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Abstract. We present a new algorithm for computing the winning region of a
parity game played over the configuration graph of a pushdown sy$em.
method gives the first extension of the saturation technique to the parity con
dition. Finite word automata are used to represent sets of pushdowguenafi
tions. Starting from an initial automaton, we perform a series of automagtna-tr
formations to compute a fixed-point characterisation of the winning regi@n
introduce notions of under-approximation (soundness) and oyepamation
(completeness) that apply to automaton transitions rather than runsptaid o
clean proof of correctness. Our algorithm is simple and direct, andrtifean
optimisation that avoids an immediate exponential blow up.

1 Introduction

Pushdown systems — finite-state transition systems eqdijjib a stack — are an old
model of computation which has recently enjoyed renewest@sts from the software
verification community. They accurately model the controhfbf first-order recursive
programs [7] (such as C and Java), and lend themselvesy¢adilgorithmic analysis.
For these reasons, pushdown systems have played @leeiy ithe automata-theoretic
approach to software model checking [1,5, 10, 13]. Conaldlerprogress has been
made in the implementation of scalable model checkers digmgn systems. These
tools (e.g. Moped [10]) are an essential back-end compafesuich model checkers as
SLAM [11].

The modal mu-calculus is an important language for deswgiproperties of pro-
gram behaviour because it is highly expressive (all stahtanporal logics in verifi-
cation are embeddable in it). In a seminal paper [3] at CAVE] 9¥alukiewicz showed
that local modal mu-calculus model checking of pushdown systems, oivalgntly
[4] the solution ofpushdown parity game@.e. parity games over the configuration
graphs of pushdown systems), is EXPTIME-complete. His oettieduces pushdown
parity games to finite parity games by a kind of powerset ¢ansbn over the control
states, which is immediately exponential in size. WHostl model checking asks if a
designated state (of a pushdown system) satisfies a givpenymlobalmodel check-
ing computes a finite representation of the set of statesfgat) the property. The
latter is equivalent to computirﬁlo’fse’s winning region of a pushdown parity game,
which is the problem that we have set ourselves here. Globdehthecking used to be
the norm in verification (CTL and many symbolic model cheslkill perform global
model checking). While local model checking can be expeaidtave better complex-
ity, global model checking is important when repeated cheamle required (because
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tests on the representing automata tend to be comparativelp), or where the model
checking is only part of the verification process.

Related work.Cachat [12] and Serre [9] have independently generalisddkigavicz’
algorithm to solve the global model-checking problem: theg the local model-checking
algorithm as an oracle guiding the construction of autormmetagnising the winning re-
gion. An alternative approach, introduced by Piterman aadiM8], uses two-way al-
ternating tree automata to navigate a tree representippsdible stacks. After several
reductions, including the complementation afddi automata, an automaton accepting
the winning region can be constructed.

In 1997 Bouajjaniet al. [1] (at CONCUR), and, independently, Finkalt al. [2]
(at INFINITY), introduced asaturationtechnique for global model-checking reacha-
bility properties of pushdown systems. From a finite-wordomaton recognising a
given configuration-sef, they perform a backwards-reachability analysis. By iera
tively adding new transitions to the automaton, the set ofigarations that can reach
some configuration id is constructed. Since the number of new transitions is bednd
the iterative process terminates. This approach undetipinacclaimed Moped tool.

Contributions. This paper presents a new algorithm for computﬁig’fse’s winning
region of a pushdown parity game. We represent (regularfigumation sets as alter-
nating multi-automata [1]. Using a modal mu-calculus folarthat defines the winning
region as a guide, our algorithm iteratively expands (whemmuting least fixpoints)
and contracts (when computing greatest fixpoints) an ajpating automaton until
the winning region is precisely recognised. Our method isrzegalisation of Cachat'’s
for solving Bichi games [12], which is itself a generalisation of the sstan tech-
nique for reachability analysis. However, we adopt a défeproof strategy which we
believe to be cleaner than Cachat’s original proof. Our doution can equivalently
be presented as a solution to thiebal model checking problem: given a pushdown
systemk, a modal mu-calculus formulg(Y'), and a regular valuatiolr, our method
candirectly compute an automaton that recognises théxa@t )]~ of KC-configurations
satisfyingy (Y) w.r.t. V.

Our algorithm has several advantages:

(i) Itis simple and direct. Even though pushdown graphs arenege infinite, our
construction of the automaton that recognises the winréggn follows, in outline, the
standard pen-and-paper calculation of the semantics ohmod-calculus formulas in
afinite transition system. Through the usepbjection our algorithm is guaranteed to
terminate in a finite number of steps, even though the usyabifik calculations may
require transfinite iterations. Thanks to projection, ttaessets of the approximating
automata are bounded: during expansion, the number ofticarssincreases, but only
up to the bound determined by the finite state-set; duringraction, the number of
transitions decreases until stabilisation or zero.

(ii) Our proofis simple and easy to understand. A key conceptaalation of the
correctness argument aveluation soundnesand valuation completenes3hey are
respectively under- and over-approximation conditiora gpplylocally to individual
transitions of the automaton, rather thglobally to the extensional behaviour of the
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automaton (such as runs). By combining these conditionghadeduce the overhead
of the proof, we show that our algorithm is both sound and detepn the usual sense.

(i) Finally, our decision procedure builds on and extends thiékmewn satura-
tion method, which is the implementation technique of ca@€ pushdown checkers.
In contrast to previous solutions, our algorithm permitsraightforward optimisation
that avoids an immediate exponential explosion, which webeis important for an
efficient implementation. Another advantage worth notmthat the automaton repre-
senting the winning region is independent of the maximurarfyi m (even though the
it takes time exponential im to construct).

