 )

also require O(m) time. Thus, since m = O(n2) and since there are only two
iterations, the construct time for algorithm 2 forms a large proportion of the
total time.

Regardless of the construct time, however, the solve time for algorithm 1 is
also significantly better than algorithm 2.
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The performance for algorithm 3 is severely restricted by the construct time
required for algorithm 2. Notice, however, that the actual solve time of al-
gorithm 3 is comparable to that of algorithm 1. This is in contrast to test 2
where the solve time was worse. As previously explained, this is due to the
fact that the edge to vertex ratio is high, thus the attractor computations are
the most significant factor of the solve time.

In order to explore instances where algorithm 3 performs better than either of
the other two algorithms, consider the following set of Büchi games:

• Gk,l := (Gk,l, v0, F ) where Gk,l := (Vk,l, Ek,l,λ) and k, l ∈ N

• Vk,l := {k0, k1, ..., kk−1, kk, kk+1} ∪ {l0,A, l0,E, l1,A, l1,E, ..., ll−1,A, ll−1,E}

• Ek,l := Ek ∪ El where:

– Ek := {(k0, k0), (k0, k1)} ∪ {(k1, k2), (k1, k3), ..., (k1, kk+1)}

∪{(k2, l0,A), (k3, l0,A), ..., (kn+1, l0,A)}

∪ (
⋃i=k+1

i=2 Ei
k) where:

- Ei
k := {(ki, k2), (ki, k3), ...(ki, kk), (ki, kk + 1)}

– El :=
⋃l−1

i=0 Ei
l where:

- E0
l := {(l0,A, l0,E), (l0,E , l0,E), (l0,E, l1,A)}

- El−1
l := {(ll−1,A, ll−2,E), (ll−1,A, ll−1,E), (ll−1,E, ll−1,E)}

- Ei
l := {(li,A, li−1,E), (li,A, li,E), (li,E, li,E), (li,E, li+1,A)}

for 0 < i < l − 1

• λ(v) := ∀ if v ∈ {l0,A, l1,A, ...ll−1,A} else λ(v) := ∃

• F := {k1} ∪ {l0,A, l1,A, ..., ll−1,A}

In other words, the Büchi game Gk,l is equivalent to the game used in test 1
with some extra vertices added. For example, G3,3 would be as follows:

E E

E

E

E

A

E

A

E

A

E
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Thus for the first l iterations, algorithm 2 is preferable since Xi = {ll−i+1,E , ll−i+1,A}
whereas Ri = Vk,l\{ll−i+1,A}. At iteration l+1, however, Xl+1 = {k1, k2, ..., kk, kk+1},
whereas Rl+1 = {k0, k1}. Thus for this iteration, algorithm 1 is preferable.
Hence, for large enough k and l, algorithm 3 should be faster than both of the
previous algorithms. The results are shown in table 5.

Table 5: Test 4, Algorithms 1-3
Construct Time (s) Solve Time (s) Total Time (s)

k l 1 2 3 1 2 3 1 2 3
10 5000 0.04 0.09 0.10 57.03 0.41 0.56 57.07 0.50 0.66

1000 6 0.28 0.94 0.86 2.89 1.66 0.80 3.17 2.60 1.66
1000 10 0.27 0.88 0.89 4.35 1.66 0.80 4.63 2.54 1.69
1000 50 0.27 0.92 0.89 19.00 1.66 0.80 19.27 2.58 1.69
2000 6 0.96 3.46 3.42 11.61 6.77 3.16 12.57 10.23 6.58
2000 10 0.96 4.13 3.96 17.38 6.77 3.16 18.34 10.90 7.12
4000 10 3.72 16.32 18.20 69.90 31.00 12.73 73.61 47.32 30.93
5000 2 5.80 29.86 30.69 36.71 51.38 20.13 42.51 81.24 50.82
5000 6 5.70 29.58 31.97 73.15 51.41 19.93 78.85 81.99 51.90

As predicted, algorithm 3 performs best for large enough k and l. Notice that
for large k, l need not be very large before algorithm 3 outperforms algorithm
1.

Algorithm 2 generally performs better than algorithm 1. This is because algo-
rithm 1 only performs better on the last iteration and the size of k negatively
affects the performance of this algorithm on all the other iterations. For this
reason, the size of l (and therefore the number of iterations) need not be large
before algorithm 2 is better than algorithm 1.

