
Symbolic Backwards-Reachability Analysis for

Higher-Order Pushdown Systems?

M. Hague C.-H. L. Ong

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, UK, OX1 3QD

Abstract. Higher-order pushdown systems (PDSs) generalise pushdown
systems through the use of higher-order stacks, that is, a nested “stack
of stacks” structure. We further generalise higher-order PDSs to higher-
order Alternating PDSs (APDSs) and consider the backwards reachabil-
ity problem over these systems. We prove that given an order-n APDS,
the set of configurations from which a given regular set of configura-
tions is reachable is itself regular and computable in n-EXPTIME. We
show that the result has several useful applications in the verification
of higher-order PDSs such as LTL model checking, alternation-free µ-
calculus model checking, and the computation of winning regions of
reachability games.

1 Introduction

Pushdown automata are an extension of finite state automata. In addition to
a finite set of control states, a pushdown automaton has a stack which can be
manipulated with the usual push and pop operations. Higher-order pushdown

automata (PDA) generalise pushdown automata through the use of higher-order
stacks. Whereas a stack in the sense of a pushdown automaton is a first-order
stack — that is, a stack of characters — a second-order stack is a stack of first-
order stacks. Similarly, a third-order stack is a stack of second-order stacks, and
so on.

Higher-order PDA were originally introduced by Maslov [17] in the 1970s
as generators of (a hierarchy of) finite word languages. Higher-order pushdown

systems (PDSs) are higher-order PDA viewed as generators of infinite trees or
graphs. These systems provide a natural infinite-state model for higher-order
programs with recursive function calls and are therefore useful in software verifi-
cation. Several notable advances in recent years have sparked off a resurgence of
interest in higher-order PDA/PDSs in the Verification community. E.g. Knapik
et al. [23] have shown that the ranked and ordered trees generated by deter-
ministic order-n PDSs are exactly those that are generated by order-n recursion
schemes satisfying the safety constraint; Carayol and Wöhrle [5] have shown that
the ε-closure of the configuration graphs of higher-order PDSs exactly constitute

? The full version [12] of this work is downloadable from the first author’s web page.

Caucal’s graph hierarchy [9]. Remarkably these infinite trees and graphs have
decidable monadic second-order (MSO) theories [10, 5, 23].

These MSO decidability results, though powerful, only allow us to check that
a property holds from a given configuration. We may wish to compute the set
of configurations that satisfy a given property, especially since there may be an
infinite number of such configurations. In this paper, we consider a closely-related
problem:

Backwards Reachability : Given a set of configurations CInit, compute the
set Pre∗(CInit) of configurations that can, via any number of transitions,
reach a configuration in CInit.

This is an important verification problem in its own right, since safety properties
(i.e. undesirable program states – such as deadlock – are never reached) feature
largely in practice.

The backwards reachability problem was solved for order-one PDSs by Boua-
jjani et al. [2]. In particular, they gave a method for computing the (regular)
set of configurations Pre∗(CInit) that could reach a given regular set of configu-
rations CInit. Regular sets of configurations are represented symbolically in the
form of a finite multi-automaton. That is, a finite automaton that accepts fi-
nite words (representing stacks) with an initial state for each control state of the
PDS. A configuration is accepted if the stack (viewed as a word) is accepted from
the appropriate initial state. The set Pre∗(CInit) is computed by the repeated
addition of a number of transitions – determined by the transition relation of
the PDS – to the automaton accepting CInit, until a fixed point is reached. A
fixed point is guaranteed since no states are added and the alphabet is finite:
eventually the automaton will become saturated.

The approach was extended by Bouajjani and Meyer [1] to the case of higher-

order context-free pushdown systems, which are higher-order PDSs with a single
control state. A key innovation in their work was the introduction of a new
class of (finite-state) automata called nested store automata, which captures an
intuitive notion of regular sets of n-stores. An order-one nested store automaton
is simply a finite automaton over words. An order-n nested store automaton is
a finite automaton whose transitions are labelled by order-(n − 1) nested store
automata.

Our paper is concerned with the non-trivial problem1 of extending the back-
wards reachability result of Bouajjani and Meyer to the general case of higher-
order PDSs (i.e. taking into account a set of control sets). In fact, we consider
(and solve) the backwards reachability problem for the slightly more general
case of higher-order alternating pushdown systems (APDSs). Though slightly
unwieldy, an advantage of the alternating framework is that it conveniently lends
itself to a number of higher-order PDS verification problems. We show that the
winning region of a reachability game played over a higher-order PDS can be

1 “This does not seem to be technically trivial, and näıve extensions of our construction
lead to procedures which are not guaranteed to terminate.” [1, p. 145]

computed by a reduction to the backwards reachability problem of an appropri-
ate APDS. We also generalise results due to Bouajjani et al. [2] and Cachat [21]
to give a method for computing the set of configurations of a higher-order PDS
that satisfy a given formula of the alternation-free µ-calculus or a linear-time
temporal logic.

Related Work. Prompted by the fact that the set of configurations reachable
from a given configuration of a higher-order PDS is not regular in the sense
of Bouajjani and Meyer (the stack contents cannot be represented by a finite
automaton over words), Carayol [4] has proposed an alternative definition of
regularity for higher-order stacks, which we shall call C-regularity. Our notion
of regularity coincides with that of Bouajjani and Meyer, which, when confusion
may arise, we will refer to as BM-regularity.

