
A Concrete Presentation of Game Semantics

W. Blum∗ C.-H. L. Ong†

Abstract

We briefly present a new representation theory for game semantics which is very concrete:
instead of playing in an arena game in which P plays the innocent strategy given by a term,
the same game is played out over (a souped up version of) the abstract syntax tree of the term
itself. The plays that are thus traced out are called traversals. More abstractly, traversals
are the justified sequences that are obtained by performing parallel-composition less the
hiding. After stating and explaining a number of Path-Traversal Correspondence Theorems,
we present a tool for game semantics based on the new representation.

1 Introduction

In game semantics, programs are modelled as strategies (for the player P). Strategies, which are
certain sets of plays (or legal positions), are composed by parallel composition plus hiding, in the
sense of the process algebra CSP [6]. The starting point of our work is a kind of representation
theory of the game semantics of higher-type programs (such as recursion schemes, PCF and
Idealized Algol) that is very concrete, involving combinatorics over infinite structures defined by
the abstract syntax trees of the programs being modelled. Take a program M which may be open.
In this approach the strategy-denotation of M , written [[M]], is represented by a set T rv(M) of
traversals over a possibly infinite tree – called the computation tree of M – which is generated
from (a souped up version of) the abstract syntax tree of M . (Formally a traversal over a tree is
a sequence of nodes starting from the root; quite unlike a path in the tree, a traversal can “jump”
all over the tree, and may visit certain nodes infinitely often.) A traversal over the computation
tree of M does not correspond to a play in [[M]], but rather to an interaction sequence that is
obtained by uncovering [7] a play in [[M]] in a hereditary fashion; and a suitable projection of the
traversals given by M – corresponding to the operation of hiding – gives the strategy-denotation
[[M]]. We call such a result a Path-Traversal Correspondence Theorem. (Denoting programs by
sets of interaction sequences obtained by hereditary uncovering was first considered by Greenland
in his DPhil thesis [4], which he has called revealed semantics.) The set T rv(M) is defined by
recursion over the syntax of M and by rule induction. Intuitively these formation rules define what
amounts to the composition algorithm of innocent strategies (less the hiding) but expressed in a
setting in which moves (of the innocent game) are mapped to nodes of the computation tree. As
a consequence of the representation, instead of the arena game in which P participates by playing
the innocent strategy given by a term, the same game can be played out very concretely over (a
souped up version of) the abstract syntax tree of the term itself (which we call the computation
tree).

This view of game semantics and the theory of traversals were first developed to prove a theorem
in the verification of infinite structures (namely, ranked trees generated by higher-order recursion
schemes have decidable MSO theories, in [8]). The theory has at least two other applications.
First it justifies the game characterization of the Higher-Order Matching Problem (but NOT the
algorithm) developed by Colin Stirling. Secondly it underpins the (as yet unpublished) result that
for each n ≥ 0, the following are equi-expressive for generating ranked trees:

∗Oxford University Computing Laboratory (OUCL), Wolfson Building, Parks Road, Oxford OX1 3QD, UK.
william.blum@comlab.ox.ac.uk

†OUCL. Luke.Ong@comlab.ox.ac.uk

1. order-n recursion schemes (= order-n PCF terms generated from uninterpreted order-1 sym-
bols)

2. order-n collapsible pushdown automata (CPDA)

3. order-n pure innocent strategies.

In this paper, after an introduction to traversals, we describe a tool that illustrates the repre-
sentation theory, briefly demonstrating its capabilities. The tool can perform the inter-translations
between CPDA and recursion schemes; it demonstrates the path-traversal correspondence in the
form of a 2-player game in which the user can play against a given term interactively, over the
computation tree of the term. Finally the tool is an aid to the type-setting of justified sequences.

2 Computation tree, Traversals and the Correspondence
Theorem

In [8], one of us introduced the notion of computation tree and traversals over a computation tree
for the purpose of studying trees generated by higher-order recursion scheme. Here we extend
these concepts to the pure (i.e. without constants) simply-typed lambda calculus. Our setting
allows the presence of free variable of any order. Moreover the term studied is not necessarily of
ground type. (This contrasts with [8]’s setting where the term is of ground type and contains only
uninterpreted constant1 of order 1 at most and no free variables.) Note we automatically account
for the presence of uninterpreted constants since they can be regarded as free variables. We will
then state the Correspondence Theorem (Theorem 2.1).

