
Two-Level Game Semantics, Intersection Types,
and Recursion Schemes

C.-H. Luke Ong1 and Takeshi Tsukada2,3

1 Department of Computer Science, University of Oxford
2 Graduate School of Information Science, Tohoku University

3 JSPS Research Fellow

Abstract. We introduce a new cartesian closed category of two-level arenas and
innocent strategies to model intersection types that are refinements of simple
types. Intuitively a property (respectively computation) on the upper level refines
that on the lower level. We prove Subject Expansion—any lower-level computa-
tion is closely and canonically tracked by the upper-level computation that lies
over it—which is a measure of the robustness of the two-level semantics. The
game semantics of the type system is fully complete: every winning strategy is the
denotation of some derivation. To demonstrate the relevance of the game model,
we use it to construct new semantic proofs of non-trivial algorithmic results in
higher-order model checking.

1 Introduction

The recent development of higher-order model checking—the model checking of trees
generated by higher-order recursion schemes (HORS) against (alternating parity) tree
automata—has benefitted much from ideas and methods in semantics. Ong’s proof [1]
of the decidability of the monadic second-order (MSO) theories of trees generated by
HORS was based on game semantics [2]. Using HORS as an intermediate model of
higher-order computation, Kobayashi [3] showed that safety properties of functional
programs can be verified by reduction to the model checking of HORS against triv-
ial automata (i.e. Büchi tree automata with a trivial acceptance condition). His model
checking algorithm is based on an intersection-type-theoretic characterisation of the
trivial automata acceptance problem of trees generated by HORS.4 This type-theoretic
approach was subsequently refined and extended to characterise alternating parity tree
automata [5], thus yielding a new proof of Ong’s MSO decidability result. (Several
other proofs of the result are now known. Hague et al. [6] developed a new hierarchy of
collapsible pushdown automata and proved that they are equi-expressive with HORS
for generating trees. Salvati and Walukiewicz’s proof [7] uses a Krivine machine for-
mulation of the operational semantics of HORS.)

This paper was motivated by a desire to understand the connexions between the
game-semantic proof [1] and the type-based proof [3,5] of the MSO decidability result.

4 Independently, Salvati [4] has proposed essentially the same intersection type system for the
simply-typed λ-calculus without recursion from a different perspective.

2 C.-H. Luke Ong and Takeshi Tsukada

As a first step in clarifying their relationship, we construct a two-level game seman-
tics to model intersection types that are refinements of simple types. Given a set Q of
colours (modelling the states of an automaton), we introduce a cartesian closed category
whose objects are triples (A,U,K) called two-level arenas, where A is a Q-coloured
arena (modelling intersection types), K is a standard arena (modelling simple types),
and U is a colour-forgetting function from A-moves to K-moves which preserves the
justification relation. A map of the category from (A,U,K) to (A′, U ′,K ′) is a pair
of innocent and colour-reflecting strategies, σ : A −→ A′ and σ̄ : K −→ K ′, such
that the induced colour-forgetting function maps plays of σ to plays of σ̄. This cap-
tures the intuition that the upper-level computation represented by σ refines (or is more
constrained than) the lower-level computation represented by σ̄, a semantic framework
reminiscent of two-level denotational semantics in abstract interpretation as studied by
Nielson [8]. Given triplesA1 = (A1, U1,K) andA2 = (A2, U2,K) that have the same
base arena K, their intersection A1 ∧ A2 is (A1 × A2, [U1, U2],K). Building on the
two-level game semantics, we make the following contributions.

(i) How good is the two-level game semantics? Our answer is Subject Expansion
(Theorem 3), which says intuitively that any computation (reduction) on the lower level
can be closely and canonically tracked by the higher-level computation that lies over
it. Subject Expansion clarifies the relationship between the two levels; we think it is an
important measure of the robustness (and, as we shall see, the reason for the usefulness)
of the game semantics.

(ii) We put the two-level game model to use by modelling Kobayashi’s intersection
type system [3]. Derivations of intersection-type judgements, which we represent by the
terms of a new proof calculus, are interpreted by winning strategies i.e. compact and
total (in addition to innocent and colour-reflecting). We prove that the interpretation is
fully complete (Theorem 5): every winning strategy is the denotation of some derivation.

(iii) Finally, to demonstrate the usefulness and relevance of the two-level game se-
mantics, we apply it to construct new semantic proofs of three non-trivial algorithmic
results in higher-order model checking: (a) characterisation of trivial automata accep-
tance (existence of an accepting run-tree) by a notion of typability [3], (b) minimality
of the type environment induced by traversal tree [1], and (c) completeness of GTRecS,
a game-semantics based practical algorithm for model checking HORS against trivial
automata [9].

Outline We introduce (coloured) arenas, innocent strategies and related game-semantic
notions in Section 3. In Section 4 we present two-level games, culminating in the Sub-
ject Expansion Theorem. In Section 5 we construct a fully complete two-level game
model of Kobayashi’s intersection type system. Finally, Section 6 applies the game
model to reason about algorithmic problems in higher-order model checking.

2 Two Structures of Intersection Type System

This section presents the intuitions behind the two levels. We explain that two differ-
ent structures are naturally extracted from a derivation in an intersection type system.
Here we use term representation for explanation. Two-level game semantics will be
developed in the following sections based on this idea.

Two-Level Game Semantics, Intersection Types, and Recursion Schemes 3

g : τ

g : p1 ∧ p3 → q1

x : σ

x : p1

x : σ

x : p3
x : p1 ∧ p3

g x : q1

g : τ

g : p2 → q2

x : σ

x : p2
g x : q2

g x : q1 ∧ q2

Fig. 1. A type derivation of the intersection type system. Here type environment Γ =
{g : ((p1 ∧ p3)→ q1) ∧ (p2 → q2), x : p1 ∧ p2 ∧ p3} is omitted.

g : τ ′

p1(g) : p1 × p3 → q1

x : σ′

p1(x) : p1

x : σ

p3(x) : p3
〈p1(x), p3(x)〉 : p1 × p3

p1(g) 〈p1(x), p3(x)〉 : q1

g : τ

p2(g) : p2 → q2

x : σ

p2(x) : p2
p2(g) p2(x) : q2

〈p1(g) 〈p1(x), p3(x)〉, p2(g) p2(x)〉 : q1 × q2

Fig. 2. A type derivation of the product type system, which corresponds to Fig. 1. Here
Γ ′ = {g : ((p1 × p3)→ q1)× (p2 → q2), x : p1 × p2 × p3} is omitted.

The intersection type constructor ∧ of an intersection type system is characterised
by the following typing rules.5

Γ ` t : τ1 Γ ` t : τ2
Γ ` t : τ1 ∧ τ2

Γ ` t : τ1 ∧ τ2
Γ ` t : τ1

Γ ` t : τ1 ∧ τ2
Γ ` t : τ2

At first glance, they resemble the rules for products. Let 〈t1, t2〉 be a pair of t1 and
t2 and pi be the projection to the ith element (for i ∈ {1, 2}).

Γ ` t1 : τ1 Γ ` t2 : τ2
Γ ` 〈t1, t2〉 : τ1 × τ2

Γ ` t : τ1 × τ2
Γ ` p1(t) : τ1

Γ ` t : τ1 × τ2
Γ ` p2(t) : τ2

When we ignore terms and replace× by ∧, the rules in the two groups coincide. In fact,
they are so similar that a derivation of the intersection type system can be transformed
to a derivation of the product type system by replacing ∧ by × and adjusting terms to
the rules for product. See Figures 1 and 2 for example. This is the first structure behind
an intersection-type derivation, which we call the upper-level structure.

However the upper-level structure alone does not capture all features of the inter-
section type system: specifically some derivations of the product type system have no
corresponding derivation in the intersection type system. For example, while the type
judgement x : p1, y : p2 ` 〈x, y〉 : p1 × p2 is derivable, no term inhabits the judgement
x : p1, y : p2 ` ? : p1 ∧ p2.

Terms in the rules explain this gap. We call them lower-level structures. To construct
a term of type τ1 × τ2, it suffices to find any two terms t1 of type τ1 and t2 of type τ2.
However to construct a term of type τ1 ∧ τ2, we need to find a term t that has both
type τ1 and type τ2. Thus a product type derivation has a corresponding intersection

5 In the type system in Section 5, these rules are no longer to be independent rules, but a similar
argument stands.

4 C.-H. Luke Ong and Takeshi Tsukada

type derivation only if for all pairs 〈t1, t2〉 appearing at the derivation, the respective
structures of t1 and t2 are “coherent”.

For example, let us examine the derivation in Figure 2, which contains two pair
constructors. One appears at 〈p1(x), p3(x)〉 : p1×p3. Here the left argument p1(x) : p1

and the right argument p3(x) : p3 are “coherent” in the sense that they are the same
except for details such as types and indexes of projections. In other words, by forgetting
such details, p1(x) : p1 and p3(x) : p3 become the same term x. The other pair appears
at the root and the “forgetful” map maps both the left and right arguments to g x.

This interpretation decomposes an intersection type derivation into three compo-
nents: a derivation in the simple type system with product (the upper-level structure),
a term (the lower-level structure) and a “forgetful” map from the upper-level structure
to the lower-level structure. Since recursion schemes are simply typed, we can assume
a term to also be simply typed for our purpose. Hence the resulting two-level structure
consists of two derivations in the simple type system with a map on nodes from one to
the other.