A set of order-n stacks is C-regular if it is constructible from the empty
n-stack by a regular sequence of order-n stack operations. Carayol shows that
C-regularity coincides with MSO definability over the canonical structure ∆n

2

associated with order-n stacks. This implies, for instance, that the winning region
of a parity game over an order-n pushdown graph is also C-regular, as it can be
defined as an MSO formula [21].

In this paper we solve the backwards reachability problem for higher-order
PDSs and apply the solution to reachability games and model-checking. In this
sense we give a weaker kind of result that uses a more “practical” notion of
regularity. However our solution is direct and has a lower (though still large)
complexity bound. Because C-regularity does not imply BM-regularity2, our
result is not subsumed by the work of Carayol.

The definition of higher-order PDSs may be extended to higher-order push-
down games. In the order-one case, the problem of determining whether a con-
figuration is winning for Eloise with a parity winning condition was solved by
Walukiewicz in 1996 [13]. The order-one backwards reachability algorithm of
Bouajjani et al. was adapted by Cachat to compute the winning regions of order-
one reachability and Büchi games [21]. Results for pushdown games have been
extended to a number of winning conditions [22, 3, 11, 19, 8] including parity
conditions [21, 18]. In the higher-order case with a parity winning condition, a
method for deciding whether a configuration is winning has been provided by
Cachat [21].

Higher-order recursion schemes (HORS) represent a further area of related
work. MSO decidability for trees generated by arbitrary (i.e. not necessarily
safe) HORS has been shown by Ong [20]. A variant kind of higher-order PDSs
called collapsable pushdown automata (extending panic automata [24, 15] to all
finite orders) has been shown to be equi-expressive with HORS (for generating
ranked and ordered trees) by Murawski and Ong [7]. These new automata are
conjectured to enrich the class of higher-order systems and provide many new
avenues of research.

2 For example (pusha)∗; push2 defines all stacks of the form [[an][an]].

2 Preliminaries

In the sequel we will introduce several kinds of alternating automata. For con-
venience, we will use a non-standard definition of alternating automata that is
equivalent to the standard definitions of Brzozowski and Leiss [14] and Chandra,
Kozen and Stockmeyer [6]. Similar definitions have been used for the analysis
of pushdown systems by Bouajjani et al. [2] and Cachat [21]. The alternating
transition relation ∆ ⊆ Q× Γ × 2Q — where Γ is a kind of alphabet and Q is
a state-set — is given in disjunctive normal form. That is, the image ∆(q, γ) of
q ∈ Q and γ ∈ Γ is a set {Q1, . . . , Qm} with Qi ∈ 2Q for i ∈ {1, . . . , m}. When
the automaton is viewed as a game, Eloise — the existential player — chooses a
set Q ∈ ∆(q, γ); Abelard — the universal player — then chooses a state q ∈ Q.

2.1 (Alternating) Higher-Order Pushdown Systems

We begin by defining higher-order stores and their operations. We will then
define higher-order PDSs and APDSs in full.

The set CΣ
1 of 1-stores over an alphabet Σ is the set of words of the form

[a1, . . . , am] with m ≥ 0 and ai ∈ Σ for all i ∈ {1, . . . , m}, [/∈ Σ and] /∈ Σ. For
n > 1, CΣ

n = [w1, . . . , wm] with m ≥ 1 and wi ∈ CΣ
n−1 for all i ∈ {1, . . . , m}.

There are three types of operations applicable to n-stores: push, pop and top.
These are defined inductively. Over a 1-store, we have (for all w ∈ Σ∗),

pushw[a1 . . . am] = [wa2 . . . am]
top1[a1 . . . am] = a1

We may define the abbreviation pop1 = pushε. When n > 1, we have

pushw[γ1 . . . γm] = [pushw(γ1)γ2 . . . γm]
pushl[γ1 . . . γm] = [pushl(γ1)γ2 . . . γm] if 2 ≤ l < n
pushn[γ1 . . . γm] = [γ1γ1γ2 . . . γm]

popl[γ1 . . . γm] = [popl(γ1)γ2 . . . γm] if 1 ≤ l < n
popn[γ1 . . . γm] = [γ2 . . . γm] if m > 1
topl[γ1 . . . γm] = topl(γ1) if 1 ≤ l < n
topn[γ1 . . . γm] = γ1

Note that we assume wlog Σ ∩ N = ∅, where N is the set of natural num-
bers. Further, observe that when m = 1, popn is undefined. We define On =
{ pushw | w ∈ Σ∗ } ∪ { pushl, popl | 1 < l ≤ n }.

Definition 1. An order-n pushdown system (PDS) is a tuple (P ,D, Σ) where
P is a finite set of control states pj , D ⊆ P × Σ × On × Q is a finite set of
commands d, and Σ is a finite alphabet.

A configuration of an order-n PDS is a pair 〈p, γ〉 where p ∈ P and γ is
an n-store. We have a transition 〈p, γ〉 ↪→ 〈p′, γ′〉 iff we have (p, a, o, p′) ∈ D,
top1(γ) = a and γ′ = o(γ).

Definition 2. An order-n alternating pushdown system (APDS) is a tuple (P ,D, Σ)
where P is a finite set of control states pj , D ⊆ P ×Σ × 2On×Q is a finite set of
commands d, and Σ is a finite alphabet.