2 Preliminaries

A pushdown parity game is a parity game defined overpushdown graplfi.e. the
configuration graph of a pushdown system). Formally it is adquple(P, D, X, | 2)
whereP = PowPgr = {p',...,p*} is a set of control states partitioned into Abelard’s
andElaise’s statesy, := X U { L} is a finite stack alphabet (we assume¢ X)),

D C PxX, xPxXiisasetof pushdown rules amd : P — {1,...,m}

is a function assigning priorities to control states. Astandard, we assume that the
bottom-of-stack symbal is neither pushed onto, nor popped from, the stack. We also
assume that there is a rule for each P anda € X' .

A play begins from some configuratidp, a w). The player controlling chooses
pa — p'w' € D and the play moves tgp’, w'w). Then, the player controlling’
chooses a move, and so on, generating an infinite run. Thetprad a configuration
(p, w) is 2(p). A priority occurs infinitely often in a play if there are arfimte number
of configurations with that priorityEloise wins the play if the smallest priority occur-
ring infinitely often is even. Otherwise, Abelard is the wénn

A player'swinning region of a pushdown parity game is the set of configurations
from which the player can always win the game, regardledseif bpponent’s strategy.
Eloise’s winning regionVg of a parity game5 is definable in the modal-calculus;
the following is due to Walukiewicz [3]:

Wg = [uZ1.vZs. ... 121V 205 ( 20, -, Z)) ]

wherem is the maximum parity (assumed eveW)js a valuation of the variablésand

0p(Z1,. ... Zm) = [E= J\ (c=0Z) | A |~E= A (c=0%)
ce{l,....m} ce{l,....m}

whereE is an atomic proposition asserting the current configundsi&loise’s and, for
1 < ¢ < m, casserts that the priority of the current control state is

For eachl < ¢ < m, we have a variable/.. The odd priorities are bound hy
operators which can be intuitively understood as “finitepiog”. Dually, even priorities
are bound by operators and can be understood as “infinite looping”. Thedta ¢z

! The valuation is initially empty since the formula has no free variables.
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asserts that a variablg. is visited whenever a configuration of prioritys encountered.
Thus the full formula asserts that the minimal priority ogtg infinitely often must be
even — otherwise a variable bound by heperator would be passed through infinitely
often. It can be shown by a signature lemma tilaise has a winning strategy from a
configuration satisfying the formula [3]. Since the formsiiaverse is a similar formula
with /v, andd/{ reversed, Abelard has a winning strategy from any configamaiot
in Weg.

Thanks to the Knaster-Tarski Fixpoint Theorem, the seranti a fixpoint formula
leZx(Y,Z)]{ wheres € {u,v} can be given as the limit of the sequencecef
approximants [c* Z.x(Y, Z)]{. wherea ranges over the ordinals:

Y, 2)]§ = Init.
[[OQ-HZ'X(z? Z)]]\g/ = [x(Y, Z)]]Xg/[Zn—»k“Z‘X(VA,Z)]]%]
Y, )% = Qacrlo*Zx(Y, 2)]5

where Init = () andO = |J wheno = p, andInit is the set of all configura-
tions andO = () wheno = v. The least ordinak such thatlo" Z.x (Y, Z)]Y, =
[eZ.x(Y, Z)]§. is called theclosure ordinal

Example 1.When interpreted in a pushdown grag,*Z.x (Y, Z) ) ,co,q May have
an infinite closure ordinal. Consider the following pushdagparity graph (which is a
dual of an example of Cachat's [12]): all configurations atelard’s,2(p) = 1 and

Q(f) =2
C L (fia) — (faal) —

T

(p, L) < (p,al) < (p,aal) <—

In this gameWg = [uZ1.vZ>.0r(Z1, Z2)] consists of all configurations. However,
any(f,aa*L) only appears in an approximant of the least fixed point wifen a a*1 )
and(p,aa*L) appear in the previous approximant (since Abelard may mother
of these configurations). Hence, &ll, «*L ) must appear in the-approximant before
any (f,a*L) can appear in théx + 1)-approximant. The first approximant containing
all p configurations is the-approximant.

To represent (regular) configuration-sets, we use Bouajaal.s notion of alternat-
ing multi-automata [1]. Given a pushdown systém D, ) with P = {p',...,p*},
an alternating multi-automaton A is a tuple(Q, X, A, I, F) where Q is a finite set
of states, A € Q x (¥ U {L}) x 22 is a set of transitions (we assume ¢ ),
I ={q¢",...,¢°} C Qis aset of initial states, anfl C Q is a set of final states. We
write ¢ % Q justif (¢,a,Q) € A; and defing; = {¢}; andg 2% Q; U--- U Q,, just
if ¢ % {q1,...,q,} andg, = Q. for all 1 < k < n. Finally we define théanguage
accepted byd, L£(A), by: (p/,w) € L(A) iff ¢7 2 Q for someQ C F. Henceforth,
we shall refer to alternating multi-automata simplyaasomata.

Reachability and ProjectionThe formulayg(Z4, . . ., Z,,) asserts a ‘one-step’ reacha-
bility formula, for which we use a variant of Bouajjagtial’s reachability algorithm [1].
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Cachat’s extension of this algorithm requires a technicplled projection Using an
example, we briefly recall the relevant techniques.

