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Abstract. Ong has shown that the modal mu-calculus model checking
problem (equivalently, the alternating parity tree automaton (APT) ac-
ceptance problem) of possibly-infinite ranked trees generated by order-n
recursion schemes is n-EXPTIME complete. We consider two subclasses
of APT and investigate the complexity of the respective acceptance prob-
lems. The main results are that, for APT with a single priority, the prob-
lem is still n-EXPTIME complete; whereas, for APT with a disjunctive
transition function, the problem is (n − 1)-EXPTIME complete. This
study was motivated by Kobayashi’s recent work showing that the re-
source usage verification for functional programs can be reduced to the
model checking of recursion schemes. As an application, we show that
the resource usage verification problem is (n − 1)-EXPTIME complete.

1 Introduction

The model checking problem for higher-order recursion schemes has been a topic
of active research in recent years (for motivation as to why the problem is in-
teresting, see e.g. the introduction of Ong’s paper [1]). This paper studies the
complexity of the problem with respect to certain fragments of the modal µ-
calculus. A higher-order recursion scheme (recursion scheme, for short) is a kind
of (deterministic) grammar for generating a possibly-infinite ranked tree. The
model checking problem for recursion schemes is to decide, given an order-n
recursion scheme G and a specification ψ for infinite trees, whether the tree gen-
erated by G satisfies ψ. Ong [1] has shown that if ψ is a modal µ-calculus formula
(or equivalently, an alternating parity tree automaton), then the model checking
problem is n-EXPTIME complete.

Following Ong’s work, Kobayashi [2] has recently applied the decidability
result to the model checking of higher-order functional programs (precisely, pro-
grams of the simply-typed λ-calculus with recursion and resource creation/access
primitives). He considered the resource usage verification problem [3]—the prob-
lem of whether programs access dynamically created resources in a valid manner
(e.g. whether every opened file will eventually be closed, and thereafter never
read from or written to before it is reopened). He showed that the resource usage
verification problem reduces to a model checking problem for recursion schemes



by giving a transformation that, given a functional program, constructs a recur-
sion scheme that generates all possible resource access sequences of the program.
From Ong’s result, it follows that the resource usage verification problem is in
n-EXPTIME (where, roughly, n is the highest order of types in the program).
This result also implies that various other verification problems, including (the
precise verification of) reachability (“Given a closed program, does it reach the
fail command?”) and flow analysis (“Does a sub-term e evaluate to a value gen-
erated at program point l?”), are also in n-EXPTIME, as they can be easily
recast as resource usage verification problems.

It was however unknown whether n-EXPTIME is the tightest upper-bound
of the resource usage verification problem. Although the model checking of recur-
sion schemes is n-EXPTIME-hard for the full modal µ-calculus, only a certain
fragment of the modal µ-calculus is used in Kobayashi’s approach to the resource
usage verification problem. First, specifications are restricted to safety proper-
ties, which can be described by Büchi tree automata with a trivial acceptance
condition (the class called “trivial automata” by Aehlig [4]). Secondly, specifi-
cations are also restricted to linear-time properties—the branching structure of
trees is ignored, and only the path languages of trees are of interest. Thus, one
may reasonably hope that there is a more tractable model checking algorithm
than the n-EXPTIME algorithm.

The goal of this paper is, therefore, to study the complexity of the model
checking of recursion schemes for various fragments of the modal µ-calculus
(or, alternating parity tree automata) and to apply the result to obtain tighter
bounds of the complexity of the resource usage verification problem.

The main results of this paper are as follows:
– The problem of whether a given Büchi automaton with a trivial accep-

tance condition (or, equivalently, alternating parity tree automaton with a single
priority 0) accepts the tree generated by an order-n recursion scheme is still n-
EXPTIME-hard. This follows from the n-EXPTIME-completeness of the word
acceptance problem for higher-order alternating pushdown automata3 [5].

– We introduce a new subclass of alternating parity tree automata (APT)
called disjunctive APT, and show that its acceptance problem for trees generated
by order-n recursion schemes is (n− 1)-EXPTIME complete. From this general
result, it follows that both the linear-time properties (including reachability,
which is actually (n−1)-EXPTIME complete) and finiteness of the tree generated
by a recursion scheme are (n− 1)-EXPTIME.

