On Global Model Checking Trees Generated by
Higher-Order Recursion Schemes

C. H. Broadbent C.-H.L.Ong

Oxford University Computing Laboratory

Abstract. Higher-order recursion schemes are systems of rewrite orie¢yped
non-terminal symbols, which can be used to define infinitestr@heGlobal
Modal Mu-Calculus Model Checking Probletakes as input such a recursion
scheme together with a modatcalculus sentence and asks for a finite repre-
sentation of the set of nodes in the tree generated by thengché which the
sentence holds. Using a method that appeals to game sesyavgishow that for
an ordern recursion scheme, one can effectively construct a noruétistic
ordern collapsible pushdown automaton representing this set.|&\e of the
automaton is strict in the sense that in general no nonuétestic order{n — 1)
automaton could do likewise (assuming the requisite hibgatheorem). The
guestion of determinisation is left open. As a corollary vae @lso construct an
ordern collapsible pushdown automaton representing the corgiteievinning
region of an order: collapsible pushdown parity game.

Key words: Recursion Scheme, Model Checking, Game Semantics, Citllaps
Pushdown Automaton, Parity Game

1 Introduction

Whilst local model checking asks whether a property holds at the root tifiatare, a
globalmodel checking algorithm is designed to return a finite repngéation of the set
of states in a structure at which a property holds.

Our own focus is on model checking modatalculus properties of (possibly infi-
nite) ranked trees generated bigher-order recursion schemeshich are systems of
rewrite rules on typed non-terminals. A number of resulistesoncerning the local
version [13, 14] and it turns out that for an orderecursion scheme the local problem
is n-EXPTIME complete [14]. The computationally intensive fparour algorithm for
the global result in fact consists of solving a local versidithe problem. We have to
compute the winning region of a finite parity game arisingrfrong’s method [14]. Al-
gorithms for solving such games from a given node usuallpfothe global paradigm
and compute the winning region in the process.

Owing to equivalences between recursion schemes and sdtamours of higher-
order pushdown automata (PDA) [13,10], the present workery yuch related to
computing winning regions of parity games played over thefigoration graphs of
such automata. Cachat and Serre independently showechthatinning regions of
parity games over 1-PDA and prefix-recognizable graphsemelar [16, 2]. Piterman
and Vardi [15] have also presented a generalisation of aatttieoretic techniques

used to solve the local problem over these graphs to obtaisdme result. (Indeed
we borrow an aspect of their method with what we call in theusétdhe versatile
automaton.) It was subsequently discovered by Carayol et al. that tlheing regions
of ordern pushdown parity games are regular and that the problemBXPTIME
complete [4]. As a corollary to this they show that the glaimaldel checking problem
for orders recursion schemes satisfying a syntactic constraintaaifety’ can be
solved inn-EXPTIME, with solution represented bydeterministicorder« pushdown
automaton.

An analogous approach to general recursion schemes wayuiee regular char-
acterisation of the winning region ofallapsible pushdowparity game [10], as pro-
vided by Serr& The approach we consider here, however, does not go viapsiile
pushdown parity games. Despite the difference in methodfinal result is similar
insofar as our algorithm represents the required set ofnoeles using an order-col-
lapsible pushdown automaton (CPDA). There is an unforauddterence, however, in
that our CPDA isnon-deterministicEven if this diminishes the practical utility of the
output of our algorithm, our result nevertheless estabighat the:-calculus definable
node-sets of trees generated by ordeecursion schemes can themselves be generated
by an ordem recursion scheme. In doing so we show how two different maons of
a game-semantic approach to the Local Problem [14, 10] cameloged.

As a corollary we are able to characterise the configuratwitts constructible
stacksthat are winning in a collapsible pushdown parity game usigPDA. Con-
structible stacks are represented by sequences of stacatiops that generate them.
This resembles a similar result by Carayol and Slaats fon-gwlapsible) PDA [5],
although our version lacks the canonicity exhibitedn cit.

An Outline Proof of the Local Problem. Space constraints limit the degree to which
we can introduce apparatus from Ong’s original paper [14]vibel try to refer to a
section of thdong versionfor the reader interested in more details.

Fix a space of types formed from a single ground ty@ad the arrow-constructor
—. The order and arity of a type are given their standard defirsét Anorder-n recur-
sion schemd[14], Sec. 1.2) is &-tuple (X, N, V, R, S) whereX is a finite ranked al-
phabet with a symbol of arity given the ordert type of arityk; A is a finite set of non-
terminals assigned types of order no greater thiav is a finite set of typed variables;
S € N is a distinguished ‘initial symbol’ with type andR is a finite set of rewrite
rules of the formF¢; ... ¢ — t(Ci,...,Cn) WhereF € N and(y,...,6n € V5
F(q, ..., (n has typeo as does the term{(y, . . ., (), which is formed from variables
(1, ..., Cm, non-terminals from\ and X-symbols. There should be precisely one rule
for each non-terminal. Thealue-tree[G] defined by a recursion scherGeis the tree
with nodes labelled irt' that is the limit of the recursion scheme as it unfolds fr6m
([14], p. 7).