In the following we fix a simply-typed term Γ `M : T .

2.1 Computation tree

In [8] the computation tree of a grammar is defined as the unravelling of a finite graph representing
the long transform of a grammar. Similarly we define the computation tree of a λ-term as an
abstract syntax tree of its η-long normal form. We write l〈t1, . . . , tn〉 with n ≥ 0 to denote the
tree with a root labelled l with n children subtrees t1, . . . , tn.

Definition 2.1. The computation tree τ(M) of a simply-typed term Γ ` M : T with variable
names in a countable set V is a tree with labels in {@} ∪ V ∪ {λx1 . . . xn | x1, . . . , xn ∈ V , n ∈ N}
defined from its η-long form as follows. Let x denote some list of variables x1 . . . xn for some n ≥ 0.

For m ≥ 0, z ∈ V : τ(λx.zs1 . . . sm) = λx〈z〈τ(s1), . . . , τ(sm)〉〉

For m ≥ 1: τ(λx.(λy.t)s1 . . . sm) = λx〈@〈τ(λy.t), τ(s1), . . . , τ(sm)〉〉 .

Even-level nodes are λ-nodes (the root is on level 0). A single λ-node can represent several
consecutive variable abstractions or it can just be a dummy lambda if the corresponding subterm
is of ground type. Odd-level nodes are variable or application nodes.

We say that a variable node n labelled x is bound by a node m, and m is called the binder

of n, if m is the closest node in the path from n to the root such that m is labelled λξ with x ∈ ξ.
We write ~ to denote the root of the computation tree τ(M). The set of nodes of the com-

putation tree is denoted by N . The sets N@, Nλ and Nvar are the subset of N consisting of the
@-nodes, λ-nodes and variable nodes respectively.

1A constant f is uninterpreted if the small-step semantics of the language does not contain any rule of the form
f · · · → e. f can be regarded as a data constructor.

2

2.2 Justified sequences of nodes

We define the enabling relation on the set of nodes of the computation tree as follows: m enables
n, written m ` n, if and only if n is bound by m (and we sometimes write m `i n to precise that
n is the ith variable bound by m); or m is the root ~ and n is a free variable; or n is a λ-node and
m is its parent node.

We say that a node n0 of the computation tree is hereditarily enabled by np ∈ N if there
are nodes n1, . . . , np−1 ∈ N such that ni+1 enables ni for all i ∈ 0..p− 1.

For any set of nodes S,H ⊆ N we write SH` for S∩ `∗ (H) = {n ∈ S |∃n0 ∈ H s.t. n0 `∗ n}
– the subset of S constituted of nodes hereditarily enabled by some node in H . We will abbreviate
S{n0}` into Sn0`.

We call input-variables nodes the elements of V ~`
var

i.e. variables that are hereditarily enabled
by the root of τ(M). Thus we have V ~`

var = V \ (V N@`
var ∪ V NΣ`

var).
A justified sequence of nodes is a sequence of nodes with pointers such that each occurrence

of a variable or λ-node n different from the root has a pointer to some preceding occurrence m
verifying m ` n. In particular, occurrences of @-nodes do not have pointer. We represent the

pointer in the sequence as follows m. . . n
i

. where the label indicates that either n is labelled with
the ith variable abstracted by the λ-node m or that n is the ith child of m. Children nodes are
numbered from 1 onward except for @-nodes where it starts from 0. Abstracted variables are
numbered from 1 onward. The ith child of n is denoted by n.i.

We say that a node n0 of a justified sequence is hereditarily justified by np if there are
occurrences n1, . . . , np−1 in the sequence such that ni points to ni+1 for all i ∈ 0..p− 1. Let n be
an occurrence in a justified sequence s. We write s � r to denote the subsequence of s consisting
of the occurrences hereditarily justified by n.

The notion of P-view ptq of a justified sequence of nodes t is defined the same way as the
P-view of a justified sequences of moves in Game Semantics:2

pεq = ε ps ·m · . . . · λξq = psq ·m · λξ
for n /∈ Nλ, ps · nq = psq · n ps · ~q = ~

The O-view of s, written xsy, is defined dually. We will borrow the game semantic terminology:
A justified sequences of nodes satisfies alternation if for any two consecutive nodes, one is a λ-
node and the other is not, and P-visibility if every variable node points to a node occurring in
the P-view a that point.