A configuration of an order-n APDS is a pair 〈p, γ〉 where p ∈ P and γ is an
n-store. We have a transition 〈p, γ〉 ↪→ C iff we have (p, a, OP) ∈ D, top1(γ) = a,
and

C = { 〈p′, γ′〉 | (o, p′) ∈ OP ∧ γ′ = o(γ) }
∪ { 〈p, O〉 | if (o, p′) ∈ OP and o(γ) is not defined }

The transition relation generalises to sets of configurations via the following rule:

〈p, γ〉 ↪→ C

C ′ ∪ 〈p, γ〉 ↪→ C ′ ∪ C
〈p, γ〉 /∈ C ′

In both cases, we define
∗

↪→ to be the transitive closure of ↪→. For a set of
configurations CInit we define Pre∗(CInit) as the set of configurations 〈p, γ〉 such

that 〈p, γ〉
∗

↪→ c and c ∈ CInit or 〈p, γ〉
∗

↪→ C and C ⊆ CInit respectively.
Observe that since no transitions are possible from an “undefined” configu-

ration 〈p, O〉 we can reduce the reachability problem for higher-order PDSs to
the reachability problem over higher-order APDSs in a straightforward manner.

In the sequel, to ease the presentation, we assume n > 1. The case n = 1 was
investigated by Bouajjani et al. [2].

2.2 n-Store Multi-Automata

To represent sets of configurations we will use n-store multi-automata. These are
alternating automata whose transitions are labelled by (n − 1)-store automata,
which are also alternating. A set of configurations is said to be regular if it is
accepted by an n-store multi-automaton.

Definition 3.

1. A 1-store automaton is a tuple (Q, Σ, ∆, q0,Qf) where Q is a finite set of
states, Σ is a finite alphabet, q0 is the initial state and Qf ⊆ Q is a set of
final states. ∆ ⊆ Q× Σ × 2Q is a finite transition relation.

2. Let B
Σ
n−1 be the (infinite) set of all (n−1)-store automata over the alphabet

Σ. An n-store automaton over the alphabet Σ is a tuple (Q, Σ, ∆, q0,Qf)
where Q is a finite set of states, q0 /∈ Qf is the initial state, Qf ⊆ Q is a set
of final states, and ∆ ⊆ Q× B

Σ
n−1 × 2Q is a finite transition relation.

3. An n-store multi-automaton over the alphabet Σ is a tuple

(Q, Σ, ∆, {q1, . . . , qz},Qf)

where Q is a finite set of states, Σ is a finite alphabet, qi /∈ Qf for i ∈
{1, . . . , z} are separate initial states and Qf ⊆ Q is a set of final states, and

∆ ⊆ (Q× B
Σ
n−1 × 2Q) ∪ ({q1, . . . , qz} × {O} × {qε

f})

is a finite transition relation where qε
f ∈ Qf has no outgoing transitions.

To indicate a transition (q, B, {q1, . . . , qm}) ∈ ∆, we write,

q
B
−→ {q1, . . . , qm}

Runs of the automata take the form,

q
eB0−→ {q1

1, . . . , q
1
m1

}
eB1−→ . . .

eBm−→ {qm
1 , . . . , qm

ml
}

where transitions between configurations {qx
1 , . . . , qx

mx
}

eBx−→ {qx+1
1 , . . . , qx+1

mx+1
}

are such that we have qx
y

By

−→ Qy for all y ∈ {1, . . . , mx} and
⋃

y∈{1,...,mx}
Qy =

{qx+1
1 , . . . , qx+1

mx+1
} and

⋃
y∈{1,...,mx}

{By} = B̃x. Observe that B̃0 is necessarily a
singleton set.

We will, by abuse of notation, abbreviate a run over the word w to

q
w

−→ {q1, . . . , qm}.

Further, when a run occurs in an automaton forming part of a sequence indexed
by i, we may write −→i to indicate which automaton the run belongs to.

A 1-store [a1 . . . am] is accepted by a 1-store automaton A (that is [a1 . . . am] ∈

L(A)) iff we have a run q0
a1...am−→ Q in A with Q ⊆ Qf . For a given n-store au-

tomaton A = (Q, Σ, ∆, q0,Qf) we define

L(A) = { [γ1 . . . γm] | q0

eB0−→ . . .
eBm−→ Q ∧ Q ⊆ Qf ∧ ∀0 ≤ i ≤ m.γi ∈ L(B̃i) }

where γ ∈ L(B̃) iff γ ∈ L(B) for all B ∈ B̃.
For an n-store multi-automaton A = (Q, Σ, ∆, {q1, . . . , qz},Qf) we define

L(Aqj

) = { [γ1 . . . γm] | qj
eB0−→ . . .

eBm−→ Q

∧ Q ⊆ Qf ∧ ∀0 ≤ i ≤ m.γi ∈ L(B̃i) }

∪ { O | qj O

−→ qε
f }

L(A) = { 〈pj , γ〉 | j ∈ {1, . . . , z} ∧ γ ∈ L(Aqj

) }

Finally, we define the automata Ba
l and Xa

l for all 1 ≤ l ≤ n and a ∈ Σ
and the notation qθ. Ba

l is the l-store automaton that accepts any l-store γ such
that top1(γ) = a. Xa

l is the (n− 1)-store automaton accepting all (n− 1)-stores
such that top1(γ) = a and topl+1(γ) = [[w′]] for some w′. That is, popl(γ) is
undefined. If θ represents an automaton, the state qθ refers to the initial state
of the automaton represented by θ.

3 Backwards Reachability

Theorem 1. Given an n-store multi-automaton A0 accepting the regular set of

configurations CInit of an order-n APDS, we can construct in n-EXPTIME an

n-store multi-automaton A∗ accepting the set Pre∗(CInit). Thus, Pre∗(CInit) is

regular.