The automatord., in Figure 1 (i) represents a configuration getTo represent
the set of configurations that can reatlafter a single application qf' a — p? < or
p2b — p?ba we first add a new set of initial states since we don’t necégdsave
C C Pre(C). By applyingp! a — p? ¢, any configuration of the fornip!, aw), where
w is accepted frog? in A.,, can reaclt. Hence we add aa-transition fromg'. (Via
the pop transition, we reacp?, w) € L(A.,).) Alternatively, viap>b — p? ba, any
configuration of the form(p?, bw), wherebaw is accepted frong? in A.,, can reach
C. The push, when applied backwards, replaeeby b. We add a-transition fromg?
which skips any run oveia from ¢2. Figure 1 (ii), ignoring the dashed transition, shows
the resulting automaton.

To ensure termination of thelBhi construction, Cachat uspgjection which re-
places a new transition to an old initial state with a traosito the corresponding new
state. Hence, the transition in Figure 1 (i) frorhis replacedby the dashed transition.
The old initial states are then unreachable, and deleteithwim this case, leaves an
automaton with the same states as Figure 1 (i) but an additi@nsition. In this sense,
the state-set remains fixed.

O, O

Fig. 1. (i) On the left, A., accepting(p?, ba*); and, (i) on the rightA., updated by the rules

pta — p? e andp? a — p? ba. The dashed line is the result of projection.

3 An Example

We begin with an intuitive explanation of the algorithm byanse of an example. Con-
sider the pushdown game shown in Figure 2. Since the aim ®fttample is to give
an overview of the flow of the algorithm, the behaviour of thisipdown system is kept
simplistic. The subscripts indicate the priority of a coofigtior?. Let pg, p), € Pg
andps € Pa.

Eloise can win from configurations of the fornigy, aX*L),, (g, aX*L),, or
(P, bE*L),. Eloise can loop between the last two of these configurationgrgéng a

2 Our priorities here begin @t This does not change the algorithm significantly.
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pushy

<p/E‘7 bE*J—>() — <p/E‘a aE*J_)O pushyp

<pE7 bEU—>1

Fig. 2. An example pushdown parity game.

run with priority 0. From elsewhere, Abelard can force playta, bX*L), and gener-
ate a run with priorityl. ComputingEloise’s winning region is equivalent to computing
vZo.uZy.or(Zo, Zl)]]‘g/. We illustrate how this is done in the following.

To compute a greatest fixed point, we begin by setipdp be the set of all configu-
rations. We then calculate the automaton recognising thetdgon ofuZ, .o r(Zy, Z1)
with this value ofZ;. The result is the value df;, for the next iteration. After each it-
eration the value of/; will be a subset of the previous value. This computationtieac
a limit when the value of/, stabilises, which is the denotation of the formula.

Computing the least fixed point proceeds in a similar marex@ept that the initial
value of Z; is set to). We then compute the (automaton that recognises the) dianota
of ¢r(Zy, Z1), which gives us the next value & . Dual to the case of greatest fixed
points, the value of; increases with each iteration.

Constructing the Automator(We shall often confuse the denotation of a formula with
the automaton that recognises it, leaving it to the conteitdicate which is intended.)
We begin by settingZ, to the set of all configurations. The automaton recognising
all configurations is shown in Figure 3 i)Given this value ofZ,, we compute the
denotation ofuZ;.0r(Zy, Z1). The first step is to set the initial value &f to the
empty set. The corresponding automaton is also shown in€g(ii). Observe that we
have a separate set of initial states fogrand 7, .

We now compute i (Zg, Z1 ) which is the next value of; . A configuration(p?, aw)
with priority ¢ should be accepted Eloise can play - or Abelard must play - a move
which reaches som@”, w'w) € V(Z,). The result is Figure 3 (iii).

Observe that the computation of the new automaton has omgdattansitions.
When computing a least fixed point, each generation of intiailes has more transi-
tions than the previous generation. In this example the mummbpossible transitions is
finite since all transitions happen to godp Therefore, the automaton must eventually
become saturated, causing termination. In the full algorjttransitions from the new
set of initial states to the old aprojectedback onto the new initial states. This en-
sures that the previous generation is not reachable. Hémestate-set is fixed. When

3 This is a simplification of the automaton defined in Section 4.
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computing a greatest fixed point, termination can be prowedlyt we begin with all
transitions and iteratively remove transitions at eacpesta

We now compute the next iterate @f,. We add a new set of initial states, and
perform the reachability analysis, as in Figure 4 (i). If were/to perform another
round of the reachability analysis, we would find a fixed poirtat is, the transitions
from the new initial states corresponding4phave the same outgoing transitions as the
old. This fixed point is the next value &f,. Therefore, we set the current initial states
of Z; to be the new initial states d¢f. If necessary, we would also perform projections
from the old initial states of, to the new. We then begin evaluating:.¢ s (Zo, Z1)
with our new value of7,. The initial value ofZ; is the empty set, so we introduce new
initial states corresponding t6; with no outgoing transitions. Figure 4 (ii) shows the
automaton after these steps.

We compute the next iterate &f as before, as in Figure 5. The second automaton
is the fixed point of7;, and hence the new iterate &f. Since the new?; is identical
to the previousZ,, we have reached a final fixed point. Setting the initial stafeZ;
to be the initial states aof, and deleting any unreachable states, gives the automaton
in Figure 6, which accepEIo’fse’s winning region.

z
z
X

@ @O\
@) ) @ )
@

@)
@)

Fig. 3. From left to right, (i) the automaton accepting the initial valueZgf (ii) the automaton ac-
cepting the initial values af, andZ;; and (iii) the automaton after the first round of reachability
analysis.