2.3 Adding value-leaves to the computation tree

We now add another ingredient to the computation tree that was not originally used in [8]. Let
D denote the set of values of the base type o. We add value-leaves to τ(M) as follows: For each
value v ∈ D and for each node n ∈ N we attach the child leaf vn to n. We write V for the set
of vertices of the resulting tree (i.e. inner nodes and leaf nodes). For $ ranging in {@, λ, var},
we write V$ to denote the set of inner nodes from N$ plus the leaf-nodes with parent in N$ i.e.
V$ = N$ ∪ {vn | n ∈ N$, v ∈ D}.

Everything that we have defined can be lifted to this new version of computation tree. The
enabling relation ` is extended so that every leaf is enabled by its parent node. A link going from

a value-leaf vn to a node n is labelled by v: n . . . vn

v

. For the definition of P-view and visibility,
value-leaves are treated as λ-nodes if they are at an odd level in the computation tree, and as
variable nodes if they are at an even level.

We say that an occurrence of an inner node n ∈ N is answered by an occurrence vn if vn in
the sequence that points to n, otherwise we say that n is unanswered. The last unanswered node
is called the pending node. A justified sequence of nodes is well-bracketed if each value-leaf
occurring in it is justified by the pending node at that point.

2The equalities in the definition determine pointers implicitly. For instance in the second clause, if in the left-
hand side, n points to some node in s that is also present in psq then in the right-hand side, n points to that
occurrence of the node in psq.

3

2.4 Traversals of the computation tree

A traversal is a justified sequence of nodes of the computation tree where each node indicates a
step that is taken during the evaluation of the term.

Definition 2.2 (Traversals for simply-typed λ-terms). The set T rv(M) of traversals over τ(M)
is defined by induction over the rules of Table 1. A traversal that cannot be extended by any rule
is said to be maximal.

Initialization rules

(Empty) ε ∈ T rv(M).

(Root) The sequence constituted of a single occurrence of τ(M)’s root is a traversal.

Structural rules

(Lam) If t · λξ is a traversal then so is t · λξ · n where n denotes λξ’s child and:

– If n ∈ N@ ∪NΣ then it has no justifier;
– if n ∈ Nvar \Nfv then it points to the only occurrencea of its enabler in pt · λξq;
– if n ∈ Nfv then it points to the only occurrence of the root ~ in pt · λξq.

(App) If t · @ is a traversal then so is t · @ · n
0

.

Input-variable rules

(InputVar) If t is a traversal where tω ∈ N~`
var ∪L~`

λ and x is an occurrence of a variable node
in xty then so is t · n for any child λ-node n of x, n pointing to x.

(InputValue) If t1 · x · t2 is a traversal with pending node x ∈ N~`
var

then so is t1 · x · t2 · vx

v

for
all v ∈ D.

Copy-cat rules

(Var) If t · n · λx . . . xi

i

is a traversal where xi ∈ N@`
var then so is t · n · λx . . . xi

i

· ληi

i

.

(Value) If t ·m · n . . . v
v

n is a traversal where n ∈ N then so is t ·m · n . . . v
v

n · v

v

m.

Table 1: Traversal rules for the simply-typed λ-calculus.

aProp. 2.1 will show that P-views are paths in the tree thus n’s enabler occurs exactly once in the P-view.

λ

@

λy
0

y

λη1...
ληi...

ληn...

λx
1

xi

A traversal always starts by visiting the root. Then it mainly fol-
lows the structure of the tree. The (Var) rule permits to jump across
the computation tree. The idea is that after visiting a variable node x,
a jump is allowed to the node corresponding to the subterm that would
be substituted for x if all the β-redexes occurring in the term were re-

duced. The sequence λ · @ · λy . . . y
1

· λx

1

. . . xi

i

· ληi

i

. . . is an example of
traversal of the computation tree shown on the right.

Proposition 2.1 (counterpart of proposition 6 from [9]). Let t be a traversal. Then:

(i) t is a well-defined and well-bracketed justified sequence;

(ii) t is a well-defined justified sequence verifying alternation, P-visibility and O-visibility;

4

(iii) If t’s last node is not a value-leaf, then ptq is the path in the computation tree going from
the root to t’s last node.