Fix an order-n APDS. We begin by showing how to generate an infinite
sequence of automata A0, A1, . . ., where A0 is given such that L(A0) = CInit.
This sequence is increasing in the sense that L(Ai) ⊆ L(Ai+1) for all i, and sound
and complete with respect to Pre∗(CInit), that is

⋃
i≥0 L(Ai) = Pre∗(CInit).

We assume wlog that all initial states in A0 have no incoming transitions and
there exist in A0 a state q∗f from which all valid n-stores are accepted and a state
qε
f ∈ Qf that has no outgoing transitions.

An intuitive explanation of the algorithm. To simplify the description, we
assume that the transition relations of the automata are not alternating. Thus,
abstracting over the automata labelling the transitions of Ai, we have a directed
graph with labelled edges. The construction of Ai+1 from Ai is determined by the
edges of Ai and the commands of the order-n (A)PDA. This construction step
may involve the addition of a number of edges to Ai. Further, because commands
may have an effect at all orders of the automaton, the automata labelling the
edges of Ai need to be updated to define Ai+1.

Because an update to a single automaton for a single command will refer
to any number of the (n − 1)-store automata (which are edge-labels) in Ai, we
consider all (n−1)-store automata simultaneously. That is, we view them as one
large automaton with a set of initial states built from the initial states of the
automaton’s constituent parts. This can be thought of as a multi-automaton.
During each update we add a fresh initial state for each automaton represented,
and add transitions from these new states that move only to the previous state-
set.

The sequence A0, A1, . . . does permit a finite representation A∗. We shall give
an informal explanation in the following. Viewing Ai as a graph, the (order-n)
vertex-set of Ai is fixed as i ranges over the natural numbers, and the algorithm
adds at most one labelled edge (transition) from q1 to q2 for each pair of states q1

and q2. The order-(n− 1) automaton labelling this edge will be updated during
the construction of Ai+1 from Ai, but another edge from q1 to q2 will never
be added. Hence, ignoring the labels, the edge relation at order-n of the Ai’s
will reach a fixed point. Because the updates to the order-(n− 1) automata are
determined by the edge relation, they become repetitive, in such a way that
– again ignoring edge labels – the new states added to the multi-automaton
representing the (n−1)-store automata, together with their outgoing edges, will
form an infinite chain with an unvarying pattern of edges. This chain can be
collapsed into a single finite set of new states with edges between themselves as
well as the previous state-set. This is illustrated in figure 1.

· · · · · · “=”

Fig. 1. Collapsing a repetitive chain of new states.

Because we consider one large order-(n − 1) automaton with several initial
states, we essentially have an (n − 1)-store multi-automaton. Moreover, the use
of “self-referential edges” has allowed us to fix the state-set. Ignoring the edge
labels, the edge relation of this automaton will eventually become saturated: we
will reach a fixed point as in the order-n case. Inductively in this way the fixed
points cascade to order-1 part of the automaton. Once the vertex set at order
1 has been fixed, a fixed point of the entire process is guaranteed because the
alphabet is finite.

3.1 Preliminaries

To aid in the construction of an automaton representing Pre∗(CInit), we intro-
duce a new kind of transition to the n-store automata. These new transitions are
labelled with place-holders that will eventually be converted into (n − 1)-store
automata.

New transitions are introduced during the processing of the order-n APDS
commands. Between any state q1 and set of states Q2 we add at most one
transition. We associate this transition with an identifier G̃(q1,Q2). To describe
our algorithm we will define several sequences of automata, indexed by i. The
identifier G̃i

(q1,Q2)
is associated with a set that acts as a recipe for updating the

(n − 1)-store automaton described by G̃i−1
(q1,Q2)

or creating a new automaton if

G̃i−1
(q1,Q2)

does not exist. Ultimately, the constructed (n−1)-store automaton will

label the new transition.
The sets are in a kind of disjunctive normal form. A set {S1, . . . , Sm} rep-

resents an automaton that accepts the “disjunction” of the automata described
by S1, . . . , Sm. Each set S ∈ {S1, . . . , Sm} corresponds to a possible effect of a
command d at the current order of the automaton. The automaton described by
S is the “conjunction” of the automata described by its elements. An element
that is an automaton B refers directly to the automaton B. Similarly, an iden-
tifier G̃ refers to its corresponding automaton. Finally, an element of the form
(a, o, θ) refers to an automaton capturing the effect of applying the inverse of the
command o to the stacks accepted by the automaton represented by θ; more-
over, the top1 character of the stacks accepted by the new automaton will be a.
It is a consequence of construction that for any S added during the algorithm,
if (a, o, θ) ∈ S and (a′, o′, θ′) ∈ S then a = a′.

Formally, to each G̃i
(q1,Q2)

at order-l we attach a subset of

2Bl−1 ∪ G̃i−1
l−1 ∪ (Σ ×Ol × (Bl−1 ∪ G̃i−1

l−1))

where Bl−1 is the union of the set of all (l − 1)-store automata occurring in A0

and all automata of the form Ba
l−1 or Xa

l−1. Further, we denote the set of all

order-(l − 1) identifiers G̃i
(...) in Ai as G̃i

l−1. The sets Bl−1 and D are finite by
definition. If the state-set at order-l is fixed, there is a finite bound on the size
of the set G̃i

l−1 for any i.