– As an application, we show that the resource usage verification problem [2]
is also (n − 1)-EXPTIME-complete, where n is the highest order of types used
in the source program (written in an appropriate language [2]).

Related Work For the class of Büchi automata with a trivial acceptance con-
dition, Kobayashi [2] showed that the complexity is linear in the size of recursion
schemes, if the sizes of types and automata are bounded above by a constant.

3 Engelfriet’s proof [5] is for a somewhat different—but equivalent—machine which is
called iterated pushdown automaton.



For the full modal µ-calculus, Kobayashi and Ong [6] have shown that the com-
plexity is polynomial-time in the size of the recursion scheme, assuming that the
size of types and the formula are bounded above by a constant.

2 Preliminaries

We assume the standard notions of (ranked/unranked) infinite trees [1].

Higher-Order Recursion Schemes The set of types is defined by: κ ::= o | κ1 →
κ2, where o describes trees. The order of κ, written order(κ), is defined by:
order(o) := 0 and order(κ1 → κ2) := max (order(κ1) + 1, order(κ2)). A (deter-
ministic) higher-order recursion scheme (recursion scheme, for short) is a quadru-
ple G = (Σ,N ,R, S), where (i) Σ is a ranked alphabet i.e. a map from a finite
set of symbols called terminals to types of order 0 or 1. (ii) N is a map from a
finite set of symbols called non-terminals to types. (iii) R is a set of rewrite rules
F x̃ → t. Here, x̃ abbreviates a sequence of variables, and t is an applicative
term constructed from non-terminals, terminals, and variables. (iv) S is a start
symbol. We require that N (S) = o. The set of (typed) terms is defined in the
standard manner: A symbol (i.e., a terminal, non-terminal, or variable) of type
κ is a term of type κ. If terms t1 and t2 have types κ1 → κ2 and κ1 respectively,
then t1 t2 is a term of type κ2. For each rule F x̃→ t, F x̃ and t must be terms
of type o. There must be exactly one rewrite rule for each non-terminal. The
order of a recursion scheme is the highest order of its non-terminals.

A rewrite relation on terms is defined inductively by: (i) If F x̃→ t ∈ R, then
F s̃ −→G [s̃/x̃]t. (ii) If t −→G t′, then t s −→G t′ s and s t −→G s t′. The value
tree of a recursion scheme G, written [[G]], is the (possibly infinite) tree obtained
by infinite rewriting of the start symbol S: See [1] for a precise definition.

Alternating parity tree automata Given a finite set X, the set B
+(X) of positive

Boolean formulas over X is defined as follows:

B
+(X) ∋ θ ::= t | f | x | θ ∧ θ | θ ∨ θ

where x ranges over X. We say that a subset Y of X satisfies θ just if assigning
true to elements in Y and false to elements in X \ Y makes θ true.

An alternating parity tree automaton (or APT for short) over Σ-labelled trees
is a tuple A = (Σ,Q, δ, qI , Ω) where (i) Σ is a ranked alphabet; let m be the
largest arity of the terminal symbols; (ii) Q is a finite set of states, and qI ∈ Q is
the initial state; (iii) δ : Q×Σ −→ B

+({1, . . . ,m}×Q) is the transition function
where, for each f ∈ Σ and q ∈ Q, we have δ(q, f) ∈ B

+({1, . . . , arity(f)} ×Q);
and (iv) Ω : Q −→ {0, · · · ,M − 1} is the priority function.

A run-tree of an APT A over a Σ-labelled ranked tree T is a (dom(T )×Q)-
labelled unranked tree r satisfying: (i) ǫ ∈ dom(r) and r(ǫ) = (ǫ, qI); and (ii) for
every β ∈ dom(r) with r(β) = (α, q), there is a set S that satisfies δ(q, T (α)); and
for each (i, q′) ∈ S, there is some j such that β j ∈ dom(r) and r(β j) = (α i, q′).



