HoMER: a Higher-order Observational equivalence
Model checkER*

D. Hopkins C.-H.L.Ong

Oxford University Computing Laboratory

Abstract. We present I®MER, an observational-equivalence model checker for
the 3rd-order fragment of Idealized Algol (IA) augmented with iteratloworks

by first translating terms of the fragment into a precise representatitimeof
game semantics as visibly pushdown automata (VPA). The VPA-transletes
then passed to a VPA toolkit (which we have implemented) to test for equiva
lence. Thanks to the fully abstract game semantics, observationabémgde of
these IA-terms reduces to the VPA Equivalence Problem. Our chéshbus
sound and complete; because it model chexgenterms, our approach is also
compositional. Further, if the terms are inequivalengMER will produce both

a game-semantic and an operational-semantic counter-example, inrtheffo

a play and a separating context respectively. We showcase thesgeseatua
number of examples and (where appropriate) compare its perfaamweith sim-

ilar tools. To the best of our knowledge OMER is the first implementation of a
model checker of 3rd-order programs.

1 Theory and Implementation

Motivation Higher-order functions are commonly used in functionalgoamming.
The functions map and foldr are standard examples of 2nérq@rbgrams. 3rd and
higher-order functions arise naturally in language presoes[10]. Higher-order pro-
grams also crop up in imperative / object-oriented langsageg. any algorithm or
data structure parameterised by, say, a comparison funiti@nd-order. A program
that relies on such a 2nd-order function (being defined inxaereal library, say) is
3rd-order. Perhaps the most significant higher-order prags Google’'s MapReduce
system [11]. Here we present the first model checker for 3dé+gprograms.

Reynold'sl dealized Algol (1A) [9] is a higher-order procedural language that com-
bines imperative constructs (such as block-allocatedyaabie variables, sequencing
and iteration) with higher-order functional featuressléssentially a call-by-name vari-
ant of (core) ML. E.qg. the imperative ternwvhile !X > 0 do {Y :=!Y*!X ; X :=
X —1;} andthe lambda-terif4—5=¢ \gA=B \z4. f x (g z) are both valid in |A.

Here we consider the fragment of IA containing up to 3rd-otéems over finite
base types. |.e. we allow functions of typés, — b2) — b3) — by, say, where each
b; is one of the base typesom (commands)exzp andvar (expressions and variables

* We thank A. Murawski for useful discussions and Microsoft Rese&@hD Scholarship Pro-
gramme for funding this work. BIMER builds on and extends Hopkins’ dissertation [7].

respectively, with values taken from a finite prefix of theunat numbers). In addition,
we allow while-loops but not full recursion. We denote thisgment 14;.

Two termsI” - My, M, : A areobservationally (or contextually equivalent, writ-
tenI" = My = Mo, just if for every program context'[—] such that bothC[M;] and
C[Ms] are closed terms of typ@m, C[M;] converges if and only i€ [M5] converges.
I.e. two terms are observationally equivalent wheneverrngrgam context can possibly
distinguish them. An intuitively compelling notion of pn@m equivalence, observa-
tional equivalence has a rich theory. For example5®™ .new X in {X := z; IX} =
Ax¢*P x, because the internal workings of the function are not debde from the out-
side. However, these terms are not equivalenht6™?.if x then x else z — because
expressions can have side-effects, the outcome of evaduativice may be different
from evaluatinge only once. A much less obvious equivalence is

p:com — com bt newz :=0in{p(z:=1); iflz = 1thenQelseskip} = pQ
whereQ is the term that immediately diverges. This example shows ‘Snapback”
(i.e. a term that first evaluates itsm-type arguments and then immediately undoes
their side-effects) is not definable in IA. The above eq@mak holds because in either
case, ifp ever evaluates its argument, the computation will diverge.

Game Semantics Thefully abstract game semantics [1] of IA has proved extremely
powerful. In this model, a typd is interpreted as a ganfel] between P and O, and a
termI" - M : A as astrategy[I" - M] for P to play in the gamél” - A]. A strategy

is just a set of plays (forming a playbook for how P should oespat each step he is

to play), and glay is a sequence of moves, each is a question or an answer eguippe
with a pointer to an earlier move. A play isompletef every question in it has been
answered, so the game has run to completion.

The highly accurate game semantics characterises ohisealatquivalence in terms
of complete playsi.el’ - M; = M, ifand only if comp[I" = M;] = comp[I" + Ms],
where comp o is the set of complete plays in strategy Murawski and Walukiewicz
[8] have shown that the complete plays in the strategy dépataf an 1A;-term are
recognisable by a visibly pushdown automaton.

Visibly Pushdown Automata The visibly pushdown automat@/PA) [3] are a sub-
class of pushdown automata in which the stack actions (ggghpr no-op) are com-
pletely determined by the input symbol. They are more exgireghan finite automata,
yet enjoy many nice closure properties of the regular laggsaBecause they are closed
under complementation and intersection, and have a ddeidatptiness problem, the
VPA Equivalence ProblerfiGiven two VPA, do they accept the same language?”) is
decidable. So by representing the set of complete plays frategy denotation of an
IA3-term as a VPA, it is decidable (in EXPTIME [8]) if a given paif 5-normal |A;-
terms are observationally equivalent.

