
A Traversal-based Algorithm for
Higher-Order Model Checking

Robin P. Neatherway
University of Oxford

robin.neatherway@cs.ox.ac.uk

C.-H. Luke Ong
University of Oxford

luke.ong@cs.ox.ac.uk

Steven J. Ramsay
University of Oxford

steven.ramsay@cs.ox.ac.uk

Abstract

Higher-order model checking—the model checking of trees gen-
erated by higher-order recursion schemes (HORS)—is a natural
generalisation of finite-state and pushdown model checking. Re-
cent work has shown that it can serve as a basis for software
model checking for functional languages such as ML and Haskell.
In this paper, we introduce higher-order recursion schemes with
cases (HORSC), which extend HORS with a definition-by-cases
construct (to express program branching based on data) and non-
determinism (to express abstractions of behaviours). This paper is
a study of the universal HORSC model checking problem for de-
terministic trivial automata: does the automaton accept every tree
in the tree language generated by the given HORSC? We first char-
acterise the model checking problem by an intersection type sys-
tem extended with a carefully restricted form of union types. We
then present an algorithm for deciding the model checking prob-
lem, which is based on the notion of traversals induced by the
fully abstract game semantics of these schemes, but presented as
a goal-directed construction of derivations in the intersection and
union type system. We view HORSC model checking as a suitable
backend engine for an approach to verifying functional programs.
We have implemented the algorithm in a tool called TRAVMC, and
demonstrated its effectiveness on a test suite of programs, including
abstract models of functional programs obtained via an abstraction-
refinement procedure from pattern-matching recursion schemes.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Algorithms, Verification

Keywords Model-checking, Higher-order Programs

1. Introduction

Over the past decade, model checking and its allied methods
have been applied to program verification with great effect. For

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’12, September 9–15, 2012, Copenhagen, Denmark.
Copyright c© 2012 ACM 978-1-4503-1054-3/12/09. . . $10.00

first-order, imperative programs, highly optimised finite-state and
pushdown model checkers (such as SLAM [2] and BLAST [3])
have been successfully applied to bug-finding, property check-
ing and test case generation. Building on theoretical results on
the model checking of higher-order recursion schemes (HORS)
[6, 16], Kobayashi [8] has sparked a growing interest in the de-
velopment of an analogous model checking framework for higher-
order, functional programs.

A HORS is a kind of higher-order grammar, which can be viewed as
a mechanism for generating a possibly-infinite, ranked tree. HORS
model checking is concerned with the problem of deciding whether
the tree generated by a given HORS satisfies a given property and,
when the property is expressed by a formula of the modal mu-
calculus (equivalently, an alternating parity tree automaton), then
the problem is known to be decidable [16]. Since they can equally
well be viewed as a closed, ground-type term of the simply-typed
lambda calculus with recursion and uninterpreted first-order con-
stants, HORS are a natural home for models of higher-order com-
putation. Indeed, HORS model checking is a smooth generalisation
of finite-state and pushdown model checking (finite-state programs
and pushdown systems/Boolean programs are captured by order-0
and order-1 HORS respectively).

HORS model checking is, inherently, an extremely complex prob-
lem. Ong [16] has shown that the modal mu-calculus model
checking problem for order-n recursion schemes is n-EXPTIME
(i.e. tower of exponentials of height n) complete. Even for the
purposes of safety verification (model checking against properties
expressible as deterministic trivial tree automata (DTT)), the prob-
lem is (n− 1)-EXPTIME complete [11], which is still formidably
complex. Hence, the feasibility of HORS model checking as a veri-
fication technology is predicated upon the ability to design decision
procedures that hit the worst-case complexity only in pathological
cases.

That such algorithms are possible was demonstrated by Kobayashi’s
hybrid algorithm, presented in [7], which solves the safety verifi-
cation problem. In an attempt to avoid the hyper-exponential bot-
tleneck, the algorithm closely analyses the actual behaviour of the
HORS as it is evaluated, generating the ranked tree. The hybrid
algorithm builds a graph to record the trace of this computational
behaviour and from the graph derives guesses at proofs which wit-
ness the satisfaction of the property. The algorithm is implemented
in the TRECS tool [9], which has been shown to perform remark-
ably well in a variety of applications.