4 The Algorithm

Fix a pushdown parity gamé = (P, D, X, {2) that has maximum priorityn. The
algorithm has two key components. The first Phi(A) — computes an automaton
recognising (21, . - ., Zm)]$., given an automatod recognising the configuration-
setsV(Zy),...,V(Z,). The second —Sig(l, A) — computes, for each < [ < m,
an automaton recognisig Z;.x;+1(Z1, . . ., Z1)], wherea is eithery or v, given an
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Fig. 4. (i) The automaton after the second round of reachability analysis; arti€igutomaton
with the new value of/, andZ; set to the empty set.

Fig.5. The automaton after the first round of reachability analysis with the Agwand the
automaton after the second round of reachability analysis with theZaew

\“
a,b
—— E

Fig. 6. The automaton accepting the winning regiorédm'se.
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automaton4 recognising the configuration-sét§~7,),...,V(Z;_1), where

Xi+1(Z1,.. Zy) = 02141 .. 0 Zy 0 (20 o Zi).

Format of the AutomataWe describe the format of the automata constructed during
the algorithm. LeQ,; := {¢*, ¢7}, andQ. := {@|1<j<|P|}foreachl <c<
m+ 1. These states are used to give the valuations of the vasigble. . , Z,,,, and the
semantics obg(Z4,. .., Z,y,) whenec = m + 1.

Let0 <1< m+ 1. An automatom is said to beype-/ just if:

() The state-se@4 :=Q; U --- U Q; U Q.
(i) Every transition of the formg? < @ has the property thap # (), and for allj’
andc’ > ¢, qﬁ,/ ¢ ( (i.e. there are no transitions to states with a higher gyipri
(iif) The only final state ig; which can only be reached by &transition, and not

from g5 itself. I.e. for eachy L Q, we haveg; € Q iff @ = {qj} iff a =L iff
q 7 ;-
(iv) We also haveg® - {¢*} andq* = {q5}.

It follows that there is a unique automaton of type-O.

In the following, letA be a typet automaton, wheré < ¢ <1 < m+ 1. We define
L(A) CPX* Lby:forl <j <|P|, (pP,w) € L.(A) justif w is accepted byd
from the initial statey’. Thus£.(A) is intended to represent the current valuation of the
variableZ,; in case = m+ 1, £,,+1(A4) is intended to represefip g (Z1, . . ., Zm)]]€
where the valuatio” mapsZ, to £.(A). If we omit the subscript and writé(A), we
mean/,;(A). By abuse of notation, we defing,(4) C X*L U {¢e} to be the set of
words accepted byl from the statey (note thatC,- (A) = 2* L andLq: (A) ={e}).

Definition of the Algorithm.Given a pushdown parity gangg the algorithm presented
in Figure 7 compute®Vg, the winning region of:

Wi = [uZv.vZs. ... 0 Zm1.0Zmpp(Z1, ..., Zm)]§ -

In computing[¢x(Z1, . .., Z,)]{, we may add an exponential number of transitions.
TocomputelcZ;. -+ .0 Zpm . or(Z1,- - ,Zm)}]‘g, we may require an exponential num-
ber of iterations. Hence, in the worst case, the algorith(siiggly) exponential in the
number of control states and the maximum priority

Theorem 1. Given a pushdown parity gan = (P, D, X, {2), we can construct an
automaton recognising the winning regiontgbise in EXPTIME inP| - m wherem is
the maximum priority.

The alternating multi-automaton returned by the algoritlin(1, Ay), hasn = |P|+2
states. The number of transitions is bounded:byX’| - 2", which is independent of..
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-
procedure Phi(A)
Input A type-m automatond as valuation ofZ =21, s Zm.

Output A type-(m + 1) automaton denotingz(2), relative toA.

1. (1-Step ReachabilijyConstruct the automatod’ by adding new states

{ahirs s qlﬂl} and the following transitions td. For eachl < j < |P|,

setc := 2(p?), and
—if p! € Pg '[hean;H_1 L Qif g8 % Qand(p*,w) € Next(p’, a)
—if p’ € Patheng, ., - Q1U---UQ,if ¢ 5 Q1 ..., ¢
Qn, andNext(p/,a) = {(p", w1),..., (p"", w,)}
whereNext(p’,a) .= { (p*,w) |p’a — p*w € D}.
2. return A’.

procedure Proj(l, A)
Input 1 <1 <m; atype{l + 1) automatonA.
Output A type- automaton.

1. For eacly, replace each transitiafi, ; < Q with ¢/, , < 7'(Q) where
Q) = {dl, |4 € Q}UQ - Q).

2. For eacly, remove the statg/ .

3. For eacty, rename the staig, , tog; .

procedure Sig(l, A)

Input 1 <1 <m+1,
atype{l — 1) automatord as valuation ot/y,--- , Z;_;.

Output A type- automaton denotingZ; - - - 0 Z,,, . p(Z), relative toA.

1. ifl = m + 1 then return Phi(A)
A with new state<D;, but no new transitions 7, = uz;

2. A% := { A with new stateg;, and all outgoing bz, =vZ
transitions obeying the format of the automata.

3. fori =0to ocodo

4, Bt := Sig(l + 1, A?)

