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Abstract. Higher-order recursion schemes are systems of rewrite rules on typed
non-terminal symbols, which can be used to define infinite trees. TheGlobal
Modal Mu-Calculus Model Checking Problemtakes as input such a recursion
scheme together with a modalµ-calculus sentence and asks for a finite repre-
sentation of the set of nodes in the tree generated by the scheme at which the
sentence holds. Using a method that appeals to game semantics, we show that for
an order-n recursion scheme, one can effectively construct a non-deterministic
order-n collapsible pushdown automaton representing this set. Thelevel of the
automaton is strict in the sense that in general no non-deterministic order-(n−1)
automaton could do likewise (assuming the requisite hierarchy theorem). The
question of determinisation is left open. As a corollary we can also construct an
order-n collapsible pushdown automaton representing the constructible winning
region of an order-n collapsible pushdown parity game.

Key words: Recursion Scheme, Model Checking, Game Semantics, Collapsible
Pushdown Automaton, Parity Game

1 Introduction

Whilst local model checking asks whether a property holds at the root of a structure, a
globalmodel checking algorithm is designed to return a finite representation of the set
of states in a structure at which a property holds.

Our own focus is on model checking modalµ-calculus properties of (possibly infi-
nite) ranked trees generated byhigher-order recursion schemes, which are systems of
rewrite rules on typed non-terminals. A number of results exist concerning the local
version [13, 14] and it turns out that for an order-n recursion scheme the local problem
is n-EXPTIME complete [14]. The computationally intensive part of our algorithm for
the global result in fact consists of solving a local versionof the problem. We have to
compute the winning region of a finite parity game arising from Ong’s method [14]. Al-
gorithms for solving such games from a given node usually follow the global paradigm
and compute the winning region in the process.

Owing to equivalences between recursion schemes and various flavours of higher-
order pushdown automata (PDA) [13, 10], the present work is very much related to
computing winning regions of parity games played over the configuration graphs of
such automata. Cachat and Serre independently showed that the winning regions of
parity games over 1-PDA and prefix-recognizable graphs are regular [16, 2]. Piterman
and Vardi [15] have also presented a generalisation of automata-theoretic techniques



used to solve the local problem over these graphs to obtain the same result. (Indeed
we borrow an aspect of their method with what we call in the sequel ‘the versatile
automaton’.) It was subsequently discovered by Carayol et al. that the winning regions
of order-n pushdown parity games are regular and that the problem isn-EXPTIME
complete [4]. As a corollary to this they show that the globalmodel checking problem
for order-n recursion schemes satisfying a syntactic constraint called ‘safety’ can be
solved inn-EXPTIME, with solution represented by adeterministicorder-n pushdown
automaton.

An analogous approach to general recursion schemes would require a regular char-
acterisation of the winning region of acollapsible pushdownparity game [10], as pro-
vided by Serre1. The approach we consider here, however, does not go via collapsible
pushdown parity games. Despite the difference in method, our final result is similar
insofar as our algorithm represents the required set of treenodes using an order-n col-
lapsible pushdown automaton (CPDA). There is an unfortunate difference, however, in
that our CPDA isnon-deterministic. Even if this diminishes the practical utility of the
output of our algorithm, our result nevertheless establishes that theµ-calculus definable
node-sets of trees generated by order-n recursion schemes can themselves be generated
by an order-n recursion scheme. In doing so we show how two different incarnations of
a game-semantic approach to the Local Problem [14, 10] can bemerged.

As a corollary we are able to characterise the configurationswith constructible
stacksthat are winning in a collapsible pushdown parity game usinga CPDA. Con-
structible stacks are represented by sequences of stack operations that generate them.
This resembles a similar result by Carayol and Slaats for (non-collapsible) PDA [5],
although our version lacks the canonicity exhibited inop. cit.

An Outline Proof of the Local Problem. Space constraints limit the degree to which
we can introduce apparatus from Ong’s original paper [14] but we try to refer to a
section of thelong versionfor the reader interested in more details.

Fix a space of types formed from a single ground typeo and the arrow-constructor
→. The order and arity of a type are given their standard definitions. Anorder-n recur-
sion scheme([14], Sec. 1.2) is a5-tuple〈Σ,N ,V ,R,S〉 whereΣ is a finite ranked al-
phabet with a symbol of arityk given the order-1 type of arityk; N is a finite set of non-
terminals assigned types of order no greater thann; V is a finite set of typed variables;
S ∈ N is a distinguished ‘initial symbol’ with typeo andR is a finite set of rewrite
rules of the formFζ1 . . . ζm → t(ζ1, . . . , ζm) whereF ∈ N andζ1, . . . , ζm ∈ V ;
Fζ1, . . . , ζm has typeo as does the termt(ζ1, . . . , ζm), which is formed from variables
ζ1, . . . , ζm, non-terminals fromN andΣ-symbols. There should be precisely one rule
for each non-terminal. Thevalue-treeJGK defined by a recursion schemeG is the tree
with nodes labelled inΣ that is the limit of the recursion scheme as it unfolds fromS
([14], p. 7).