However, whilst HORS allow for the expression of higher-order
behaviour very naturally, they lack two important features which,
we believe, are highly desirable in a convenient abstract model of
functional programs. The first is a case analysis construct, with
which one can express program branching based on data; the sec-

353

ond is non-determinism1, with which one can express abstractions
of behaviour. In this paper, we present a class of structures called
higher-order recursion schemes with cases (HORSC) which extend
HORS in both these directions, allowing grammar rules to be non-
deterministic and incorporating a finitary case analysis construct.

Example 1. The Risers program from Mitchell and Runciman [14]
provides an interesting example of a program with partial pattern
matching that cannot crash:

risers [] = []
risers [x] = [[x]]
risers (x : y : etc) = if x ≤ y then (x : s) : ss else [x] : (s : ss)

where (s : ss) = risers (y : etc)

A natural abstraction that might be selected by an automated ap-
proach is to the finite domain {Nil,Cons1,Cons2} (for lists of
length 0, 1 or more and 2 or more respectively). Using non-
deterministic choice for the if statement and a case construct oper-
ating on the finite domain yields:

risers xs→ case(xs,Nil,Cons1, ifthenelse)
ifthenelse→ cons (destruct (risers Cons1))
ifthenelse→ cons (cons (destruct (risers Cons1)))
destruct xs→ case(xs, error,Nil,Cons1)
destruct xs→ case(xs, error,Nil,Cons2)
cons xs→ case(xs,Cons1,Cons2,Cons2)

The pattern match error is preserved – it occurs in the case where
an empty list is destructed under the assumption that it has length at
least one. Furthermore, the safety of the original program has been
preserved in the abstraction to HORSC-like syntax.

Our central contribution is an algorithm to decide the model check-
ing problem of HORSC against DTT. Our algorithm is inspired by
the game-semantic analysis (in particular, the notion of traversals)
behind the original decidability proof of Ong [16] for the model
checking problem for HORS. The technical machinery of game se-
mantics is not required for this algorithm, but here we offer a brief
overview for the interested reader. Game semantics [5] is a way of
giving meanings to programs by viewing computation as a game
between Proponent (whose point of view is the program) and Op-
ponent (whose point of view is the program context). The type of a
programM : θ is interpreted as an arena [[θ]], and the program is in-
terpreted as a Proponent strategy, [[M]], for playing in the arena [[θ]].
Inspired by the success of the hybrid algorithm, we aim to search
for proofs in a way which is guided by an analysis of the behaviour
of the HORS but, rather than evaluating the HORS and analysing
its traces, we analyse the traversal induced by its game semantics.

The standard method to evaluate such a λ-term is by β-reduction
but, because of the nature of substitution, β-reduction deforms the
syntactic structure of the term and information about the computa-
tion that took place can be lost in the reduct. The game semantics
of the simply-typed λ-calculus gives rise to a method of evaluat-
ing a term M by traversing its computation tree, λ(M), which is
a slightly souped-up version of its abstract syntax tree. In contrast,
evaluation by traversal leaves the structure of the term in question
intact.

Example 2 (Traversals over recursion scheme G1). Let a : o, b :
o → o and c : o → o → o be terminal symbols. Consider the
recursion scheme G1 given by the following recursive definition of

1 In fact, there is no requirement for HORS to be purely deterministic by
definition, but the type theory on which the model checking tools are built
has only been properly developed for deterministic HORS.

λ

@

λx

c

λ

x

λ

@

λx

c

λ

x

λ

@

...

λ

b

λ

x

λ

a

1

1

2

2 3

3

Figure 1. Traversals in λ(G1) (Example 2)

functions, S : o and F : o→ o, viewed as rewrite rules:

S → F a
F x → c x (F (b x))

c
a c

b c

a
...

Unfolding from S, we have

S → F a→ c a (F (b a))→ c a (c (b a) (F (b (b a))))→ · · ·

thus generating the infinite term c a (c (b a) (c (b (b a))) (· · ·)).
Define the tree generated by G1, [[G1]], to be the abstract syntax tree
of the infinite term, as shown above (on the right).