3 Coloured Arena Games

This section defines coloured arenas, innocent strategies and related notions. We first
introduce some basic notions in game semastics [2]. For sets A and B, we write A+B
for the disjoint union and A×B for the Cartesian product.

Definition 1 (Coloured Arena). For a set Q of symbols, a Q-coloured arena A is a
quadruple (MA,`A, λA, cA), where

– MA is a set of moves,
– `A ⊆MA + (MA ×MA) is a justification relation,
– λA : MA → {P,O}, and
– cA : MA → Q is a colouring.

We write `A m for m ∈ (`A) and m `A m′ for (m,m′) ∈ (`A). The justification
relation must satisfy the following conditions:

– For each m ∈MA, either `A m or m′ `A m for a unique move m′ ∈MA.
– If `A m, then λA(m) = O. If m `A m′, then λA(m) 6= λ(m′).

Fer a Q-coloured arena A, the set InitA ⊆ MA of initial moves of A is {m ∈
MA | `A m}. A move m ∈ MA is called an O-move if λA(m) = O and a P-move if
λA(m) = P .

A justified sequence of a Q-coloured arena A is a sequence of moves such that
each element except the first is equipped with a pointer to some previous move. We
call the pointer a justification pointer. For a justified sequence s and moves m and
m′ in s, we say m′ is hereditary justified by m if there exists a sequence of moves
m0,m1, . . . ,mn in s that starting from m and ending with m′ such that mi is justified
by mi−1 (1 ≤ i ≤ n).

A well-formed sequence over A is a justified sequence s = m0 ·m1 · · · · ·mn that
has the following properties:

Two-Level Game Semantics, Intersection Types, and Recursion Schemes 5

Well-openness `A m0,
Alternation For all i < n, λA(mi) 6= λA(mi+1), and
Justification If mi points mj (j < i), then mj `A mi.

For well-formed sequences s and s′, we say s is a prefix of s′ if the underlying sequence
of moves of s is a prefix of that of s′ and their justification pointers coincide.

For a well-formed sequence s, its P-view psq and O-view xsy are defined induc-
tively as follows:

pεq = ε

pmq = m

ps ·mq = psq ·m (if λ(m) = P)
ps ·m · s′ ·m′q = psq ·m ·m′ (if λ(m) = O and m′ is justified by m)

xεy = ε

xmy = m

xs ·my = xsy ·m (if λ(m) = O)
xs ·m · s′ ·m′y = xsy ·m ·m′ (if λ(m) = P and m′ is justified by m)

A play of an arena A is a well-formed sequence s satisfying the following condi-
tions:

Visibility For every prefix s′ ·m � s ending with a P-move (resp. an O-move that is
not initial), m is justified by a move in ps′q (resp. xs′y).

A P-strategy (or a strategy) σ of an arena A is a prefix-closed subset of plays of A
satisfying the following conditions:

Determinacy If s ·m ∈ σ and s ·m′ ∈ σ for P-moves m and m′ then s ·m = s ·m′.
Contingent Completeness If s ∈ σ, m is an O-move and s ·m is a justified sequence,

then s ·m ∈ σ.
Colour Reflecting Only the opponent can change the colour, i.e. for every P-movemP

1

and O-move mO
2 , if s ·mO

1 ·mP
2 ∈ σ, then c(mO

1) = c(mP
2).

For arenas A1, A2 and A3, an interaction sequence is a play of (A1 ⇒ A2)⇒ A3.
We write Int(A1, A2, A3) for the set of all interaction sequences. For an interaction
sequence s ∈ Int(A1, A2, A3), a component of s is either (A2, A3) or (A1, A2, b)
where b is an initial move occurring in s. The projection s �X of an interaction sequence
s into a component X is defined by:

– s �(A2,A3) is a subsequence of s consisting of all A2 moves and A3 moves in s.
– s �(A1,A2,b) is a subsequence of s consisting of all moves that are hereditary justi-

fied by b.

The projection into (A1, A3) is defined by a similar way: s �(A1,A3) is a subsequence
of s consisting of all A1 moves and A3 moves, in which initial A1 moves are justi-
fied by a (unique) initial A3 move occurring in s. For an interaction sequence s ∈

6 C.-H. Luke Ong and Takeshi Tsukada

Int(A1, A2, A3), s �(A2,A3) is a play of A2 ⇒ A3, s �(A1,A2,b) is of A1 ⇒ A2 (for
every initial A2 move b occurring in s) and s �(A1,A3) is of A1 ⇒ A3.

For strategies (or just sets of plays) σ1 : A1 ⇒ A2 and σ2 : A2 ⇒ A3, the set
Int(σ1, σ2) ⊆ Int(A1, A2, A3) of interaction sequences that are consistent with σ1

and σ2 is give by:

Int(σ1, σ2) = {s ∈ Int(A1, A2, A3) | s �(A2,A3) ∈ σ2 and
for every initial A2 move b, s �(A1,A2,b) ∈ σ1}.

The composition (σ1;σ2) : A1 ⇒ A3 is defined as {s �(A1,A3) | s ∈ Int(σ1, σ2)}.
For each s ∈ (σ1;σ2), the uncovering of s is the minimum interaction sequence u ∈
Int(σ1, σ2) (with respect to the prefix ordering) such that s = u �(A1,A3).6

A strategy σ is innocent if for every pair of plays s · m, s′ · m′ ∈ σ ending with
P-moves m and m′, psq = ps′q implies ps ·mq = ps′ ·m′q. For an innocent strategy
σ of A, the view-function fσ of σ is the partial function on P-views of A, which maps a
P-view p ∈ σ that ends with an O-move to a unique P-view p ·m ∈ σ.

We say an innocent strategy σ is winning just if the following holds:

Compact The domain dom(fσ) of the view function of σ is a finite set.
Total If s ·m ∈ σ for an O-move m, then s ·m ·m′ ∈ σ for some P-move m′.

We define three constructions of arenas: a binary product, an indexed product and a
function space.

Product For Q-coloured arenas A and B, we define A×B by:

– MA×B = MA +MB ,
– `A×B m ⇐⇒ `A m or `B m,
– m `A×B m′ ⇐⇒ m `A m′ or m `B m′,

– λA×B(m) =

{
λA(m) (if m ∈MA)
λB(m) (if m ∈MB),

– cA×B(m) =

{
cA(m) (if m ∈MA)
cB(m) (if m ∈MB).

For an indexed set {Ai}i∈I of Q-coloured arenas, their product
∏
i∈I Ai is defined

similarly.

Function Space For Q-coloured arenas A and B, we define A⇒ B by:

– MA⇒B = MA × InitB +MB ,
– `A⇒B m ⇐⇒ `B m,
– m `A⇒B m′ ⇐⇒
• m `B m′, or
• `B m and m′ = (m′A,m) and `A mA, or
• m = (mA,mB) and m′ = (m′A,mB) and mA `A m′A,

6 The definition here differs from the one in [2]: in [2], the uncovering is the maximum interac-
tion sequence.

Two-Level Game Semantics, Intersection Types, and Recursion Schemes 7

– λA⇒B(m) =

{
λA(mA) (if m = (mA,mB) ∈MA × InitB)
λB(m) (if m ∈MB),

– cA×B(m) =

{
cA(m) (if m = (mA,mB) ∈MA × InitB)
cB(m) (if m ∈MB).

We define a category whose objects are Q-coloured arenas; maps from A to B are
innocent strategies of the arena A⇒ B. The category is cartesian closed, and is thus a
model of the simply-typed lambda calculus with (indexed) products.

Theorem 1. For every set Q, the category of Q-coloured arenas and innocent strate-
gies is certesian closed with the product A×B and function space A⇒ B.

4 Two-level Game Semantics

4.1 Category of Two-Level Arenas and Innocent Strategies

Definition 2 (Two-Level Arenas). An two-level arena based on Q is a triple A =
(A,U,K), where A is a Q-colored arena, K is a {o}-colored arena (i.e. an ordinary
arena, which we call the base arena ofA) andU is a map fromMA toMK that satisfies:
(i) λA(m) = λK(U(m)) (ii) If m `A m′ then U(m) `K U(m′); and if `A m then
`K U(m).

For a justified sequence s = m1 ·m2 · · ·mk, we write U(s) to mean the justified
sequence U(m1) · U(m2) · · ·U(mk) whose justification pointers are induced by those
of s.

Lemma 1. LetA = (A,U,K) be a two-level arena and s be a play of A. Then U(s) is
a play of K.

Proof. Easy. ut

For a strategy σ of A, U(σ) := {U(s) | s ∈ σ} is a set of plays of K, which is
not necessarily a strategy, since U(s) may not satisfy determinacy. (Recall that some
upper-level structure has no corresponding lower-level structure.)

Definition 3 (Strategy of Two-Level Arena Games). A strategy of a two-level arena
(A,U,K) is a pair (σ, σ̄) of strategies of A and K respectively such that U(σ) ⊆ σ̄.

Lemma 2. Let Ai = (Ai, Ui,Ki) be a two-level arena for i = 1, 2, 3. Then for every
interaction sequence s of (A1, A2, A3)

(i) U(psq) = pU(s)q
(ii) for any component C of s, U(s �C) = U(s) �U(C) (here subscripts of U should

be chosen appropriately).