Finally, in order to investigate the general performance of the algorithms, they
will be tested on random games implemented by [6]. In [6], a random parity
game is generated given the number of vertices required, the maximum and
minimum outdegree and the maximum priority. For each vertex, the priority
is chosen with uniform probability from the priority range and the outdegree
is chosen with uniform probability from the outdegree range. The successor
vertices are then selected randomly from the set of all vertices. Since we wish
to generate random Büchi games, the maximum priority will always be fixed
at 1. The results are as follows:
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Table 6: Test 5: Random games, algorithms 1-3
Construct Time (s) Solve Time (s) Total Time (s)

n min
out

max
out

1 2 3 1 2 3 1 2 3

10000 2 100 0.27 0.65 0.65 0.69 0.77 1.14 0.96 1.42 1.83
10000 2 1000 2.30 7.35 8.18 7.49 7.79 11.80 9.79 15.14 19.98
50000 2 10 0.26 0.66 0.62 0.83 0.92 1.37 1.09 1.58 1.99
50000 2 100 1.53 4.77 4.60 4.73 5.12 7.41 6.26 9.89 12.01
50000 2 1000 13.82 52.08 67.38 45.70 50.85 72.74 59.52 102.93 140.12
100000 2 10 0.52 1.26 1.38 1.51 1.83 3.48 2.03 3.09 4.86
100000 2 100 3.27 9.86 11.01 9.81 10.86 15.66 13.08 20.72 26.67

Algorithm 1 consistently performs better than the other two with algorithm
3 performing worst. Note, however, that all of these games only required 1
iteration to solve, thus making the initialising of data structures at the start of
each algorithm a more significant factor in the total solve time. This increases
the likelihood of algorithm 1 performing best since it performs the least amount
of work when initialising data structures. In fact, without taking the initialising
of data structures into account, algorithm 1 and 2 performed similarly. This
caused algorithm 3 to perform worst since algorithm 3 is only advantageous
when at each iteration, one of the first two algorithms is noticeably faster than
the other.

The fact that all of the random games generated only required 1 iteration to
solve suggests that they possibly all have a similar simple structure, despite
their random nature. Thus, they are not necessarily indicative of general
Büchi games. In order to attempt to address this issue, the algorithms will
now be compared using clustered random games as implemented in [6]. These
are generated given the number of vertices n, the highest priority p, the out-
degree range (l, h), the recursion depth r, the recursion breadth range (a, b)
and the interconnection range (x, y). A game Gc

(n,r) where c = (p, l, h, a, b, x, y)
is then generated as follows:

• If r = 0 then a random game with n vertices, maximum priority p and
out-degree range (l, h) is constructed.

• If r > 0 a number d is chosen randomly from the range {a, ..., min(b, n)}

• The numbers k0, ...kd−1 are randomly chosen from {0, ..., n−1} such that
∑d−1

i=0 ki = n

• Clustered random games Gc
(ki,r−1) are constructed for 0 ≤ i < d.

• The graph G =
⋃d−1

i=0 G
c
(ki,r−1) is calculated.
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• e randomly chosen edges, where e is chosen randomly from {x, x +
1, ..., y}, are added to G and G is returned.

The idea is to create clusters in the game graph and then connect them together
using the randomly chosen interconnection edges. This should then provide
more structure to the graph. Choosing the most effective parameters for this
kind of graph in order to create interesting structures can be difficult. In
particular, it is difficult to pick the most effective interconnection range. If the
number of interconnection edges is too small then many of the clusters will not
be connected, resulting in a graph composed of disconnected clusters. If the
number of interconnection edges is too high then the clusters will be connected
via a large number of edges, effectively resulting in one large cluster. This will
thus result in a structure similar to the non-clustered random game graphs.

From experimenting with varying the parameters, due to the random nature of
the interconnection edges, it is difficult to generate a clustered random graph
that requires more than 3 iterations to solve. The most effective recursion
depth and breadth range found was r = 3 and (l, h) = (3, 4), with any greater
recursion depth or breadth range making little difference on the number of
iterations or the solve time. Similarly, it was found that an interconnection
range of (x, y) = (50, 100) was most effective, consistently producing a game
that required 3 iterations to solve. Table 7 gives the results of experiments on
clustered random game graphs using these parameters, where the number of
vertices and the maximum outdegree are varied.