5 AL = Proj(l, BY)

6 if A% = A" then return A’

Input A pushdown parity gamé = (P, D, X, 2) with max. prioritym.
Output A type-1 automaton recognisirig;]¢, the winning region of;.

begin
return Sig(1, Ao) % Ay is the unique type-0 automaton.

end

Fig. 7. Algorithm for computing winning region of a pushdown pargsme.
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5 Termination and Correctness

Termination First an auxiliary notion of monotonicity for automaton stmictions.
Letl < I, I’ < m+ 1, andA and A’ be typet automata. We writed < A’ to
mean: for allg,a andQ, if ¢ = Q is an A-transition then it is am’-transition. We
consider automaton constructiofis(such asSig, Phi and Proj) that transform type-
[ automata to typé- automata. We say that is monotongjust if 7(A) < 7(4")
wheneverd < A’.

To show that our winning-region construction procedurenteates, it suffices to
prove the following.

Theorem 2 (Termination). For everyl <[ < m+ 1 and every typd{— 1) automaton
A, the proceduresig(l, A) terminates.

We prove the Theorem by induction énit is straightforward to establish the base
case ofl = m + 1: Phi(A) (whereA is typesn) terminates. For the inductive case of
Sig(l,—) wherel <1 < m, sinceSig(l + 1, —) terminates by the induction hypoth-
esis, andProj (I, —) clearly terminates, it remains to check that in the comprtanf
Sig(l, A) whereA is type{l — 1), there exists an > 0 such thatd’ = A**!. Since all
automata of the same type have the same finite state-selant! , ... are all type-

1) , it suffices to show (i) of the following Lemma (see the Apgienfor a mutually
inductive proof).

Lemma 1 (Monotonicity). We have the following properties.

(i) Letl <! < mandA be atypefl — 1) automaton. InSig(l, A):
a. if oZ; = pnZ thenA? < A+l foralli >0
b. if 0Z; = vZ; thenA'™! < A forall i > 0.
(ii) Foreveryl <1< m + 1, the constructiortig(l, —) is monotone.
(iii) Foreveryl <[ < m, the constructionProj(l,—) is monotone.

Correctness To prove correctness, we introduce the notionvalfiation soundness
andcompleteness-ix a pushdown parity gamg = (P, D, X, £2). A valuation profile

is a vectorS = (Si,...,95;) of configuration-sets (i.e. vertex-sets of the underlying
configuration graph). We define the induced valuatign Z. — S., which we extend
toamaplz : Q4 — 2%+ on the states of a typeautomaton as follows:

@@ = {w|lp wyeS} 1<j<|P|,1<c<l
Vei={ ¢ X¥ 1
a; — {e}
Definition 1. Given a valuation profil& of lengthi, a typet automatond is S-sound

just if, for all ¢, @ andw, if A has a transitioy > @ such thatw € Vg(q') for all
¢ € Q,thenaw € Vg(q).

By induction on the length of the word, valuation soundnedsrels to runs. We
then obtain that all accepting runs are sound.
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Lemma 2. Let A be aS-sound automaton.

(i) Forall g, wandw’, if A hasarung — @ such thatw’ € Vg(¢') forall ¢’ € @Q,
thenw w' € Vg(q).
(i) Forall g € Qa, L4(A) C V(q).

Proof. (i) We prove by induction on the length of the wotd Whenw = a, the prop-
erty is justS-soundness. Take = au and some ruy - Q - @’ such that for
all¢ € Q', we havew € V5(¢'). By the induction hypothesis, we have the property
for the run@Q - Q'. Hence, we have for alf € @ that,uw’ € V5(¢'). Thus, from
S-soundness, we havew’ € Vg(q).

(i) Take an accepting rug — Q; of A. We have for allf € Q; = {a7},
e € V5(q'). Thanks to (i), we have € V5(q).

Definition 2. Given a valuation profil& of lengthl, a type# automator is S-complete
just if, for all ¢, @ andw, if aw € Vg(q) then A has a transitiory 2, @ such that
w € Vg(q') forall ¢ € Q.

By induction on the length of the word, valuation completsextends to runs.
Furthermore, an accepting run always exists when required.

Lemma 3. Let A be anS-complete automaton.

(i) Forall ¢, wandw’, if ww" € Vg(q) then A has a rung 2, @ such thatw’ €
Vs(q') forall ¢ € Q.
(i) Forall g € Qu,V5(q) C Ly(A).

(See the Appendix for a proof.)

Notation.Let1 <[ < m + 1. We write
Xl(Zh ey Zlfl) = JZ[ cee Zm.QOE(Zl, ey Zm)

Thus we havey; = pZ; ...0Zm.0e(Z) andxmi1(Z1, ..., Zm) = ve(Z). LetS =
(S1,...,S-1); we write (S, T') to mean(Sy, ..., 5,1, T). Thus we write (sayk;(S)
to meany;(St, -+, Si-1), andx;+1(S, Z1) to meanx; 11 (S1, ..., Si—1, Z1)-

Proposition 1 (Main). Let1 <[ < m+ 1, A be atypefl — 1) automaton, and be a
valuation profile of lengthi — 1.

(i) (Soundness Preservation) If A is S-sound, therSig(l, A) is a typet automaton
which is(S, [x:(S)])-sound?

(i) (Completeness Preservation) If A is S-complete, therfig(l, A) is a typet au-
tomaton which i€S, [x;(S)])-complete.

Since the type-0 automataty is trivially sound and complete with respect to the
empty valuation profile, we obtain the following as an imnageélicorollary.

4By [xi(S1,- -+, Si—1)] we mean]x;(Z1,--- , Zi_1)]v W.r.t. a valuationl that mapsZ. to
Se.
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Theorem 3 (Correctness). The procedure callSig(1, Ag) terminates and returns a
type-1 automaton which igx:])-sound and[x])-complete. Hence, thanks to Lem-
mas 2 and 3, for each < j < |P|, V[, 1(q]) = L, (Sig(1, A)) i.e. the automaton
Sig(1, Ap) recognises the configuration skt;], which is the winning region of the
pushdown parity gamé.