Given aµ-calculus sentenceφ and a recursion schemeG, the local problem asks
whetherφ holds at the root ofJGK. Ong’s proof of decidability for this [14] makes use
of ideas from innocent game semantics [11] via the notion oftraversal. A traversal is
a sequence of nodes obeying certain rules in an infinite lambda termλ(G), called the

1 Private communication with Olivier Serre, 7 October 2008.



computation tree, which represents the recursion schemeG ([14], Sec. 2). The manner
in which a traversal hops around the computation tree can be viewed as both a form
of evaluation of the scheme (linear head reduction) and a manifestation of its game-
semantic denotation.

Thanks to Emerson and Jutla [7], we can convert theµ-calculus sentenceφ to an
alternating parity tree automaton (APT)B, which we refer to asthe property APT,
such thatB has an accepting run-tree on the value-treeJGK generated byG just in case
JGK � φ.2 We can map accepting run-trees to acceptingtraversal trees(andvice versa),
where the latter allowB to jump overλ(G) according to the rules for traversals ([14],
Definition 2.11). We can then simulate such traversal trees using atraversal simulating
APT C that readsλ(G) in a ‘normal’ top-down manner ([14], Sec. 3). Sinceλ(G) is
regular, as witnessed by a finite graphGr(G) ([14], p. 51 ), it can be decided whetherC
acceptsλ(G) and this gives the result.

Overview. Fix a ranked alphabetΣ, a tree-generating recursion schemeG and aµ-
calculus sentenceφ. LetB be theproperty APTassociated withφ. TheGlobal Model-
Checking Problemasks for a finite representation of the set of nodes in theΣ-labelled
tree JGK at which φ holds. We explicate a method that, given an order-n recursion
scheme, constructs ann-CPDA word acceptor that accepts precisely these nodes, where
nodes are represented in the standard way as strings over a ‘directions alphabet’.

We actually establish a slightly stronger result than we need. We provide a finite
representation of the set of ordered pairs(q, α), whereq is a state ofB and α is a
node ofJGK, such thatB accepts the subtree ofJGK rooted atα starting from stateq.
The solution to the Global Model-Checking Problem forG andφ is then provided by
restricting this set to those pairs of the form(q0, α), whereq0 is the initial state ofB.

The construction begins with what we describe as theversatile property APT, B⊥,
which is able to navigate to an arbitrary node inJGK before proceeding to adopt the
behaviour ofB starting at an arbitrary stateq. SinceB⊥ is just an ordinary APT, there
exists atraversal-simulatingAPTC⊥ forB⊥. We can thus move on to consider thefinite
parity gameGG,C⊥ induced byC⊥ and the computation graphGr(G) of G. The two
players of parity games are namedÉloı̈se and Abelard.́Eloı̈se can be viewed as trying
to establish aµ-calculus formula whilst Abelard is trying to refute it. We can use a
standard algorithm to find the winning region ofGG,C⊥ and thereby label with a symbol
‘W ’ the nodes ofGG,C⊥ from whichÉloı̈se has a winning strategy. The annotated graph
is calledGW

G,C⊥ .

SinceGW
G,C⊥ is induced (in part) byGr(G), it makes sense to speak of traversals

overGW
G,C⊥ . Consider the set of traversals ofGW

G,C⊥ travelling only over nodes labelled

with W and halting at a node corresponding to a point whereB⊥ starts to simulateB
from stateq at noden of the tree. It turns out that this set, when projected to theΣ-
labelled nodes, corresponds to the set of ordered pairs(q, α) that we want to finitely
represent. Since we can program ann-CPDA to navigate traversals ofGr(G) [10], we

2 For an introduction to the modalµ-calculus and parity automata / games we direct the reader
to Bradfield and Stirling’s survey [1]



can also program it to navigate the traversals ofGW
G,C⊥ in the set. This provides the

requisiten-CPDA word acceptor.

2 The Versatile Property APT and its Simulation
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Fig. 1.A Value Tree

By convention the nodes of a (ranked and ordered)Σ-
labelled tree,T : dom(T ) −→ Σ (say), are represented
in the standard way by strings inDir∗ whereDir = N,
so thatdom(T ) ⊆ Dir∗; elements ofDir ∪ {ǫ} (ǫ the
empty string) are referred to asdirections. Thus the label
of a nodeα is T (α) (e.g. JGK(α) means the label of
the nodeα in a value-treeJGK). A path p in a tree is
viewed as a sequence of nodes such that the successor of
an element of a sequence is its child. Thetracetrace(p)
of a pathp = (pi)i∈I is the sequence(T (pi))i∈I . For a noder of a treeT we writeTr

for the maximal subtree ofT rooted atr.
An APT that operates over aΣ-labelled treeT is a5-tuple 〈Σ, Q, δ, q0, Ω 〉 con-

sisting of a finite-setQ of control-states, transition functionδ : (Σ ×Q) → B+((Dir∪
{ǫ}) × Q) (whereB+(S) is the set of positive boolean formulae with set of atomsS),
initial stateq0 ∈ Q and priority functionΩ : Q → N. Whilst reading a nodeu of
T in stateq the automaton will pick aminimalsetS ⊆ ((Dir ∪ {ǫ}) × Q) satisfying
δ(T (u), q), and for each(i, q′) ∈ S will spawn an automaton in stateq′ reading the
ith child ofu, theǫ-child of a node being itself. Arun-tree of the APT is an unranked
(dom(T ) × Q)-labelled tree representing such a branching run starting in stateq0 at
the root ofT . It is deemed accepting if theQ-projectionq1 q2 . . . of the trace of every
path satisfiesthe parity conditionmeaning thatmax({Ω(q) : q ∈ inf(q1 q2 . . . )}) is
even, whereinf(σ) is the set of states occurring infinitely often inσ.