The reduction of a traversal t is the subsequence of t obtained by keeping only occurrences of
nodes that are hereditarily enabled by the root ~. This has the effect of eliminating the “internal
nodes” of the computation. If t is a non-empty traversal then the root ~ occurs exactly once in t
and the reduction of t is equal to t � r. We write T rv(M)�~ for the set or reduction of traversals
of M .

Application nodes are used to connect the operator and the operand of an application in the
computation tree but since they do not play any role in the computation of the term, we can
remove them from the traversals. We write t−@ for the sequence of nodes-with-pointers obtained
by removing from t all @-nodes and value-leaves of @-nodes; any link pointing to an @-node is
replaced by a link pointing to the immediate predecessor of @ in t. We write T rv(M)−@ for the
set {t− @ | t ∈ T rv(M)}.

Remark 2.1. If M is β-normal then τ does not contain any @-node therefore all nodes are hered-
itarily justified by r and we have T rv(M)−@ = T rv(M) = T rv(M)�~.

2.5 Revealed Game Semantics

In game semantics, strategy composition is achieved by performing a CSP-like “composition +
hiding”. If the internal moves are not hidden then we obtain an alternative semantics called
revealed semantics in [4] and interaction semantics in [3]. Here we will refer to this semantics as
the fully revealed game semantics. The fully revealed game denotation of a term Γ `M : T ,
written 〈〈Γ `M : T 〉〉, is obtained by uncovering3 all the internal moves from [[Γ `M : T]] generated
during strategy composition. We introduce a variation of the fully-revealed game denotation
called the syntactically-revealed game denotation, written 〈〈Γ `M : T 〉〉

s
. In this denotation,

as opposed to the fully-revealed denotation, only certain internal moves from [[Γ `M : T]] are
uncovered. More precisely, this denotation uncovers the internal moves that are generated by the
composition with the evaluation map ev at @-nodes of the computation tree, but for term of the
form yN1 . . .Np for some p ≥ 1, the denotation hides the internal moves played by the copy-cat
strategy denotating y. The formal definition can be found in [1].

2.6 Computation trees and arenas

We consider the well-bracketed game model of the simply-typed lambda calculus. We choose
to represent strategies using “prefix-closed set of plays”.4 We fix a term Γ ` M : T and write
[[Γ `M : T]] to denote its standard strategy denotation. The answer moves of a question q are
written vq where v ranges in D.

Proposition 2.2. There exists a function ϕM , constructible from τ(M), that maps nodes from
V \ (V@ ∪VΣ) to moves of the interaction arena underlying the revealed strategy 〈〈Γ `M : T 〉〉

s
and

such that ϕ maps λ-nodes to O-questions, variable nodes to P-questions, value-leaves of λ-nodes
to P-answers and value-leaves of variable nodes to O-answers.

Example 2.1. Take λx.(λg.gx)(λy.y) with x, y : o and g : (o, o). The diagram below represents
the computation tree (middle), the arenas [[(o, o), o]] (left), [[o, o]] (right), [[o→ o]] (rightmost) and

3An algorithm that uniquely recovers hidden moves is given in Part II of [7].
4In the literature, a strategy is usually defined as a set of plays closed by even-length prefix. For the purpose of

showing the Correspondence Theorem, however, the “prefix-closed”-based definition is more adequate.

5

ϕ = ψ ∪ ψ
λg,qλg

λg.gx ∪ ψ
λy,qλy

λy.y (dashed-lines).

λx

@

λg

g

λ

x

λy

y

qλx

qx
qλg

qg

qg1

qλy

qy

ψ

ψ
λg,qλg

λg.gx ψ
λy,qλy

λy.y

We extend the function ϕ to justified sequences of nodes as follows: If t = t0t1 . . . is a justified
sequence of nodes in Vλ ∪ Vvar then ϕ(t) is defined to be the sequence of moves ϕ(t0) ϕ(t1) . . .
equipped with the pointers of t.

2.7 The Correspondence Theorem

In the simply-typed lambda calculus, the set T rv(M) of traversals of the computation tree is
isomorphic to the set of plays of the syntactically-revealed denotation. Moreover the set of traversal
reductions is isomorphic to the standard strategy denotation:

Theorem 2.1 (The Correspondence Theorem). The function ϕM gives us the following two
isomorphisms:

(i) ϕM : T rv(M)−@
∼=
−→ 〈〈Γ `M : T 〉〉

s

(ii) ϕM : T rv(M)�~
∼=
−→ [[Γ `M : T]] .