Proof of the Main Proposition We prove Proposition 1 by induction dnFirst the
base casd:=m + 1.

Lemma 4. Let S be a valuation profile of lengthn, and A a typesm automaton.

(i) Phi(A)is atypefm + 1) automaton.
(ii) If AisS-sound thenPhi(A) is (S, [¢xr(S)])-sound.
(iii) If Ais S-complete thePhi(A)is (S, [¢r(S)])-complete.

Proof. The proof of (i) is immediate.

(i) Set' S = (S, [¢r(S)]) and let2(p’) = c. Take any transition’, ., = Q
in Phi(A) such that for all/, € Q, (p”', w) € Vir(Z.). Abusing notation, we take
an appropriate assignment ezt (p’, a) — the complete value oNext(p’,a) for
an Abelard position, and a single command forEoise position — that led to the
introduction of the transition. Sincé is S-sound and for al(p*, w) € Neat(p?, a)
we haveg" ~% Q) C Q, we know that(p", wyw) € Vgr(Z.). Hence all(p”, wyw)
are inVg-(Z.), and(p’, aw) € Vr(Zm+1) = [¢r(Z)]{-_, since all moves, in the case

7 Sl

of Abelard, and a move in the caseklbise, reach configurations #i..

(iii) Take any configuratiodp’, aw) € Vir(Zyi1) = [¢p(2)]5._ . Let2(p?) = c.

S/

There exists an appropriate assignmgit:, wy), ..., (p*,w,)} to Next(p?,a) (as
before) such thatp™ , w,w) € Vg (Z.) for all h € {1,...,n}. SinceA is assumed
to be S-complete, it follows that al{p*" , w,w) have a complete run. In particular, we
have a complete rugt» - @Qy, for all h. Hence, by the definition oPhi(A), there
exists a transitiop’ % Q that is complete.

For the inductive case df < | < m, we present the proof whernZ;, = ;. The
case ofv Z; = vZ, is exactly dual and given in the Appendix. Recall that

xi(Z1,....Zi1-1) = oZyxi (2, 7).

Lemma 5. SupposerZ; = nZ;. LetS be a valuation profile of length— 1, and A be
atype{l — 1) automaton; se = [uZ;.x1+1(S, Z1)].

() Sig(l, A) is a typet automaton.
(ii) If Ais S-sound, therig(l, A) is (S, §)-sound.
(iii) If Ais S-complete, thewig(l, A) is (S, 6)-complete.

Proof. (i) The result of the recursive call g (! + 1, A) combined with the call
to Proj ensures the property.
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(i) LetS’ := (S,0). Itis straightforward to see that® is S’-sound, since it did
not add any transitions td, which is assumed to b§-sound. Hence, we assurmé is
S’-sound. We argue the case fai!.

Take a transition; % @ in A** such that for ali; € Q we have(p*, w) € Vr(Zy).
Take the corresponding transitiqﬁrl 2, @' in Sig(I1 + 1, A?) before the projection.
In particular, for every;® € @ we havegy or ql’“+1 in Q. By the induction hypothe-
sis, we knowSig(l + 1, A%) is (S, [xi+1(57)])-sound. Furthermoré/s:(Z;) = 6 =
Ixi+1(S,0)] = Ver(Zi11). SinceSig(l + 1, AY) is (57, [xi1+1(S7)])-sound, we have
(p?, aw) € Vgr(Zi111) = Vr(Z;) as required.

(i) Let A be a typefl — 1) automaton which isS-complete. We use the short-
handd® = [u®Z;.x141(S, Z;)]. Trivially A% is (S, 8°)-complete. Now assume that the
typed A is (S, 6%)-complete for allo < 3 for somej3. By the induction hypothesis,
Bt = Sig(l+1, A% is (S, 6%, 6>t1)-complete, sinc**! = [x;11(S,6)]. We need
to show that, after the projectionli*! := Proj(l, B?) is S’-complete, wheres’ :=
(S,0°+1). Take somép/, aw) € Viz(Z;). We knowB' has a transition;, , < Q sat-
isfying completeness. [ contains no states of the forgfi, then the transitioqu L4Q
satisfies completeness i 1. If Q contains state@{“, then(p®, w) € 9= C gt =
Vo (Z;). Hence, we have a required complete transition after thgeqgtion, and so,
At is S’-complete.

Consequentlysig(l, A) is (S, 0*)-complete for alle < /3 for somef3. We require that
Sig(l, A) be(S, [11Z;.-x1+1(S, Z;)])-complete. We proceed by transfinite induction. For
a successor ordinal we repeat the argument above, and elikatva complete run in
the new automatord’ implies a complete run i¥ig(l, A) (sinceA’ = Sig(l, A)). For

a limit ordinal \, we have thatig(l, A) is (S, 6~)-complete for allv < ). Sinced* =
Ua<a 0, the result follows because each configuration in the limijiears in some
smaller approximant, and the transition witnessing coiepless for the approximant
witnesses completeness for the limit.

6 Optimisation

In the procedureig(l, A), in caser Z; = vZ;, our definition ofA° contains all allow-
able transitions, and hence is immediately exponentiakéder, if we havey % Q and
q % Q' with Q C @', then acceptance frof)’ implies acceptance fro. That is, the
transition toQ’ is redundant. Furthermore, acceptance fromgniynplies acceptance
from ¢* (trivially). Using these observations, we can optimise automaton. In the
following definition,Q < @’ can be taken to mean an accepting run fr@rimplies
an accepting run frong.