Let π = π1 π2 · · · be an infinite path in r; for each i ≥ 0, let the state label
of the node π1 · · ·πi be qni

where qn0
, the state label of ǫ, is qI . We say that

π satisfies the parity condition just if the largest priority that occurs infinitely
often inΩ(qn0

)Ω(qn1
)Ω(qn2

) · · · is even. A run-tree r is accepting if every infinite
path in it satisfies the parity condition. An APT A accepts a (possibly infinite)
ranked tree T if there is an accepting run-tree of A over T .

Ong [1] has shown that there is a procedure that, given a recursion scheme
G and an APT A, decides whether A accepts the value tree of G.

Theorem 1 (Ong). Let G be a recursion scheme of order n, and A be an APT.
The problem of deciding whether A accepts [[G]] is n-EXPTIME-complete.

3 Trivial APT and the Complexity of Model Checking

APT with a trivial acceptance condition, or trivial APT (for short), is an APT
that has exactly one priority which is even. Note that trivial APT are equivalent
to Aehlig’s “trivial automata” [4] (for defining languages of ranked trees).

The first result of this paper is a logical characterization of the class of
ranked trees accepted by trivial APT. Call S the following “safety fragment” of
the modal mu-calculus:

φ, ψ ::= Pf | Z | φ ∧ ψ | φ ∨ ψ | 〈i〉φ | νZ.φ

where f ranges over symbols in Σ, and i ranges over {1, · · · , arity(Σ)}.

Proposition 1 (Equi-Expressivity). The logic S and trivial APT are equiv-
alent for defining possibly-infinite ranked trees. I.e. for every closed S-formula,
there is a trivial APT that defines the same tree language, and vice versa.

3.1 n-EXPTIME Completeness

We show that the model checking problem for recursion schemes is n-EXPTIME
complete for trivial APT. The upper-bound of n-EXPTIME follows immediately
from Ong’s result [1]. To show the lower-bound, we reduce the decision problem

of w
?
∈ L(A), where w is a word and A is an order-n alternating PDA, to the

model checking problem for recursion schemes. n-EXPTIME hardness follows

from the reduction, since the problem of w
?
∈ L(A) is n-EXPTIME hard [5].

Definition 1. An order-n alternating PDA (order-n APDA, for short) for finite
words is a 7-tuple:

A = 〈P, λ, p0 ∈ P, Γ, Σ, ∆ ⊆ P × Γ × (Σ ∪ {ǫ}) × P × Opn, F ⊆ P 〉

where P is a set of states, λ ∈ P → {A, E}, p0 is the initial state, Γ is the set
of stack symbols, Σ is an input alphabet, F is the set of final states, and ∆ is
a transition relation that satisfies: for every p, γ, if (p, γ, ǫ, p′, θ) ∈ ∆ for some



p′, θ, then (p, γ, a, p′, θ) 6∈ ∆ for every a ∈ Σ, p′ and θ. A configuration of an
order-n APDA is of the form (p, s) where s is an order-n stack: an order-1 stack
is an ordinary stack, and an order-(k+ 1) stack is a stack of order-k stacks. The
(induced) transition relation on configurations is defined by the rule:

if (p, top1(s), α, p
′, θ) ∈ ∆, then (p, s) −→α (p′, θ(s)).

Here, θ ∈ Opn is an order-n stack operation and top1(s) is the stack top of s.
The definition of the stack operations Opn is omitted since it is not important
for understanding the encodings below; interested readers may wish to consult,
for example, the paper [8] by Knapik et al.