In the above, the forgetful function U (whose definition we omit) has a natural extension
to a forgetful function on components.

Proof. Because U does not change the structure of justification pointers. ut

8 C.-H. Luke Ong and Takeshi Tsukada

Definition 4 (Innocent Strategies). A strategy (σ, σ̄) of A = (A,U,K) is innocent
just if σ and σ̄ are innocent as strategies of A and K respectively.

Let Ai = (Ai, Ui,Ki) where i = 1, 2 be two-level arenas. We define product,
function space and intersection constructions as follows.

Product A1 ×A2 := (A1 ×A2, U,K1 ×K2), where U : (MA1
+MA2

)→ (MK1
+

MK2
) is defined as U1 + U2.

Function Space A1 ⇒ A2 := (A1 ⇒ A2, U,K1 ⇒ K2), where U : ((MA1
×

InitA2
) +MA2

)→ ((MK1
× InitK2

) +MK2
) is defined as U1 × U2 + U2.

We can now define a category whose objects are two-level arenas, and maps A1 →
A2 are innocent strategies of A1 ⇒ A2. The composite of (σ1, σ̄1) : A1 ⇒ A2 and
(σ2, σ̄2) : A2 ⇒ A3 is defined as (σ1;σ2, σ̄1; σ̄2) : A1 ⇒ A3.

We first show that the composition of strategies is well-defined (Lemma 4).

Lemma 3. Let Ai = (Ai, Ui,Ki) be a two-level arena for i = 1, 2, 3, σ1 : A1 ⇒
A2 and σ2 : A2 ⇒ A3 be strategies of coloured arenas. Then UA1⇒A3

(σ1;σ2) ⊆
UA1⇒A2

(σ1);UA2⇒A3
(σ2).

Proof. Let s̄ ∈ U(σ1;σ2). By definition, we have s ∈ (σ1;σ2) such that U(s) = s̄. Let
u ∈ Int(σ1, σ2) be the uncovering of s, i.e. an interaction sequence that satisfies the
following properties.

(i) u �(A1,A3) = s.
(ii) u �(A2,A3) ∈ σ2.

(iii) For any initial A2 move b in u, uA �(A1,A2,b) ∈ σ1.

LetU(A1,A2,A3) be the forgetful map on interaction sequences and ū = U(A1,A2,A3)(u).
The following argument shows that ū ∈ Int(U(σ1), U(σ2)) (here we use Lemma 2.
Subscripts of U should be chosen appropriately).

(i) ū �(K1,K3) = s̄, since

ū �(K1,K3) = U(u) �U((A1,A3)) = U(u �(A1,A3)) = U(s) = s̄.

(ii) ū �(K2,K3) ∈ Uσ2, since

ū �(K2,K3) = U(u) �U((A2,A3)) = U(u �(A2,A3)) ∈ U(σ2).

(iii) Let (K1,K2, b̄) be a component of ū. There is a component (A1, A2, b) such that
U((A1, A2, b)) = (K1,K2, b̄). Then

ū �(K1,K2,b̄) = U(u) �U((A1,A2,b)) = U(u �(A1,A2,b)) ∈ U(σ1).

Therefore s̄ = ū �(K1,K3) ∈ (U(σ1);U(σ2)). ut

Lemma 4. LetAi = (Ai, Ui,Ki) be a two-level arena for i = 1, 2, 3, (σ1, σ̄1) : A1 ⇒
A2 and (σ2, σ̄2) : A2 ⇒ A3 be strategies. Then (σ1, σ̄1); (σ2, σ̄2) = (σ1;σ2, σ̄1; σ̄2)
is a strategy of A1 ⇒ A3.

Two-Level Game Semantics, Intersection Types, and Recursion Schemes 9

Proof. Obviously, σ1;σ2 is a strategy of A1 ⇒ A3 and σ̄1; σ̄2 be a strategy of K1 ⇒
K3. So it suffices to show that UA1⇒A3

(σ1;σ2) ⊆ (σ̄1; σ̄2). Since (σ1, σ̄1) is a strategy
ofA1 ⇒ A2, we have UA1⇒A2(σ1) ⊆ σ̄1. Similarly, UA2⇒A3(σ2) ⊆ σ̄2. By Lemma 3
and monotonicity of composition, we have

UA1⇒A3
(σ1;σ2) ⊆ (UA1⇒A2

(σ1);UA2⇒A3
(σ2)) ⊆ (σ̄1; σ̄2)

as required. ut

It is easy to see that innocence is preserved by composition, since innocence and
composition are defined component-wise. Therefore composition of the category of
two-level arenas and innocent strategies is well-defined.

Theorem 2. The category of two-level arenas and innocent strategies is cartesian closed.

Proof. Trivial. ut

If two two-level arenas share the same base arena, then we can construct their inter-
section.

Definition 5 (Intersection of Two-Level Arenas). Let Ai = (Ai, Ui,K) for i = 1, 2
be two-level arenas that share the same base arena K. Their intersection A1 ∧ A2 is
defined as (A1 ×A2, U,K), where U : (MA1

+MA2
)→MK is defined as [U1, U2].

For every base arena K, we define >K as the two-level arena (>, ∅,K), where >
is the empty arena, which is the terminal object in the category of Q-coloured arenas.

For a Q-coloured arena A, we write !A for the unique strategy of A ⇒ >. For a
two-level arena A = (A,U,K), we define !A : A ⇒ >K as (!A, idK).

Lemma 5. Let A1 = (A1, U1,K) and A2 = (A2, U2,K) be two-level arenas that
share the same base arena K. The arena A1 ∧ A2 is the pullback of A1 and A2, i.e.
there are innocent strategies p1 and p2 of two-level arenas that make the following
diagram a pullback square.

A1 ∧ A2
p1 //

p2

��

A1

!A1

��
A2

!A2

// >K

Proof. Taking p1 = (π1, idK) and p2 = (π2, idK). ut

4.2 Subject Expansion

Theorem 3 (Subject Expansion). Let Ai = (Ai, Ui,Ki) be a two-level arena for
i = 1, 2 and K be a base arena. If

A1
(σ,σ̄) // A2 K1

σ̄ //

	
σ̄1 %%

K2

K
σ̄2

99

(in two-level arenas) (in base arenas)

10 C.-H. Luke Ong and Takeshi Tsukada

then there are a two-level arena A whose underlying kind arena is K and strategies
σ1 : A1 → A and σ2 : A→ A2 such that

A1
(σ,σ̄) //

	
(σ1,σ̄1) %%

A2

A
(σ2,σ̄2)

99

Moreover, there is a canonical triple (σ1,A, σ2): for every triple (σ′1,A′, σ′2) that sat-
isfies σ′1;σ′2 = σ, there exists a mapping ϕ from moves of A to moves of A′ such that
[idA1 , ϕ](σ1) ⊆ σ′1 and [ϕ, idA2](σ2) ⊆ σ′2.

The key observation of the proof is that innocent strategies can (mostly) be re-
constructed from their interaction sequences. Let σ1 and σ2 be innocent strategies of
A ⇒ B and B ⇒ C. Observe that since σ2 is innocent, it is determined by the set of
P-views in σ2. Using Int(σ1, σ2) we define a set of P-views by ϕ′2 = {ps �B⇒Cq |
s ∈ Int(σ1, σ2)}. Then ϕ′2 can be regarded as a view function, which determines an
innocent strategy σ′2. Similarly, we can construct a view function ϕ′1 and an innocent
strategy σ′1. Then the resulting strategies σ′1 and σ′2 are respective under-approximations
of σ1 and σ2 i.e. σ′1 ⊆ σ1 and σ′2 ⊆ σ2 and σ′1;σ′2 = σ1;σ2.

Now the goal is to construct “interaction sequences” of σ1 and σ2. There are two
conditions that the set Int(σ1, σ2) of all interaction sequences must satisfy.

– u ∈ Int(σ1, σ2) implies U(u) ∈ Int(σ̄1, σ̄2).
– u ∈ Int(σ1, σ2) implies u �A1⇒A2

∈ σ.

These requirements give basic patterns of interaction sequences. Let s ∈ σ and ū ∈
Int(σ̄1, σ̄2) and ū = m̄1 · m̄2 · · · m̄k, such that U(s) = ū �K1⇒K2

. Then a justified
sequence of pairs of moves of base arenas and Q-coloured arenas[

m̄1

m1

]
·
[
m̄2

m2

]
. . .

[
m̄k

mk

]
is called annotated interaction sequences generated by s and u if (i) m̄i ∈ K1∪K2 im-
plies U(mi) = m̄i, (ii) (m1 ·m2 . . .mk) �A1⇒A2

= s, (iii) m̄i ∈ K implies mi = ?.
An interaction sequence over σ1 and σ2 can be constructed by replacing ? with appro-
priate moves.