Definition 3. For all non-empty sets of statésandQ’, we define
RQ<Q = ((¢"€eQ=3q#¢;NqeQ) N Vg#¢qeQ=qe Q"))

andEXPAND(A) :={¢ L Q' |¢ > QinAandQ < Q' }.
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By specifying monotonicity with respect toxBAND(A) rather thanA, A° (in case
0Z; = vZ;) only needs transitions @ andq}, which is linear. We can remove redun-
dant transitions at every stage of the algorithm. Sincerssitian to{¢*} is powerful
with respect tog we expect to keep the automaton small. However, this wilehiasbe
confirmed experimentally.

To test termination ofig(A, ), we check if EXPAND(A**!) = EXPAND(A?).

Lemma 6. ExPAND(A) < EXPAND(A’) if and only if whenever; % @ in A then
there is som&)’ < Q withg = @’ in A’.

By induction, we extend the property to runs. HencePEND(A) < EXPAND(A’)
implies£(A) C L(A"). Finally, we have:

Lemma 7. The optimisation preserves monotonicity and both valuesimundness and
valuation completeness.

Conclusion. We have proposed a new, simple and direct algorithm for cdimgpthe
winning region of a pushdown parity game. The algorithm wsesi-calculus formula
that characterisesloise’s winning region as a guide to construct the requiredraat
ton. We have identified an optimisation that avoids an imatedéxponential blow up.
An interesting open problem is to construct winning stregegising our approach.

AcknowledgmentsThis work is supported by EPSRC (EP/F036361). We are greatly
indebted to Arnaud Carayol for his invaluable assistance.
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A Proofs omitted from the main paper

Proofs omitted from the main body of the paper because ofdaskace are presented
here.

A.1 Termination

Lemma 1. We have the following monotonicity properties.

(i) Letl <! < mandA be atypefl — 1) automaton. InSig(l, A):
a. if o Z, = pZ thenA* < A+l forall i > 0
b. if 0 Z;, = vZ;, thenAi*t! < A forall i > 0.
(i) Foreveryl <! < m+ 1, the constructiorbig(l, —) is monotone.
(iii) For everyl <[ < m, the constructionProj(l,—) is monotone.

Proof. (i): We prove the case af Z; = uZ; by induction oni (the proof of the other
case is omitted as it is dual). For the base casie-ef0, A° < A! trivially since there
are no transitions from] in A°. The inductive case follows from the monotonicity of
the constructionsig(l + 1, —) and Proj(l, —), which are the inductive hypotheses of
(i) and (iii) respectively.

(i): We first establish the base caselo& m + 1 i.e. Phi(—) is monotone. Let
A =< A’ be typem automata. We aim to showhi(A) < Phi(A')i.e.foralll < j <
|P|, if ¢ % Qin Phi(A) theng? % Q in Phi(A’). Since the transitions from all
other states do not change, this is enough.f2@¥) = c. Takeq’ % Q in Phi(A). If
p € P we have some rulg’ a — p** w; with the rung® % @ in A. Otherwise,
p? € Pa, Next(p,a) is the set{ (p**,wy), ..., (p",w,)} andQ = Q' U--- U Q"
with the following transitiong®* ~% Q1, ..., ¢*» “= Q™ in A. Since the former case
can easily be encoded as an instance of the latter, we argsetbnd case only. For all
1 <t € n,we havel® 25 Q' in A and sinced < A’ we know thatg®* 2% Q*in A’
Therefore, we have) = Q' U---UQ™ and, by the definition of the proceduRi(—),
¢ % Qin A’ as required. For the inductive case, we consider the cas& 0t ;1.7
(the case obZ;, = vZ; is omitted as the proof is dual). Let; < A, be typef{l — 1)
automata. For eache {1,2}, let AV, A1, A? ... be the intermediate automata that
are constructed in the computation%f (1, A;). By the induction hypothesis of (i), we
haveA? < Al < A? < .... SinceSig(l + 1,—) and Proj(l, —) are monotone by the
induction hypothesis of (ii) and (iii) respectively, we lead; < A% for eachi > 0. It
follows thatSig(l, A1) < Sig(l, A2) as required.

(iii): Straightforward.

A.2 Valuation Soundness and Completeness

Lemma 3. Let A be anS-complete automaton.

(i) Forall ¢, wandw’, if ww’ € Vg(q) thenA has a rung — @ such thatw’ €
Vs(¢') forall ¢ € Q.
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(i) Forallg € Qa, Vis(q) C L4(A).

Proof. (i) The proof is by induction on the length of the wotd Whenw = a, the
property is simplyS-completeness. Take = au and somey with auw’ € Vg(q).
From S-completeness, we have a transitipe> @ such that for ally’ € Q, we have
uw € Vg(q'). By induction on the length of the word, we have a R Q' satisfying
the property. Hence, we haye™ Q - Q' as required.

(i) Take w € V5(q). Instantiating (i) withw’ = ¢, we know A has a runy Q.
Every state in) must be accepting becauseas only accepted from accepting states
and there can be n@’, ¢) satisfying anyS; because is not a valid stack.

A.3 Proof of Proposition 1

Lemma 4. (i) Let A be a typem automaton.Phi(A) is a type{m + 1) automaton.
l.e. all transitionsg = Q satisfy:q5 € Q iff a = L iff Q = {¢° } iff ¢ # ¢5.

Proof. Suppose there is some transiti@”ni Q with g5 ¢ QorQ #+ {q;}. Then the
transition was added from some appropriatert(p’, 1 ). Then it must be the case that
for some(p*, w) € Next(p’, L) the last character i is not | (elseq; € Q). This
meansL is removed from the stack, which is explicitly disallowed.