Given G̃i
l for some l, we build the automata for all G̃i

(...) ∈ G̃i
l simultane-

ously. That is, we create a single automaton Gi
l associated with the set G̃i

l . This

automaton has a state gi
(q1,Q2) for each G̃i

(q1,Q2) ∈ G̃i
l . The automaton Gi

(q1,Q2)

labelling the transition q1 −→i Q2 is the automaton Gi
l with gi

(q1,Q2)
as its initial

state.
The automaton Gi

l is built inductively. We set G0
l to be the disjoint union

of all automata in Bl. We define Gi+1
l = TeGi+1

l

(Gi
l) where TeGj

l

(Gi
l) is given in

Definition 4. The reason for the distinction between (i + 1) and j will become
clear in Section 3.3.

Definition 4. For j > 0, an automaton Gi
l and a set of identifiers G̃j

l , we define

the automaton TeGj

l

(Gi
l) = Gi+1

l . Initially, we set Gi+1
l = Gi

l . For each G̃j
(q1,Q2)

∈

G̃j
l we add a state gj

(q1,Q2)
to Gi+1

l if it does not exist. There are now two cases

depending on l:

Case l = 1: Each state gj
(q1,Q2) inherits transitions from gj−1

(q1,Q2)
if it exists. That

is, for each transition gj−1
(q1,Q2)

b
−→ Q in Gi

1 we add the transition gj
(q1,Q2)

b
−→ Q

to Gi+1
1 .

Then for each set G̃j
(q1 ,Q2)

∈ G̃j
1 , each set {α1, . . . , αr} ∈ G̃j

(q1,Q2)
, every b ∈ Σ

and Q = Q1 ∪ . . . ∪ Qr, we add the transition,

gj
(q1,Q2)

b
−→ Q

to Gi+1
l when for each t ∈ {1, . . . , r} we have

– If αt is an automaton or identifier, then there exists the run qαt
b

−→ Qt in
Gi

1.

– If αt = (a, pushw, θ1), then b = a and we have a path qθ1
w

−→ Qt in Gi
1.

Case l > 1: Initially we set G̃i+1
(...) = ∅ for all G̃i

(...) ∈ G̃i
l−1. Each state gj

(q1,Q2)
in-

herits transitions from gj−1
(q1,Q2) if it exists. That is, for each transition gj−1

(q1,Q2)

B
−→

Q in Gi
l we add,

gj
(q1,Q2)

Q

G̃i+1

(gj

(q1 ,Q2)
,Q)

if it does not exist (setting G̃i+1

(gj

(q1 ,Q2)
,Q)

= ∅), and add the set {B} to G̃i+1

(gj

(q1 ,Q2)
,Q)

.

Then for each set G̃j
(q1,Q2)

∈ G̃j
l , each set {α1, . . . , αr} ∈ G̃j

(q1,Q2)
and every

pair of sets S = S1 ∪ . . . ∪ Sr and Q = Q1 ∪ . . . ∪ Qr, we add the transition,

gj
(q1,Q2)

Q

G̃i+1

(gj

(q1 ,Q2)
,Q)

if it does not exist (setting G̃i+1

(gj

(q1 ,Q2)
,Q)

= ∅), and add S to G̃i+1

(gj

(q1 ,Q2)
,Q)

, when

for each t ∈ {1, . . . , r} we have

– If αt is an automaton or identifier, then St = {B} and there exists qαt
B
−→ Qt

in Gi
l .

– If αt = (a, pushl, θ1), we have St = {Ba
l−1}∪ B̃1∪ B̃2 and there exists a path

qθ1
eB1−→ Q1

eB2−→ Qt in Gi
l .

– If αt = (a, popl, θ1), we have St = {Ba
l−1} and Qt = {qθ1}.

– If θ = (a, o, θ1) when `(o) < l, we have St = {(a, o, B)} and a run qθ1
B
−→ Qt

in Gi
l .

We have constructed an automaton with transitions labelled by sets in G̃i+1
l−1 . We

construct Gi+1
l−1 through a recursive call to T eGi+1

l−1
(Gi

l−1).

3.2 Constructing the Sequence A0, A1, . . .

For a given order-n APDS with commands D we define the operation Ai+1 =
TD(Ai) as follows.

Definition 5. For an automaton Ai and a set of order-n APDS commands D,
we define the automaton TD(Ai) = Ai+1. We set G̃i+1

(q1,Q2)
= ∅ for all G̃i

(q1,Q2) in

G̃i
n−1. Then, for each d = (pj , a, {(o1, p

k1), . . . , (om, pkm)}) ∈ D, we perform the
following update: for every pair of sets S = S1 ∪ . . .∪Sm and Q = Q1 ∪ . . .∪Qm

add the transition,

qj Q

G̃i+1
(qj ,Q)

if it does not exist (setting G̃i+1
(qj ,Q) = ∅), and add S to G̃i+1

(qj ,Q), when for each

t ∈ {1, . . . , m} we have,

– If ot = pushn, then St = {Ba
n−1} ∪ θ̃1 ∪ θ̃2 and there exists a run,

qkt
eθ1−→i Q′ eθ2−→i Qt

in Ai.

– If ot = popn, then St = {Ba
n−1} and Qt = {qkt}. Or, if qj O

−→i {q
ε
f} exists

in Ai, we may have St = {Ba
n−1} and Qt = {qε

f}.
– If ot = pushw or ot = pushl for l < n, then St = {(a, o, θ)} and there exists

a transition qkt
θ

−→i Qt in Ai.
– If ot = popl for l < n, then St = {(a, o, θ)} and there exists a transition

qkt
θ

−→i Qt in Ai. Or, if qj O

−→i {qε
f} exists in Ai, we may have St = {Xa

l }
and Qt = {q∗f}.