Example 1. Let σ̄1 and σ̄2 be strategies defined by

σ̄1 = [[c : o1, a : o2 → o3 ` (λx.a(a(x)), c) : (o4 → o5)× o6]]

σ̄2 = [[f : o4 → o5, x : o6 ` f(f(x)) : o7]],

where [[·]] is the standard interpretation of the simply-typed lambda calculus. Their com-
position is equivalent to

[[c : o1, a : o2 → o3 ` f(f(x))[(λx.a(a(x)))/f, c/x] : o7]]

= [[c : o1, a : o2 → o3 ` a(a(a(a(c)))) : o7]],

Two-Level Game Semantics, Intersection Types, and Recursion Schemes 11

which have a derivation of a judgement

[[c : qP0 , a : (qO3 → qP4) ∧ (qO2 → qP3) ∧ (qO1 → qP2) ∧ (qO0 → qP1) ` a(a(a(a(c)))) : qO4]].

(Here o1 and o2 are different occurrences of the same kind, q1 and q2 are different types
and qP1 and qO1 are different occurrences of the same type q1.) Let σ be the strategy
corresponding to the derivation. Then σ contains a play

s = qO4 · qP4 · qO3 · qP3 · qO2 · qP2 · qO1 · qP1 · qO0 · qP0

that is mapped by U to U(s) = s̄ = o7 · o3 · o2 · o3 · o2 · o3 · o2 · o3 · o2 · o1; and
Int(σ̄1, σ̄2) contains ū = o7 · o5 · o3 · o2 · o3 · o2 · o4 · o5 · o3 · o2 · o3 · o2 · o4 · o6 · o1.
Note that U(s) = ū �K1⇒K2

. The annotated interaction sequence generated by s and ū
is [

o7

qO4

]
·
[
o5

?

]
·
[
o3

qP4

]
·
[
o2

qO3

]
·
[
o3

qP3

]
·
[
o2

qO2

]
·
[
o4

?

]
·
[
o5

?

]
·
[
o3

qP2

]
· · ·
[
o1

qP0

]
.

The set of moves with which ? is replaced should satisfy competing requirements.
Occurrences of ? should be distinguished as much as possible in order to fulfil the
universal property, but distinguishing them too much makes σ1 and σ2 non-innocent
strategies. A coloured arena A = (M,`, λ, c) is defined as follows.

– M = {
(
ū
p

)
| ū ∈ Int(σ̄1, σ̄2), ū ends with K-move, p ∈ σ, ppq = p, U(p) =

ū �K1⇒K2
}

– `
(
ū
p

)
iff the last move of ū is an initial move of K;

(
ū
p

)
`
(
ū′

p′

)
iff (i) p is a prefix

of p′, and (ii) The last move of ū′ is justified by the last move of ū.
– λ(

(
ū
p

)
) = λK(m̄) where m̄ is the last move of ū; and c(

(
ū
p

)
) = cA1⇒A2

(m)
where m is the last move of p.

The two-level arena A is defined as (A,U,K) where U(
(
ū
p

)
) = m̄ (here m̄ is the last

move of ū).

Definitions of σ1 and σ2 For each pair (p, ū) ∈ σ × Int(σ̄1, σ̄2) such that p is a P-
view and U(p) = ū �K1⇒K2 , we construct an interaction sequence of Int(A1,A,A2),
written 〈ū, p〉. Basically, 〈ū, p〉 is generated by replacing ? in the annotated interaction
sequence with appropriate moves of A. 〈ū, p〉 is defined by induction on ū as follows:

〈ū · m̄, p〉 = 〈ū, p〉 ·
(
ū · m̄
p

)
(if m̄ ∈ K)

〈ū · m̄, p ·m〉 = 〈ū, p〉 ·m (if m̄ ∈ K1 ⇒ K2)

where justification pointers are induced from ū · m̄.

Lemma 6. Let p be a P-view of A1 ⇒ A2 and ū ∈ Int(K1,K,K2) be an interaction
sequence and assume that U(p) = ū �K1⇒K2

. Then 〈ū, p〉 ∈ Int(A1,A,A2).

Proof. By induction on the length of ū. ut

12 C.-H. Luke Ong and Takeshi Tsukada

We define I ⊆ Int(A1,A,A2) by

I = {〈ū, p〉 | ū ∈ Int(σ̄1, σ̄2), p ∈ σ, ppq = p, U(p) = u �K1⇒K2} .

Now we define strategies. Let ϕ1 be an view function of an arena A1 ⇒ A deter-
mined by a set of P-views {ps �A1⇒Aq | s ∈ I} and ϕ2 be a view function of an arena
A⇒ A2 determined by {ps �A⇒A2

q | s ∈ I}. The strategy σ1 is induced from ϕ1 and
σ2 from ϕ2.

We show that σ1 and σ2 are well-defined. We need an auxiliary lemma.

Lemma 7. Let p be a P-view of A1 ⇒ A2 and ū ∈ Int(K1,K,K2) be an interaction
sequence and assume that U(p) = ū �K1⇒K2

.

(i) If ū ends with an O-move ofK1 ⇒ K, then 〈ū, p〉 can be determined by p〈ū, p〉 �A1⇒Aq.
(ii) If ū ends with an O-move ofK ⇒ K2, 〈ū, p〉 can be determined by p〈ū, p〉 �A⇒A2q.

Proof. We prove (i). (ii) is shown by a similar way.
If ū ends with a move of A, then the last move contains as much information as the

pair (ū, p). Assume that ū ends with a move of K1. Then there are moves m̄P
1 and m̄O

2

and some justified sequence v̄ such that ū = ū′ · m̄P
1 · v̄ · m̄O

2 , where m̄P
1 justifies m̄O

2 .
Note that K1 ⇒ K2 component of ū is a P-view by the assumption. Thus v̄ contains
no moves in K1 ⇒ K2. Since U(p) = ū �K1⇒K2

= ū′ · m̄P
1 · v̄ · m̄O

2 �K1⇒K2
, there

are some moves mP
1 ,m

O
2 ∈ A1 ⇒ A2 and a P-view p′ of A1 ⇒ A2 such that p =

p′ ·mP
1 ·mO

2 and U(mP
1) = m̄P

1 and U(mO
2) = m̄O

2 . Therefore we have

〈ū, p〉 = 〈ū′, p′〉 ·mP
1 ·mO

2 .

Since mO
2 is an O-move of A1,

p〈ū, p〉q = p〈ū′, p′〉 ·mP
1 ·mO

2 q = p〈ū′, p′〉q ·mP
1 ·mO

2 .

By induction hypothesis, we can compute 〈ū′, p′〉 from p〈ū′, p′〉q. Thus (i) holds. ut

Lemma 8. ϕ1 and ϕ2 are well-defined view functions.

Proof. We prove that ϕ1 is well-defined. Well-definedness of ϕ2 is shown by the same
way.

Let s ∈ ϕ1 be an play ending with an O-move. What we should show are:

(i) s ·m ∈ ϕ1 for some m that has the same colour as the last move of s.
(ii) If s ·m ∈ ϕ1 and s ·m′ ∈ ϕ1, then s ·m = s ·m′.

(i) is easy to show because for every u ∈ I ending with an O-move of A1 ⇒ A, we
have u·m ∈ I for some movem ofA1 ⇒ A. We prove (ii). Assume that s·m ∈ ϕ1 and
s·m′ ∈ ϕ1. By definition of ϕ1, we have u·m, u′·m′ ∈ I such that p(u ·m) �A1⇒Aq =
s ·m and p(u′ ·m′) �A1⇒Aq = s ·m′. Since s ends with an O-move of A1 ⇒ A, by
Lemma 7, s completely determines u and u′. Thus u = u′ and u · m′ ∈ ϕ1. By
determinacy of σ, σ̄1 and σ̄2, we have u ·m = u ·m′ as required. ut

Two-Level Game Semantics, Intersection Types, and Recursion Schemes 13

Thanks to Lemma 8, σ1 and σ2 are well-defined innocent strategies. Trivially,U(σ1) ⊆
σ̄1 and U(σ2) ⊆ σ̄2.

Lemma 9. (σ1;σ2) = σ.

Proof. We first prove that σ ⊆ (σ1;σ2). Since σ is innocent, it suffices to show that
σ1;σ2 contains every P-view p ∈ σ. Let p ∈ σ be a P-view. Then U(p) ∈ σ̄ =
(σ̄1; σ̄2). Thus there is ū ∈ Int(σ̄1, σ̄2) such that U(p) = ū �K1⇒K2 . By definition,
〈ū, p〉 ∈ I . We can prove 〈ū, p〉 ∈ Int(σ1, σ2) by induction on the length of ū. So
p = 〈ū, p〉 �A1⇒A2

∈ (σ1;σ2).
Second we prove that (σ1;σ2) ⊆ σ. It suffices to show that p ∈ σ for every P-

view p ∈ (σ1;σ2). Since p ∈ (σ1;σ2), we have its uncovering u ∈ Int(σ1, σ2) (so
p = u �A1⇒A2). Then by induction on the length of u, we can prove that u �A1⇒A2 ∈ σ.

ut

Thanks to Lemma 9, we have finished to construct an object A and strategies σ1

and σ2, required by Theorem 3.

Canonicity of A Let (σ′1,A′, σ′2) be another triple that satisfies the requirement of
subject expansion except for canonicity. So σ′1 : A1 → A′, σ′2 : A′ → A2, U(σ′i) ⊆ σ̄i
(for i = 1, 2) and σ = (σ′1;σ′2).

What we should do is construction of a function from moves of A to moves of A′.
Let

(
ū
p

)
be a move of A. Note that by definition p ends with an O-move of A1 ⇒ A2.