The computation tree λ(G1) is the underlying tree in Figure 1
whose nodes are labelled by symbols λ, λx,@, a, b and c. We will
not give the rules that define the traversals over a computation tree.
Instead, we illustrate how traversals compute the paths in [[G1]] that
are labelled c · a and c · c · b · a respectively. The path c · a in
[[G1]] corresponding to the traversal over λ(G1) from the root to (1),
jumping to the segment that starts from (1), namely, λ ·@ ·λx ·c ·λ ·
x·λ·a. The path c·c·b·a in [[G1]] corresponding to the traversal over
λ(G1) from the root to (2), jumping to the segment that starts from
(2) and which ends at (3), and jumping to the segment that starts
from (3); namely, λ ·@ ·λx · c ·λ ·@ ·λx · c ·λ ·x ·λ · b ·λ ·x ·λ ·a.
Let Σ = { a, b, c }. Note that the Σ-projection of the two traversals
are the two paths in [[G1]].

An insight of Kobayashi, which has been instrumental in the design
of practical model checking algorithms, is that the HORS model
checking problem can be characterised as a problem of type infer-
ence in a certain intersection type system. By this characterisation,
searching for a proof that a given HORS satisfies a given property
is reduced to searching for a typing for the given HORS in the type
system induced by the given property. We show that the HORSC
model checking problem also has an elegant, type-theoretic charac-
terisation, but that the combination of higher-order functions, case-
analysis and non-determinism lead one to consider a system of in-
tersection and union types. Since we want to minimize any increase
to the size of the search space of typings (which, by the characteri-
sation, act as potential witnesses to property satisfaction), we have
carefully constructed a type system in which union types can oc-
cur only in a restricted fashion. In particular, unions are only ever
allowed over a subset of the ground types.

354

In light of this type-theoretic characterisation, we present our
model checking algorithm as a goal-directed construction of a typ-
ing derivation. (For reasons of exposition, we suppress the game-
semantic origin and interpretation of the algorithm, but present a
formal account of the correspondence in the long version of the
paper) The ultimate aim is to show that the start symbol S of the
HORS is typable by a type representing the initial state of the prop-
erty automaton q0, so the initial goal is to find a typing environment
Γ such that Γ ` S : q0. In our type system, we are allowed to take
for Γ the environment that consists of the single typing S : q0, but
only if we are able to show that the definition of S (by a produc-
tion rule in the HORS) respects this typing. Hence, following the
type system, the algorithm is obliged to spawn a subgoal (itself a
typing judgement) according to the definition of S. In general, to
solve a goal the algorithm simply attempts to construct a typing
derivation according to the rules of the type system, but, where this
construction involves making additional assumptions (such as in
the typing derivation for S : q0 as above) an obligation is incurred
to justify these assumptions. Since discharging such obligations
can sometimes require “jumping back” to refine previously com-
pleted typing derivations, the construction is not a straightforward
bottom-up exercise in tree building. In fact, the pattern of construc-
tion (precisely, the sequence of calls to the Close−-procedures of
Algorithm 1) follows exactly the game-semantic traversals over the
corresponding computation tree.

Based on an empirical evaluation, the traversal algorithm is several
orders of magnitude faster than Kobayashi’s linear-time algorithm
GTRecS [10]. Although it does not quite match Kobayashi’s hybrid
algorithm (which is generally up to an order-of-magnitude faster),
the traversal algorithm is still remarkably fast and practical, in view
of the worst-case asymptotic complexity of the problem, which is
(n− 1)-EXPTIME complete [11].

Outline The rest of the paper is organised as follows. We intro-
duce higher-order recursion schemes with cases in Section 2, and
recall some standard definitions from the literature. In Section 3 we
describe an intersection and union type system used to characterise
the model checking problem for HORSC, before going on to de-
scribe a type inference algorithm in Section 4. Section 5 presents
the empirical evaluation of our methods and algorithms, with a dis-
cussion of related work in Section 6, followed by our conclusion
and further directions in Section 7. Note: a long version of the pa-
per is available [15], which contains proofs and additional material.

2. Higher-Order Recursion Schemes with Cases

We introduce a new class of structures, higher-order recursion
schemes with cases and their model checking problem, and agree
on familiar definitions of Σ-labelled trees and deterministic trivial
tree automata.

Recursion Schemes with Cases

Let D be a set of directions (e.g. D = { 1, 2, · · · ,m }). A D-tree
(or simply tree) is a prefix-closed subset T ofD∗. Let Σ be a ranked
alphabet. A Σ-labelled tree is a function t : dom(t)→ Σ such that
dom(t) is a tree. We refer to elements of dom(t) as nodes of t.

