
HOMER: a Higher-order Observational equivalence
Model checkER⋆

D. Hopkins C.-H. L. Ong

Oxford University Computing Laboratory

Abstract. We present HOMER, an observational-equivalence model checker for
the 3rd-order fragment of Idealized Algol (IA) augmented with iteration. It works
by first translating terms of the fragment into a precise representation oftheir
game semantics as visibly pushdown automata (VPA). The VPA-translatesare
then passed to a VPA toolkit (which we have implemented) to test for equiva-
lence. Thanks to the fully abstract game semantics, observational equivalence of
these IA-terms reduces to the VPA Equivalence Problem. Our checkeris thus
sound and complete; because it model checksopenterms, our approach is also
compositional. Further, if the terms are inequivalent, HOMER will produce both
a game-semantic and an operational-semantic counter-example, in the form of
a play and a separating context respectively. We showcase these features on a
number of examples and (where appropriate) compare its performance with sim-
ilar tools. To the best of our knowledge, HOMER is the first implementation of a
model checker of 3rd-order programs.

1 Theory and Implementation

Motivation Higher-order functions are commonly used in functional programming.
The functions map and foldr are standard examples of 2nd-order programs. 3rd and
higher-order functions arise naturally in language processors [10]. Higher-order pro-
grams also crop up in imperative / object-oriented languages. E.g. any algorithm or
data structure parameterised by, say, a comparison function is 2nd-order. A program
that relies on such a 2nd-order function (being defined in an external library, say) is
3rd-order. Perhaps the most significant higher-order program is Google’s MapReduce
system [11]. Here we present the first model checker for 3rd-order programs.

Reynold’sIdealized Algol (IA) [9] is a higher-order procedural language that com-
bines imperative constructs (such as block-allocated assignable variables, sequencing
and iteration) with higher-order functional features. It is essentially a call-by-name vari-
ant of (core) ML. E.g. the imperative termwhile !X > 0 do {Y := !Y ∗ !X ; X :=
!X−1; } and the lambda-termλfA→B→C .λgA→B .λxA.f x (g x) are both valid in IA.

Here we consider the fragment of IA containing up to 3rd-order terms over finite
base types. I.e. we allow functions of types((b1 → b2) → b3) → b4, say, where each
bi is one of the base types:com (commands),exp andvar (expressions and variables

⋆ We thank A. Murawski for useful discussions and Microsoft Research PhD Scholarship Pro-
gramme for funding this work. HOMER builds on and extends Hopkins’ dissertation [7].

respectively, with values taken from a finite prefix of the natural numbers). In addition,
we allow while-loops but not full recursion. We denote this fragment IA∗3.

Two termsΓ ⊢ M1,M2 : A areobservationally (or contextually) equivalent, writ-
tenΓ ⊢ M1

∼= M2, just if for every program contextC[−] such that bothC[M1] and
C[M2] are closed terms of typecom, C[M1] converges if and only ifC[M2] converges.
I.e. two terms are observationally equivalent whenever no program context can possibly
distinguish them. An intuitively compelling notion of program equivalence, observa-
tional equivalence has a rich theory. For example,λxexp.new X in {X := x; !X} ∼=
λxexp.x, because the internal workings of the function are not detectable from the out-
side. However, these terms are not equivalent toλxexp.if x thenx else x — because
expressions can have side-effects, the outcome of evaluating x twice may be different
from evaluatingx only once. A much less obvious equivalence is

p : com → com ⊢ new x := 0 in {p (x := 1); if !x = 1 then Ω else skip} ∼= p Ω

whereΩ is the term that immediately diverges. This example shows that “snapback”
(i.e. a term that first evaluates itscom-type arguments and then immediately undoes
their side-effects) is not definable in IA. The above equivalence holds because in either
case, ifp ever evaluates its argument, the computation will diverge.

Game SemanticsThe fully abstract1 game semantics [1] of IA has proved extremely
powerful. In this model, a typeA is interpreted as a game[[A]] between P and O, and a
termΓ ⊢ M : A as astrategy[[Γ ⊢ M]] for P to play in the game[[Γ ⊢ A]]. A strategy
is just a set of plays (forming a playbook for how P should respond at each step he is
to play), and aplay is a sequence of moves, each is a question or an answer equipped
with a pointer2 to an earlier move. A play iscompleteif every question in it has been
answered, so the game has run to completion.