Let w be a word over Σ. We write wi (0 ≤ i < |w|) for the i-th element of w.
A run tree of an order-n APDA over a word w is a finite, unranked tree such that
(i) The root is labelled by (p0,⊥n, 0), where ⊥n is the initial stack. (ii) If a node
is labelled by (p, s, i) and λ(p) = A, then either p ∈ F and i = |w|, or the set of
labels of the child nodes is exactly {(p′, θ(s), i+1) | (p, top1(s), wi, p

′, θ) ∈ ∆∧i <
|w|}∪{(p′, θ(s), i) | (p, top1(s), ǫ, p

′, θ) ∈ ∆}. (Thus, if the set is empty, the node
has no child.) (iii) If a node is labelled by (p, s, i) and λ(p) = E, then either p ∈ F
and i = |w|, or there exists exactly one child node which is labelled by an element
of the set: {(p′, θ(s), i + 1) | (p, top1(s), wi, p

′, θ) ∈ ∆ ∧ i < |w|} ∪ {(p′, θ(s), i) |
(p, top1(s), ǫ, p

′, θ) ∈ ∆}. An order-n APDA A accepts w if there exists a run
tree of A over w.

Engelfriet [5] has shown that the word acceptance problem for order-n APDA
is n-EXPTIME complete.

Theorem 2 (Engelfriet). Let A be an order-n APDA and w a finite word over

Σ. The problem of w
?
∈ L(A) is n-EXPTIME complete.

To reduce the word acceptance problem of order-n APDA to the model check-
ing problem for recursion schemes, we use the equivalence [8] between order-n
safe recursion schemes and order-n PDA as (deterministic) devices for generating
trees.

Definition 2. An order-n tree-generating (deterministic) PDA is a 5-tuple
〈Σ,Γ,Q, δ, q0〉 where Σ is a ranked alphabet, Γ is a finite stack alphabet, Q is
a finite state-set, δ : Q×Γ −→ (Q×Opn + {(f ; q1, · · · , qarity(f)) : f ∈ Σ, qi ∈
Q}) is the transition function, and q0 ∈ Q is the initial state. A generalized
configuration is either a configuration (which has the shape (q, s) where s is an
order-n stack over Γ ) or a triple of the form (f ; q1, · · · , qarity(f); s). We define
ℓ
> , a labelled transition relation over generalized configurations, as follows:

– (q, s)
(q′,θ)
> (q′, θ(s)) if δ(q, top1(s)) = (q′, θ)

– (q, s)
f q̃
> (f ; q̃; s) if δ(q, top1 s) = (f ; q̃)

– (f ; q̃; s)
(f,i)
> (qi, s) for each 1 ≤ i ≤ arity(f).



A computation path of an order-n PDA A is a finite or infinite transition

sequence ρ = c0
ℓ0
> c1

ℓ1
> c2

ℓ2
> · · · where each ci is a generalized configuration,

and c0 = (q0,⊥n) is the initial configuration. The Σ-projection of ρ is the sub-
sequence ℓr1

ℓr2
ℓr3

· · · of labels of the shape (f, i) (in which case arity(f) > 0)
or f (i.e. f ǫ, in which case arity(f) = 0, and the label marks the end of the Σ-
projection). We say the PDA A generates the Σ-labelled tree t just if the branch
language4 of t coincides with the set of Σ-projection of computation paths of A.

Theorem 3 (Knapik et al. [8]). There exists a reduction of an order-n tree-
generating PDA M to an order-n safe recursion scheme G that generates the
same tree as M. Moreover, both the running time of the reduction algorithm
and the size of G are polynomial in the size of M.

By Theorems 2 and 3, it suffices to show that, given a word w and an order-
n APDA A, one can construct an order-n tree-generating PDA MA,w and a
trivial APT BA such that w is accepted by A if, and only if, the tree generated
by MA,w is accepted by BA.

Let w be a word over Σ. We write wi (i ∈ {0, . . . , |w| − 1}) for the i-th
element of w. From w and A = 〈P, λ, p0, Γ,Σ,∆, F 〉 above, we construct an
order-k PDA MA,w for generating a {A, E, R, T}-labelled tree, which expresses a
kind of run tree of A over the input word w. The node label A (E, resp) means
that A is in a universal (existential, resp.) state; T means that A has accepted
the word, and R means that A is stuck (having no outgoing transition).

Let N := max q∈P,a∈Σ∪{ǫ},γ∈Γ |{q
′, θ) | (q, γ, a, q′, θ) ∈ ∆}|. I.e. N is the

degree of non-determinacy of A. We define MA,w := 〈{A, E, T, R}, Γ,Q, δ, (p0, 0)〉
where:

– The ranked alphabet is {A, E, T, R}, where the arities of A and E are N , and
those of T and R are 0.