Example 2.2. Take M = λfz.(λgx.fx)(λy.y)(fz) : ((o, o), o, o). The figure below represents the
computation tree (left tree), the arena [[((o, o), o, o)]] (right tree) and ψM (dashed line). (Only
question moves are shown for clarity.) The justified sequence of nodes t defined hereunder is an
example of traversal:

λfz
@

λgx

f [1]

λ[2]

x

λy

y

λ[3]

f [4]

λ[5]

z

q0

q1

q2

q3

ψM

t = λfz @ λgx f [1] λ[2] x λ[3] f [4] λ[5] z

t � r = λfz f [1] λ[2] f [4] λ[5] z

ϕM (t � r) = q0 q1 q2 q1 q2 q3 ∈ [[M]] .

3 Presentation of the tool

We have developed a tool called HOG that permits one to visualize and explore the Traversal-
Game Semantics Correspondence presented in the previous section. The binary files and sources in
OCaml/F# can be downloaded from http://web.comlab.ox.ac.uk/oucl/work/william.blum/.

3.1 Generation of the computation graph/tree

HOG accepts two kind of objects as an input: simply-typed terms or higher-order recursion
schemes. A recursion scheme is a special kind of higher-order grammar that can be used to
generated an infinite tree called the value-tree (not to be confused with the computation tree).
A recursion scheme can be thought of as a simply-typed term of ground type extended with
recursion and containing uninterpreted constants of order at most 1 (corresponding to constructors
for nodes of the value tree). Since a recursion scheme can make use of recursion, the computation
tree becomes a computation graph. Traversals are however defined in the same way and the

6

Correspondence Theorem still holds. This setting was originally treated in [8] where the concepts
of computation tree and traversal were first introduced.

HOG allows you to generate the computation tree of a higher-order simply-typed term as well
as the computation graph of a higher-order recursion scheme.

3.2 Example

Take for instance the Urzyczin recursion scheme (see [2]). It is formally given by the tuple
〈Σ,N ,R, S〉 where the set of terminals is Σ = {[: o → o,] : o → o, ∗ : o → o, 3 : o → o →
o→ o, e : o, r : o}, the set of non-terminals is N = {S : o,D : (o → o→ o) → o→ o→ o → o, F :
o→ o,E : o,G : o→ o→ o} and the set of rules R is given by

S → [(DGEE E)
Dϕxyz → 3([(D (Dϕx) z (F y)(F y)))(](ϕy x))(∗z)

F x → ∗ x
E → e

Guv → r

Using the HOG syntax this is expressed as follows:

name { ”Urzyczin t r e e ” } va l i d a t o r { demiranda urzyczyn } t e rmina l s {
[: o−> o ;
] : o −> o ;
∗ : o −> o ;
3 : o −> o −> o −> o ;
e : o ;
r : o ; }

nontermina l s {
S : o ;
D: (o −> o −> o) −> o −> o −> o −> o ;
F : o −> o ;
E: o ;
G: o −> o −> o ; }

r u l e s {
S = [(D G E E E) ;
D \ varphi x y z = 3 ([(D (D \ varphi x) z (F y) (F y))) (] (\

varphi y x)) (∗ z) ;
F x = ∗ x ;
E = e ;
G u v = r ; }

Figure 1 represents the computation graph. (The TEX source code for this graph is automati-
cally generated by HOG.) The framed nodes correspond to the constant nodes.

3.3 Playing the traversal game

Once a computation tree/graph is loaded, HOG allows you to play a traversal game over it. The
user plays for the Opponent while HOG plays for the Proponent. Figure 2 shows a screenshot of
the tool when a traversal game is played.

The right-hand side of the window contains a representation of the computation graph and
the left part of the window contains a list of justified sequences created by the user. The first
justified sequence in the screenshot corresponds to a traversal that is currently being played by
the user. Opponent moves and Proponent moves are represented by circles and rectangular nodes
respectively. The user makes a move by selecting a node among the valid nodes highlighted in
the computation graph. If there is a unique possible justifier in the traversal then the move is
automatically accepted, otherwise the user has to specify a move by selecting a valid justifier in

7

[S]λ

[

λ

@

[D]λϕxyz
0

3

λ

[

λ

@

λθ3θ4

@

λθ5θ6

ϕ

λ

θ5

λ

θ6

λ

x

λ

θ3

λ

θ4

λ

z

λ

@

[F]λx
0

*

λ

x

λ

y

λ

@

λ

y

λ

]

λ

ϕ

λ

y

λ

x

λ

*

λ

z

λθ1θ2

@

[G]λuv
0

r

λ

θ1

λ

θ2

[E]λ

e

[E]λ

e

[E]λ

e

0

0

0

Figure 1: Computation graph of the Urzyczin’s recursion scheme.