The highly accurate game semantics characterises observational equivalence in terms
of complete plays i.e.Γ ⊢ M1

∼= M2 if and only if comp[[Γ ⊢ M1]] = comp[[Γ ⊢ M2]],
wherecomp σ is the set of complete plays in strategyσ. Murawski and Walukiewicz
[8] have shown that the complete plays in the strategy denotation of an IA∗

3-term are
recognisable by a visibly pushdown automaton.

Visibly Pushdown Automata The visibly pushdown automata(VPA) [3] are a sub-
class of pushdown automata in which the stack actions (push,pop or no-op) are com-
pletely determined by the input symbol. They are more expressive than finite automata,
yet enjoy many nice closure properties of the regular languages. Because they are closed
under complementation and intersection, and have a decidable emptiness problem, the
VPA Equivalence Problem(“Given two VPA, do they accept the same language?”) is
decidable. So by representing the set of complete plays in a strategy denotation of an
IA∗

3-term as a VPA, it is decidable (in EXPTIME [8]) if a given pairof β-normal IA∗

3-
terms are observationally equivalent.

Implementation Following the algorithm of Murawski and Walukiewicz [8], wehave
created a tool, called HOMER, for checking observational equivalence of IA∗

3 terms-

1 Full abstraction is a strong goodness-of-fit measure. A denotational semantics isfully abstract
if the theory of equality induced by the semantics coincides with observational equivalence.

2 which models the operand-to-operator, and variable-to-binder relationwithin a term.

in-context. Given two such terms, it first translates them totheir VPA representations.
These are then fed into a VPA toolkit, which we have created, to check for equivalence
by complementing, intersecting and emptiness-checking totest for inclusion in both di-
rections. The complementation and intersection operations are straightforward imple-
mentations from [3]. Since the VPA-translates are deterministic by construction, they
are complemented just by complementing the final states. Intersection is by a product
construction (which works for VPA – but not general PDA – because the two automata
always perform the same stack action). More complex is the emptiness test. We exper-
imented on a few algorithms before settling on Schwoon’s pre* algorithm for general
PDA, [12]. When the two terms are inequivalent, this will produce as a counter-example
a play recognisable by exactly one of the two VPA-translates. The tool will use this play
to generate aseparating context- a context that converges when its hole is filled by one
term, but diverges when filled by the other. HOMER is written in about 8 KLOC ofF#,
including about 600 LOC for the VPA toolkit.

2 Evaluation and Tests

All tests in the following have been run on a laptop with a 2.53GHz Intel Core 2 Duo
processor and 4GB RAM under Windows Vista. The base typeexp%N is { 0, 1, · · ·N−
1 }. Unless specified otherwise,exp coincides withexp%N, which defaults toN = 3.

Sorting Verifying sorting programs is a challenging test for model checkers because
of the complex interplay between data flow and control flow [2]. An implementation of
bubble sort is given below. Input to the program takes the form of an array of elements of
the set{0, 1, 2}; we evaluate the model for different values ofn, the length of the array.
The program communicates with its environment only throughthe non-local variable
x. In a call-by-name setting, becausex can represent anyvar -typed procedure, it is
legitimate to use it as an input/output stream. The program initially populates the array
by reading fromx, and after sorting writes the values back tox in order. These reads
and writes are the only actions visible from the outside.

1 x : var%3 |-
2 new a[N]%3 in
3 {new i%N+1 in while !i < N do {a[!i] := !x; i := (!i + 1)}};
4 {
5 new flag%2 in
6 flag := 1;
7 while !flag do{
8 new i%N in
9 flag := 0;

10 while !i < N-1 do{
11 if !a[!i] > !a[!i + 1] then{
12 new temp%3 in
13 flag := 1;
14 temp := !a[!i] ;
15 a[!i] := !a[!i + 1];
16 a[!i + 1] := !temp
17 }
18 else skip;
19 i := !i + 1
20 }
21 }
22 };
23 {new i%N+1 in while !i < N do {x:= !a[!i];i := !i + 1}}