Suppose that the property APTB has initial stateq0 so thatB = 〈Σ, Q, δ, q0, Ω 〉.
A template for an APTis a quadrupleB = 〈Σ, Q, δ, Ω 〉 with Q a finite set such that
for anyq ∈ Q it is the case thatBq = 〈Σ, Q, δ, q, Ω 〉 is an APT. We may viewB as
representing the family of automata:B = { Bq : q ∈ Q }.

Consider a ranked and ordered treeT . It is possible to construct an automatonB⊥

that can behave as any member ofB acting on any ranked and ordered subtree ofT .
We call this automatonthe versatile property APT forB. The versatile APT traverses
the treeT starting at its root whilst in a kind of ‘nascent state’⊥. Once it reaches the
desired noder of the tree, it switches into the required stateq and starts behaving as
though it wereBq. We call this pointq-initialisation.

Definition 1. Let B = 〈Σ, Q, δ, Ω 〉 be a template for an APT. Theversatile automa-
ton B⊥ for B is the APTB⊥ given by:

B⊥ =
〈
Σ, Q ⊎ {⊥}, δ⊥,⊥, Ω⊥

〉

whereδ⊥ extendsδ by the rule:δ⊥ : (⊥, f) 7→
∨

1≤i≤ar(f)(i,⊥)∨
∨

q∈Q(ǫ, q) andΩ⊥

extendsΩ with Ω⊥(⊥) := −1.



So the APTB⊥ has an ‘initialisation phase’ during which it is in state⊥.

Definition 2. Let t be a run-tree of the versatile APTB⊥ on aΣ-labelled treeT . Let
t⊥ be the unique path int consisting of precisely the nodes associated with⊥.

Letp be the unique path inT corresponding to the path int of the formt⊥ β where
β is a node int with label(α, q) such thatq ∈ Q, the state space of the templateB (i.e.
q 6= ⊥). We then say thatq-initialization occurs at (the path)p or at (the node)β. We
call the patht⊥ the initialisation phaseof the automaton (during the runt).
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Fig. 2.A Computation Tree
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Fig. 3.A Run-Tree of a Versatile APT

The following lemma summarises the signif-
icance ofB⊥.

Lemma 1. LetB⊥ be a versatile automaton and
let T be aΣ-labelled tree. Given a stateq of B

and a noder of T , it is the case thatBq accepts
Tr if and only ifB⊥ has an accepting run-tree on
T with q-initialisation taking place atr.

Example 1.We use the following automaton as
our working example. It acts on trees with nodes
labelled by f and a with arities 2 and 0 re-
spectively. It has state space{q0, q1, q2} each of
which is given priority2.

(f, q0) 7→ (1, q1) ∧ (2, q1) (a, ) 7→ t
(f, q1) 7→ (1, q1) ∧ (1, q2) ∧ (2, q1)

We additionally use as an example the recursion
scheme with initial non-terminalS : o, non-
terminalF : (o → o) → o and rules:S →
F (fa) and Fφ → φ(F (fa)). The scheme’s
value tree and computation tree are illustrated in
Figures 1 and 2 respectively.

Example 2.The versatile APT for the property
APT in Example 1 has state space{q0, q1, q2} ∪
{⊥}with ⊥ the initial state. All states of the form
qi have priority2 but⊥ has priority−1. Its tran-
sition function is given by:

(f, q0) 7→ (1, q1) ∧ (2, q1) (f,⊥) 7→ (1,⊥) ∨ (2,⊥) ∨
∨

0≤i≤2(ǫ, qi)

(f, q1) 7→ (1, q1) ∧ (1, q2) ∧ (2, q1) (a, q ) 7→ t

with t the positive boolean formula that is always true (i.e. the empty conjunction) and
f is that which is always false (i.e. the empty disjunction).

A run-tree of this versatile APT on the value tree in Figure 1 is given in Figure 3.



Traversals and the Versatile APT. Now consider aΣ-labelled treeJGK generated by
some higher-order recursion schemeG. Let us fix a versatile APTB⊥ that can run on
Σ-labelled trees.