Let m be the move such that p · m ∈ σ. Since p · m ∈ σ = (σ′1;σ′2), we have the
uncovering of p ·m over σ′1 and σ′2, say u′. Since U(σ′1) ⊆ σ̄1 and U(σ′2) ⊆ σ̄2, we
have U(u′) ∈ (σ̄1; σ̄2). So 〈ū′, p ·m〉 is an postfix of 〈ū, p〉. Thus 〈ū′, p ·m〉 contains
the move

(
ū
p

)
, say, as the kth move. Let m′ be the kth move of u′. We map

(
ū
p

)
to m′.

Let ϕ be the mapping defined below. It is easy to prove that ϕ is well-defined.
[idK1 , ϕ](σ1) ⊆ σ′1 (resp. [ϕ, idK2](σ2) ⊆ σ′2) can be show by induction on the length
of plays in σ1 (resp. σ2).

5 Interpretation of Intersection Types

In this section, we interpret Kobayashi’s intersection type system [3] in the two-level
game model, and show that the interpretation is fully complete i.e. every winning strat-
egy is the denotation of some derivation.

5.1 An Intersection Type System

We consider the standard Church-style simply-typed lambda calculus defined by the
following grammar:

Sorts κ ::= o | κ1 → κ2

Terms t ::= x | λxκ.t | t1t2

We refer to simple types as kinds to avoid confusion with intersection types. Let ∆ be
a kind environment i.e. a set of variable-kind bindings, x : κ. We write ∆ ` t :: κ to

14 C.-H. Luke Ong and Takeshi Tsukada

mean t has kind κ under the environment ∆. Fix a set Q of symbols, ranged over by q.
The set of intersection pre-types is defined by the following grammar where n ≥ 0:

Intersection Pre-Types τ, σ ::= q | τ → σ |
∧
i∈I

τi

The well-kindedness relation τ :: κ is defined by the following rules.

q :: o

τi :: κ (for all i ∈ I) σ :: κ′

(
∧
i∈I τi)→ σ :: κ→ κ′

An intersection type is an intersection pre-type τ such that τ :: κ for some κ.
An (intersection) type environment Γ is a set of variable-type bindings, x :

∧
i∈I τi.

We write Γ :: ∆ just if x :
∧
i∈I τi ∈ Γ implies that for some κ, x : κ ∈ ∆ and τi :: κ

for all i ∈ I . Valid typing sequents are defined by induction over the following rules.

Γ, x :
∧
i∈I τi ` x : τi

Γ ` t1 : (
∧
i∈I τi)→ σ Γ ` t2 : τi (for all i ∈ I)

Γ ` t1 t2 : σ

Γ, x :
∧
i∈I τi ` t : σ τi :: κ (for all i ∈ I)
Γ ` λxκ.t : (

∧
i∈I τi)→ σ

Lemma 10. If ∆ ` t :: κ and Γ :: ∆ and Γ ` t : τ , then τ :: κ.

Proof. Easy induction on the structure of ∆ ` t :: κ. ut

5.2 Representing Derivations by Proof Terms

For notational convenience, we use a Church-style simply-kinded lambda calculus with
(indexed) product as a term representation of derivations. The raw terms are defined as
follows.

M ::= pi(x) | λx
∧

i∈I τi .M | M1M2 |
l

i∈I
Mi

where I is a finite indexing set. We omit I and simply write λx
∧

i τi and so on if I
is clear from the context or unimportant. We say a term M is well-formed just if for
every application subterm M1M2 of M , M2 has the form

d
i∈I Ni. We consider only

well-formed terms. By abuse of notation, we write > for
d
∅.

We give a type system for terms of the calculus, which ressemble the intersection
type system, but is syntax directed, i.e., a term completely determines the structure of a
derivation.

Two-Level Game Semantics, Intersection Types, and Recursion Schemes 15

Γ, x :
∧
i∈I τi pi(x) : τi

Γ, x :
∧
i∈I τ M : σ

Γ λx
∧

i∈I τi .M : (
∧
i∈I τi)→ σ

Γ M1 : (
∧
i τi)→ σ Γ M2 :

∧
i τi

Γ M1 M2 : σ

Γ Mi : τi τi :: κ (for all i)
Γ

d
iMi :

∧
i τi

We call a term-in-context Γ M : τ a proof term. Observe that a proof term is essen-
tially a typed lambda term with (indexed) product. Here an intersection type τ1∧· · ·∧τn
is interpreted as a product type τ1 × · · · × τn and a proof term M1 u · · · uMn is a tu-
ple 〈M1, . . . ,Mn〉. Then all variables are bound to tuples and a proof term pi(x) is a
projection into the ith element.

Unfortunately, not all the proof terms correspond to a derivation of the intersection
type system. For example, λf (q1∧q2)→p.λxq1 .λyq2 .f(p(x) u p(y)) is a proof term of
the type ((q1 ∧ q2) → p) → q1 → q2 → p, but there is no inhabitant of that type. In
the intersection type system, t : τ ∧ σ only if t : τ and t : σ for the same term t, but the
proof term p(x) u p(y) violates the requirement.

We introduce a judgement M :: t that means the structure of M coincides with the
structure of t.

pi(x) :: x
λx

∧
i τi .M :: λxκ.t iff M :: t and τi :: κ for all i
M1 M2 :: t1 t2 iff M1 :: t1 and M2 :: t2d

iMi :: t iff Mi :: t for all i

By definition, > :: t for every term t.

Lemma 11 (Coincidence). (i) For every derivations D whose conclusion is Γ ` t : τ ,
there exists a proof term Term(D) such that Γ Term(D) : τ and Term(D) :: t.
(ii) If Γ M : τ and M :: t, there exists a unique derivation D of Γ ` t : τ such that
Term(D) = M .

Proof. Easy induction on the structure of D and of M , respectively.

We write [Γ :: ∆] ` [M :: t] : [τ :: κ] just if Γ :: ∆, M :: t, τ :: κ, ∆ ` t::κ and
Γ M : τ . Let t be a term such that ∆ ` t :: κ. The previous lemma says that there
is a one-to-one correspondence between a derivation of Γ ` t : τ and a proof term M
such that [Γ :: ∆] ` [M :: t] : [τ :: κ].

Example 2. Let Q = { q1, q2 } and take θ → (q1 ∧ q2) → q1 :: (o → o) → o → o
where θ = (q1 → q1) ∧ (q2 → q1) ∧ (q1 ∧ q2 → q1) and terminal f : q1 → q2. Set
M := λxθ yq1∧q2 .p2(x)(fq1→q2(p1(x)(p3(x)(p1(y) u p2(y))))). Then we have M ::
λxy.x(f(x(x y)).

16 C.-H. Luke Ong and Takeshi Tsukada

Lemma 12. It is decidable, given Γ M : τ , whether M :: t for some t. Hence,
thanks to Lemma 11, it is decidable whether a proof term represents a derivation.

Proof. The definition of M :: t itself gives a simple decision procedure.

We define an operational semantics for terms and proof terms. The reduction rela-
tion is the least congruence defined by the following β-reduction and η-expansion redex
rules:

(λxκ.s) t −→β [t/x] s

tκ1→κ2 −→η λx
κ1 .(tκ1→κ2 xκ1)κ2 (x is fresh)

Here [t′/x] is the standard capture-avoiding substitution of t′ for x. We write −→ for
−→β ∪ −→η , −→∗ for reflexive and transitive closure of −→, and =βη for reflexive,
transitive and symmetric closure of −→.

The reduction relation of proof terms is defined similarly:

(λx
∧

i τi .M) (
l

i

Ni) −→β [
l

i

Ni/x] M

M
∧

i τi→σ −→η λx
∧

i τi .M (
l

i

pi(x)) (x is fresh)

where (the base case of) the substitution is given by

[
l

i

Ni/x] (pi(x)) = Ni

[
l

i

Ni/x] (pi(y)) = pi(y) (if x 6= y).

We write [M :: t] −→ [M ′ :: t′] if t −→ t′ and M −→∗ M ′. It is easy to see that if
M :: t and t −→ t′, then there exists a unique M ′ such that M −→∗ M ′ and M ′ :: t′

(M −→∗ M ′ reduces all the redexes at the positions similar to the redex of t −→ t′).

5.3 Game Semantics of Intersection Types

A two-level arena represents a proof of well-kindedness, τ :: κ. The interpretation is
straightforward since we have arena constructors⇒ and ∧:

[[q :: o]] := ([[q]], U, [[o]])

[[(
∧
i∈I

τi)→ σ :: κ→ κ′]] := (
∧
i∈I

[[τi :: κ]])⇒ [[σ :: κ′]],

where [[q]] is aQ-coloured arena with a single move of the colour q, [[o]] is a {o}-coloured
arena with a single move, and U maps the unique move of [[q]] to the unique move of
[[o]]. Let Γ be a type environment with Γ :: ∆. Suppose

Γ = x1 :
∧
i∈I1 τ

1
i , . . . , xn :

∧
i∈In τ

n
i

∆ = x1 : κ1, . . . , xn : κn

Two-Level Game Semantics, Intersection Types, and Recursion Schemes 17

Then [[Γ :: ∆]] :=
∏
j≤n(

∧
i∈Ij [[τ ji :: κi]]) .