The automaton produced whenn = 2 is shown in the following using Graphviz3.
Since this is a 1st-order program, the VPA-translate degenerates to a deterministic finite
automaton. It can be seen that there is a trace through the automaton for each of the 9
possible input combinations.4

45

44

43

42

41

2

9 19
ok_x

8 4
ok_x

7 3
ok_x

6 35
ok_x

5 11
write(2)_x

40 18
ok_x

37
write(1)_x

39 17
ok_x

38 16
ok_x

15ok_x

36 14
ok_x

33
write(0)_x

34
write(0)_x

13
ok_x

32

28read_x

31 27
read_x

30

26

read_x

write(1)_x

29 25
read_x

2_x

0_x
24

1_x

2_x

23

0_x

221_x

2_x

1_x

12

0_x

2_x

1_x

0_x

10
write(1)_x

write(0)_x

write(1)_x

21
write(2)_x

20
write(2)_x

write(2)_x

done

done

done

done

done

done
write(0)_x

ok_x

ok_x

1
run

Since the internals of the sorting program are hidden, bubble sort is observationally
equivalent to any other sorting algorithm. Replacing the body of the bubble sort algo-
rithm above (but keeping the same input and output format) with the code for insertion
sort, we can feed them both into HOMER and check that (for a given value ofn) they
are in fact equivalent. (Timing data are provided underRelated Workin the sequel.)

Kierstead Terms An interesting 3rd-order example are the family ofKierstead terms,
Kn,i := λf (o→o)→o.f(λx1.f(λx2. · · · f(λxn−1.f(λxn . xi)))), where1 ≤ i ≤ n, and
o is a base type.K2,1 andK2,2 are the simplest pair of terms for which the location of
pointers is critical. In the VPA-translate, each 3rd-orderquestion has a tag that indicates
the target of its pointer. Over base-typecom, the table below gives the times to compile
Kn,i, and to determineKn,i 6∼= Kn,j wheneveri 6= j, asn varies.

n Time (Compile)Time (Compare)State Space (Final)State Space (Max)
10 1.5s 2.6s 64 1172
20 3.8s 6.5s 97 3340
80 35s 70s 250 8848

160 220s 7.5 mins 730 26128

Counter-Example: Separating Context It is not at all obvious how to construct by
hand a context that witnesses inequivalent Kierstead terms. Below is a context that
separatesK2,1 andK2,2, as generated by HOMER (suitably adjusted for readability). By
following the (somewhat complex) execution process, we cansee how the assignments
and tests on the local variableX force the program to follow the single path from which
the context was derived: it terminates onK2,2, but diverges onK2,1 when it tries to run
its arguments’ argument from the first time it is called (thusdeviating from the path).

1 (fun G:(((com -> com) -> com) -> com).new X in
2 X:=1;

3 http://www.graphviz.org/
4 HOMER uses a somewhat naı̈ve forward reachability checker to remove unreachable states at

each intermediate stage. This is very fast, and reduces the state space considerably, but it does
not make any attempt to merge bisimilar states or delete states that can neverreach a final state.

3 G (fun z:(com -> com).
4 if !X = 1 then
5 (
6 X:=2;
7 z omega;
8 if !X = 5 then X:=6 else omega
9)

10 else if !X = 2 then
11 (
12 X:=3;
13 z (if !X = 3 then X:=4 else omega);
14 if !X = 4 then X:=5 else omega
15)
16 else
17 omega
18);
19 if !X = 6 then X:=7 else omega
20)([-])

Shortest Prefix Let us represent a sequence of numbers by a function of typeexp →
exp that mapsi to theith value in the sequence. We assume that ifi exceeds the length
of the sequence then evaluation diverges. A predicate over such sequences has type
(exp → exp) → exp → bool where the second argument is the length of the sequence
being tested. Given such a predicate and a sequence, we can find the length of the
shortest prefix of the sequence that satisfies the predicate using the following 3rd-order
program.