In what follows, we refer to simple types as kinds (reserving the
word type for intersection types, to be introduced shortly) and
define the set of kinds by κ ::= d | o | κ → κ where o is the
kind of Σ-labelled trees, and d is the kind of a finite domain for
definition by cases. As usual, the order of a kind is the maximum
nesting of an arrow on the left, that is: ord(o) = 0 and ord(κ1 →

κ2) = max(ord(κ1)+1, ord(κ2)). We use β and βi to range over
ground (i.e. order-0) kinds.

Definition 1. A (non-deterministic) higher-order recursion scheme
with cases (HORSC) is a quadruple G = 〈Σ,N ,R, S〉 where

(i) Σ is an alphabet of well-kinded terminal symbols (ranged over
by f, g, a, b, etc.) with kinds drawn from those of order at most one.
Further Σ contains a distinguished subset of d-kinded symbols,
B = { b1, . . . , bn }; and if f ∈ (Σ \ B) then f has return kind
o i.e. f :: β1 → · · · → βm → o where m ≥ 0.

(ii) N is an alphabet of kinded non-terminal symbols (ranged over
by F , G etc.).

(iii) R is a set of rewrite rules of the form Fx1 · · ·xm → e where
F :: κ1 → · · · → κm → β with β ∈ { d, o }, each xi :: κi is
drawn from a countably infinite set of variables and e :: β is a (well-
kinded) applicative term generated from the following grammar

e ::= x | f | F | e1 e2 | case(e, e1, . . . , en)

where n is the cardinality of B, x ∈ {x1, . . . , xm }, f ∈ Σ and
F ∈ N . When a term contains no occurrence of a variable x, we
say that it is closed. The kinding rule for the case construct is: if
s :: d and each ti :: β (base kind) then case(s, t1, . . . , tn) :: β; the
other kinding rules are standard. We consider R to be a function
defined by:

R(F) := {λx1 · · ·xm.e | F x1 · · ·xm → e ∈ R}

When G is deterministic, that is, for each F ∈ N , R(F) is
a singleton, we abuse notation and identify R(F) with its only
member.

(iv) S ∈ N is a distinguished ‘start’ symbol of kind o, and R(S)
is a singleton set. By abuse of notation we write S →R(S) for the
unique rule for S.

The (call-by-name) reduction relation of the HORSC G, written
→G (or simply→ whenever G is understood), is a binary relation
over closed, ground-kinded terms, defined by induction over the
following rules.

λx1 . . . xm.t ∈ R(F)

F s1 . . . sm → t[s/x]

1 ≤ i ≤ n
case(bi, s1, . . . , sn)→ si

s→ s′

C[s]→ C[s′]

where the (one-holed) contexts are defined as follows:

C ::= [] | C s | sC | case(C, t1, . . . , tn)
| case(s, t1, . . . , ti, C, ti+2, . . . tn).

We refer to (closed, ground-kinded) terms of the shape F s1 . . . sm
or case(bi, s1, . . . , sn) as redexes. Note that whenever s → s′,
there are unique C and ∆ such that s = C[∆] and ∆ is the redex
contracted (i.e. ∆→ ·∆ and s′ = C[·∆]).

Write Σ⊥ for the alphabet Σ extended with symbol ⊥ of arity 0.
Given a term t, we define t⊥ for the (finite) Σ⊥-labelled tree de-
fined inductively by (i) (f s1 . . . sn)⊥ := f s⊥1 . . . s

⊥
n (ii) t⊥ := ⊥

if t is of the form F s1 . . . sn or case(s, t1, . . . , tn). With respect to
the standard approximation ordering v (defined by the compatible
closure of ⊥ v t for all t), the set of Σ⊥-labelled trees is a com-
plete partial order. The tree language generated by G, written [[G]],
is defined to be the set of Σ⊥-labelled trees of the form

⊔
i∈I t

⊥
i

where I is a prefix of ω, and 〈ti〉i∈I is a maximal (possibly infi-
nite) sequence of closed, ground-kinded terms satisfying:

355

(outermost) The term t0 = S and for each i ∈ I , ti → ti+1 is an
outermost reduction (i.e. the redex contracted is not a subterm
of another redex in ti)