– Q = (P × {0, . . . , |w|}) ∪ {q⊤, q⊥} ∪ (P × {0, . . . , |w|} × Opn)
– δ : Q× Γ −→ (Q× Opn + {(g; q̃) : g ∈ {A, E, T, R}, qi ∈ Q}) is given by:

(1) δ((p, |w|), γ) = (T; ǫ), if p ∈ F
(2) δ((p, i), γ) = (A; (p1, j1, θ1), . . . , (pm, jm, θm), q⊤, . . . , q⊤︸ ︷︷ ︸

N−m

)

if λ(p) = A and {(p1, j1, θ1), . . . , (pm, jm, θm)} is:
{(p′, i+ 1, θ) | (p, γ, wi, p

′, θ) ∈ ∆ ∧ i < |w|} ∪ {(p′, i, θ) | (p, γ, ǫ, p′, θ) ∈ ∆}
(3) δ((p, i), γ) = (E; (p1, j1, θ1), . . . , (pm, jm, θm), q⊥, . . . , q⊥)

if λ(p) = E and {(p1, j1, θ1), . . . , (pm, jm, θm)} is:
{(p′, i+ 1, θ) | (p, γ, wi, p

′, θ) ∈ ∆ ∧ i < |w|} ∪ {(p′, i, θ) | (p, γ, ǫ, p′, θ) ∈ ∆}
(4) δ((p, i, θ), γ) = ((p, i), θ)
(5) δ(q⊤, γ) = (T; ǫ)
(6) δ(q⊥, γ) = (R; ǫ)

4 The branch language of t : dom(t) −→ Σ consists of (i) infinite words
(f1, d1)(f2, d2) · · · just if there exists d1 d2 · · · ∈ {1, 2, · · · , m}ω (where m is the max-
imum arity of the Σ-symbols) such that t(d1 · · · di) = fi+1 for every i ≥ 0; and
(ii) finite words (f1, d1) · · · (fn, dn) fn+1 just if there exists d1 · · · dn ∈ {1, · · · , m}∗

such that t(d1 · · · di) = fi+1 for 0 ≤ i ≤ n, and the arity of fn+1 is 0.



Rules (2) and (3) are applied only when rule (1) is inapplicable. MA,w sim-
ulates A over the word w, and constructs a tree representing the computation
of A. A state (p, i) ∈ P × {0, . . . , |w| − 1} simulates A in state p reading the
letter wi. A state (p, i, θ) simulates an intermediate transition state of A, where
θ is the stack operation to be applied. The states q⊤ and q⊥ are for creating
dummy subtrees of nodes labelled with A or E, so that the number of children
of these nodes adds up to N , the arity of A and E. Rule (1) ensures that when
A has read the input word and reached a final state, MA,w stops simulating A
and outputs T. Rule (2) is used to simulate transitions of A in a universal state,
reading the i-th input: MA,w constructs a node labelled A (to record that A was
in a universal state) and spawns threads to simulate all possible transitions of
A. Rule (3) is for simulating A in an existential state. Note that, if A gets stuck
(i.e. if there is no outgoing transition), all children of the E-node are labelled R;
thus failure of the computation can be recognized by the trivial APT given in
the following. Rule (4) is just for intermediate transitions. Note that a transition
of A is simulated by MA,w in two steps: the first for outputting A or E, and the
second for changing the stack.

Now, we construct a trivial APT that accepts the tree generated by MA,w if,
and only if, w is not accepted by A. Let BA be ({q0}, {A, E, T, R}, q0, δ, {q0 7→ 0})
where:

δ(q0, A) =
∨N

i=1(i, q0) δ(q0, E) =
∧N

i=1(i, q0) δ(q0, T) = f δ(q0, R) = t

Intuitively, BA accepts all trees representing a failure computation tree of A. If
the automaton in state q0 reads T (which corresponds to an accepting state of A),
it gets stuck. Upon reading A, the automaton non-deterministically chooses one
of the subtrees, and checks whether the subtree represents a failure computation
of A. On the other hand, upon reading E, the automaton checks that all subtrees
represent failure computation trees of A.