A proof [Γ :: ∆] ` [M :: t] : [τ :: κ], which is equivalent to a derivation of
Γ ` t : τ (Lemma 11), is interpreted as a strategy of the two-level arena [[Γ :: ∆]] ⇒
[[τ :: κ]], defined by the following rules (for simplicity, we write [[M :: t]] instead of
[[[Γ :: ∆] ` [M :: t] : [τ :: κ]]]):

[[pi(x) :: x]] := πx; pi

[[
l

i

Mi :: t]] :=
l

i

[[Mi :: t]]

[[M1 M2 :: t1 t2]] := 〈[[M1 :: t1]], [[M2 :: t2]]〉; eval

[[λx.M :: λx.t]] := Λ([[M :: t]])

where πx is the projection [[(Γ, x :
∧
i τi) :: (∆,x : κ)]] −→ [[

∧
i τi :: κ]] and for strate-

gies σi : [[Γ :: ∆]] −→ [[τi :: κ]] indexed by i, the strategy
d
i σi : [[Γ :: ∆]] −→∧

i[[τi :: κ]] is the canonical map of the pullback.

Lemma 13 (Componentwise Interpretation). Let [Γ :: ∆] ` [M :: t] : [τ :: κ] be a
derivation. Then [[M :: t]] = ([[M]], [[t]]).

Proof. By induction on M .

Lemma 14 (Substitution). Suppose [(Γ, x :
∧
i τi) :: (∆,x : κ)] ` [M :: t] : [σ :: κ′]

and [Γ :: ∆] ` [
d
iNi :: u] : [

∧
i τi :: κ]. Then

〈id[[Γ ::∆]], [[
l

i

Ni :: u]]〉; [[M :: t]] = [[([
l

i

Ni/x] M) :: ([u/x] t)]].

Proof. By Lemma 13 and a well-know result for the standard interpretation [2].

Lemma 15. Suppose [Γ :: ∆] ` [M :: t] : [
∧
i τi → σ :: κ→ κ′]. Then

[[M :: t]] = [[(λx
∧

i τi .M (
l

i

pi(x))) :: (λxκ.t x)]].

Theorem 4 (Adequacy). Let [Γ :: ∆] ` [M1 :: t1] : [τ :: κ] and [Γ :: ∆] ` [M2 ::
t2] : [τ :: κ] be two proofs such that [M1 :: t1] =βη [M2 :: t2]. Then [[M1 :: t1]] =
[[M2 :: t2]].

Proof. A consequence of the two lemmas above.

Theorem 5 (Definability). Let (σ, σ̄) : [[Γ :: ∆]] → [[τ :: κ]] be a winning strategy.
There is a derivation [Γ :: ∆] ` [M :: t] : [τ :: κ] such that (σ, σ̄) = [[M :: t]].

Proof. (Sketch) By the standard argument of definability [2], we have a proof term
M and a simply-typed lambda term t such that [[M]] = σ : [[Γ]] −→ [[τ]] and [[t]] =
σ̄ : [[∆]] −→ [[κ]], where [[·]] is the standard interpretation of typed lambda terms (here
intersection ∧ in Γ and τ is interpreted as a product). If [Γ :: ∆] ` [M :: t] : [τ :: κ] is a
valid derivation, by Lemma 13, we have [[M :: t]] = (σ, σ̄) as required. Thus it suffices
to show that M :: t, which can be shown by an easy induction. ut

18 C.-H. Luke Ong and Takeshi Tsukada

We can use Church-style type-annotated terms in β-normal η-long form, called
canonical terms, to represent winning strategies, which are terms-in-context of the
form: Γ pi(x)M1 · · ·Mn : q where Γ = · · · , x :

∧
i αi, · · · and αi = τ1 → · · · →

τn → q, and for each k ∈ { 1, . . . , n },

Mk =
l

j∈Jk

λy
τkj1

kj1 . . . y
τkjr

kjr .Nkj :
∧
j∈Jk

βkj = τk

such that for each j ∈ Jk, βkj = τkj1 → · · · → τkjr → qkj with r = rkj and
Γ, ykj1 : τkj1, · · · , ykjr : τkjr Nkj : qkj is a canonical term. (We assume that canon-
ical terms are proof terms that represent derivations.)

By definition, canonical terms are not λ-abstractions. We call terms-in-context such
as Mk above canonical terms in (partially) curried form; they have the shape Γ
λx.M : τ1 → · · · → τn → q. Note that in case n = 0, the curried form retains an out-
ermost “dummy lambda” Γ λ.M : q. With this syntactic convention, we obtain a
tight correspondence between syntax and semantics.

Lemma 16. Let τ :: κ. There is a one-to-one correspondence between winning strate-
gies over the two-level arena [[τ :: κ]] and canonical terms in curried form of the shape
∅ M : τ (with η-long β-normal simply-typed term t such that M :: t).

Proof. First observe that a two-level arena is a forest; each move of the arena can be
represented by the subtree rooted at the move. In other words, moves of [[τ :: o]] corre-
spond to (and can be named by) the prime subtypes of τ . Consider the abstract syntax
trees of these terms, so that the nodes at levels 0, 2, 4, etc. are labelled by lambdas
(i.e. λx), and nodes at levels 1, 3, 5, etc. are labelled by variables. The idea is that a
node labelled by a lambda (respectively variable) of prime type θ represents the O-move
(respectively P-move) named by θ. It suffices to observe that there is a one-one corre-
spondence between the even-length paths in such a tree, and the even-length P-views in
the corresponding winning strategy. (Note that an innocent strategy—qua set of legal
positions—is determined by its subset of even-length P-views, which is just its view
function.) We check that the term representation satisfies the axioms of winning strat-
egy. P/O-alternation holds by construction of the canonical term; pointers to O-moves
correspond to the standard lambda binding, and pointers to P-move correspond to the
edges from a lambda node to its parent, which is a variable node. Colour-reflection,
totality (leaves of a tree are by construction either a variable or >) and contingent com-
pleteness all hold by definition of canonical term.

A strategy (σ, σ̄) of A = (A,U,K) is P -full (respectively O-full) just if every P-
move (respectively O-move) of A occurs in σ. Suppose (σ, σ̄) is a winning strategy of
[[τ :: κ]]. Then: (i) If (σ, σ̄) is P-full, then it is also O-full. (ii) There is a subtype τ ′ :: κ
of τ such that (σ, σ̄) is winning and P-full over [[τ ′ :: κ]].

A derivation [Γ :: ∆] ` [M :: t] : [τ :: κ] is relevant just if for each abstraction
subterm λx

∧
i∈I τi .M ′ of M and i ∈ I , M ′ has a free occurrence of pi(x).

Lemma 17. [Γ :: ∆] ` [M :: t] : [τ :: κ] is relevant iff [[M :: t]] is P-full.

Two-Level Game Semantics, Intersection Types, and Recursion Schemes 19

Proof. The right-to-left direction is shown by a easy modification of the standard proof
of definability (see [2, Proposition 7.4]). To prove the left-to-right direction, we first
normalise M :: t to the canonical form, say M ′ :: t′. It is easy to prove (syntactically)
that normalisation preserves relevance of a derivation, so M ′ :: t′ is also relevant. Then
by (easy) induction on canonical forms, we prove that [[M ′ :: t′]] is full. By adequacy,
[[M :: t]] is also full.

6 Applications to HORS Model-Checking

Fix a ranked alphabet Σ and a HORS G = 〈Σ,N , S,R〉 we first give the game seman-
tics [[G]] ofG (see [1] for a definition of HORS). LetN = {F1 : κ1, . . . , Fn : κn }with
F1 = S (start symbol), and Σ = { a1 : r1, . . . , am : rm } where each ri = ar(ai),
the arity of ai. Writing [[Σ]] :=

∏m
i=1 [[ori → o]] and [[N]] :=

∏n
i=1 [[κi]], the game

semantics of G, [[G]] : [[Σ]] −→ [[o]], is the composite

[[Σ]]
Λ(g)−→ ([[N]]⇒ [[N]])

Y−→ [[N]]
{S::o }−→ [[o]]

in the cartesian closed category of o-coloured arenas and innocent strategies, where

- g = 〈g1, . . . , gn〉 : [[Σ]]×[[N]] −→ [[N]]; each component gi = [[Σ ∪N ` R(Fi) :: κi]]
, and Λ(-) is currying

- Y is the standard fixpoint strategy (see [2, §7.2]), and
- {S :: o } = π1 : [[N]] −→ [[o]] is the projection map.

Remark 1. Since the set of P-views of [[G]] coincide with the branch language7 of the
value tree ofG (i.e. theΣ-labelled tree generated byG; see [1]) and an innocent strategy
is determined by its P-views, we identify the map [[G]] with the value tree of G.

Now fix a trivial automaton B = 〈Q,Σ, qI , δ〉. We extend the game-semantic ac-
count to express the run tree of B over the value tree [[G]] in the category of Q-based
two-level arenas and innocent strategies. First set

[[δ :: Σ]] :=
∏
a∈Σ

∧
(q,a,q)∈δ[[q1 → . . .→ qar(a) → q :: o→ . . .→ o︸ ︷︷ ︸

ar(a)

→ o]]

= ([[δ]], U, [[Σ]])

where [[δ]] is the Q-coloured arena
∏
a∈Σ

∏
(q,a,q)∈δ[[q1 → . . .→ qar(a) → q]] and q =

q1, q2, . . . , qar(a).
A run tree ofB over [[G]] is just an innocent strategy (ρ, [[G]]) of the arena [[δ :: Σ]]⇒

[[qI :: o]] = ([[δ]] ⇒ [[qI]], V, [[Σ]] ⇒ [[o]]). Every P-view p̄ ∈ [[G]] has a unique “colour-
ing” i.e. a P-view p ∈ ρ such that V (p) = p̄. This associates a colour (state) with each
node of the value tree, which corresponds to a run tree in the concrete presentation.