Implementation Following the algorithm of Murawski and Walukiewicz [8], wave
created a tool, called ®MER, for checking observational equivalence of;lferms-

L Full abstraction is a strong goodness-of-fit measure. A denotatienadrstics igully abstract
if the theory of equality induced by the semantics coincides with observhgqoaalence.
2 which models the operand-to-operator, and variable-to-binder relattbin a term.

OCO~NOOUTEWNEF

in-context. Given two such terms, it first translates therth&r VPA representations.
These are then fed into a VPA toolkit, which we have createdheck for equivalence
by complementing, intersecting and emptiness-checkingstifor inclusion in both di-
rections. The complementation and intersection operatéwa straightforward imple-
mentations from [3]. Since the VPA-translates are detestiinby construction, they
are complemented just by complementing the final statesrdattion is by a product
construction (which works for VPA — but not general PDA — hesmthe two automata
always perform the same stack action). More complex is thetieess test. We exper-
imented on a few algorithms before settling on Schwoon’$ phgorithm for general
PDA, [12]. When the two terms are inequivalent, this will puod as a counter-example
a play recognisable by exactly one of the two VPA-translakls tool will use this play
to generate aeparating contexta context that converges when its hole is filled by one
term, but diverges when filled by the otheroMER is written in about 8 KLOC off'#,
including about 600 LOC for the VPA toolkit.

2 Evaluation and Tests

All tests in the following have been run on a laptop with a &512 Intel Core 2 Duo
processor and 4GB RAM under Windows Vista. The baseetyp@Nis {0,1,---N—
1 }. Unless specified otherwisexp coincides withexp%\, which defaults tdN = 3.

Sorting Verifying sorting programs is a challenging test for modeéckers because
of the complex interplay between data flow and control flow 4] implementation of

bubble sort is given below. Input to the program takes theafoiran array of elements of
the set{0, 1, 2}; we evaluate the model for different valuesntthe length of the array.
The program communicates with its environment only throtighnon-local variable

X. In a call-by-name setting, becausecan represent anyar-typed procedure, it is
legitimate to use it as an input/output stream. The progratially populates the array
by reading fromx, and after sorting writes the values backxtin order. These reads
and writes are the only actions visible from the outside.

X 1 vary |-
new a[N| %8 in
{new i %\+1 in while !'i < Ndo {a[!i] :=1!x; i :=(li + 1)}};

new flag%® in
flag : = 1;
while !'flag dof
new i N in
flag : = 0;
while !'i < N1 do{
if ta[ti] > ta[!i + 1] then{
new tenp%3 in
flag : = 1;
tenp :=la[li] ;
a[li] :="la[!li
afli + 1] :=!
el se skip;
=1+ 1
}
}

s
{new i %\+1 in while !i < Ndo {x:="'la[li];i :=1!i + 1}}

1
2

The automaton produced when = 2 is shown in the following using Graphviz
Since this is a 1st-order program, the VPA-translate degéeeto a deterministic finite
automaton. It can be seen that there is a trace through tbenatdn for each of the 9
possible input combination$.

Since the internals of the sorting program are hidden, leubbtt is observationally
equivalent to any other sorting algorithm. Replacing thdybof the bubble sort algo-
rithm above (but keeping the same input and output format) thie code for insertion
sort, we can feed them both intodMER and check that (for a given value oj they
are in fact equivalent. (Timing data are provided uriRetated Workn the sequel.)

Kierstead Terms An interesting 3rd-order example are the familykoérstead terms
K= 070 fzy. f(Azg. - fOxn_1.f (A, . 7;)))), Wwherel <4 < n, and

o is a base typek, ; and K » are the simplest pair of terms for which the location of
pointers is critical. In the VPA-translate, each 3rd-orgleestion has a tag that indicates
the target of its pointer. Over base-typen, the table below gives the times to compile
K, ;, and to determinés,, ; 2 K, ; whenever # j, asn varies.

n|Time (Compile)Time (CompareBtate Space (Finatate Space (Max)
10 1.59 2.69 64 1172
20 3.85 6.55 97 334(Q
80 355 70s 250 8848
160 2205 7.5 ming 730 26128

Counter-Example: Separating Context It is not at all obvious how to construct by
hand a context that witnesses inequivalent Kierstead teRakow is a context that
separate&’s ; andK> 5, as generated by &MER (suitably adjusted for readability). By
following the (somewhat complex) execution process, wesesnhow the assignments
and tests on the local variab¥force the program to follow the single path from which
the context was derived: it terminates A1 », but diverges or; ; when it tries to run
its arguments’ argument from the first time it is called (tdesiating from the path).

(fun G (((com-> com -> con) -> con).new X in
X =1;

Shttp://ww. graphviz. org/

4 HoMER uses a somewhat ive forward reachability checker to remove unreachable states at
each intermediate stage. This is very fast, and reduces the state spsice@bly, but it does
not make any attempt to merge bisimilar states or delete states that cane@abea final state.