Based on the above intuition, we can prove the following result.

Theorem 4. Let w be a word, and A an order-n APDA. Then w is not accepted
by A if, and only if, the tree generated by MA,w is accepted by BA.

Corollary 1. The model checking of an order-n recursion scheme with respect
to a trivial APT is n-EXPTIME-hard in the size of the recursion scheme.

By modifying the encoding, we can also show that the model checking prob-
lem is n-EXPTIME-hard in the size of APT. The idea is to modify MA,w so that
it generates a tree representing computation of A over not just w but all possible
input words, and let a trivial APT check the part of the tree corresponding to
the input word w. As a result, the trivial APT depends on the input word w,
but the tree-generating PDA does not. See [7] for more details. To our knowl-
edge, the lower-bound (of the complexity of model-checking recursion schemes)
in terms of the size of APT has been unknown even for the entire class of APT.



4 Disjunctive APT and Complexity of Model Checking

A disjunctive APT is an APT whose transition function δ is disjunctive, i.e. δ
maps each state to a positive boolean formula θ that contains only disjunctions
and no conjunctions, as given by the grammar θ ::= t | f | (i, q) | θ ∨ θ.
Disjunctive APT can be used to describe path (or linear-time) properties of
trees.

First we give a logical characterization of disjunctive APT as follows. Call D
the following “disjunctive fragment” of the modal mu-calculus:

φ, ψ ::= Pf ∧ φ | Z | φ ∨ ψ | 〈i〉φ | νZ.φ | µZ.φ

where f ranges over symbols in Σ, and i ranges over {1, · · · , arity(Σ)}.

Proposition 2 (Equi-Expressivity). The logic D and disjunctive APT are
equivalent for defining possibly-infinite ranked trees. I.e. for every closed D-
formula, there is a disjunctive APT that defines the same tree language, and
vice versa.

Remark 1. (i) A disjunctive APT is a non-deterministic parity tree automaton.
(ii) For defining languages of ranked trees, disjunctive APT are a proper subset of
the disjunctive formulas in the sense of Walukiewicz and Janin [9]. For example,
the disjunctive formula (1 → {t})∧(2 → {t}) is not equivalent to any disjunctive
APT.

In the rest of the section, we show that the model checking problem for
order-n recursion schemes is (n− 1)-EXPTIME complete for disjunctive APT.

4.1 Upper Bound

We sketch a proof of the following theorem, based on Kobayashi and Ong’s
type system for recursion schemes [6]. An alternative proof, based on variable
profiles [1], will be given in a forthcoming journal version of this paper [7].

Theorem 5. Let G be an order-n recursion scheme and B a disjunctive APT.
It is decidable in (n − 1)-EXPTIME whether B accepts the value tree [[G]] from
its root.

In a recent paper [6], we constructed an intersection type system equivalent
to the modal mu-calculus model checking of recursion schemes, in the sense that
for every APT, there is a type system such that the tree generated by a recursion
scheme is accepted by the APT if, and only if, the recursion scheme is typable in
the type system. Thus, the model checking problem is reduced to a type checking
problem. The main idea of the type system is to refine the tree type o by the
states and priorities of an APT: the type q describes a tree that is accepted by
the APT with q as the start state. The intersection type (θ1,m1)∧ (θ2,m2) → q,
which refines the type o → o, describes a tree function that takes an argument
which has types θ1 and θ2, and returns a tree of type q.