Given ap-calculus sentence and a recursion schentg, the local problem asks
whetherg holds at the root of G]. Ong’s proof of decidability for this [14] makes use
of ideas from innocent game semantics [11] via the notiotrafersal A traversal is
a sequence of nodes obeying certain rules in an infinite lanidxen A(G), called the

! private communication with Olivier Serre, 7 October 2008.

computation treewhich represents the recursion scheth@14], Sec. 2). The manner
in which a traversal hops around the computation tree candveed as both a form
of evaluation of the scheme (linear head reduction) and afestation of its game-
semantic denotation.

Thanks to Emerson and Jutla [7], we can convertithmalculus sentence to an
alternating parity tree automaton (APTJ, which we refer to ashe property APT
such that3 has an accepting run-tree on the value-fiég generated by~ just in case
[G] F $.2 We can map accepting run-trees to acceptiagersal treegandvice versj,
where the latter allowB to jump overA(G) according to the rules for traversals ([14],
Definition 2.11). We can then simulate such traversal treggyuatraversal simulating
APT C that reads\(G) in a ‘normal’ top-down manner ([14], Sec. 3). Sin&5) is
regular, as witnessed by a finite graph(G) ([14], p- 51), it can be decided wheth@r
accepts\(G) and this gives the result.

Overview. Fix a ranked alphabeY, a tree-generating recursion sche@end ay-
calculus sentencg. Let 5 be theproperty APTassociated witkp. The Global Model-
Checking Problenasks for a finite representation of the set of nodes in3tHabelled
tree [G] at which ¢ holds. We explicate a method that, given an ordeecursion
scheme, constructs aanCPDA word acceptor that accepts precisely these nodesewhe
nodes are represented in the standard way as strings ovieeciahs alphabet’.

We actually establish a slightly stronger result than wedn&ee provide a finite
representation of the set of ordered pdigsa), whereq is a state of8 and« is a
node of[G], such that3 accepts the subtree] rooted atw starting from state.
The solution to the Global Model-Checking Problem orand¢ is then provided by
restricting this set to those pairs of the fofga, «), wheregy is the initial state of3.

The construction begins with what we describe asvéirsatile property AP;TB+,
which is able to navigate to an arbitrary node[#] before proceeding to adopt the
behaviour of3 starting at an arbitrary state SinceB is just an ordinary APT, there
exists araversal-simulatingAPT C* for B. We can thus move on to consider firéte
parity gameg; ¢. induced byC+ and the computation graghr(G) of G. The two
players of parity games are namtbise and AbelarcEloise can be viewed as trying
to establish gu-calculus formula whilst Abelard is trying to refute it. Warc use a
standard algorithm to find the winning region@f .. and thereby label with a symbol
‘W’ the nodes ofj . from which Eloise has a winning strategy. The annotated graph
is caIIedg(V;‘ch.

Sincegé‘_’cL is induced (in part) byGr(G), it makes sense to speak of traversals
overGY .. . Consider the set of traversals@Y’ .. travelling only over nodes labelled

with W and halting at a node corresponding to a point whgtestarts to simulatés
from stateq at noden of the tree. It turns out that this set, when projected toXhe
labelled nodes, corresponds to the set of ordered pairs) that we want to finitely
represent. Since we can programaPDA to navigate traversals 6fr(G) [10], we

2 For an introduction to the modakcalculus and parity automata / games we direct the reader
to Bradfield and Stirling’s survey [1]

can also program it to navigate the traversalgQf.. in the set. This provides the
requisiten-CPDA word acceptor. ’

2 The Versatile Property APT and its Simulation

By convention the nodes of a (ranked and ordeted) L
labelled treeT : dom(T) — X (say), are represented /f .
in the standard way by strings Iir* whereDir = N, a? f?

so thatdom(T") C Dir"; elements oDir U {e} (e the ot \f5
empty string) are referred to dgections Thus the label ae/ h £7
of a nodea is T'(a) (e.g.[G](«) means the label of s O\

the nodea in a value-tred/G]). A pathp in a tree is

viewed as a sequence of nodes such that the successor of

an element of a sequence is its child. Treeetrace(p) Fig. 1. A Value Tree

of a pathp = (p;)ier is the sequenc€l(p;)).c;. For a node: of a treeT” we write T,
for the maximal subtree d&f rooted at-.

An APT that operates over &-labelled treel” is a5-tuple (X, @, 6, o, 2) con-
sisting of a finite-se@ of control-states, transition functidn: (X x Q) — B™((DirU
{e}) x Q) (whereB™(S) is the set of positive boolean formulae with set of atd#hs
initial stateqy € @ and priority functionf? : @ — N. Whilst reading a node of
T in stateq the automaton will pick aninimalsetS C ((Dir U {e}) x Q) satisfying
0(T'(u),q), and for eacHi,¢') € S will spawn an automaton in staté reading the
ith child of u, thee-child of a node being itself. Aun-tree of the APT is an unranked
(dom(T) x Q)-labelled tree representing such a branching run stantirgjateg, at
the root ofT. It is deemed accepting if th@-projectiong; ¢- ... of the trace of every
path satisfieshe parity conditionmeaning thatnax({{2(q) : ¢ € inf(q1 g2 ...)}) is
even, wherénf (o) is the set of states occurring infinitely oftendn

Suppose that the property ART has initial statey, so thatB = (X, Q, , qo, 2).
A template for an APTis a quadrupl€s = (X, Q, §, 2) with @ a finite set such that
foranyq € Q itis the case thaB, = (X, Q,d,q, 2) is an APT. We may viewB as
representing the family of automat8:= {B, : ¢ € Q }.