(fairness) Every outermost redex is eventually contracted i.e. for
each i ∈ I and each outermost redex ∆ in ti, there exists i′ ≥ i
such that ∆ is contracted in ti′ → ti′+1.2

Example 3. The HORSC G2 is specified by terminal symbols
b1 :: d, b2 :: d, zero :: o, succ :: o → o and pred :: o → o;
non-terminal symbols S :: o, H :: d and G :: (o → o) → o, start
symbol S and rules:

S → case(H,G succ, G pred)
H → b1
H → H
G g → g zero

It computes the single, finite tree which, when written as a term, is
denoted succ zero i.e. [[G2]] = { succ zero }.
Remark 1. HORSC extends Kobayashi’s recursion schemes with
finite data domains (RSFD) [13] in several ways: (i) The bis of
HORSC are terminals, but the dis of RSFD are data (distinct from
variables, terminals and non-terminals). (ii) In RSFD the return
kind of both non-terminals and the case construct must be o. There
is no such restriction in HORSC. (iii) RSFD does not handle non-
determinism.

A consequence of (i) and (ii) is that in RSFD, the first argument
of the case construct must be an atomic datum di or a variable.
In contrast, the first argument of a case construct in HORSC is
an arbitrary term of kind d i.e. any term which may reduce to an
element of B or otherwise diverge. For example, the HORSC G2

is not a RSFD, since it is non-deterministic, and contains a case
construct that has a non-terminal as the first argument.

Deterministic Trivial Tree Automata

We use a simple form of automata over infinite trees to specify
properties of the tree languages of HORSC.

Definition 2. A deterministic trivial tree automaton (DTT) is a
quadruple A = 〈Σ, Q, δ, q0〉 where

(i) Σ is a ranked alphabet;

(ii) Q is a finite set of states containing an initial state q0;

(iii) δ : Q× Σ ⇀ Q∗ is a (partial) transition function such that if
δ(q, a) = q1 . . . qn then n is the arity of a.

A Σ-labelled tree t is accepted by a DTT A just if there is a Q-
labelled tree r, called a run-tree of A over t, satisfying:

(i) dom(r) = dom(t);

(ii) r(ε) = q0;

(iii) for every α ∈ dom(r), (r(α), t(α), r(α 1) · · · r(αm)) ∈ δ
where m is the arity of t(α).

Thus a run tree of A over t is an annotation of the nodes of t with
states that respects δ such that the root is annotated q0.

Example 4 (A DTT A1). Take the ranked alphabet Σ of Ex-
ample 2; [[G1]] is accepted by A1 = 〈Σ, {q0, q1}, δ, q0〉, where
δ : (q0, c) 7→ q1q0, (q1, b) 7→ q1, (q1, a) 7→ ε. Thus A1 accepts a

2 Note that if s = C[∆]→ C[·∆] and ∆ is outermost, and ∆′ is a different
outermost redex in s, then ∆′ occurs in C i.e. ∆ has a unique residual in
C[·∆].

Σ-labelled tree t if, and only if, a and b are seen only on the left of
a c.

c, q0
a, q1 c, q0

b, q1 c, q0

a, q1
...

Universal HORSC Model Checking Problem

Let A = 〈Σ, Q, δ, q0〉 be a DTT. Define the DTT A⊥ :=
〈Σ⊥, Q, δ′, q0〉 by δ′ := δ ∪ { (q, ⊥, ε) | q ∈ Q } (so that A⊥
will accept any subtree labelled ⊥ from any state).

Given a HORSC G and a DTTA, we say that the tree language [[G]]
is universally accepted (respectively existentially) by the DTT A
just if every (respectively some) element of the tree language [[G]]
is accepted by A⊥. The Universal HORSC Model Checking Prob-
lem for DTT is to check whether the language [[G]] is universally
accepted by A⊥. Henceforth, we will refer to this problem simply
as the HORSC Model Checking Problem.

3. An Intersection and Union Type System

We wish to characterise the HORSC model checking problem as a
kind of type inference problem in an intersection type system. In
doing so, we not only establish decidability, but also rephrase the
question of acceptance as one of bounded search – which is much
better understood algorithmically.