7 Let m be the maximum arity of the symbols in Σ, and write [m] = { 1, · · · ,m }. The branch
language of t : dom(t) −→ Σ consists of (i) (f1, d1)(f2, d2) · · · if there exists d1 d2 · · · ∈
[m]ω s.t. t(d1 · · · di) = fi+1 for every i ∈ ω; and (ii) (f1, d1) · · · (fn, dn) fn+1 if there exists
d1 · · · dn ∈ [m]∗ s.t. t(d1 · · · di) = fi+1 for 0 ≤ i ≤ n, and the arity of fn+1 is 0.

20 C.-H. Luke Ong and Takeshi Tsukada

6.1 Characterisation by Complete Type Environment

Using G and B as before, Kobayashi [3] showed that [[G]] is accepted by B if, and only
if, there is a complete type environment Γ , meaning that (i) S : qI ∈ Γ , (ii) Γ `
R(F) : θ for each F : θ ∈ Γ . As a first application of two-level arena games, we give a
semantic counterpart of the characterisation. Let Γ = {F1 :

∧
j∈I1 τ1j :: κ1, . . . , Fn :∧

j∈In τnj :: κn } be a type environment of G. Set [[Γ :: N]] :=
∏n
i=1

∧
j∈Ii [[τij ::

κi]] = ([[Γ]], U1, [[N]]) where [[Γ]] :=
∏n
i=1

∏
j∈Ii [[τij]].

Theorem 6. Using Σ,G and B as before, [[G]] is accepted by B if, and only if, there
exists Γ such that

(i) S : qI ∈ Γ , and
(ii) there exists a strategy σ (say) of the Q-coloured arena [[δ]]× [[Γ]]⇒ [[Γ]] such that

(σ,g) defines a winning strategy of the two-level arena

([[δ :: Σ]]×[[Γ :: N]])⇒ [[Γ :: N]] = ([[δ]]×[[Γ]]⇒ [[Γ]], V1, [[Σ]]×[[N]]⇒ [[N]])

Proof. Suppose we have Γ and σ that satisfy the conditions. The following composite
map in the category of two-level arenas and innocent strategies

[[δ :: Σ]]
Λ(σ,g)−→ ([[Γ :: N]]⇒ [[Γ :: N]])

(Y,Y)−→ [[Γ :: N]]
{S:qI }−→ [[qI :: o]]

gives the strategy (ρ, [[G]]) over ([[δ]] ⇒ [[qI]], V, [[Σ]] ⇒ [[o]]). To show V (ρ) = [[G]],
it suffices to show that if V (m1) · · ·V (mn) · m ∈ [[G]] and m is an O-move of
[[Σ]] ⇒ [[o]], then V (m′) = m for some O-move m′ of [[δ]] ⇒ [[qI]]. But an O-move m
of [[Σ]]⇒ [[o]] is either the unique move of [[o]] or a move corresponding to an argument
of a tree constructor in Σ (i.e. a move corresponding to oi for some a :: o1 → · · · →
on → o ∈ Σ). By definition of δ and qI , there exists a corresponding move m′ in
[[δ]]⇒ [[qI]] for each O-move m of [[Σ]]⇒ [[o]]. The desired property then follows from
the contingent completeness of ρ.

To prove the converse, suppose that [[G]] is accepted by B. I.e. we have a run-tree
given by a strategy (ρ, [[G]]) over the two-level arena ([[δ]]⇒ [[qI]], U1, [[Σ]]⇒ [[o]]) such
that U1(ρ) = [[G]]. By definition of [[G]], the following diagram (in the category of base
arenas) commutes:

[[Σ]]

Λ(g) %%

[[G]] // [[o]]

[[N]]⇒ [[N]]

fix

99

where fix is the composite

([[N]]⇒ [[N)]]
Y−→ [[N]]

{S:o }−→ [[o]].

Two-Level Game Semantics, Intersection Types, and Recursion Schemes 21

By Subject Expansion (Theorem 3), there exist a two-level arena A = (A,U2, [[N]] ⇒
[[N]]) and strategies σ1 and σ2 of Q-coloured arenas that make the diagram

[[δ :: Σ]]

(σ1,Λ(g)) ((

(ρ,[[G]]) // [[qI :: o]]

(A,U2, [[N]]⇒ [[N]])

(σ2,fix)

66

commutes.
By analysis of σ2, there exist a Q-coloured arena Γ (say) and hence a two-level

arena (Γ ⇒ Γ,U ′, [[N]]⇒ [[N]]), a map (↑, id[[N]]⇒[[N]]) from (A,U2, [[N]]⇒ [[N]]) to
(Γ ⇒ Γ,U ′, [[N]] ⇒ [[N]]), and a map (↓, id[[N]]⇒[[N]]) in the opposite direction, such
that ↑ ; ↓ = idA.

Thus we have the following commutative diagram:

[[δ :: Σ]]

(σ1;↑,Λ(g))))

(ρ,[[G]]) // [[qI :: o]]

(Γ ⇒ Γ,U ′, [[N]]⇒ [[N]])

(↓;σ2,fix)

55 .

It follows from U1(ρ) = [[G]] that U(σ1; ↑) = Λ(g) where U is the relevant forget-
ful function. Hence, by uncurrying (σ1; ↑, Λ(g)), we obtain a total and hence winning
strategy of ([[δ :: Σ]]× [[Γ :: N]])⇒ [[Γ :: N]] as desired. ut

6.2 Minimality of Traversals-induced Typing

Using the same notation as before, interaction sequences from Int(Λ(g),fix) ⊆ Int([[Σ]], [[N]]⇒ [[N]], [[o]])
form a tree, which is (in essence) the traversal tree in the sense of Ong [1].

Prime types, which are intersection types of the form θ =
∧
i∈I1 θ1i → · · · →∧

i∈In θni → q, are equivalent to variable profiles (or simply profiles) [1]. Precisely θ

corresponds to profile θ̂ := ({ θ̂1i | i ∈ I1 }, · · · , { θ̂ni | i ∈ In }, q). We write profiles
of ground kind as q, rather than (q). Henceforth, we shall use prime types and profiles
interchangeably.

Tsukada and Kobayashi [10] introduced (a kind-indexed family of) binary relations
≤κ between profiles of kind κ, and between sets of profiles of kind κ, by induction over
the following rules.

(i) If for all θ ∈ A there exists θ′ ∈ A′ such that θ ≤κ θ′ then A ≤κ A′.
(ii) If Ai ≤κi

A′i for each i then (A1, . . . , An; q) ≤κ1→···→κn→o (A′1, . . . , A
′
n, q).

A profile annotation (or simply annotation) of the traversal tree Int(Λ(g),fix) is
a map of the nodes (which are move-occurrences of M[[Σ]] + M[[N]]⇒[[N]] + M[[o]]) of
the tree to profiles. We say that an annotation of the traversal tree is consistent just if
whenever a move m, of kind κ1 → · · · → κn → o and simulates q, is annotated with
profile (A1, · · · , An, q′), then (i) q′ = q, (ii) for each i,Ai is a set of profiles of kind κi,

22 C.-H. Luke Ong and Takeshi Tsukada

(iii) if m′ is annotated with θ and i-points to m, then θ ∈ Ai. Now consider annotated
moves, which are moves paired with their annotations, written (m, θ). We say that a
profile annotation is innocent just if whenever u1 · (m1, θ1) and u2 · (m2, θ2) are even-
length paths in the annotated traversal tree such that pu1q = pu2q, then m1 = m2 and
θ1 = θ2.

Every consistent (and innocent) annotation α of an (accepting) traversal tree gives
rise to a typing environment, written Γα, which is the set of bindings Fi : θ where
i ∈ { 1, . . . , n } and θ is the profile that annotates an occurrence of an initial move of
[[κi]]. Note that Γα is finite because there are only finitely many types of a given kind.
We define a relation between annotations: α1 ≤ α2 just if for each occurrence m of a
move of kind κ in the traversal tree, α1(m) ≤κ α2(m).

Theorem 7. (i) Let α be a consistent and innocent annotation of a traversal tree. Then
Γα is a complete type environment.

(ii) There is ≤-minimal consistent and innocent annotation, written αmin. Then
Γαmin

≤ Γα meaning that for all F : θ ∈ Γαmin
there exists F : θ′ ∈ Γα such

that θ ≤ θ′.
(iii) Every complete type environment Γ determines a consistent and innocent an-

notation αΓ of the traversal tree.

6.3 Game-Semantic Proof of Completeness of GTRecS [9]

GTRecS [9] is a higher-order model checker proposed by Kobayashi. Although GTRecS
is inspired by game-semantics, the formal development of the algorithm is purely type-
theoretical and no concrete relationship to game semantics is known. Here we give a
game-semantic proof of completeness of GTRecS based on two-level arena games.