Consider a ranked and ordered tfEelt is possible to construct an automatBn
that can behave as any membef®facting on any ranked and ordered subtre& of
We call this automatothe versatile property APT fdB. The versatile APT traverses
the tre€l" starting at its root whilst in a kind of ‘nascent state’ Once it reaches the
desired node of the tree, it switches into the required statand starts behaving as
though it werel3,. We call this poing-initialisation.

Definition 1. Let®B = (X, Q, 0, {2) be a template for an APT. Thersatile automa-
ton B+ for B is the APTB given by:

Bt =(2,Qu{l}, ¢+, L, 02")

whered* extends by the rule:d™ : (L, f) = Vi cicn() (i L)V V e (€ g) and 2+
extends? with 2+ (L) := —1.

So the APTB+ has an ‘initialisation phase’ during which it is in state

Definition 2. Lett be a run-tree of the versatile APG* on a X-labelled treeT. Let
t* be the unique path inconsisting of precisely the nodes associated with

Letp be the unique path i’ corresponding to the path inof the formt 3 where
B is a node irt with label(«, ¢) such thaly € @, the state space of the templa&e(i.e.
q # 1). We then say that-initialization occurs at (the path)p or at (the node)s. We
call the patht the initialisation phaseof the automaton (during the ru.

The following lemma summarises the signif-

1
icance ofB+. A
@2
Lemma 1. Let B be a versatile automaton and Ag? Azt
let T be aX-labelled tree. Given a statg of B @‘4 /f”\
and a node- of 7', it is the case thal3, accepts A AE)20
T.. if and only if B has an accepting run-tree on as Joh
T with g-initialisation taking place at-. JULT)
. ¢‘8 f‘ll
Example 1.We use the following automaton as |
)\.L))\12)\14

our working example. It acts on trees with nodes) |
labelled by f and a with arities 2 and 0 re- a” =z
spectively. It has state spaey, ¢1, g2} each of

which is given priority2. Fig. 2. A Computation Tree

(f,q0) = (1, q1) AN (2, q1) (a,)=t .
(fra) = (L) A (Lg2) A (2,01) S
We additionally use as an example the recursion (f3,1)

scheme with initial non-terminaf : o, non-
terminal ' : (o — o) — o and rules:S —

(f3,q1) qi-initialization

F(fa) and F¢ — ¢(F(fa)). The scheme’s /

value tree and computation tree are illustrated in ,)
Figures 1 and 2 respectively. (s q1) (%, 42) (£,)
Example 2.The versatile APT for the property (a8, q1) (a8, q2)

APT in Example 1 has state spag®, ¢1,¢2} U

{L} with L theinitial state. All states of the form Fig. 3. A Run-Tree of a Versatile APT
q; have priority2 but L has priority—1. Its tran-

sition function is given by:

(f:q0) = (1,q1) A (2, 1) (f;)= (L L)V (2, L)V Vicico(e @)
(f7Q1) = (1aQ1)/\(1aQQ)/\(27QI) (CL, Q-) =t

with t the positive boolean formula that is always true (i.e. th@groonjunction) and
f is that which is always false (i.e. the empty disjunction).
A run-tree of this versatile APT on the value tree in Figurs gjiven in Figure 3.

Traversals and the Versatile APT. Now consider a~-labelled tredG] generated by
some higher-order recursion schefieLet us fix a versatile APB~ that can run on
X -labelled trees.

We now make use of the notions tthversalsandthe traversal treeof an APT
on the computation tre@(G) of the recursion scheme. We speak interchangeably of
traversals over the computation gra@h(G), which unravels to formk(G). ThePath-
Traversal Correspondence Theordrom the proof of the decidability of the Local
Model-Checking Problem ([14], Thm. 7) ensures that theofeihg definition is well-
defined, which for any node in [G] gives the corresponding node€' in \(G):

Definition 3. Leta = a4 ... a,, (Witha; € Dir for 1 <4 < m) be a node iffG]. Let
t. be a traversal of\(G) and for1 < i < m + 1 let us namey; thei-th occurrence
of a terminal-labelled node in,. Suppose that; bears the same label as the root of
[G] and fori > 2, [G](a; ... a;—1) = [MG)](v;) (Wherea; ... a;—1 is a node in
[G]). Further assume that for < ¢ < m the successor af;_; in t,, is its a;-th child

in A(G). We definex! to bewv,,, 1. (L 1)
Note thato” also makes sense when (@QL)
speaking of traversals ovéir(G) except that (WL. 1
in this case it should be viewed aparticular i
instanceof a Gr(G)-node in a traversal. ((/)4‘* 1)
We can also speak af-initialisation in (A6, 1)
a traversal tree o8+ in a completely anal- (f17‘ 1
ogous way —g-initialisation is the point in i
the traversal at which the automaton switches (AZO" L)
from being in statel to being in state;. We (z2 1)
illustrate in Figure 4 a traversal tree of the (ASL)
versatile APT in Example 2 on the compu- I
tation tree in Figure 2. (@6‘f 1)
Now we make use of thdraversal- (A7, 1)
simulating APT C associated witiB+ (in ((bsL)
the sense of Ong ([14], sec. 3)). The essential |
(Ax19, 1)

property ofC+ is that it is possible to convert |
an acceptingraversal treeof B+ on \(G) (f*, 1)
into an acceptingun-treeof C*+ on A\(G) and

|
i (fY1,.q1) gqi-initialization
conversely an acceptingin-tree of C* can

12 12 14
be converted into an acceptitrgversal tree (A "‘12) * ’ @) (A "‘“)
of B+. (@, q1) (@', q1) (2%, ¢0)