Well-Kinded Types

We introduce an intersection and union type system parameterised
by a DTTA = 〈Σ, Q, δ, q0〉 with B ⊆ Σ. First we define the set of
well-kinded types simultaneously with a kinding relation on types,
which is defined by induction over the following rules:

q ∈ Q
q :: o

B ⊆ B∨
B :: d

θi :: κ1 (for all i ∈ I) θ :: κ2

(
∧
i∈I θi)→ θ :: κ1 → κ2

Any expression σ such that σ :: κ is derivable in the above system
is a well-kinded type. For example, given Q = {q0, q1}, the
expressions q1 → q0 and ((q1 → q1) ∧ (q0 → q0)) → q0 are
well-kinded types while (q0 ∧ (q0 → q1)) → q1 is not. Note that
there are only finitely many well-kinded types of each kind. We
write Type for the collection of well-kinded types. Henceforth, we
will say type to mean well-kinded type.

We write
∧k
i=1 θi for

∧
{θ1, · · · , θk}, and > for

∧
∅; similarly

we write
∨l
j=1 bij for

∨
{bi1 , · · · , bil

}and ⊥ for
∨
∅; further we

write
∨
{bi} simply as bi. Note that intersection is only allowed on

the left of an arrow; and union is only defined on a subset of B.

Type System

We now present the type system itself. Intuitively, a typing for a
term t describes the tree generated by t. For example, the typing
a : q0 indicates that the trivial tree a is accepted from state q0.
Intuitively a term has an intersection type if it generates a tree that
is acceptable from every state in the intersection; a term has a union
type if it generates a singleton tree bi for some i. For example, the
typing λx.s : (q0 ∧ q1) → (b0 ∨ b1) says that we have a function

356

that takes a tree accepted from both q0 and q1 as an argument and
returns a tree s[t/x] that is either b0 or b1.

A type environment (typically Γ) is a finite set of type bindings,
which are pairs ξ : τ where ξ is a non-terminal symbol or a
variable, and τ is a type. Note that non-terminal symbols and
variables are treated in the same way by the system; and different
types may be bound to the same symbol in an environment.

A judgement is a triple, written Γ `A t : θ, in which Γ is a type
environment, θ is a type and t is a λ-term with case construct. A
judgements is valid just if it can be derived in the following system:

θ is well-kinded
VAR

Γ, x : θ `A x : θ

δ(q, a) = q1 · · · qn
TERM

Γ `A a : q1 → · · · → qn → q

Γ `A s : (
∧
i∈I θi)→ θ Γ `A t : θi (i ∈ I)

APP
Γ `A s t : θ

Γ, x : θ1, . . . , x : θn `A t : θ x /∈ Γ
ABS

Γ `A λx.t : (
∧
i∈{1,...,n} θi)→ θ

Γ `A t :
∨
i∈I bi Γ `A ti : θ (i ∈ I)

∨-ELIM / CASE
Γ `A case(t, t1, . . . , tn) : θ

∃i ∈ I · Γ `A t : bi ∨-INTRO / UNION
Γ `A t :

∨
i∈I bi

BASE
Γ `A bi : bi

Note in particular the final three rules, which cover the addition of
case to the term language. In ∨-ELIM each possible typing for t re-
quires a proof of typability of the corresponding ti. The disjunction
can only be eliminated here, ensuring that disjunction types cannot
be used in other contexts. A canonical typing derivation will reserve
the ∨-INTRO rule to be used immediately before BASE, delaying
the choice of which member type of the disjunction to choose as
late as possible. Each b ∈ B can be typed by a singleton disjunc-
tion of a type of the same name.

Characterisation

Following Kobayashi [8, 12], we characterise the HORSC model
checking problem in terms of the existence of certain type environ-
ments that are appropriate to the scheme that we are checking.

Definition 3. Fix a HORSC G and a DTT A. We say that a type
environment Γ is `G,A-complete, written `G,A Γ, just if

(i) dom(Γ) ⊆ N

(ii) Γ `A S : q0

(iii) for each (F : θ) ∈ Γ and for each λx.t ∈ R(F) we have
Γ `A λx.t : θ.

Intuitively, a type environment Γ is `G,A-complete whenever it
contains enough well-kinded typings for the non-terminal symbols
in G so that S can be typed with q0, but not so many that some are
inconsistent with the behaviour of their defining rules.

Theorem 1 (Characterisation). Given a HORSC G and a DTT A,
[[G]] is accepted byA⊥ if, and only if, there exists a `G,A-complete
type environment.