The type checking algorithm presented in ibid. is n-EXPTIME in the com-
bined size of the order-n recursion scheme and APT (precisely the complexity is
O(r1+⌊m/2⌋expn((a |Q|m)1+ǫ)) for n ≥ 2, where r is the number of rules and a
the largest prioirty of symbols in the scheme, m is the largest priority, |Q| is the
number of states) The bottleneck of the algorithm is the number of (atomic)
intersection types, where the set T (κ) of atomic types refining a simple type κ is
inductively defined by: T (o) = Q and T (κ1 → κ2) = {

∧
S → θ | θ ∈ T (κ2), S ⊆

T (κ1) × P}. where Q and P are the sets of states and priorities respectively.
According to the syntax of atomic types above, the number of atomic types

refining a simple type of order-n is n-exponential in general. In the case of
disjunctive APT, however, for each type of the form o → · · · → o → o, we need
to consider only atomic types of the form

∧
S1 → · · · →

∧
Sk → q, where at

most one of the Si’s is a singleton set and the other Sj ’s are empty. Intuitively,
this is because a run-tree of a disjunctive APT consists of a single path, so that
the run-tree visits only one of the arguments, at most once. In fact, we can show
that, if a recursion scheme is typable in the type system for a disjunctive APT,
the recursion scheme is typable in a restricted type system in which order-1 types
are constrained as described above: this follows from the proof of completeness of
the type system [6], along with the property of the accepting run-tree mentioned
above. Thus, the number of atomic types is k × |Q| × |P | × |Q| (whereas for
general APT, it is exponential). Therefore, the number of atomic types possibly
assigned to a symbol of order n is (n − 1)-exponential. By running the same
type checking algorithm as ibid. (but with order-1 types constrained as above),
order-n recursion schemes can be type-checked (i.e. model-checked) in (n − 1)-
EXPTIME.

4.2 Lower Bound

We show the lower bound by a reduction of the emptiness problem of the finite-
word language accepted by an order-n (deterministic) PDA (which is (n − 1)-
EXPTIME complete [5]). From an order-n PDA A, we can construct an order-n
tree-generating PDA MA, which simulates all possible input and ǫ-transitions
of A, and outputs e only when A reaches a final state: See the long version [7].
By a result of Knapik et al. [8], we can construct an equi-expressive order-n
safe recursion scheme G. By the construction, the finite word-language accepted
by A is non-empty if, and only if, the value tree of G has a node labelled e.
Since the latter property can be expressed by a disjunctive APT, the problem
of model-checking recursion schemes for disjunctive APT is (n − 1)-EXPTIME
hard. The problem is (n− 1)-EXPTIME hard also in the size of the disjunctive
APT: See [7] for more details.

4.3 Path Properties

The path language of a Σ-labelled tree t is the image of the map F , which acts
on the elements of the branch language of t by “forgetting the argument posi-
tions” i.e. F : (f1, d1) (f2, d2) · · · 7→ f1 f2 · · · and F : (f1, d1) · · · (fn, dn) fn+1 7→



f1 · · · fn f
ω
n+1. For example, the path language of the tree f a (f a b) is

{f aω, f f aω, f f bω}. Let G be a recursion scheme. We write W (G) for the path
language of [[G]]. Thus elements of W (G) are infinite words over the alphabet Σ
which is now considered unranked (i.e. arities of the symbols are forgotten).

Lemma 1. Let G be an order-n recursion scheme. The following problems are
(n− 1)-EXPTIME complete.

(i) W (G)∩L(C)
?
= ∅, where C is a non-deterministic parity word automaton.

(ii) W (G)
?
⊆ L(C), where C is a deterministic parity word automaton.

The decision problems Reachability (i.e. whether [[G]] has a node labelled
by a given symbol e) and Finiteness (i.e. whether [[G]] is finite) are instances
of Problem (i) of Lemma 1; hence they are in (n− 1)-EXPTIME (the former is
(n− 1)-EXPTIME complete, by the proof of Section 4.2).

5 Application to Resource Usage Verification

Now we apply the result of the previous section to show that the resource usage
verification problem is (n− 1)-EXPTIME complete. The aim of resource usage
verification is to check whether a program accesses each resource according to
the resource specification. For example, consider the following program.

let rec g x = if b then close(x) else read(x); g(x) in

let r = open_in "foo" in g(r)

It opens a read-only file “foo”, reads and closes it. For this program, the goal of
the verification is to statically check that the file is eventually closed before the
program terminates, and after it is closed, it is never read from or written to.