Figure 2: Screenshot of a traversal game in HOG.

8

Order : 2

Stack alphabet : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

Code :
Code :

0 PUSH1 0 (0 ,0)
1 s t a r t : CASETOP0 0−>NODE0 1−>NODE1 2−>NODE2 3−>NODE3 4−>NODE4 5−>NODE5 6−>NODE6 7−>

NODE7 8−>NODE8 9−>NODE9 10−>NODE10 11−>NODE11 12−>NODE12 13−>NODE13 14−>NODE14 15−>NODE15 16−>

NODE16 17−>NODE17 18−>NODE18 19−>NODE19 20−>NODE20 21−>NODE21 22−>NODE22 23−>NODE23 24−>NODE24
25−>NODE25 26−>NODE26 27−>NODE27 28−>NODE28 29−>NODE29 30−>NODE30 31−>NODE31 32−>NODE32 33−>

NODE33 34−>NODE34 35−>NODE35 36−>NODE36 37−>NODE37 38−>NODE38 39−>NODE39 40−>NODE40 41−>NODE41
42−>NODE42 43−>NODE43 44−>NODE44 45−>NODE45 46−>NODE46 47−>NODE47 48−>NODE48 49−>NODE49 50−>

NODE50 51−>NODE51 52−>NODE52 53−>NODE53 54−>NODE54 55−>NODE55 56−>NODE56 57−>NODE57 58−>NODE58
59−>NODE59

2 NODE0 : PUSH1 5 (1 ,1)
3 GOTO s t a r t
4 NODE1 : PUSH1 14 (1 ,1)
5 GOTO s t a r t
6 NODE2 : PUSH1 55 (1 ,1)
7 GOTO s t a r t
8 NODE3 : PUSH1 58 (1 ,1)
9 GOTO s t a r t

10 NODE4 : PUSH1 59 (1 ,1)
11 GOTO s t a r t
12 NODE5 : EMIT [NODE5 1
13 NODE5 1 : PUSH1 7 (0 ,0)
14 GOTO s t a r t
15 NODE6 : PUSH1 1 (1 ,1)
16 GOTO s t a r t
17 NODE7 : PUSH1 6 (1 ,1)
18 GOTO s t a r t
19 NODE8 : PUSH1 4 (1 ,1)
20 GOTO s t a r t
21 NODE9 : PUSH1 8 (1 ,1)
22 GOTO s t a r t
23 NODE10 : REPEAT 3 TIMES POP1
24 COLLAPSE
25 CASETOP0 45−>NODE10 45 21−>NODE10 21
26 FAILWITH ”Unexpected top 0−element !”
27 NODE10 21 : PUSH1 24 (3 ,1)
28 GOTO s t a r t

. . .

Figure 3: Excerpt of the listing of the CPDA generated from the Urzyczin recursion scheme.

the traversal. After the move is accepted HOG responds with a P-move. This goes on until the
traversal is maximal.

HOG allows the user to perform several operations on the justified sequence such as computing
the P-view or the O-view. It is also possible to export the sequence to LATEX code. For example,
typesetting the traversal from Figure 2 with LATEX produces

λ [λ @ λϕxyz 3 λ [...

3.4 Other features

3.4.1 Generating a CPDA from a recursion scheme

HOG can convert any higher-order recursion scheme into an equivalent (i.e. generating the same
infinite tree) Collapsible Push-down Automaton (CPDA) of the same order. The algorithm used
to perform this transformation is taken from [5].

The transition function of a CPDA is given by a list of instructions which we call the “code” of
the CPDA. Figure 3.4.1 gives an example of CPDA generated from the Urzyczin recursion scheme.

A line of code of the CPDA is made of three parts: the line number, an optional label and an
instruction. There are four kinds of instructions: stack instructions, the node emitting instruction,
branching instructions and debugging instructions. The stack instructions are:

PUSH1 a (j,k) pushs the element a on the top 1-stack and associates the link (j, k) to it. This
encoding means that the link points to a prefix stack obtained by performing an order-j pop
k consecutive times.