By repeated applications of TD we construct the sequence A0, A1, . . . which
can be converted into n-store multi-automata using the procedure described
in the previous section. This sequence is sound and complete with respect to
Pre∗(CInit).

Property 1. For any configuration 〈pj , γ〉 it is the case that γ ∈ L(Aqj

i) for some
i iff 〈pj , γ〉 ∈ Pre∗(CInit).

3.3 Constructing the Automaton A∗

We need to construct a finite representation of the sequence A0, A1, . . . in a
finite amount of time. To do this we will construct an automaton A∗ such that
L(A∗) =

⋃
i∈ω L(Ai). We begin by introducing some notation and a notion of

subset modulo i for the sets G̃i
(q,Q′).

Definition 6. Given θ ∈ Bl ∪ G̃i
l for some i and l, let

θ[j/i] =

{
θ if θ ∈ Bl

Gj
(q1,Q2)

if θ = Gi
(q1,Q2) ∈ G̃i

l

For a set S we define S[j/i] such that, θ ∈ S iff we have θ[j/i] ∈ S[j/i], and
(a, o, θ) ∈ S iff we have (a, o, θ[j/i]) ∈ S[j/i].

We extend the notation [j/i] point-wise to nested sets of sets structures.

1. G̃i
(q,Q′) . G̃j

(q,Q′) iff for each S ∈ G̃i
(q,Q′) we have S[j − 1/i− 1] ∈ G̃j

(q,Q′).

2. G̃i
l . G̃j

l iff for all G̃i
(q1,Q2) ∈ G̃i

l we have G̃j
(q1,Q2) ∈ G̃j

l and G̃i
(q,Q′) . G̃j

(q,Q′).

An important result in reaching a fixed point is that the sets G̃i
(q,Q′) are

increasing. That is, for all i and G̃i
(q,Q′) we have G̃i

(q,Q′) . G̃i+1
(q,Q′). This follows

because no transitions are removed.
Writing A ' B to mean A . B and B . A, we now show that a fixed point

is reached at order-n.

Property 2. There exists in−1 > 0 such that G̃i
n−1 ' G̃

in−1

n−1 for all i ≥ in−1.

Proof. Since the state-set in Ai remains constant, there is some in−1 where no

more transitions are added at order-n. That G̃i
n−1 ' G̃

in−1

n−1 for all i ≥ in−1 follows

since the contents of any G̃i
(q,Q′) and G̃

in−1

(q,Q′) are derived from the same transition
structure.

The following lemma shows that, once a fixed point has been reached at
order-(l + 1), we can fix the state-set at order-l.

Lemma 1. Suppose we have a sequence of automata G0
l ,G1

l , . . . and associated

sets G̃0
l , G̃1

l , Further suppose there exists an il such that for all i ≥ il we

have G̃i
l ' G̃il

l . We can define a sequence of automata Ĝil

l , Ĝil+1
l , . . . such that the

order-l state-set in Ĝi
l remains constant. The following are equivalent for all w,

1. The run gil

(q,Q′)

w
−→i Q with Q ⊆ Qf exists in Ĝi

l for some i.

2. The run gi′

(q,Q′)

w
−→i′ Q′′ with Q′′ ⊆ Qf exists in Gi′

l for some i′.

We use Ĝi+1
l = TeG

il
l

[il/il−1]
(Ĝi

l) to construct the sequence Ĝil

l , Ĝil+1
l , In-

tuitively, since the transitions from the states introduced to define G i
l for i ≥ il

are derived from similar sets, we can compress the subsequent repetition into a
single set of new states with “self-loops”.

Once the state-set has been fixed at order-l, we will reach another fixed point.
In this way the fixed points cascade. The proof is similar to Property 2.

Property 3. For a sequence of automata G0
l ,G1

l , . . . such that the state-set at

order-l of Gi
l remains constant there exists il−1 > 0 such that G̃i

l−1 ' G̃
il−1

l−1 for
all i ≥ il−1.

We have the following algorithm for constructing A∗:

1. Given A0, iterate Ai+1 = TD(Ai) until the fixed point Ain−1 is reached.

2. For l = n − 1 down to l = 1: iterate Gi+1
l = TeG

il
l

[il/il−1]
(Gi

l) to generate the

fixed point G
il−1

l from Gil

l .

3. Let G∗
1 = Gi0

1 . For l = 2 to l = n−1: construct G∗
l by labelling the transitions

of G
il−1

l with automata derived from G∗
l−1. Then, construct A∗ analogously.

Property 4. There exists an automaton A∗ which is sound and complete with
respect to A0, A1, . . . and hence computes the set Pre∗(CInit).

Remark 1. We claim our algorithm runs in n-EXPTIME. Intuitively, when the
state-set Q is fixed at order-1 of the store automaton, we add at most O(2|Q|)
transitions (since we never remove states, it is this final stage that dominates
the complexity). At orders l > 1 we add at most O(2|Q|) new transitions, which
exponentially increases the state-set at order-(l− 1). Hence, the algorithm runs
in n-EXPTIME.

4 Applications

4.1 Model Checking Linear-Time Temporal Logics

Bouajjani et al. use their backwards reachability algorithm to provide a model
checking algorithm for linear-time temporal logics over PDSs [2]. In this Section
we show that this work permits a simple generalisation to higher-order PDSs.