Table 7: Test 6: Clustered random games with recursion depth 3, algorithms
1-3

Construct Time (s) Solve Time (s) Total Time (s)
n min

out
max
out

1 2 3 1 2 3 1 2 3

50000 2 10 0.26 0.56 0.56 0.72 0.82 1.29 0.98 1.38 1.85
50000 2 10 0.21 0.50 0.58 0.73 0.81 1.18 0.94 1.31 1.76
50000 2 10 0.23 0.50 0.51 0.66 0.71 1.06 0.89 1.21 1.57
100000 2 10 0.42 1.01 1.05 1.46 1.60 2.51 1.88 2.61 3.56
100000 2 10 0.46 1.05 1.41 1.48 1.59 2.54 1.94 2.64 3.95
100000 2 10 0.38 0.96 1.05 1.40 1.57 2.47 1.78 2.53 3.52
100000 2 50 1.03 3.37 3.24 4.41 3.89 6.16 5.44 7.26 9.40
100000 2 50 1.08 3.22 3.29 3.57 3.83 5.92 4.65 7.05 9.21
100000 2 50 0.98 3.09 3.17 4.14 3.84 5.87 5.12 6.93 9.04
500000 2 30 4.29 13.69 20.21 18.85 17.89 25.70 23.14 31.58 45.91
500000 2 30 4.51 13.94 20.56 18.24 17.25 25.97 22.75 31.19 46.53
500000 2 30 4.50 13.90 14.24 17.19 16.19 24.68 21.69 30.09 38.92

Similarly to the random games, algorithm 1 consistently performs best. In
fact, comparing with random games that have the same number of vertices
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and equal maximum outdegree, the performance times are very similar. It is
also notable that producing several clustered random games with the same
parameters results in similar performance times. The better performance of
algorithm 1 is again mainly due to the relatively small number of iterations
required to solve each game, resulting in a high proportion of the total solve
time comprising of the initialising of data structures. The small number of
iterations required to solve clustered random games suggests that, in general,
Büchi games do not require many iterations to solve. It is possible, however,
that clustered random games also do not produce enough variety of structure
to indicate the general performance of each solver on Büchi games.

Using the examples given above, the following has been demonstrated:

• A small number of iterations required to solve a game restricts the per-
formance of algorithms 2 and 3 due to a higher proportion of the total
time comprising of construct time.

• A large edge to vertex ratio restricts the performance of algorithm 2 due
to a large construct time. This, therefore, also affects algorithm 3.

• A small edge to vertex ratio can make the management of data struc-
tures in algorithm 3 a more significant time factor. This can cause the
difference between algorithm 3 and the better performing algorithm at
each iteration to be more significant.

• For each algorithm, there exist examples where that algorithm performs
best.

6.2 Testing Against Parity Solvers

The performance of the algorithms implemented will now be compared to the
performance of three implemented parity game solvers given in [6]. These
parity game algorithms are The Recursive Algorithm [18], The Small Progress
Measures Algorithm [7] and The Strategy Improvement Algorithm [16] which
respectively have time complexities O(mnd), O(dm(n/d)d/2) and O(2mmn)
where n is the number of vertices, m is the number of edges and d is the
number of priorities. Thus when restricted to Büchi games they have time
complexities O(mn2), O(mn) and O(2mmn).

As has been previously mentioned, the implementation of these algorithms,
as well as returning the partition of Abelard and Elöıse winning vertices, also
return a corresponding winning strategy for Abelard and Elöıse. Thus, in
this section, when comparing to parity game solvers, an implementation of
algorithms 1-3 will be used that also returns a winning strategy as described
in Section 4.
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In [6], some universal optimisations are also made while solving a game. These
optimisations include strongly connected component (SCC) decomposition,
detection of special cases and priority compression, the first two of which are
relevant to Büchi games.

Given a graph G, an SCC is a set S of vertices such that every vertex in S
is reachable from every other vertex in S. Note that this simply requires that
from each vertex in S there is a sequence of edges to any other vertex in S
and does not relate to the owner of each vertex in a game graph. Any graph
G can be partitioned into SCCs, and in particular there exists at least one
final SCC. An SCC is final if no vertex from outside the SCC is reachable
from any vertex within the SCC. Thus, when solving a Büchi game, if the
corresponding game graph is partitioned into SCCs, the vertices in a final
SCC can be solved independently of the rest of the game graph. Once the
vertices in a final SCC have been solved, the Abelard and Elöıse attractors of
the resulting Abelard and Elöıse winning partitions can be computed. These
attractors can be removed from the game graph as vertices that have already
been solved. Those SCCs from which vertices were removed may no longer
be SCCs and thus are themselves partitioned into SCCs. Again, the game is
solved on the final SCCs and this continues until the entire game is solved.