Conversely, suppose there is some transition™ @Q wherea #_1 and q5 € Q.
Then the transition was added from some appropiétet(p’, a). It must be the case
that for some(p*, w) € Next(p’, a) the last character i is | (elseq; ¢ Q). This
meansl is pushed on to the stack, which is explicitly disallowed.

Lemma 8. Suppose Z; = vZ;. Set) = [vZ;.x1+1(S, Z1)].

(i) Sig(l,A)is atypet automaton.
(i) If Ais S-sound, therbig(l, A) is (S, 6)-sound.
(iii) If Ais S-complete, thewig(l, A) is (S, 6)-complete.

Proof. (i) The result of the recursive call ig(l + 1, A) combined with the call
to Proj ensures the property.

(i) The proofis by induction. Letl be a typef/ — 1) automaton which i$-sound.
We use the shorthan@® = [u*Z;.x;+1(S, Z;)]. Observe thatd® is (.S, 0")-sound
(trivially, since the zeroth approximant contains all cgofations). Inductively assume
that A’ is (S, 6%)-sound for alla < 3 for someg. By the induction hypothesig3’ :=
Sig(l + 1, A?) is (S, 0<,0°"1)-sound, sincd**! = [x;41(S,0)]. We need to show
that, after the projections{’*! := Proj(l, B') is S’-sound wheres’” := (S, 0°+1).
Take some transitiop! % @ in A"*! such that for all}; € Q we have(p*,w) €
Vs (Z1). We knowB**! had a sound, unprojected transitigfnH 2, Q' such that for
all ¢/ € Q we have eithey| € Q' or g}, ; € Q. In the former case, by assumption we
know (p*,w) € #o+L C 9°. In the latter(p*, w) € #*+1, also by assumption. Since
Btis (S,0%,60°"1)-sound we knowp’, aw) € #*+! as required.
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Consequently, we have th&tg(l, A) is (S, 6%)-sound for alla < 3 for someg. We
require thatSig(l, A) be (S, [1Zi.xi1+1(S, Z1)])-sound. We proceed by transfinite in-
duction. For a successor ordinal we repeat the argumeneahod observe that sound-
ness in the new automaton implies soundnesSiiril, A) (since they are equal). For
a limit ordinal \, we have thatSig(l, A) is (S, 6%)-sound for alla. < . Since Since
0* = N,<\ 07, the result follows because each configuration in the liptesars in all
smaller approximants, artig (1, A) is sound for all smaller approximants (and trivially
for the zeroth approximant).

(i) LetS” := (S,0). It can be easily seen that’ is S’-complete (always move to
q" or 3 during the first transition). Hence, we assurfds S’-complete. We argue the
case fori + 1.
Take some(p’, aw) such that(p’, aw) € Vg(Z;). By the induction hypothesis, we
know Sig(l+1, A%)is (S, [xi+1(57)])-complete. Furthermor&z(Z;) = 6 = [xi+1(S,0)] =
Visr(Z151). Since we have aff’, [x;+1(S’)])-complete transitiog? - Q in A"+ be-
fore the projections, it follows that, for a}ﬂ € 7'(Q) we know, (p?, w) € V5(Z.) as
required.

A.4 Optimisations

Lemma 6. EXPAND(A) < EXPAND(A’) if and only if whenever; % @ in A then
there is som&)’ < Q withg = @’ in A’.

Proof. First we assume EPAND(A) < EXPAND(A’). Takeq % @Q in A. Theng =
Q € ExPAND(A). We haveq % @Q € ExXPAND(A’), and thereforey - Q' is a
transition of A’ with Q' < Q.

In the other direction, we assume™ Q in A impliesq = @’ in A’. Takeq %
Q € EXPAND(A'). We need; % @ € EXPAND(A’). We have some % Q' in A with
Q' < Q.Hence, we havg % Q" in A’ with Q" < Q. Henceg % Q € EXPAND(A’)
as required.

We can extend the definition to runs as follows.

Lemma 9. EXPAND(A) < EXPAND(A’) if and only if whenevey < @ in A then
there is som&)’ < Q withq = Q' in A’.

Proof. The proof is by induction over the length of In the base case = « and the
proof follows directly from=. Whenw = aw’ with w’ # ¢ we haveg = Q; —— Qs
whereq; & Q1 (sincew’ # ¢). By < we haveg % Q' with Q) < Q. By induction
and thatg* <% {¢*} for all @ #1 andg¢* EN {q5} we also haver} o, Q% with
Q% < Q2, and hencg = Q, as required.

Finally, we check that the optimisations do not contradiet important properties
of the construction.

Lemma 7. The optimisation preserves monotonicity and both valmegimundness and
valuation completeness.
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Proof. Let A’ be A with a removed transition. ThatX®AND(A’) < EXPAND(A) is
immediate, since we have only removed a transition fuérto obtain A’. To show
ExPAND(A) < EXPAND(A’) we only need to consider the removed transition (since
all other transitions can be matched with their counte)p&inceq = Q' can be
matched withy = @, which has) < Q’, we are done.

Preservation of soundness is straightforward since we tialyeremoved a transi-
tion. Finally, suppose a complete transitipr— @ was removed by the optimisation.
This implies that there exists a transitipr™ Q’ with Q' < Q. Suppose this transition
is not complete. Then there is some incomplete state)’. Since this state is nat",
it must also appear i§). This is a contradiction, sinag-% Q is complete.