We form the product of the higher-order PDS and the Büchi automaton
corresponding to the negation of φ [26, 16, 25]. This gives us a higher-order Büchi
PDS with a set F of accepting control states. Thus, model checking reduces to
the non-emptiness problem for higher-order Büchi PDSs. Let [1a]1 denote the
order-1 stack consisting of a single character a and [la]l for l > 1 denote the
stack consisting of a single order-(l − 1) stack [(l−1)a](l−1).

Proposition 1. Let c be a configuration of an order-n Büchi PDS BP . BP
has an accepting run from c iff there exist distinct configurations 〈p1, [na]n〉 and

〈p1, γ2〉 with top1(γ2) = a and configuration 〈pf , γ1〉 such that pf ∈ F and,

1. c
∗

↪→ 〈p1, γ3〉 for some w3 with top1(γ3) = a, and

2. 〈p1, [na]n〉
∗

↪→ 〈pf , γ1〉
∗

↪→ 〈p1, γ2〉

Using this reduction, we have the following theorem and corollary.

Theorem 2. Given a order-n Büchi PDS BP = (P ,D, Σ,F), we can calculate

in n-EXPTIME the set of configurations C such that from all c ∈ C there is an

accepting run of BP .

Corollary 1. Given an order-n PDS (P ,D, Σ) and a formula φ of an ω-regular

logic, we can calculate in (n + 2)-EXPTIME the set of configurations C of

(P ,D, Σ) such that every run from each c ∈ C satisfies φ.

There is one exponential blow-up in the construction of BP and one more
in a final complementation step. We can test c /∈ C rather than c ∈ C for an
(n + 1)-EXPTIME algorithm.

4.2 Reachability Games

Our algorithm may be used to compute the winning region for a player in a
two-player reachability game over an order-n PDS. This generalises a result due
to Cachat [21]. We call our players Eloise and Abelard.

Given an order-n PDS (P ,D, Σ), a Pushdown Reachability Game (P ,D, Σ,R)
over the order-n PDS is given by a partition P = PA] PE and a set R of con-
figurations considered winning for Eloise. The winning region for Eloise can be
characterised using an attractor AttrE(R). Conversely, the winning region for
Abelard is AttrE(R). We can use backwards-reachability for APDSs to calcu-
late AttrE(R), and hence the winning regions of both Abelard and Eloise. This
is a straightforward encoding of the pushdown reachability game as a APDS.
We form R′ from R by adding the regular set of all configurations from which
Abelard cannot make a move (and therefore loses the game).

Theorem 3. Given an order-n pushdown reachability game, where R is a reg-

ular set of configurations, and an order-n APDS as defined above, AttrE(R)
is regular and equivalent to Pre∗(R′) less all configurations of the form 〈p, O〉.
Hence, computing the winning regions of the game is n-EXPTIME.

4.3 Model-Checking Branching-Time Temporal Logics

Generalising a further result of Bouajjani et al. [2], we have that backwards-
reachability for higher-order APDSs may be used to solve the model-checking
problem for the alternation-free (propositional) µ-calculus over higher-order PDSs.
Common logics such as CTL are sub-logics of the alternation-free µ-calculus. The
algorithm uses properties of the alternation-free µ-calculus to reduce the model
checking problem to a number of reachability games. We state the following
theorem:

Theorem 4. Given an order-n PDS (P ,D, Σ) and a formula φ of the alternation-

free µ-calculus, we can compute the regular set of configurations satisfying φ in

((nφ · n) + 1)-EXPTIME, where nφ is the length of φ.

The ((nφ · n) + 1)-EXPTIME result is due to a final complementation step.
As before, this may be avoided, yeilding an (nφ · n)-EXPTIME algorithm.

5 Conclusion

Given an automaton representation of a regular set of higher-order APDS config-
urations CInit, we have shown that the set Pre∗(CInit) is regular and computable
via automata-theoretic methods. This builds upon previous work on pushdown
systems [2] and higher-order context-free pushdown processes [1]. The main inno-
vation of this generalisation is the careful management of a complex automaton
construction. This allows us to identify a sequence of cascading fixed points,
resulting in a terminating algorithm.

Our result has many applications. We have shown that it can be used to
provide a solution to the model checking problem for linear-time temporal logics
and the alternation-free µ-calculus. In particular we compute the set of config-
urations of a higher-order PDS satisfying a given constraint. We also show that
the winning regions can be computed for a reachability game played over an
higher-order PDS.

There are several possible extensions to this work. Firstly, we intend to com-
plete the complexity analysis with corresponding hardness results. Secondly, we
plan to investigate the applications of this work to higher-order pushdown games
with more general winning conditions. In his PhD thesis, Cachat adapts the
reachability algorithm of Bouajjani et al. [2] to calculate the winning regions in
Büchi games over pushdown processes [21]. It is likely that our work will permit
similar extensions. Finally, we intend to generalise this work to higher-order col-
lapsible pushdown automata, which can be used to study higher-order recursion
schemes [24, 7]. This may provide the first steps into the study of games over
these structures.

Acknowledgements. We thank Olivier Serre and Arnaud Carayol for helpful dis-
cussions.

References

1. A. Bouajjani and A. Meyer. Symbolic Reachability Analysis of Higher-Order
Context-Free Processes. In Proc. FSTTCS’04, 2004. LNCS 3328.

2. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: Application to model-checking. In Proc. CONCUR ’97, pp. 135–150, 1997.

3. A. Bouquet, O. Serre, and I. Walukiewicz. Pushdown games with the unbounded-
ness and regular conditions. In Proc. FSTTCS’03, pages 88–99, 2003.