The advantage of using SCC decomposition is that it allows the graph to be
solved in small sections potentially reducing the number of times a vertex
and its edges need be inspected. The best algorithms for performing this
decomposition have time complexity O(m), making the decomposition of a
graph into SCCs a worthwhile procedure in the context of solving parity games.

In addition to using SCC decomposition, the following are types of special
cases that the implementation in [6] searches for:

• Self-cycle games: This term refers to games where there exists a vertex
that has an edge to itself. In this case, if the vertex is owned by Elöıse and
is accepting then clearly this vertex is winning for Elöıse. Thus, taking
the Elöıse attractor of this vertex solves a subset of the game graph.
Similarly, the Abelard attractor is found if the self-cycle vertex is owned
by Abelard and is not accepting. If a vertex is owned by Elöıse and is not
accepting then the edge from the vertex to itself can be removed from
the game graph providing that the vertex has at least one other outgoing
edge. Similarly, an edge can be removed when the vertex is owned by
Abelard and is accepting.

• One-parity games: If all the vertices are accepting or all the vertices are
not accepting then the winning sets can be trivially determined.

• One-player games: If an SCC is composed of vertices that are all owned
by Elöıse then, providing one of the vertices is accepting, all vertices
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in the SCC are winning for Elöıse. Similarly if all vertices are owned
by Abelard and there exists a cycle of non-accepting vertices then all
vertices in the SCC are winning for Abelard.

Thus using these optimisations, given a game solver, a Büchi game can be
solved as follows:

1. First check for self-cycles and deal with them accordingly.

2. Decompose the game graph into SCCs.

3. For each final SCC:

- If it is a special case, solve it as described above.

- If it is not then use the given solver.

4. Find the corresponding attractor for the computed winning sets found
for each final SCC and add these to the winning sets.

5. Remove these winning sets from the game graph.

6. Any remaining SCC which has lost some vertices is decomposed further
into SCCs.

7. Return to step 3

To demonstrate the use of these optimisations, recall the example given in test
1 of Section 6.1. This can be solved entirely using universal optimisations:

• In step 1, the self-cycles of vertices in the set {1E, 2E, ..., nE} are elimi-
nated.

• The SCCs are computed to be the sets {0E}, {nA}, and {iE, (i−1)A} for
each 1 ≤ i < n.

• The final SCC {0E} is identified to be the special case of a one parity
game and is identified to be winning for Abelard.

• With the earlier self cycles removed, the Abelard attractor set of {0E}
is found to be the entire graph, thus any vertex in the graph is winning
for Abelard.

Since this Büchi game can be solved entirely using universal optimisations, it
could be argued that it is not of interest to compare the efficiency of solvers
on this game. It is possible, however, to modify the game slightly so as to
render these universal optimisations ineffective. This is achieved by adding an
extra self-cycle Abelard vertex connecting 0E and nA to make the graph one
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single SCC. Also, all self-cycle edges are replaced with a two vertex cycle. This
would result in the following graph:

nA 2A 1A 0A

nE 2E 1E 0E

E E E E

A A

Although this game is different to the original one, since it is of a similar
structure and preserves the same winning sets for the original vertices, the
behaviour for most algorithms on this new game, provided it does not use
universal optimisations, should be comparable to that on the original game.
Thus the original game is still useful for comparing different algorithms. This
is similarly the case for other examples used previously. Hence, for the pur-
poses of comparing the Büchi game solvers with the parity game solvers, these
universal optimisations will be switched off in order to give a fair comparison.

Table 8 shows the results of comparing the parity game solvers with algorithms
1 and 2 on the example used in test 1 of Section 6.1.