We now make use of the notions oftraversalsand the traversal treeof an APT
on the computation treeλ(G) of the recursion scheme. We speak interchangeably of
traversals over the computation graphGr(G), which unravels to formλ(G). ThePath-
Traversal Correspondence Theoremfrom the proof of the decidability of the Local
Model-Checking Problem ([14], Thm. 7) ensures that the following definition is well-
defined, which for any nodeα in JGK gives the corresponding nodeαΛ in λ(G):

Definition 3. Letα = a1 . . . am (with ai ∈ Dir for 1 ≤ i ≤ m) be a node inJGK. Let
tα be a traversal ofλ(G) and for1 ≤ i ≤ m + 1 let us namevi the i-th occurrence
of a terminal-labelled node intα. Suppose thatv1 bears the same label as the root of
JGK and for i ≥ 2, JGK(a1 . . . ai−1) = Jλ(G)K(vi) (wherea1 . . . ai−1 is a node in
JGK). Further assume that for1 ≤ i ≤ m the successor ofvi−1 in tα is its ai-th child
in λ(G). We defineαΛ to bevm+1. (λ1,⊥)
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(λφ3,⊥)

(φ4,⊥)

(λx16,⊥)

(f17,⊥)
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(λ5,⊥)
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Fig. 4.A Traversal Tree of a Versatile APT

Note that αΛ also makes sense when
speaking of traversals overGr(G) except that
in this case it should be viewed as aparticular
instanceof aGr(G)-node in a traversal.

We can also speak ofq-initialisation in
a traversal tree ofB⊥ in a completely anal-
ogous way –q-initialisation is the point in
the traversal at which the automaton switches
from being in state⊥ to being in stateq. We
illustrate in Figure 4 a traversal tree of the
versatile APT in Example 2 on the compu-
tation tree in Figure 2.

Now we make use of thetraversal-
simulating APT C⊥ associated withB⊥ (in
the sense of Ong ([14], sec. 3)). The essential
property ofC⊥ is that it is possible to convert
an acceptingtraversal treeof B⊥ on λ(G)
into an acceptingrun-treeof C⊥ onλ(G) and
conversely an acceptingrun-treeof C⊥ can
be converted into an acceptingtraversal tree
of B⊥.

Each states of C⊥ includes a component
sim(s) which is the state ofB⊥ that is being
simulated. Similarly for a sequence of states
σ = (si)i∈X we write sim(σ) to denote the
sequence(sim(si))i∈X . In contrast toB⊥, however, the transition function ofC⊥ maps
⊥-states to boolean formulae that are not necessarily disjunctions so that it can both
guess how the simulated traversal will evolve as well as later verify these guesses. As a
resultq-initialization cannot be considered unique forC⊥ and so we adjust the definition
appropriately.



Definition 4. Let t be a run-tree ofC⊥ onλ(G) andq be a state ofB. For a finite path
p in λ(G) (starting at the root), we say thatan instance ofq-initialisation occurs atp
if there exists some patht⊥ in t such thatsim(trace(t⊥)) consists only of⊥ andβ is
some node such thatt⊥ β is also a path int with the projection oftrace(t⊥) onto the
nodes ofλ(G) equal top andβ labelled(s, α) whereα is the last node inp ands is a
state ofC⊥ such thatsim(s) = q.

Given a sequence of nodess := (α1, p1) . . . (αm, pm) in Gr(G) × QC⊥ let us
write πGr(G)(s) to meanα1, . . . , αm andπ

NDup
Gr(G)(s) to mean the largest subsequence

of πGr(G)(s) whose adjacent elements are pairwise distinct. Given a traversalt we write
ptq to denote itsP -view([14], Def. 2.5) which is a subsequence oft of a certain game-
semantic significance.

Lemma 2. Letα be a node inJGK andq be a state ofB. The following are equivalent:

1. Property APTBq ∈ B acceptsJGKα.
2. The APTB⊥ has an accepting traversal treet with q-initialisation occurring atαΛ.
3. There exists a finite subtreeTα of a run-tree ofC⊥, all of whose nodes are associ-

ated with states simulating⊥. For some traversaltα onλ(G) ending inαΛ it is the
case that

{πNDup
Gr(G)(p) : p is a path inTα} = {pπGr(G)(s)q : s is an initial segment oftα} .

In particular there is a maximal branchb in Tα such thatpπ
NDup
Gr(G)(b)q = ptαq.

Moreover,Tα can be extended to an accepting run-tree ofC⊥ such thatq-initialisation
occurs on the tip ofb.

Proof. The equivalence of 1 and 2 is given by the Path-Traversal Correspondence Theo-
rem of Ong ([14], Thm 7). The equivalence of 2 and 3 is given by the inter-translations
between traversal trees ofB⊥ and run-trees ofC⊥ given in op. cit. (Sec 4 and 5) to-
gether with the result from that same paper ([14], Prop. 6) stating that there is a1 − 1
correspondence betweenP -views of traversals and paths in the computation tree. This
is illustrated in Figure 5. ⊓⊔

3 The Versatile Parity Game

We now move on to consider the parity game induced byC⊥ acting onGr(G). Let us
call this parity game theversatile parity gameGG,C⊥ . To retain a simple description,
we assume thatC⊥ is presented in such a form that the image of its transition function
consists of just pure disjunctions and pure conjunctions. Let us write

C⊥ := 〈ΛG, QC⊥ , δC⊥ , p0C⊥ , ΩC⊥〉

for the traversal-simulating automaton in such a form. Thismeans that every element
in the image ofδC⊥ can be written as

∧

i∈I(di, pi) or
∨

i∈I(di, pi).