Each states of C* includes a component ()\9‘(]2)

sim(s) which is the state oB* that is being

simulated. Similarly for a sequence of states

o = (s;)iex We writesim(o) to denote the Fig. 4. A Traversal Tree of a Versatile APT

sequenceésim(s;))ic x- In contrast td3+, however, the transition function 6f- maps

1 -states to boolean formulae that are not necessarily dispans so that it can both

guess how the simulated traversal will evolve as well as lagfy these guesses. As a
resultg-initialization cannot be considered unique @ and so we adjust the definition
appropriately.

Definition 4. Lett be a run-tree o€+ on \(G) andq be a state of3. For afinite path
pin A\(G) (starting at the root), we say thain instance ofg-initialisation occurs atp
if there exists some patht in ¢ such thatim(trace(t*)) consists only of_ and 3 is
some node such that /3 is also a path int with the projection ofrace(t*) onto the
nodes of\(G) equal top and 3 labelled(s, «) whereq is the last node ip ands is a
state of¢ such thakim(s) = ¢.

Given a sequence of nodes:= (aq,p1) ... (@m,Pm) IN Gr(G) X Qcr let us
write Tar (e (s) to meanay, ..., an, andwg!,D(‘g;(s) to mean the largest subsequence
of mar(c)(s) whose adjacent elements are pairwise distinct. Given arsatt we write
Tt to denote itsP-view([14], Def. 2.5) which is a subsequencetadf a certain game-

semantic significance.
Lemma 2. Leta be a node ifG] andgq be a state of8. The following are equivalent:

1. Property APTB, € B acceptdG],.

2. The APTB* has an accepting traversal treéavith ¢-initialisation occurring ato”.

3. There exists a finite subtrdg, of a run-tree ofC*, all of whose nodes are associ-
ated with states simulating. For some traversal, on \(G) ending ina” it is the
case that

wg!D(‘g; (p) : pisapathinT,} = {"7grc)(s)7 : s is an initial segment of,,} .

In particular there is a maximal branch in T, such that" ¢y, ¢ (b)) = "ta ™.

MoreoverT,, can be extended to an accepting run-tre€ 6fsuch thay-initialisation
occurs on the tip ob.

Proof. The equivalence of 1 and 2 is given by the Path-TraversaBSpandence Theo-
rem of Ong ([14], Thm 7). The equivalence of 2 and 3 is givenHeyitter-translations
between traversal trees 6f- and run-trees of - given inop. cit. (Sec 4 and 5) to-
gether with the result from that same paper ([14], Prop. &)red that there is @ — 1
correspondence betweéhviews of traversals and paths in the computation tree. This
is illustrated in Figure 5. a

3 The Versatile Parity Game

We now move on to consider the parity game induced byacting onGr(G). Let us
call this parity game theersatile parity gaméj; .. To retain a simple description,
we assume that is presented in such a form that the image of its transitioiction
consists of just pure disjunctions and pure conjunctioesus write

Ct = (Ag,Qcr,0cr,pocs,)

for the traversal-simulating automaton in such a form. Thésans that every element
in the image of¢. can be written ag\;_; (d;, pi) or \/;;(ds, p;)-

(L)

(@ 1)
AL Lo ‘
(|) A1)
(@2, 1)
\ (¢", 1)
(\¢*, L{6}) (Az'6, 106)
()\zw,i)
(¢", L{6}0) (F7, L4’}
(F17, 1)
(%, L09') O, L{o'}) |
| ‘ ()\QU,L)
(@s, 10) (x2', L{0'}6") \
(=*, 1)
(A7, L{61}) Az, 106;)
‘ | (A5, 1)
(¢°, L{61}61) (7 1{e)
(@°, 1)
(f*,q1{61}) correspondingg: -initialization ‘
(Ae", 1)
(¢%, 1)
Part of a run-tree of the traversal-simulating APT on A\(G). The (Ae'®, 1)
states of the traversal-simulating automaton are eithénesform g6 u‘
or ¢S6 whereq represents the property APT state being simulated and EARE
S and# describe how the automaton has guessed the traversal being (fn‘)
s q1

simulated should evolve ([14], Sec. 3). The fragment of thetree
illustrated here is precisely the fragment that correspdndhe frag-
ment of the traversal tree illustrated to the right.

corresp. g1 -initialization

The part of the
traversal tree up
to the point of ¢-
initialisation.

The traversal associated with the two diagrams above is:
1 11 1
O 1 2 0 1

Al @2)\d)?: ¢4 Ale f17)\20 x?l)\5 @6 AQZS? ¢8)\xlo fll

which hasP-View:

0 1 1 1
Al @2)\d)?: ¢4 AE) @6)\xlo fll .
The path corresponding to thiz-view in the traversal-simulating APT run-tree has beemligpted.