Table 8: Test1 with parity game solvers and algorithms 1 and 2
Total Time (s)

n Recursive Small
Progress
Mea-
sures

Strategy
Improve-
ment

Algorithm 1 Algorithm 2

1000 13.24 9.42 3.03 2.17 0.12
2000 94.68 66.60 14.16 8.95 0.23
3000 - 86.35 34.45 20.26 0.32
4000 - 159.80 66.96 36.79 0.34
5000 - 253.90 113.71 58.26 0.49
6000 - - 172.53 84.79 0.69

Clearly both algorithm 1 and 2 perform significantly better than any of the
parity game solvers with the recursive algorithm performing particularly badly.
As was demonstrated in the previous section, algorithm 2 is the best performing
of the three Büchi game algorithms on this example and algorithm 1 is the
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worst performing. Thus the parity game solvers are slower than all three
Büchi game algorithms.

Table 9 compares algorithms 1 and 3 with the parity game solvers using the
example from test 4 of Section 6.1. Algorithms 1 and 3 are used for comparison
since they are respectively the generally worst performing and best performing
of the three algorithms on this example.

Table 9: Test 4 with parity game solvers and algorithms 1 and 3
Total Time (s)

k l Recursive Small
Progress
Mea-
sures

Strategy
Improve-
ment

Algorithm 1 Algorithm 3

10 2000 101.12 38.39 14.56 9.82 0.21
10 5000 - 252.35 114.24 58.25 0.75
500 6 1.89 2.89 91.59 0.90 0.52
500 10 2.94 4.20 92.00 1.27 0.53
500 50 13.49 17.81 104.38 5.07 0.53
500 100 29.93 38.09 119.58 9.81 0.55
1000 6 8.02 14.52 - 3.43 1.93
1000 10 12.77 21.31 - 5.00 1.89
1000 50 - 90.14 - 20.09 1.85

Again, both algorithm 1 and 3 perform consistently better than any of the
parity game solvers. In this case, the strategy improvement algorithm is par-
ticularly slow when k is large but performs better than both of the other two
parity game solvers when l is large. The recursive algorithm performs espe-
cially badly when l is large.

Finally, algorithm 1 is compared with the parity game solvers using clustered
random games with the same parameters as those used in test 6 of Section 6.1.
The results are shown in table 10.

Again, excepting one game when n = 50000, algorithm 1 is consistently better
performing than any of the parity game solvers. The strategy improvement
algorithm is generally very slow for these Büchi games. Interestingly, however,
the solve time for this algorithm can vary dramatically between different clus-
tered random games with the same parameters. This is also true to less of an
extent for the small progress measures algorithm. For the recursive algorithm
and algorithm 1, however, the solve times are fairly consistent between games
with the same parameters.
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Table 10: Clustered random games with parity game solvers and algorithm 1
Total Time (s)

n min
out

max
out

Recursive Small
Progress
Mea-
sures

Strategy
Improve-
ment

Algorithm 1

50000 2 10 3.37 6.82 234.38 1.93
50000 2 10 1.04 1.45 12.67 2.01
50000 2 10 1.97 5.65 142.58 1.77
100000 2 10 5.52 12.53 - 2.27
100000 2 10 4.30 13.21 - 2.04
100000 2 10 2.81 3.18 7.63 2.05
100000 2 50 12.37 21.87 - 5.11
100000 2 50 12.21 23.95 - 5.43
100000 2 50 12.92 24.77 - 6.06
100000 2 100 19.89 38.52 - 9.26
100000 2 100 19.61 20.67 22.09 9.26
100000 2 100 21.00 37.77 - 10.80
500000 2 10 21.33 23.68 98.08 12.10
500000 2 10 28.78 82.03 - 13.24
500000 2 10 22.15 22.33 29.91 13.87
500000 2 30 53.60 105.89 - 21.33
500000 2 30 63.70 105.73 - 21.01
500000 2 30 64.10 66.44 - 23.30

A range of different examples from Section 6.1 have been used which allowed
for comparison of the different types of solver on a range of different types
of Büchi game. The tests performed to compare parity game solvers with
Büchi game solvers implemented in this dissertation suggest that the latter
are generally faster. Thus, for parity games which are also Büchi games, it
would be preferable to use these Büchi game solvers.
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7 Conclusion

In this dissertation three algorithms for solving Büchi games were imple-
mented. The main idea of all three algorithms is to identify winning regions
of the game graph for Abelard through a series of iterations. At each itera-
tion, the winning region found for Abelard is removed. Where the algorithms
differ is their approach to finding such winning regions. The first identifies
all potential Elöıse winning vertices and takes the complement of this. The
disadvantage of such an approach is that at each iteration, potentially a large
number of edges are worked are which are not then removed from the game
graph. In order to improve on this approach the second algorithm from [2],
reduces the number of edges which are examined but not removed, by consid-
ering a carefully chosen subset of the game graph which is known to contain
the desired Abelard winning region. The third algorithm then dovetails the
previous two algorithms.