(λ1,⊥∅)

(@2,⊥∅)

(λφ3,⊥{θ}) (λx16,⊥∅θ)

(f17,⊥{θ′})

(λ20,⊥{θ′})

(x21,⊥{θ′}θ′)
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(λx10,⊥∅θ1)

(f11,⊥{θ′

1})

(f11, q1{θ′

1}) correspondingq1-initialization

Part of a run-tree of the traversal-simulating APT on λ(G). The
states of the traversal-simulating automaton are either ofthe formqθ

or qSθ whereq represents the property APT state being simulated and
S andθ describe how the automaton has guessed the traversal being
simulated should evolve ([14], Sec. 3). The fragment of the run-tree
illustrated here is precisely the fragment that corresponds to the frag-
ment of the traversal tree illustrated to the right.
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The part of the
traversal tree up
to the point of q-
initialisation.

The traversal associated with the two diagrams above is:
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The path corresponding to thisP -view in the traversal-simulating APT run-tree has been highlighted.

Fig. 5.An illustration of Lemma 2



Definition 5. LetN be the set of nodes inGr(G) and letQC⊥ be the state space ofC⊥.
Theversatile parity gameis the parity game played on a directed graph with nodes in
N × QC⊥ such that:

1. The start node of the game is(n0, p0C⊥) wheren0 is the root ofGr(G).
2. There is an edge from(n, p) to (n′, p′) just in case

δC⊥(l, p) =
∧

i∈I

(di, pi) or δC⊥(l, p) =
∨

i∈I

(di, pi)

wherel is the label ofn and for somei ∈ I, pi = p′ andn′ is thedith child ofn.
Note that we may havedi = ǫ (the automaton does not move in the tree), in which
casen′ = n.

3. A game node(n, p) is owned byÉloı̈se if it is mapped byδC⊥ onto a
∨

-formula
and is owned by Abelard if it is mapped onto a

∧
-formula.

4. The only nodes in the game are those reachable from its start node.
5. The priority of a node(n, p) is ΩC⊥(p).

We writeGG,C⊥ to denote this parity game and let us writelegalMove((n, p), (n′, p′))
if there is an edge from(n, p) to (n′, p′).

We refer to a run-tree ofC⊥, whose nodes associated with a
∨

-state must have a unique
child, asstrategies forÉloı̈se in the gameGG,C⊥ . Such a strategy is termedwinning
just in case it is an accepting run-tree. Afinite subtree of a strategy is called apartial
strategy.

By the definition of a traversal-simulating APT we may assumethe following w.l.o.g:

Lemma 3. 1. Suppose that(n, p) is a node inGG,C⊥ such that the label ofn is either
an@ symbol or a variableφ. It is then the case that(n, p) is owned by Abelard and
n′ 6= n for every(n′, p′) such thatlegalMove((n, p), (n′, p′)) if and only if there
existssome(n′, p′) such thatn 6= n′ andlegalMove((n, p), (n′, p′)).

2. A game node(n, p) with n labelled by a terminalf ∈ Σ andsim(p) = ⊥ is owned
by Éloı̈se. The successor nodes of(n, p) include nodes of the form:
(a) (n, pq) with sim(pq) = q for eachq ∈ Q, the state space ofB.
(b) (ni, pi) for 1 ≤ i ≤ ar(f) whereni is theith child ofn andsim(pi) = ⊥.

3. Any node(n, p) in GG,C⊥ such that the label ofn is aλ-node is owned býEloı̈se.

We can extend the notion of traversal onGr(G) (or λ(G)) toGG,C⊥ . Such traversals
must respect the edge-relation ofGG,C⊥ in the sense that they could be ‘reassembled’
into a tree embeddable inGG,C⊥ .

Definition 6. Consider a finite sequence of nodes(n1, p1), . . . , (nm, pm) in GG,C⊥

such that an element(ni, pi) might be endowed with an integer labelled pointer to
an element(nj , pj) for 1 ≤ j < i. We say that such a sequence is atraversal ofGG,C⊥

just in case all of the following conditions hold:

1. (n1, p1) is the initial node ofGG,C⊥ (son1 will have labelλ).
2. The sequencen1, . . . , nm together with pointers is a traversal ofGr(G), which we

refer to as theunderlying traversal.



3. Suppose that the traversal includes an instance of

. . . (n, p) . . . (n′, p′)

i

. . .

wheren′ is a λ-node, or. . . (n, p) (n′, p′) . . . wheren is a λ-node and(n′, p′)
may or may not source a pointer.
We require that there is a path from(n, p) to (n′, p′) in GG,C⊥ . Note that this path
will necessarily be of the form

(n, p), (s1, p1), . . . , (sl, pl), (sl+1, pl+1), . . . , (sk, pk), (n′, p′)

for somel, k ∈ N such that for all1 ≤ i ≤ l we have the label ofsi being the label
of n and for all l + 1 ≤ j ≤ k we have the label ofsj being the label forn′.

4. Every occurrence of(ni, pi) such thatni is an@ or a variable node is owned by
Abelard.

Our definition of traversal respects the rules ofGG,C⊥ , equivalently the transition
function ofC⊥, in the following sense:

Lemma 4. For every traversalt of GG,C⊥ there exists a partial strategyT for Éloı̈se in
GG,C⊥ such that

{πNDup
Gr(G)(trace(r)) : r is a path inT } = {pπGr(G)(s)q : s is an initial segment oft} .