Fig. 5. An illustration of Lemma 2

Definition 5. Let N be the set of nodes {ir(G) and letQ.. be the state space 6f-.
Theversatile parity gamés the parity game played on a directed graph with nodes in
N x Q¢ such that:

1. The start node of the game(isy, poc.) Whereny is the root ofGr(G).
2. There is an edge froffm, p) to (n’, p’) just in case

Ser(l,p) = N(disp) or Seu(lp) = \/(di,pi)

el i€l

wherel is the label ofn and for some € I, p; = p’ andn’ is thed;th child ofn.
Note that we may hawg¢ = ¢ (the automaton does not move in the tree), in which
casen’ = n.

3. A game nodé¢n, p) is owned byElaise if it is mapped by.. onto a\/-formula
and is owned by Abelard if it is mapped ontg\aformula.

4. The only nodes in the game are those reachable from itsratale.

5. The priority of a nodén, p) is £2¢+ (p).

We writeG; . to denote this parity game and let us writggalMove((n, p), (n',p))
if there is an edge fronr, p) to (n’, p’).

We refer to a run-tree af-, whose nodes associated witlyastate must have a unique
child, asstrategies forEloisein the gamef ¢.. Such a strategy is termednning
just in case it is an accepting run-treefiAite subtree of a strategy is calledoartial
strategy

By the definition of a traversal-simulating APT we may asstimedollowing w.l.0.g:

Lemma 3. 1. Suppose thdt:, p) is a node inG¢; ¢. such that the label of is either
an@ symbol or a variable. It is then the case thdt, p) is owned by Abelard and
n' = n for every(n’, p’) such thatlegalMove((n, p), (n’,p")) if and only if there
existssome(n’, p’) such thatn # n’ andlegalMove((n,p), (n/,p’)).

2. A game nodén, p) with n labelled by a terminaf € X' andsim(p) = L is owned

by Eloise. The successor nodegafp) include nodes of the form:
(@) (n,pq) withsim(p,) = ¢ for eachg € Q, the state space @.
(b) (n;,p;) for 1 <i < ar(f) wheren; is theith child ofn andsim(p;) = L.

3. Any nodgn, p) in G ¢+ such that the label of is a A-node is owned biloise.

We can extend the notion of traversal@n(G) (or A(G)) to G ¢+ . Such traversals
must respect the edge-relation@f .. in the sense that they could be ‘reassembled’
into a tree embeddable §; ¢ .

Definition 6. Consider a finite sequence of nodes,p1), ..., (7m,Pm) IN Gg oL
such that an elemert:;, p;) might be endowed with an integer labelled pointer to
an elementn;, p;) for 1 < j < i. We say that such a sequence isaversal ofG. .
just in case all of the following conditions hold:

1. (n1,p1) is the initial node ol ¢ (son; will have label)).
2. The sequence,, . .., n,, together with pointers is a traversal 6fr(G), which we
refer to as thaunderlying traversal

3. Suppose that the traversal includes an instance of

i

(n,p) ... (0,p) ...

wheren’ is a A-node, or... (n,p) (n’,p’) ... wheren is a \-node and(n’, p’)
may or may not source a pointer.

We require that there is a path frofm, p) to (n, p’) in G ¢+ . Note that this path
will necessarily be of the form

(nap)v (Slvpl)v sy (Slapl)a (Sl+17pl+1)v ey (Skapk)v (nlvpl)

for somel, k € N such that for alll < i < [we have the label of; being the label
ofnandforalll + 1 < j < k we have the label of; being the label for.'.

4. Every occurrence dfn;, p;) such thatr, is an@ or a variable node is owned by
Abelard.

Our definition of traversal respects the rulesif .., equivalently the transition
function ofC+, in the following sense:

Lemma 4. For every traversat of G, . there exists a partial strated¥ for Eloise in
Ge ¢ such that

{meen (trace(r)) : risapathinT} = {"7qyq)(s) : s is an initial segment of} .

Traversals ol . consisting of nothing but nod€s, p) with sim(p) = L are
particularly pleasant because nodes associated with anrih € X' never occur in
immediate succession; they also allow access to arbithaligren of thef labelled node
in Gr(G). We are also interested in such traversals that then finighawode(n, p)
with sim(p) = ¢ for ¢ € @, the state space @f.

Definition 7. A L-traversalof G, ¢. is a traversal ofG . consisting entirely of
nodes(n, p) that satisfysim(p) = L. If ¢ is a state of3, then ag-tipped traversabf
Ge.ct is atraversal of the forms (n, p) wheres is a_L-traversal butsim(p) = ¢.

Using known algorithms (such as Jurdzihski's [12]) we campute the winning
region forEloise of finite parity games. We may thus effectively aat®with the sym-
bol ‘W’ the states oG . from which Eloise has a winning strategy. Let us write
ggVCL for this annotated game and refer to it as deeorated gameWe interchange-
ably refer to traversals as being o¥Rf ¢+ andgG o A traversal OEG . containing
only nodes annotated with’ is referred to as avinning traversal In particular, the
following lemma is useful to us and comes as a corollary to oa® 3 and 4 together
with the fact that a partial strategy labelled everywherthW¥ can be extended to a
winning strategy:

Lemma 5. Leta be a node ifG] andq a state of the APT templaf®, and lett,, be a
winning ¢-tipped traversat,, in G .. whose final element is of the forfm, p) (and

sim(p) = ¢). There is a minimal partial strategy,, for Eloise ongchL that can be
extended to a winning strategy (accepting run-tre@-obn \(G)) satisfying

{merie (trace(r)) : risapathinT,} = {"7mauq)(s)7 : s initial segment o, } .