1 |- fun p : (exp%N -> exp%M) -> exp%N -> exp%2 . fun xs : exp%N -> exp%M .
2 new i%N in
3 new done%2 in
4 new found%2 in
5 while not !done do{
6 if (p (fun index:exp%N . if index > !i then omega else (xs index)) !i) then {
7 found := 1;
8 done := 1
9 }

10 else if !i = N-1 then done := 1 else i := !i + 1
11 };
12 if !found then !i else omega

We construct sequences that agree withxs up to indexi and then diverge and check
whetherp holds for such a sequence. The boolean flags are required because of a restric-
tion on comparing values of different types (e.g.exp%N andexp%M with unequalN
andM). Fixing the type of the data toexp%3 and varying the size of the input sequence,
the timing and state space data are below.

n Time (Compile)State Space (Final)State Space (Max)
5 2s 197 4706

10 4s 592 18486
15 9s 1187 47966
20 18s 1982 99146

Related Work To our knowledge, HOMER is the first implementation of a model
checker of 3rd-order programs. The tools most similar to ours are MAGE [4], and
GAMECHECKER [5]. Though these are model checkers based on game semantics, they
only check up to 2nd-order programs, which are much simpler as they can be repre-
sented by finite automata. Further they check for reachability rather than equivalence,

so a fair comparison is thus hard to make even for 2nd-order programs. However, if we
augment bubble sort so that as it outputs each of the values, it also asserts that each
element is less than the next one, we can use MAGE to check that none of the assertions
fail.

In the table below, compile time is the time to just compile the model, paramaterised
by n, the size of the array. Compare time is the total time to compile both bubble and
insert sort and check that they are observationally equivalent. The times for MAGE are
how long it took to assert that bubble sort always results in asorted array.

n CompileCompareState Space (Final)State Space (Max)Time (MAGE)
5 1.3s 2.3s 495 1983 0.6s

10 55s 7.5 mins 60501 353613 154s

Forn = 15, both MAGE5 and HOMER gave up complaining of insufficient memory.

Conclusions Since HOMER is (we believe) the first third-order model checker, there
are no benchmarks against which we can properly measure its performance. When com-
pared to MAGE, HOMER’s performance is of the order of magnitude. Given the com-
plexity of model-checking observational equivalence of third-order problems (EXPTIME-
complete), this is encouraging. Further, as this is a prototype implementation, we used
a simple explicit representation of the state-space. We expect a significant performance
gain when techniques that have proved successful in other model-checkers (includ-
ing MAGE), such as symbolic representation, lazy model checking or CEGAR, are
exploited. Another encouraging point is that the final models produced are compact.
Though the intermediate VPA have larger state-spaces, theyare still much smaller than
that examined by a naive state space exploration.

References

1. S. Abramsky and G. McCusker. Linearity, sharing and state. InAlgol-Like Langs., 1997.
2. S. Abramsky et al. Applying Game Semantics to Compositional SoftwareModelling and Ver-

ification. InProc. TACAS, 2004.
3. R. Alur and P. Madhusudan. Visibly pushdown languages. InProc. STOC, 2004.
4. A. Bakewell and D. R. Ghica. On-the-fly techniques for game-based software model checking.

In Proc. TACAS, 2009.
5. A. S. Dimovski, D. R. Ghica, and R. Lazic. Data-abstraction refinement. In Proc. SAS, 2005.
6. D. R. Ghica and G. McCusker. Reasoning about Idealized Algol Using Regular Languages.

In Proc. ICALP, 2000.
7. D. Hopkins. A model checker for a higher-order procedural language. MCompSc disserta-

tion, University of Oxford, 2009.http://users.comlab.ox.ac.uk/luke.ong/
publications/HopkinsReport.pdf

8. A. Murawski and I. Walukiewicz. Third-order idealized algol with iteration is decidable. In
Proc. FoSSaCS, 2005.

9. J. C. Reynolds. The essence of Algol. InAlgorithmic Languages, North-Holland, 1981.
10. C. Okasaki. Even higher-order functions for parsing. InJ. Funct. Program., 1998.
11. A. Cataldo. The Power of Higher-Order Composition Languages in System Design. PhD

thesis, UC Bekerley, 2006.
12. S. Schwoon. Model-Checking Pushdown Systems. PhD thesis, Tech. Univ. of Munich, 2002.

5 It may have been possible to increase the memory available to MAGE’s Haskell compiler.