NRERRRRRRE R R
COONOUBWNROO®ON®U AW

CoO~NOUTOR~WNE

G (fun z:(com-> con).
if 1X=1then
(
X =2;
z onega,
if 1X=5then X =6 el se onega

else if !X =2 then
(
X =3;
z (if X =3 then X =4 el se onega);
if !X =4 then X =5 el se onega
)
el se
onega
)
if !X =6 then X =7 el se onega

)(I-1)

Shortest Prefix Let us represent a sequence of numbers by a function ofetype—
exp that mapg to theith value in the sequence. We assume thaeifceeds the length
of the sequence then evaluation diverges. A predicate ma@r sequences has type
(exp — exp) — exp — bool where the second argument is the length of the sequence
being tested. Given such a predicate and a sequence, we dathdirlength of the
shortest prefix of the sequence that satisfies the predisatg the following 3rd-order
program.

|- fun p @ (exp”N -> exp%) -> exp¥N -> exp% . fun xs : exp? -> exp%M .
new i %N in
new done% in
new found% in
whil e not !done do{

if (p (fun index:exp¥ . if index > !i then onega else (xs index)) !i) then {
found : = 1;
done := 1
else if i = N1 then done :=1elsei :=1!i +1
i% Ifound then !i el se onega

We construct sequences that agree wishup to indexi and then diverge and check
whetherp holds for such a sequence. The boolean flags are requireddseota restric-
tion on comparing values of different types (eegcp%N andexp%Mwith unequalN
andM). Fixing the type of the data x p%3 and varying the size of the input sequence,
the timing and state space data are below.

n|Time (Compile)State Space (Finaftate Space (Max)

5 2 197 4706
10 45 592 18486
15 9s 1187 47966
20 185 1982 99146

Related Work To our knowledge, I®MER is the first implementation of a model
checker of 3rd-order programs. The tools most similar tcsaane MAGE [4], and

GAME CHECKER([5]. Though these are model checkers based on game semémgigs
only check up to 2nd-order programs, which are much simehay can be repre-
sented by finite automata. Further they check for reachabdther than equivalence,

so a fair comparison is thus hard to make even for 2nd-oragrpms. However, if we
augment bubble sort so that as it outputs each of the valuakso asserts that each
element is less than the next one, we can ugekto check that none of the assertions
fail.

In the table below, compile time is the time to just compile thodel, paramaterised
by n, the size of the array. Compare time is the total time to cteripdth bubble and
insert sort and check that they are observationally eceital he times for MGE are
how long it took to assert that bubble sort always resultssaréed array.

n|CompilgComparéState Space (Finaftate Space (Max)ime (MAGE)
5 1.35 2.39 495 1983 0.65
10 555 7.5 ming 60501 353613 1549

Forn = 15, both MAGE® and HOMER gave up complaining of insufficient memory.

Conclusions Since HOMER is (we believe) the first third-order model checker, there
are no benchmarks against which we can properly measurerftekmance. When com-
pared to MhnGE, HOMER's performance is of the order of magnitude. Given the com-
plexity of model-checking observational equivalence af#order problems (EXPTIME-
complete), this is encouraging. Further, as this is a pypotmplementation, we used
a simple explicit representation of the state-space. Weabsignificant performance
gain when techniques that have proved successful in othéelkuheckers (includ-
ing MAGE), such as symbolic representation, lazy model checking BGAR, are
exploited. Another encouraging point is that the final medeloduced are compact.
Though the intermediate VPA have larger state-spaces atteestill much smaller than
that examined by a naive state space exploration.

References

1. S. Abramsky and G. McCusker. Linearity, sharing and statAldol-Like Langs.1997.

2. S. Abramsky et al. Applying Game Semantics to Compositional SoftWackelling and Ver-
ification. InProc. TACAS2004.

3. R. Alur and P. Madhusudan. Visibly pushdown language®rdc. STOC2004.

4. A.Bakewell and D. R. Ghica. On-the-fly techniques for game-dbas&ware model checking.
In Proc. TACAS2009.

5. A. S. Dimovski, D. R. Ghica, and R. Lazic. Data-abstraction refimgnia Proc. SAS2005.

6. D. R. Ghica and G. McCusker. Reasoning about Idealized AlgolgRegular Languages.
In Proc. ICALP, 2000.

7. D. Hopkins. A model checker for a higher-order procedurajlagye. MCompSc disserta-
tion, University of Oxford, 2009.htt p: // users. com ab. ox. ac. uk/ | uke. ong/
publ i cati ons/ Hopki nsReport . pdf

8. A. Murawski and I. Walukiewicz. Third-order idealized algol with itiéwa is decidable. In
Proc. FoSSaCS005.

9. J. C. Reynolds. The essence of Algol. Algorithmic LanguagesNorth-Holland, 1981.

10. C. Okasaki. Even higher-order functions for parsingl. IRunct. Program.1998.

11. A. Cataldo. The Power of Higher-Order Composition Languageystesh Design. PhD
thesis, UC Bekerley, 2006.

12. S. Schwoon. Model-Checking Pushdown Systems. PhD thesks,Jeiv. of Munich, 2002.

5 It may have been possible to increase the memory availableatoe Haskell compiler.