In particular there is a maximal branchin T, such that

ngj(g; (trace(b)) = "mar(c) (ta)”

with the tip ofb being the sole node to be given a labe] p) wheresim(p) = q.

Note thato” is well-defined as used above due to the second observatiemma 3,
which ensures that during the initialization phase of adraal ofG. .. one can leave
a terminal node in any direction and the only time at which-éransition may be made
at a terminal node is tg-initialize.

We now make the following claim:

Lemma 6. Leta be a node ifG] andq a state of the property APT templafe TFAE:

1. Property APTB, € B acceptdG]..
2. There exists a winning-tipped traversal ingg"cL whose final element is of the

form (o, p) (andsim(p) = q).

The proof from 2 to 1 just consists of combining Lemmas 5 an@o2go in the other
direction, we use the second equivalence in Lemma 5 and #$&@ug’s construction
of an accepting run tree ¢f* from the accepting traversal tree Bf- ([14], Sec. 5).

We appeal to observations concerningnd variable nodes iﬁ(v;‘ch made in Lemma
3 to ensure that Abelard owns tigeand variable elements of thetipped traversal.

4 Construction of ann-CPDA Recogniser

Let us formally consider what it means to have an automatarsaution to the Global
Model-Checking Problem for a tree generated by a higheeraetursion scheme.

Definition 8. Let B be a template for an APT with state spaQe; and letG be a
higher-order recursion scheme. Lete N be the maximal rank of any terminal occur-
ring in G and letDir(X) = {1,...,n} be the corresponding set of directions (so that
nodes in[G] are denoted by elementsiir (X)*).

Now let.A be an automaton (of any type) that reads (finite) words oveatphabet
Dir(X) with a finite state-sef) 4 (and possibly additional memory of some kind such
as a stack). We say that is an automaton-solution to the Global Model Checking
Problem(GMCP) for (the tree generated by with respect tdB just in case it can be
endowed withamap : Q4 — QpU{ L } such that the following set equality holds
for every statey € Qs

{w e Dir(X)* : B, accept{G],} = {w € Dir(X)* : s € ctl(w) . Q(s) = ¢}
wherectl(w) is the set ofcontrolstates ofA that are reachable on reading word.

% The L label of a state in4 allows one to avoid a state id being associated with any element
of B. That is,Q could be viewed as partial function from.A to B.

In particular if we have an APB,, (with initial stateq,) then we can represent
the set of subtrees ¢t7] accepted by3,, with an automaton-solutiod to the Global
Model-Checking Problem which is given final statesc Q4 : Q(s) = ¢o} and the
standard acceptance condition for finite strings.

An order-n pushdown automatom{-PDA) is an automaton equipped with a stack
of (n — 1)-stacks where a-stack contains only atoms and/a+ 1)-stack is a stack
of k-stacks. Forn > 2 an orderm pushoperation copies the top-magt — 1)-stack
whilst an ordern popoperation discards it. The ordépushandpopare the standard
pushdown operations acting on the top-mibstack. We writetop; to denote the top-
most element of the top-moststack. Anorder-n collapsible pushdown automaton
(n-CPDA) [10] has amn-stack that allows gointer from any atomic element (stack
symbol) to ak-stack below it (wherd < k < m). It has acollapseoperation that
discards the stack’s contents above the targesef's pointer.

We claim that an order-collapsible pushdown automatan-CPDA) can be a solu-
tion to the GMCP for an ordet-recursion scheme. Moreover we claim that it is possible
to effectively construct the requisite CPDA from*B (or B,) andG. We adapt the au-
tomatonCPDA (G) introduced by Hague et al. [10] that is able to compute trsalsrof
Gr(Q) so that instead it comput@snning traversals ogg‘fCL. Its direction at terminal
symbols is guided by reading a nodeof [G] (which is just a word iDir(X)*). By
Lemma 6 this enables the automaton to fulfil the task demaatied

Theorem 1. LetG be an ordern recursion scheme arid a property APT template. We
can construct am-CPDA that is a solution to the associated Global Model Chegk
Problem inn-EXPTIME. The constructed automaton hasxponential size.

Note that deciding whether anrCPDA accepts a given finite-word turns out to be
(n — 1)-EXPTIME complete in the size of the-CPDA. We can establish this by first
showing the emptiness problem to pe— 1)-EXPTIME complete.

In general arin—1)-CPDA cannot provide a solution to GMCP for ordeschemes
unless(n — 1)-CPDA are equi-expressive with CPDA.