Traversals ofGG,C⊥ consisting of nothing but nodes(n, p) with sim(p) = ⊥ are
particularly pleasant because nodes associated with a terminal f ∈ Σ never occur in
immediate succession; they also allow access to arbitrary children of thef labelled node
in Gr(G). We are also interested in such traversals that then finish with a node(n, p)
with sim(p) = q for q ∈ Q, the state space ofB.

Definition 7. A ⊥-traversal of GG,C⊥ is a traversal ofGG,C⊥ consisting entirely of
nodes(n, p) that satisfysim(p) = ⊥. If q is a state ofB, then aq-tipped traversalof
GG,C⊥ is a traversal of the forms (n, p) wheres is a⊥-traversal butsim(p) = q.

Using known algorithms (such as Jurdziński’s [12]) we can compute the winning
region forÉloı̈se of finite parity games. We may thus effectively annotate with the sym-
bol ‘W ’ the states ofGG,C⊥ from which Éloı̈se has a winning strategy. Let us write
GW

G,C⊥ for this annotated game and refer to it as thedecorated game. We interchange-

ably refer to traversals as being overGG,C⊥ andGW
G,C⊥ . A traversal ofGW

G,C⊥ containing
only nodes annotated withW is referred to as awinning traversal. In particular, the
following lemma is useful to us and comes as a corollary to Lemmas 3 and 4 together
with the fact that a partial strategy labelled everywhere with W can be extended to a
winning strategy:

Lemma 5. Letα be a node inJGK andq a state of the APT templateB, and lettα be a
winningq-tipped traversaltα in GW

G,C⊥ whose final element is of the form(αΛ, p) (and



sim(p) = q). There is a minimal partial strategyTα for Éloı̈se onGW
G,C⊥ that can be

extended to a winning strategy (accepting run-tree ofC⊥ onλ(G)) satisfying

{πNDup
Gr(G)(trace(r)) : r is a path inTα} = {pπGr(G)(s)q : s initial segment oftα} .

In particular there is a maximal branchb in Tα such that

π
NDup
Gr(G)(trace(b)) = pπGr(G)(tα)q

with the tip ofb being the sole node to be given a label(n, p) wheresim(p) = q.

Note thatαΛ is well-defined as used above due to the second observation inLemma 3,
which ensures that during the initialization phase of a traversal ofGG,C⊥ one can leave
a terminal node in any direction and the only time at which anǫ-transition may be made
at a terminal node is toq-initialize.

We now make the following claim:

Lemma 6. Letα be a node inJGK andq a state of the property APT templateB. TFAE:

1. Property APTBq ∈ B acceptsJGKα.
2. There exists a winningq-tipped traversal inGW

G,C⊥ whose final element is of the

form (αΛ, p) (andsim(p) = q).

The proof from 2 to 1 just consists of combining Lemmas 5 and 2.To go in the other
direction, we use the second equivalence in Lemma 5 and then use Ong’s construction
of an accepting run tree ofC⊥ from the accepting traversal tree ofB⊥ ([14], Sec. 5).
We appeal to observations concerning@ and variable nodes inGW

G,C⊥ made in Lemma
3 to ensure that Abelard owns the@ and variable elements of theq-tipped traversal.

4 Construction of ann-CPDA Recogniser

Let us formally consider what it means to have an automaton asa solution to the Global
Model-Checking Problem for a tree generated by a higher-order recursion scheme.

Definition 8. Let B be a template for an APT with state spaceQB and letG be a
higher-order recursion scheme. Letn ∈ N be the maximal rank of any terminal occur-
ring in G and letDir(Σ) = {1, . . . , n} be the corresponding set of directions (so that
nodes inJGK are denoted by elements inDir(Σ)∗).

Now letA be an automaton (of any type) that reads (finite) words over the alphabet
Dir(Σ) with a finite state-setQA (and possibly additional memory of some kind such
as a stack). We say thatA is an automaton-solution to the Global Model Checking
Problem(GMCP) for (the tree generated by)G with respect toB just in case it can be
endowed with a mapQ : QA −→ QB ∪{⊥} such that the following set equality holds
for every stateq ∈ QB:

{w ∈ Dir(Σ)∗ : Bq acceptsJGKw} = {w ∈ Dir(Σ)∗ : ∃s ∈ ctl(w) .Q(s) = q}

wherectl(w) is the set ofcontrolstates ofA that are reachable on reading wordw.3

3 The⊥ label of a state inA allows one to avoid a state inA being associated with any element
of B. That is,Q could be viewed as apartial function fromA toB.



In particular if we have an APTBq0
(with initial stateq0) then we can represent

the set of subtrees ofJGK accepted byBq0
with an automaton-solutionA to the Global

Model-Checking Problem which is given final states{s ∈ QA : Q(s) = q0} and the
standard acceptance condition for finite strings.

An order-n pushdown automaton (n-PDA) is an automaton equipped with a stack
of (n − 1)-stacks where a1-stack contains only atoms and a(k + 1)-stack is a stack
of k-stacks. Form ≥ 2 an order-m pushoperation copies the top-most(m − 1)-stack
whilst an order-m popoperation discards it. The order-1 pushandpopare the standard
pushdown operations acting on the top-most1-stack. We writetop1 to denote the top-
most element of the top-most1-stack. Anorder-n collapsible pushdown automaton
(n-CPDA) [10] has ann-stack that allows apointer from any atomic element (stack
symbol) to ak-stack below it (where1 ≤ k < n). It has acollapseoperation that
discards the stack’s contents above the target oftop1 ’s pointer.