PUSHn performs an order n push on the stack (i.e. duplicates the top n− 1-stack).

POPn performs an order n pop on the stack (i.e. pop the top n− 1-stack).

9

COLLAPSE collapses the stack to the prefix stack pointed to by the top element in the stack. In
other words it executes k times the execution POPj where (j,k) is the encoding of the link
associated to the top element.

REPEAT n TIMES ins repeats the instruction ins n times where n is a constant. The behaviour
is unspecified if ins is a branching instruction.

In order to create nodes in the value-tree, the CPDA uses the following special instruction:

EMIT f LAB1 . . . LABk emits the terminal f of type ok → o. The CPDA is then spawn into k other
CPDA’s, one for each parameter of the terminal f . The i′s spawn CPDA will be started at
instruction LABi for i ∈ {1..k}.

The branching instructions are:

GOTO lab jumps to the label lab.

CASTOP0 e0− > lab0...ek− > labk performs a test case on the element at the top of the stack. If
the top element is equal to ei for some i ∈ {0..k} then the CPDA jumps to the label labk.
Otherwise it moves on to the following instruction.

There are also instructions used for debugging the code of a CPDA:

FAILWITH msg raises an exception with the message msg.

ASSERT msg asserts that the condition described by the message msg is verified. If the test fails
then an exception is raised.

A configuration of the CPDA is given by an instruction number together with an order-n stack.
In the initial configuration, the CPDA is positioned on the first instruction and the stack is the
empty order-n stack. After executing a transition the CPDA moves to the next instruction (or
jumps to another line if it is a branching instruction).

3.4.2 Exploring the value tree by executing the CPDA transitions

When you open a CPDA, HOG displays a lazy value tree (Figure 4). Each node of this tree
corresponds to a configuration of the CPDA. Nodes are either labelled by an instruction number
or by a terminal. In a separate textbox, HOG shows the content of the stack for the selected
configuration.

Initially, the root node is labeled with the instruction number 0 which corresponds to the first
instruction of the CPDA code. When executing the CPDA transition on a node, the stack is
updated accordingly and the node label is updated to the next instruction to be executed. This
process is repeated until reaching an EMIT instruction.

When an instruction EMIT f LAB1 . . . LABk is executed (which means that a terminal f : ok → o
is emitted), a node labelled f is created in the value tree with k children nodes attached to it. Each
child corresponds to a newly spawn CPDA with the same stack as in the original configuration.
Finally, the current instruction of the ith child is set to the instruction number with label LABi.

Terminal nodes represent the actual nodes of the value-tree and as such cannot be expanded
further.

3.4.3 Exploring the tree generated by a recursion scheme

HOG has another feature which allows one to explore the infinite tree generated from a given
recursion scheme without having to convert it into a CPDA beforehand.

10

Figure 4: HOG executing the CPDA generated from the Urzyczin recursion scheme.

11

References

[1] W. Blum and C.-H. L. Ong. Local computation of beta-reduction. Work In progress, 2008.

[2] Jolie G. de Miranda. Structures generated by higher-order grammars and the safety constraint.
Dphil thesis, University of Oxford, 2006.

[3] Aleksandar Dimovski, Dan R. Ghica, and Ranko Lazic. Data-abstraction refinement: A game
semantic approach. In Chris Hankin and Igor Siveroni, editors, SAS, volume 3672 of LNCS,
pages 102–117. Springer, 2005.

[4] Will Greenland. Game Semantics for Region Analysis. PhD thesis, University of Oxford, 2004.

[5] M. Hague, A. S. Murawski, C.-H. L. Ong, and O. Serre. Collapsible pushdown automata and
recursive schemes. November 2006. 13 pages, preprint.

[6] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[7] J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF: I, II, and III. Information
and Computation, 163(2):285–408, December 2000.

[8] C.-H. L. Ong. On model-checking trees generated by higher-order recursion schemes. In
Proceedings of IEEE Symposium on Logic in Computer Science. Computer Society Press, 2006.
Extended abstract.

[9] C.-H. L. Ong. On model-checking trees generated by higher-order recursion schemes (technical
report). Preprint, 42 pp, 2006.

12