The resource usage verification problem was formalized by Igarashi and
Kobayashi [3]. Kobayashi [2] recently showed that the problem is decidable
for the simply-typed λ-calculus with recursion, generated from a base type of
booleans, and augmented by resource creation/access primitives, by reduction
to the model checking problem for recursion schemes.

Kobayashi [2] considered a language in CPS (continuation passing style),
with only top-level function definitions of the form F x̃ = e, where e is given by:

e ::= ⋆ | x | F | e1e2 | If∗ e1 e2 | NewL e | Acca e1 e2

The term ⋆ is the unit value. The term If∗ e1 e2 is a non-deterministic branch
between e1 and e2. The term NewL e creates a fresh resource that should be
used according to L, and passes it to e (thus, e is a function that takes a resource
as an argument). Here, L is a regular language. The term Acca e1 e2 accesses
the resource e1 (where a is the name of the access primitive), and then executes
e2. For example, in the above program, the last line is expressed by Newr∗c G,
and close(x) is expressed by Accc x k (where k is the continuation).

The language is simply typed; the two base types are unit for unit values
and R for resources. The body of each definition must have type unit (in other



words, resources cannot be used as return values; in that sense, programs are in
CPS). The constants If∗, NewL, and Acca are given the following types.

If∗:unit → unit → unit,NewL:(R → unit) → unit,Acca:R → unit → unit

A program can be transformed to a recursion scheme that generates a tree
representing all possible (resource-wise) access sequences of the program [2].
We just need to replace each function definition F x̃ = e with the rewrite rule
F x̃→ e, and add the following rules

If∗ x y → brx y Acca x k → x a k ⋆→ t(⋆)

NewLk → br (νL(kI)) (kK) I x k → x k K xk → k

Here, br is a terminal for representing non-deterministic choice. In the rule for
NewL, a fresh resource is instantiated to either I or K. This is a trick used to
extract resource-wise access sequences, by tracing or ignoring the new resource
in a non-deterministic manner: see Kobayashi’s paper [2] for more explanation.
The above transformation preserves types, except that unit and R are replaced
by o and (o → o) → o → o respectively.

Along with the transformation above, a tree automaton can be constructed
that accepts the trees containing an invalid access sequence. The automaton just
needs to focus on paths that contain a single occurrence of NewL, and check
whether, for every sequence s below NewL, all prefixes of s are elements of L ·t∗

(with br ignored). Thus, the automaton belongs to the class of disjunctive APT.
(On the other hand, an automaton that accepts the complement, i.e. the set of
trees containing only valid sequences, belongs to the class of trivial APT.)

We now show that the resource usage verification is (n− 1)-EXPTIME com-
plete, where n is the largest order of types in the source program. The base types
unit and R have orders 0 and 1 respectively. We assume that each resource spec-
ification in the program is given as a deterministic finite state automaton. The
lower-bound can be shown by reduction of the reachability problem of recursion
schemes to the resource usage verification problem: we just transform each rule
F x̃ → t into the function definition F x̃ = t, and replace the terminal e with
New{ǫ}Fail, where Fail is defined by Fail x = Accfail x ⋆. Since resource prim-
itives occur only in the transformation of e, the order of the resulting resource
usage program is the maximum of 3 and the order of the recursion scheme. Thus,
the resource usage verification is (n− 1)-EXPTIME hard for n ≥ 3 (note that 3
is the lowest order of a closed program that creates a resource, since NewL has
order 3).

Showing the upper-bound is a little tricky: since the resource type R of
order 1 is transformed into the type (o → o) → o → o of order 2, a source
program of order-n may be transformed into a recursion scheme of order n+ 1.
For the image of the resource type, however, it is sufficient to consider only
two atomic types σI and σK , where σI =

∧
q1,q2

((q1 → q2) → q1 → q2) and
σK =

∧
q((

∧
∅) → q → q). Here, we have omitted priorities. Thus, although,

for example, a type R → · · · → R → unit of order 2 is transformed into an



order-3 type, the number of atomic types that should be considered is single-
exponential. Since the APT for recognizing the value tree is disjunctive, we can
apply the argument in Section 4 to conclude that the recursion scheme can be
model-checked in (n− 1)-EXPTIME.
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