We claim that an order-n collapsible pushdown automaton (n-CPDA) can be a solu-
tion to the GMCP for an order-n recursion scheme. Moreover we claim that it is possible
to effectively construct the requisiten-CPDA fromB (or Bq) andG. We adapt the au-
tomatonCPDA(G) introduced by Hague et al. [10] that is able to compute traversals of
Gr(G) so that instead it computeswinning traversals ofGW

G,C⊥ . Its direction at terminal
symbols is guided by reading a nodeα of JGK (which is just a word inDir(Σ)∗). By
Lemma 6 this enables the automaton to fulfil the task demandedof it.

Theorem 1. LetG be an order-n recursion scheme andB a property APT template. We
can construct ann-CPDA that is a solution to the associated Global Model Checking
Problem inn-EXPTIME. The constructed automaton hasn-exponential size.

Note that deciding whether ann-CPDA accepts a given finite-word turns out to be
(n − 1)-EXPTIME complete in the size of then-CPDA. We can establish this by first
showing the emptiness problem to be(n − 1)-EXPTIME complete.

In general an(n−1)-CPDA cannot provide a solution to GMCP for order-n schemes
unless(n − 1)-CPDA are equi-expressive withn-CPDA.

Lemma 7. Let G be a (non-deterministic) order-n recursion scheme that generates
a finite-word languageL over an alphabetΣ. There exists adeterministicorder-n
recursion schemeG′ generating a ranked and ordered tree together with aµ-calculus
sentenceφ such that the languageL′ := {α ∈ Dir∗ : JGKα � φ } can be viewed as
being over an alphabetΣ′ with Σ ⊆ Σ′ and

L′ ↿Σ := {w ∈ Σ∗ : w is the maximalΣ-sub-sequence of an element ofL′ } = L

Proof. Let G be anon-deterministicorder-n recursion scheme generating a finite word
languageL over a finite alphabetΣ. The elements ofΣ can be viewed as terminals of
arity 1 and we also have anend-of-string markere 6∈ Σ with arity 0. The rules ofG will
be of the form Fiζ

i
1 . . . ζi

mi
−→ ti1 | . . . | tiki

for each non-terminalFi wherei

ranges in1 ≤ i ≤ N (say). LetK be the least integer withki ≤ K for all 1 ≤ i ≤ N .
We form a deterministic recursion schemeG′ that generates a single tree. The

ranked alphabetΓ used byG′ consists of two arity-0 terminalse andb together with a
terminalh of arity |Σ| + K. Let σ : Σ −→ { i : 1 ≤ i ≤ |Σ| } be some bijection.



We giveG′ a terminalF ′
i for every terminalFi in G such thatF ′

i has the same type
asFi. We take the initial non-terminal ofG′ to beS′; we further provide a non-terminal
Cc with typeo → o for eachc ∈ Σ. The rules ofG′ are as follows:

F ′
i ζi

1 . . . ζi
mi

−→ h b . . . b
︸ ︷︷ ︸

|Σ| times

ti1
⋆
. . . tiki

⋆
b . . . b
︸ ︷︷ ︸

(K−ki) times

Cc x −→ h b . . . b
︸ ︷︷ ︸

σ(c)−1 times

x b . . . b
︸ ︷︷ ︸

|Σ|−σ(c) times

b . . . b
︸ ︷︷ ︸

K times

for 1 ≤ i ≤ N andc ∈ Σ, wheretil
⋆

(1 ≤ l ≤ ki) is formed fromtil by replacing each
occurrence of a terminalc ∈ Σ with a non-terminalCj . Note that the end-of-string
markere is never replaced as our convention leaves it out ofΣ.

Let α be a node ofJGK. Let us identifyΣ with the first|Σ| directions{1, . . . , |Σ|}
of h. By the construction ofG′ from G we haveJGK(α) = e if and only if α ↿Σ ∈ L.
Theµ-calculus formulaφ asserting a node is labelled withe then gives the result. ⊓⊔

The languageL′ in the above Lemma is the set that should be recognised by the
solution to the GMCP forG′ andφ. If an n-CPDA can recogniseL′, then there must
exist ann-CPDA that can recogniseL′ ↿Σ. There exists a hierarchy theorem of Damm
[6] for PDA and modulo the assumption of a similar theorem forCPDA we obtain the
following:

Theorem 2. Assuming that the CPDA generated word-languages form a strict hierar-
chy, there exists an order-n recursion schemeG and aµ-calculus sentenceφ such that
nom-CPDA withm < n can be a solution to the corresponding GMCP.

5 Winning Region of a Collapsible Pushdown Game

We characterise theconstructiblewinning region of a collapsible pushdown parity game
in terms of the sequences of stack operations that can generate the winning configura-
tions. We refer to the automaton-generator of the underlying digraph as acollapsible
pushdown system(CPDS) and its configuration graph as aCPDS graph.