4. A. Carayol. Regular sets of higher-order pushdown stacks. In Proc. MFCS, pages
168–179, 2005.

5. A. Carayol and S. Wöhrle. The caucal hierarchy of infinite graphs in terms of logic
and higher-order pushdown automata. In Proc. FSTTCS, pages 112–123, 2003.

6. A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. J. ACM,
28(1):114–133, 1981.

7. A. S. Murawski and C.-H. L. Ong. Collapsable pushdown automata and recursion
schemes, 2006. Unpublished.

8. C. Löding, P. Madhusudan, and O. Serre. Visibly pushdown games. In
Proc. FSTTCS’04, pages 408–420. 2004. LNCS 3328.

9. D. Caucal. On infinite terms having a decidable monadic theory. In Proc. MFCS’02,
pages 165–176, 2002. LNCS 2420.

10. D. E. Muller and P. E. Schupp. The theory of ends, pushdown automata, and
second-order logic. Theor. Comput. Sci., 37:51–75, 1985.

11. H. Gimbert. Parity and exploration games on infinite graphs. In Proc. CSL’04,
pages 56–70, 2004. LNCS 3210.

12. M. Hague and C.-H. L. Ong. Symbolic backwards-reachability analysis for higher-
order pushdown systems. Preprint, 54 pages, www.comlab.ox.ac.uk/oucl/work/
matthew.hague/FoSSaCS07-long.pdf, 2006.

13. I. Walukiewicz. Pushdown processes: Games and model checking. In Proc. CAV
’96, pages 62–74. 1996.

14. J. A. Brzozowski and E. L. Leiss. On equations for regular languages, finite au-
tomata, and sequential networks. Theor. Comput. Sci., 10:19–35, 1980.

15. K. Aehlig, J. G. de Miranda, and C.-H. L. Ong. Safety is not a restriction at level
2 for string languages. In Proc. FoSSaCS, pages 490–504, 2005.

16. M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In Banff
Higher Order Workshop, pages 238–266, 1995.

17. A. N. Maslov. Multilevel stack automata. Problems of Information Transmission,
15:1170–1174, 1976.

18. O. Serre. Note on winning positions on pushdown games with ω-regular conditions.
Information Processing Letters, 85:285–291, 2003.

19. O. Serre. Games with winning conditions of high Borel complexity. In
Proc. ICALP’04, pages 1150–1162. Springer-Verlag, 2004. LNCS 3142.

20. C.-H. L. Ong. On model-checking trees generated by higher-order recursion
schemes. In Proc. LICS ’06, pages 81–90. IEEE Computer Society, 2006.

21. T. Cachat. Games on Pushdown Graphs and Extensions. PhD thesis, RWTH
Aachen, 2003.

22. T. Cachat, J. Duparc, and W. Thomas. Solving pushdown games with a Σ3 winning
condition. In Proc. CSL’02, pages 322–336. Springer-Verlag, 2002. LNCS 2471.

23. T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-order pushdown trees are easy.
In Proc. FoSSaCS ’02, pages 205–222, London, UK, 2002. Springer-Verlag.

24. T. Knapik, D. Niwinski, P. Urzyczyn, and I. Walukiewicz. Unsafe grammars and
panic automata. In Proc. ICALP ’05, pages 1450–1461, 2005.

25. M. Y. Vardi. A temporal fixpoint calculus. In Proc. POPL ’88, pages 250–259,
New York, NY, USA, 1988. ACM Press.

26. W. Thomas. Automata on infinite objects. Handbook of theoretical computer
science (vol. B): formal models and semantics, pages 133–191, 1990.

A Example

Fix the following two-state second-order PDS and 2-store multi-automaton A0

with some B1, B2, B3 and B4.

q1

qf

q2

B1

B2

B3

B4

d1 = (p1, a, push2, p
1)

d2 = (p1, a, pushε, p
1),

d3 = (p2, a, pushw, p1)
d4 = (p2, a, pop2, p

1)

We iterate TD until a fixed point is reached. The dashed arrows are labelled with
the appropriate Gi

(...).

q1

qf

q2

eG1
(q1,◦) =

n
{(a, pushε, B1)}

o

eG1
(q1,qf) = {{Ba

1 , B1, B3}}

eG1
(q2,◦) = {{(a, pushw, B1)}}

eG1
(q2,q1) = {{Ba

1 }}

q1

qf

q2

eG2
(q1,◦) =

n
{(a, pushε, B1)}, {(a, pushε, eG1

(q1,◦))}
o

eG2
(q1,qf) =

(
{Ba

1 , B1, B3}, {(a, pushε, eG1
(q1,qf))},

{Ba
1 , eG1

(q1,qf), B4}, {B
a
1 , eG1

(q1,◦), B3}

)

eG2
(q2,◦) =

n
{(a, pushw, B1)}, {(a, pushw, eG1

(q1,◦))}
o

eG2
(q2,q1) = {{Ba

1 }}

eG2
(q2,qf) =

n
{(a, pushw, eG1

(q1,qf))}
o

The following diagrams show excerpts of G2
1 and G∗

1 respectively. All edges are
labelled a.

g2
(q1,◦) g1

(q1,◦) qB1

g2
(q1,qf) qB3

qBa
1

g2
(q1,◦) g1

(q1,◦) qB1

g2
(q1,qf) qB3

qBa
1

The relevent S are underlined in the tables above. The new edges in the sec-
ond diagram derive from S[2/1] for the appropriate S. The branching edge is
removed from the first diagram for clarity. The new branching edge is added
after the self-loop.