The novelty of GTRecS lies in a function on type bindings, named Expand. For
a set Γ of nonterminal-type bindings, Expand(Γ) is defined as

Γ ∪
⋃
{Γ ′ ∪ {Fi : τ ′} | Γ �P Γ ′ ∧ Γ ′ ` R(Fi) : τ ′ ∧ Γ �O {Fi : τ ′} },

where Γ ′ ` R(Fi) : τ ′ is relevant. Here for types τ1 and τ2, τ1 �P τ2 if the arena
[[τ2]] is obtained by adding only proponent moves to [[τ1]]. For example, (

∧
∅)→ q �P

((
∧
∅) → q′) → q but (

∧
∅) → q 6�P (q′′ → q′) → q, since q′ is at the proponent

position and q′′ at the opponent position. Γ �P Γ ′ is defined as ∀F : τ ′ ∈ Γ ′. ∃F :
τ ∈ Γ. τ �P τ ′. Similarly, τ �O τ ′ and Γ �O Γ ′ are defined.

Our goal is to analyse Expand game theoretically. The result is Lemma 21, which
states that Expand overapproximates one step interaction of two strategies, σ and fix.
Completeness of GTRecS is a corollary of Lemma 21.

Fix a type environment Γ and a winning strategy σ : [[δ]] −→ (Γ 1 ⇒ Γ 2) (here we
use superscripts to distinguish occurrences of Γ) that is induced from the derivation of
` G : Γ . The strategy fix : ([[Γ 1]] ⇒ [[Γ 2]]) −→ [[qI]] is defined as the composite of

([[Γ]]1 ⇒ [[Γ]]2)
Y−→ [[Γ]]

{S:qI }−→ [[qI]]. For n ∈ {1, 2, . . . }, the nth approximation of fix
is defined by bfixcn = {s ∈ fix | |s| ≤ 2n+ 1}. Thus bfixcn is a strategy that behaves
like fix until the nth interaction, but stops after that. For the notational convenience, we
define bfixc∞ = fix.

Two-Level Game Semantics, Intersection Types, and Recursion Schemes 23

Our goal is to show the concrete relationship between bfixcn and Expand({S :
qI}) (Lemma 21). Completeness of GTRecS is an easy consequence of Lemma 21.

Let n ∈ {0, 1, 2, . . . ,∞}. The nth approximation of fix induces approximation of
arenas and strategies. An arena bΓ 1 ⇒ Γ 2cn is defined as the restriction of Γ 1 ⇒ Γ 2

that consists of only moves appearing at Int(σ, bfixcn), and a strategy bσcn : [[δ]] −→
bΓ 1 ⇒ Γ 2cn is the restriction of σ to the arena.

Lemma 18. bΓ 1c∞ = bΓ 2c∞ and S : q0 ∈ bΓ 2c∞.

Proof. Easy. ut

Remark 2. It is not necessarily the case that bΓ 1c∞ = Γ 1 or bΓ 2c∞ = Γ 2.

Lemma 19. For n ∈ {0, 1, . . . ,∞}, bσcn is a full and winning strategy.

Proof. All properties other than totality come from the fact that bσcn is a restriction of
σ. To prove totality, a key observation is that every maximal sequence s ∈ bfixcn ends
with a O-move. Thus every maximal interaction sequence s ∈ Int(σ, bfixcn) ends with
a O-move of (Γ 1 ⇒ Γ 2) → 〈q0〉, since σ is contingent complete and total. Therefore
if sm ∈ bσcn is maximal, then m is a P-move of (C × Γ 1 ⇒ Γ 2). bσcn is full by
definition. ut

If Γ = {Fi :
∧
j τi,j | Fi ∈ N}, then the arena [[δ]] ⇒ (Γ 1 ⇒ Γ 2) can be decom-

posed as
∏
i,j([[δ]]⇒ (Γ 1 ⇒ τi,j)). By the same way, the arena [[δ]]⇒ bΓ 1 ⇒ Γ 2cn is

decomposed as
∏
i,j([[δ]]⇒ (bΓ 1cn,i,j ⇒ bτi,jcn)).

Let bΓ 1cn be the union of variable-type bindings corresponding to
⋃
i,j bΓ 1cn,i,j

and bΓ 2cn be the set of type bindings {Fi : bτi,jcn}i,j .

Lemma 20. For all n ∈ {0, 1, . . . ,∞}, we have (bΓ 1cn ∪ bΓ 2cn) �O bΓ 1cn+1 and
(bΓ 1cn ∪ bΓ 2cn) �P bΓ 2cn+1 (here∞+ 1 =∞).

Proof. Assume that bΓ 1cn ∪ bΓ 2cn (bΓ 1cn+1 ∪ bΓ 2cn+2. Let m be an element
of their difference. By definition of bΓ 1cn+1 and bΓ 2cn+1, there is a sequence sm ∈
Int(Λ(σ), bfixcn+1 ending with m. Let s′m0 be the maximal prefix of sm such that
s′m0 ∈ Int(Λ(σ), bfixcn). Thenm0 is a O-move of Γ 1 or a P-move of Γ 2. (Otherwise
m0 must be a move of C, that implies s′m0 is also maximal in Int(Λ(σ),fix), but this
contradict to existence of its extension sm ∈ Int(Λ(σ), bfixcn+1).) By the definition
of bfixcn+1, sm = s′m0m

′
0s
′′m for some s′′, where m′0 corresponds to m0. This

interaction sequence is maximal. Therefore m is an O-move of Γ 1 or a P-move of
Γ 2. Moreover m is justified by a move of the view of s′m0m

′
0s
′′ , i.e., a move of

bΓ 1cn ∪ bΓ 2cn or their counterpart. So the proposition holds. ut

By Lemma 17 and Lemma 19, we have a relevant derivation of δ ∪ bΓ 1cn,i,j `
R(Fi) : τi,j . Combination of these derivations and Lemma 20 leads to the next lemma.

Lemma 21. bΓ 1cn ∪ bΓ 2cn ⊆ Expandn({S : q0}).

24 C.-H. Luke Ong and Takeshi Tsukada

Proof. By induction on n. The case n = 0 is trivial since bΓ 1c0 = ∅ and bΓ 2c0 = {S :
q0}.

Suppose bΓ 1cn∪bΓ 2cn ⊆ Expandn({S : q0}). We use the following proposition
(see [9, Appendix C].)

If Γ �O Γ ′ and θ �P θ′ and Γ ′ ` R(F) : θ′, then Γ ′ ∪ {F : θ′} ⊆
Expand(Γ ∪ {F : θ}).

The lemma follows from the proposition and previous lemmas. ut

Conclusions and Further Directions Two-level arena games are an accurate model of
intersection types. Thanks to Subject Expansion, they are a useful semantic framework
for reasoning about higher-order model checking.

For future work, we aim to (i) consider properties that are closed under disjunction
and quantifications, and (ii) study a call-by-value version of intersection games. In or-
thogonal directions, it would be interesting to (iii) construct an intersection game model
for untyped recursion schemes [10], and (iv) build a CCC of intersection games param-
eterised by an alternating parity tree automaton, thus extending our semantic framework
to mu-calculus properties.

Acknowledgement This work is partially supported by Kakenhi 22 · 3842 and EPSRC
EP/F036361/1. We thank Naoki Kobayashi for encouraging us to think about game-
semantic proofs and for insightful discussions.

References
1. Ong, C.H.L.: On model-checking trees generated by higher-order recursion schemes. In:

LICS, IEEE Computer Society (2006) 81–90
2. Hyland, J.M.E., Ong, C.H.L.: On full abstraction for PCF: I, II, and III. Inf. Comput. 163(2)

(2000) 285–408
3. Kobayashi, N.: Types and higher-order recursion schemes for verification of higher-order

programs. In Shao, Z., Pierce, B.C., eds.: POPL, ACM (2009) 416–428
4. Salvati, S.: On the membership problem for non-linear abstract categorial grammars. Journal

of Logic, Language and Information 19(2) (2010) 163–183
5. Kobayashi, N., Ong, C.H.L.: A type system equivalent to the modal mu-calculus model

checking of higher-order recursion schemes. In: LICS, IEEE Computer Society (2009) 179–
188

6. Hague, M., Murawski, A.S., Ong, C.H.L., Serre, O.: Collapsible pushdown automata and
recursion schemes. In: LICS. (2008) 452–461

7. Salvati, S., Walukiewicz, I.: Krivine machines and higher-order schemes. In: ICALP (2).
(2011) 162–173

8. Nielson, F.: Two-level semantics and abstract interpretation. Theor. Comput. Sci. 69(2)
(1989) 117–242

9. Kobayashi, N.: A practical linear time algorithm for trivial automata model checking of
higher-order recursion schemes. In Hofmann, M., ed.: FOSSACS. Volume 6604 of Lecture
Notes in Computer Science., Springer (2011) 260–274

10. Tsukada, T., Kobayashi, N.: Untyped recursion schemes and infinite intersection types. In
Ong, C.H.L., ed.: FOSSACS. Volume 6014 of Lecture Notes in Computer Science., Springer
(2010) 343–357

	Two-Level Game Semantics, Intersection Types, and Recursion Schemes
	C.-H. Luke Ong and Takeshi Tsukada