Some stacks cannot be constructed by operations on the empty-stack:[ [ a ] [ a ] [ b ] ].

The Unravelling of a CPDS Graph and Winning Condition APT. Theunravelling
of a CPDS graphG is a treeunrav(G) formed by labelling each node(q, s) (q a control
state ands a stack) of the configuration graph with(q, top1 s) and then unfolding from
the initial configuration. We can view this tree as being ranked and ordered by giving
a label(q, a) an arity equal to the size of the set{ (q′, θ) : (q, a, q′, θ) ∈ ∆ }, where
∆ ⊆ Q × Γ × Q × Opn is the transition relation andOpn the set of order-n stack
operations. We make the tree ordered by placing a linear order on the set.

For any CPDS parity game with underlying CPDS graphG the ownershipO(q) and
priority Ω(q) of a configuration(q, s) are given entirely byq. We can thus [7] construct
an APTB that, for a given noder in unrav(G) corresponding to a configuration(q, s) in
G, acceptsunrav(G)r if and only if Éloı̈se has a winning strategy from(q, s). Whenever
B reads a node labelled(q, a), it transitions to a state with priorityΩ(q) that is a

∨
state

if O(q) is Abelard and
∧

otherwise. We callB the winning condition APT (WCAPT).



The Versatile CPDS Parity Game.Let us fix ann-CPDS parity gameA. We convert
it to a gameA0, which by analogy with the work in previous sections is referred to as
the versatile CPDS parity game. The gameA0 extendsA with a single control state0.
The priority and owner of0 does not matter and so may be arbitrarily selected.

We make0 the initial control state ofA0. Whilst in control state0, Éloı̈se is allowed
to perform arbitrary stack operations whilst remaining at0. She may also opt at any
point to transition from0 into a control stateq of A without performing any stack
operation. After doing so, play proceeds as inA. Consider the set:

S0 := {(0, θ) : θ a stack operation} ∪ {(q, id) : q a control state ofA}

whereid is the stack operation that leaves the stack unchanged. LetG0 be the underly-
ing CPDS-graph ofA0. The directions emanating from a noder in unrav(G0) having
label(0, a), for any stack symbola, are in1− 1 correspondence withS0. We may thus
label a direction of such a noder with θ if this direction corresponds to a transition
(0, θ) andq (q a control state ofA) if it corresponds to a transition(q, id).

Consider a finite pathp = p0 p1 . . . pm p′m in unrav(G0), wherep0 is the root
of the tree, with trace of the form(0, a1) (0, a2) . . . (0, am) (q, am) such thatq is a
control state ofA. The nodep′m is represented as a string of directions, but this string
can be represented by a string of the formθ1 . . . θm q. The final elementp′m of p

will correspond to a configuration(q, s) in G0 wheres is a stack produced from the
empty stack by performing the composite operationθ1; . . . ; θm. Conversely, for any
sequence of stack operations followed by a control stateq of A there must exist a node
in unrav(G0) represented by this sequence which corresponds to a configuration(q, s)
with s formed by the sequence of stack operations starting at the empty stack.

Éloı̈se has a winning strategy from such a configuration(q, s) in A if and only
if she has a winning strategy from(q, s) in A0, since the games proceed identically
from this configuration. Let us writeB0 for the WCAPT ofA0. Suppose further that
s can be formed from the empty stack by a sequenceθ1 . . . θm of stack operations.
It follows that(q, s) is a winning configuration inA if and only if B0 accepts the tree
unrav(G0)θ1 ... θm q, viewingθ1 . . . θm q as a string of directions – i.e. a node.

The Constructible Winning Region of ann-CPDS Parity Game. It has been shown
by Hague et al. [10] that theunravellingof a CPDS graph can be generated by a deter-
ministicn-CPDA and consequently by a (deterministic) order-n recursion scheme. Let
G0 be such a recursion scheme for ourn-CPDS parity gameA0. Let us apply Theo-
rem 1 to generate a solutionD for the GMCP withG0 and the property expressed by
B0. We then restrictD to form an automatonD− that only accepts words of the form
θ1 . . . θm q that are also accepted byD. The automatonD− witnesses the following:

Theorem 3. LetA be ann-CPDS parity game with stack operationsOpn and control
statesQ. We can construct inn-EXPTIME ann-CPDA that recognises a subsetL of
(Opn)∗Q such thatÉloı̈se has a winning strategy from a configuration(q, s) with s

constructible (via operations inOpn) from the empty stack, if and only if for every
operation sequenceθ1; . . . ; θm generatings from the empty stack,θ1 . . . θm q ∈ L.



Given any configuration(q, s) with constructible stacks we can thus determine whether
it is a winning configuration by pickinganyoperation sequenceθ1 . . . θm witnessing
the constructibility ofs and deciding whetherθ1 . . . θm q is accepted by the automaton.

Further Directions. A pressing question is whether one can construct a more succinct
anddeterministicn-CPDA providing a solution to the GMCP for the trees in question.

Theorem 3 is weak as it stands. Carayol and Slaats [5] have shown that constructible
n-PDS (non-collapsible) parity game winning regions are‘n-regular’ [3, 9] and admit
a canonical representation. An analogous result for CPDS games would be good.
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