In Section 5, the Büchi game solvers were integrated into the model checker
Thors. This is believed to be the first implementation of an algorithm for
solving the acceptance problem for HORS against tree automata with a non-
trivial acceptance condition (a trivial Büchi tree automaton only requires there
to exist a valid run-tree for a HORS in order for it to be accepted). The
integration of a Büchi game solver into Thors allows it to solve the acceptance
problem for all Büchi tree automata as opposed to just weak ones. Thus the
fragment of the modal µ calculus which can be used in the corresponding model
checking problem is expanded and is therefore more expressive.

In Section 6, the implementation of all three algorithms were compared. It
was confirmed in test 1 that in the example introduced in [2], algorithms 2
and 3 performed significantly better than that of algorithm 1. It was also
demonstrated that there exist examples where each algorithm performed best.
In the case of the random game graphs, however, algorithm 1 was found to
be consistently faster than the other two algorithms. This suggests that al-
gorithms 2 and 3 are only faster for very specific examples. In particular,
it was found that the initialisation of data structures for algorithms 2 and 3
significantly impaired their performance. Generally, for examples requiring a
small number of iterations to solve therefore, it is unlikely that algorithm 2
or 3 would perform better than algorithm 1. The fact that the random game
graphs (clustered or not) never required many iterations to solve may suggest
that generally, game graphs are solved in a small number of iterations. This
indicates that in practice, algorithm 1 would be preferred over the other two
examples.

When comparing the three Büchi game solvers to a selection of implemented
parity game solvers, it was found that the Büchi game solvers performed con-
sistently better. Thus it was demonstrated that it is worth restricting a solver
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to solving only Büchi games. This is particularly notable since solving Büchi
games (and therefore co-Büchi games), allows for model checking using the
expressive logic CTL∗.

7.1 Possible Extensions

As was commented on in Section 6, in the implementation of parity game
solvers from [6], a number of universal optimisations were used. This divided
a game graph into SCCs, allowing the game graph to be solved on small subsec-
tions. Also, special cases of parity game were detected and solved separately.
This use of universal optimisations can significantly decrease the solve time for
a game, and in particular it was demonstrated in Section 6 that examples like
those used in test 1 can be solved entirely using these optimisations. In addi-
tion to this, their use increases the chance of only a small number of iterations
being required for a Büchi game solver. This therefore further highlights the
advantages of using algorithm 1 over the other two algorithms. An interesting
extension to this dissertation, therefore, would be to implement these univer-
sal optimisations for the Büchi game solvers in order to investigate how the
performance of all three algorithms would be affected.

In addition to this, it may also be interesting to investigate other approaches
of generating random graphs. This would allow for a more complete com-
parison of the different algorithms. For example, in the case of the random
graph generators used in Section 6, a vertex is always labelled as accepting or
not accepting with equal probability. It may be worth determining how the
performance of the different algorithms varies when this probability is varied.
Also, in the case of the clustered random graphs, the interconnection edges are
added randomly in such a way that they may not connect separate clusters.
This sometimes results in a graph which is split into several disconnected com-
ponents. In order to increase the chances of separate clusters being connected,
a larger number of interconnection edges can be used, although this can often
result in clusters being indistinct from one another. In order to address this,
it may be worth investigating the result of adding interconnection edges in a
more prescribed manner, for example, by always connecting interconnection
edges to vertices in different clusters. A more involved approach could be to
specify how many interconnection edges each cluster should have. This many
vertices from each cluster could then be randomly chosen and connected to a
randomly chosen vertex in a different cluster. This way, it is known that all
the clusters are always connected to at least one other cluster, and thus the
chances of the graph being disconnected are much lower.

It may also be worth investigating what structure, games constructed from
modal µ-calculus formulas generally produce. This would allow for a more in-
formed decision about which Büchi game solver is preferable when considering
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the model checking problem. Given the experiments in Section 6, however, it
seems likely that algorithm 1 would perform best.
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