Lemma 7. Let G be a (nhon-deterministic) ordet-recursion scheme that generates
a finite-word languageC over an alphabett. There exists aleterministicorder-
recursion schemé&’ generating a ranked and ordered tree together with-aalculus
sentence such that the languagé’ := {a € Dir* : [G]. F ¢} can be viewed as
being over an alphabeX’ with > C ¥’ and

L' 15 := {we X" : wis the maximalX-sub-sequence of an element®df; = £

Proof. Let G be anon-deterministiorder« recursion scheme generating a finite word
languager over a finite alphabel’. The elements of' can be viewed as terminals of
arity 1 and we also have and-of-string markee ¢ X with arity 0. The rules ofG will
be of the form Fi¢{...¢,,, — ti| ... |t} foreach non-terminak; wherei
rangesinl < i < N (say). LetK be the least integer with; < K forall1 <i < N.

We form a deterministic recursion scherGg that generates a single tree. The
ranked alphabef’ used byG’ consists of two arity} terminalse andb together with a
terminalh of arity | X| + K. Leto : ¥ — {i : 1 <4 < |X|} be some bijection.

We giveG’ a terminalF! for every terminalF; in G such thatF! has the same type
asF;. We take the initial non-terminal @’ to beS’; we further provide a non-terminal
C. with typeo — o for eachc € X. The rules ofG’ are as follows:

F/¢h...¢, —hb...bti .t b...b
| 2| times (K —k;) times
Cox—h b...b x b...b b...D
N—— N—— N——

o(c)—1times |X|—o(c)timesk times

for1 <i < N andc € X, wheret!” (1 <1 < k;) is formed from¢; by replacing each
occurrence of a terminal € X with a non-terminalC;. Note that the end-of-string
markere is never replaced as our convention leaves it out of

Let o be a node of G]. Let us identifyX’ with the first| X| directions{1, ..., | 2|}
of h. By the construction ofy’ from G we have[G]|(a) = eifandonlyifa 1x € L.
The p-calculus formulap asserting a node is labelled wittthen gives the result. O

The languagel’ in the above Lemma is the set that should be recognised by the
solution to the GMCP for?’ and¢. If an n-CPDA can recognis€’, then there must
exist ann-CPDA that can recognis€’ 1. There exists a hierarchy theorem of Damm
[6] for PDA and modulo the assumption of a similar theorem@&DA we obtain the
following:

Theorem 2. Assuming that the CPDA generated word-languages form et $tierar-
chy, there exists an order+ecursion schemé&' and apu-calculus sentence such that
nom-CPDA withm < n can be a solution to the corresponding GMCP.

5 Winning Region of a Collapsible Pushdown Game

We characterise thmonstructiblevinning region of a collapsible pushdown parity game
in terms of the sequences of stack operations that can gerntbeawinning configura-
tions. We refer to the automaton-generator of the undeglgigraph as aollapsible
pushdown systerCPDS) and its configuration graph a€BDS graph

Some stacks cannot be constructed by operations on the el [a][a][b]].

The Unravelling of a CPDS Graph and Winning Condition APT. Theunravelling
of a CPDS graply is a treeunrav(G) formed by labelling each node, s) (¢ a control
state and a stack) of the configuration graph witl, top, s) and then unfolding from
the initial configuration. We can view this tree as being exhknd ordered by giving
a label(q, a) an arity equal to the size of the setq’,0) : (¢,a,¢',0) € A}, where
A C Q x I xQ x Op, is the transition relation an@p,, the set of order: stack
operations. We make the tree ordered by placing a linear ordthe set.

For any CPDS parity game with underlying CPDS grggthe ownershig(q) and
priority £2(¢q) of a configuratior{q, s) are given entirely by. We can thus [7] construct
an APTZ that, for a given nodein unrav(G) corresponding to a configuratidg, s) in
G, acceptsinrav(G), if and only if Eloise has a winning strategy frafm, s). Whenever
B reads a node labelléd, a), it transitions to a state with priorit2(q) that is a\/ state
if O(q) is Abelard and/\ otherwise. We calB the winning condition APT (WCAPT)

The Versatile CPDS Parity Game. Let us fix ann-CPDS parity gamel. We convert
it to a gameA®, which by analogy with the work in previous sections is reddrto as
the versatile CPDS parity gam&he gameA® extendsA with a single control state.
The priority and owner o does not matter and so may be arbitrarily selected.

We makeD the initial control state ofA°. Whilst in control stat®, Eloise is allowed
to perform arbitrary stack operations whilst remaining@paShe may also opt at any
point to transition from0 into a control state; of .4 without performing any stack
operation. After doing so, play proceeds asdinConsider the set:

So = {(0,0) : 0 astack operationU {(q,id) : ¢ a control state ofd}

whereid is the stack operation that leaves the stack unchangedle¢ the underly-
ing CPDS-graph ofA°. The directions emanating from a nodé unrav(G°) having
label(0, a), for any stack symbal, are in1 — 1 correspondence witly. We may thus
label a direction of such a nodewith @ if this direction corresponds to a transition
(0, 0) andgq (g a control state ofd) if it corresponds to a transitiofy, id).

Consider a finite path = po p1 ... pm pl, in unrav(G®), wherep is the root
of the tree, with trace of the forrf0,a1) (0,a2) ... (0,a.,) (¢, a,) such thay is a
control state of4. The nodey!, is represented as a string of directions, but this string
can be represented by a string of the fofim... 6,, ¢. The final elemenp!, of p
will correspond to a configuratiofy, s) in G wheres is a stack produced from the
empty stack by performing the composite operatipn. .. ;6,,. Conversely, for any
sequence of stack operations followed by a control gtatie4 there must exist a node
in unrav(G9) represented by this sequence which corresponds to a caatfiyu(y, s)
with s formed by the sequence of stack operations starting at tipéyestack.

Eloise has a winning strategy from such a configuratiors) in A if and only
if she has a winning strategy frof, s) in A%, since the games proceed identically
from this configuration. Let us writ8° for the WCAPT of A°. Suppose further that
s can be formed from the empty stack by a sequéhce.. 6,, of stack operations.
It follows that (g, s) is a winning configuration itd if and only if B° accepts the tree
unrav(G%)g, .. o,, 4, Viewingb; ... 6,, g as a string of directions —i.e. a node.

The Constructible Winning Region of ann-CPDS Parity Game. It has been shown
by Hague et al. [10] that thenravellingof a CPDS graph can be generated by a deter-
ministic n-CPDA and consequently by a (deterministic) orderecursion scheme. Let
GO be such a recursion scheme for oCPDS parity game4®. Let us apply Theo-
rem 1 to generate a solutidn for the GMCP withG® and the property expressed by
BO. We then restricD to form an automato®~ that only accepts words of the form
0, ... 0, g that are also accepted B The automato®~ witnesses the following:

Theorem 3. Let.A be ann-CPDS parity game with stack operatiot®,, and control
states(). We can construct im-EXPTIME ann-CPDA that recognises a subsétof
(Op,)*Q such thatEloise has a winning strategy from a configuratian s) with s
constructible (via operations iDp,,) from the empty stack, if and only if for every
operation sequena®; ... ; 6, generatings from the empty stack; ... 6,, ¢ € L.

Given any configuratiofy, s) with constructible stack we can thus determine whether
it is a winning configuration by pickingny operation sequenag ... 6, witnessing
the constructibility ofs and deciding whethe; ... 6,, ¢ is accepted by the automaton.

Further Directions. A pressing question is whether one can construct a morerszicci
anddeterministicn-CPDA providing a solution to the GMCP for the trees in qumsti
Theorem 3 is weak as it stands. Carayol and Slaats [5] havesthat constructible
n-PDS (nhon-collapsible) parity game winning regions ‘argegular’ [3, 9] and admit
acanonical representatiarAn analogous result for CPDS games would be good.

Acknowledgements.We acknowledge the use of William Blunpst ri ng. sty and
Frank Drewesgr aph. st y packages, and thank Olivier Serre and Matthew Hague for
useful discussions, and the anonymous referees for helptuthorough comments.

References

1. J. Bradfield and C. P. Stirlingllodal logics and mu-calculi: an introductiopages 293-332.
Handbook of Process Algebra. Elsevier, North-Holland, 12200

2. T. Cachat. Uniform solution of parity games on prefix-gr@@able graphs. IRroc. VISS
volume 68 ofENTCS Elsevier, 2002.

3. A. Carayol. Regular sets of higher-order pushdown staeckiBroc. MFCS volume 3618 of
LNCS pages 168-179. Springer, 2005.

4. A. Carayol, M. Hague, A. Meyer, C.-H. L. Ong, and O. Serreinmhg regions of higher-
order pushdown games. Rroc. LICS pages 193-204. IEEE Computer Society, 2008.

5. A. Carayol and M. Slaats. Positional strategies for higivder pushdown parity games. In
Proc. MFCS volume 5162 o NCS pages 217-228. Springer, 2008.

6. W. Damm. The 10- and Ol -hierarchyheoretical Computer Scienc20:95-207, 1982.

7. E. A.Emerson and C. S. Jutla. Tree automata, mu-calcablideterminacy. Iroc. FOCS
pages 368-377. IEEE computer society, 1991.

8. J. Engelfriet. Iterated pushdown automata and complekitsses. IrProc. STOC pages
365-373, 1983. ACM.

9. S. FrantaniAutomates a piles de piles ... de pilé%hD thesis, 2005.

10. M. Hague, A. S. Murawski, C.-H L. Ong, and O. Serre. Cdiafe pushdown automata and
recursion schemes. Proc. LICS IEEE Computer Society, 2008.

11. M. Hyland and C.-H L. Ong. On full abstraction for PCF:llahd Ill. Information and
computation 163(2):285—-408, 2000.

12. M. Jurdzihski. Small progress measures for solvinghpgames. InProc. STACSvolume
1770 ofLNCS Springer, 2000.

13. T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-orderghdown trees are easy. Rroc.
FoSSaCsSvolume 2303 oL NCS pages 205-222. Springer, 2002.

14. C.-H L. Ong. On model-checking trees generated by highder recursion schemes. In
Proc. LICS IEEE Computer Society, 2006. Journal versioser s. conl ab. ox. ac.
uk/ | uke. ong/ publ i cati ons/ ntrees. pdf

15. N. Piterman and M. Y. Vardi. Global model-checking ofritf-state systems. FRroc. CAV
volume 3114 oL.NCS pages 387—-400. Springer, 2004.

16. O. Serre. Note on winning positions on pushdown gameésavitegular conditionsinfor-
mation Processing Letter85:285-291, 2003.

17. C. P. Stirling. Bisimulation, model checking and othamgs. InNotes for the Mathfit
instructional meeting on games and Computatib®97.