Given a HORSC G and a DTTA, the number of non-terminal sym-
bols in G and the number of well-kinded types is finite. It follows
that the problem of the existence of a `G,A-complete type environ-
ment is decidable. However, the size of the search space is hyper-
exponential in the largest order of the kind of any non-terminal
symbol. Thus, in the following section we describe an algorithm
which is able to explore this vast expanse in a goal-directed way,
which, we will argue in Section 5, gives good performance in prac-
tice.
Remark 2. In fact, since the data types in HORSC are finite, the
model checking problem can be shown to be decidable by reduc-
tion, via determinisation and a Church-style encoding of constants
as projection functions, to an instance of the HORS model checking
problem. However, such a transformation is known to increase the
order and arity of the non-terminal symbols and so is not palatable
from a practical point of view.

Example 5 (A typing for G1). We can see that Γ1 = {S : q0, F :
q1 → q0} is `G1,A1 -complete, hence, thanks to Theorem 1, [[G1]]
is accepted by A1.

4. The HORSC Model Checking Algorithm

Our approach to deciding the HORSC model checking problem
exploits the characterisation by the intersection and union type
system as stated in Theorem 1. Given a HORSC G and a DTT
A, the decision procedure seeks to construct a `G,A-complete type
environment.

Fix A = 〈Σ, Q, δ, q0〉. Consider a term t0 t1 . . . tn (where t0 is
atomic) which is expected to produce a tree of type q, the canonical
example being the termR(S) and the type q0. This can be viewed
as a typing judgement ` t0 t1 . . . tn : q. Our goal is to construct a
derivation for it. After n (bottom-up) applications of the APP rule, a
subgoal ` t0 : θ is generated where θ = α1 → · · · → αn → q and
the αi are type variables that are as yet undetermined. The values
they take on will depend on how t0 uses its arguments, and we can
explore this in a syntax-directed manner.

- Suppose t0 is a terminal symbol. Since δ(q, a) is unique, all αi
will be fully determined, yielding n further subgoals, which are
judgements of the form ti : αi to prove.

- Encountering a non-terminal, say t0 = F , requires us to assume
that F : θ and to build new derivations showing that s : θ for all
s ∈ R(F). Bear in mind the characterisation of the problem by
`G,A-completeness (Theorem 1).

- In case the symbol t0 is a variable (i.e. a formal parameter),
we must ensure that the corresponding actual parameter has the
necessary return type.

The use of type variables (such as αi above) captures the connec-
tion made by term variables between typing derivations and enables
us to detect the situation where a typing derivation is redundant. A
type variable is instantiated to a set of type expressions (call open
types) which may themselves contain type variables. A derivation
need not be explored further when two derivations both aim to show
R(F) : θ, one of which is already complete. We use a restricted
system of union types to represent non-deterministic choices in the
argument to a case term, which is illustrated in the following ex-
ample.

Example 6 (Building a derivation for G2 � A2). We consider a
simple DTT A2 = 〈{succ, pred, zero}, {q0, q1}, δ, q0〉 where δ
is the map: (q0, succ) 7→ q1, (q1, zero) 7→ ε. Starting with the

357

BASE`A b1 : b1 ∨-INTRO`A b1 : β

VAR
{g : α1} ` g : α2 → q0

APP
{g : α1} ` g zero : q0

ABS` λg.g zero : α1 → q0

VAR
Γo `A H : β

VAR
Γo `A G : α1 → q0 Γo `A succ : α2 → q0

APP
Γo `A G succ : q0 ∨-ELIM

Γo `A case(H,G succ,G pred) : q0

Table 1. Examples of pre-derivations (Γo = {H : β})

initial goal of showing S : q0, it immediately becomes necessary
to build a derivation rooted at `A R(S) : q0. Since the right-hand
side of S

R(S) = case(H,G succ,G pred)

is a case construct, we assume that H : β where β is a fresh
type variable and proceed to exploreR(H) to find which members
of the finite domain B it can reduce to. This leaves us with the
derivation

VAR
{H : β} `A H : β

APP
{H : β} `A case(H,G succ,G pred) : q0

and two further derivations to build, which are rooted at the follow-
ing, corresponding to the respective right-hand sides of H:

∅ `A H : β ∅ `A b1 : β

where β is instantiated to
∨
∅ = ⊥ initially, avoiding the need to

show any typings for the choice terms in the case construct. As
usual, ⊥ represents nontermination, which is exactly the situation
that would prevent the case from reducing to any choice term. If
the exploration of the scrutinee (here H) ever reduces to a bi then
β will be updated accordingly. Notice that taking the type environ-
ment to be Γ = {S : q0, H : β} in the sense of Theorem 1, the
derivations to ensure that the right-hand sides match the typings are
already in place, although as yet incomplete. To build a derivation
rooted at the right-hand judgement we use the ∨-INTRO and BASE
rules (see the derivation on the left in the top row of Table 1). This
requires β to contain b1, causing an additional obligation to type
the first choice term (G succ) of the case construct.

To complete this example, we aim to build a derivation rooted at
this new judgement

{H : β} `A G succ : q0.

In order to apply the APP rule (in a bottom-up fashion), we intro-
duce another type variable, α1. Dually to the use of ∨-ELIM, α1 is
initially instantiated to

∧
∅ = >, again avoiding the need to prove

any typing for succ at this time. Exploring the right-hand side of
G (top-right in Table 1), as for H , we find a use of the variable g.
Looking at the typing rules, we find that this typing must be jus-
tified by the VAR rule, which requires “enlarging” α1, and just as
before, after adding the new type to α1, the use of the APP rule to
“close” the judgement {H : β} `A G succ : q0 is no longer valid.
We must add an extra judgement for the operand (see the lower
derivation in Table 1), which in turn can be justified by the TERM
rule. This captures informally how we build up the typing deriva-
tions. Notice that if we take Γ to be the union of all non-terminal
type bindings in the various derivations then (i) dom(Γ) ⊆ N ;

(ii) Γ `A S : q0; (iii) If all judgements are closed then for each
F : θ in Γ, each t ∈ R(F), we have Γ `A t : θ. Clearly if
the tree language generated by the HORSC is finite, then all judge-
ments will eventually be closed following this approach. However
in general we require a more complex termination condition.

Open Types, Instantiation and Reification Maps

We now formalise the method introduced in Example 6. First we
introduce open types, which represent intersection types using type
variables. An open type has the form α1 → · · · → αn → β where
each variable αi ranges over finite sets of intersection types, and
β ∈ Q∪P(B). Given an instantiation map (to be defined shortly),
open types are a representation of types. Assume, for each kind κ,
a countably infinite set Aκ of type variables. The set Pκ of open
types of kind κ is defined by recursion over κ as follows (we use
θo, θo1, · · · to range over Pκ).

Po := Q Pd := P(B)
Pκ1→κ2 := {α→ θo | α ∈ Aκ1 , θ

o ∈ Pκ2 }

Let A :=
⋃
κ∈Kind Aκ and P :=

⋃
κ∈Kind Pκ. We say that a

function Θ : A → P(P) is an instantiation map if it is (i) finite:
there exists a finite subset C of A such that Θ maps every element
of (A\C) to ∅, and (ii) kind-respecting: for each kind κ, Θ restricts
to a function from Aκ to the set Pfin(Pκ) of finite subsets of Pκ.

Instantiation maps Θ : A → P(P) are used to reify open types.
Given such a map, we derive from it a kind-indexed family of maps
on open types, Θ̂κ : Pκ → Typeκ with κ ∈ Kind , as follows:

Θ̂o(q) := q, Θ̂d(B) :=
∨
B

Θ̂κ1→κ2(α→ θo) :=
(∧

θo1∈Θ(α) Θ̂κ1(θo1)
)
→ Θ̂κ2(θo)

Note that for each α ∈ Aκ1 , Θ(α) is a finite subset of Pκ1 . The
map Θ̂κ is well-defined by structural induction on κ. We define
Θ̂ : P → Type by θo 7→ Θ̂κ(θo) for θo ∈ Pκ, and call it the
reification map.

Example 7. Let κ = ((o → o) → o) → o → o, and take θo =
α1 → α2 → q1, an element of Pκ. Let Θ be the instantiation map:
α1 7→ {α3 → q2, α4 → q1 }, α2 7→ { q1 }, α3 7→ ∅, α4 7→
{α5 → q0 }, α5 7→ { q0 }. Then

Θ̂(θo) =
∧
{> → q2, (q0 → q0)→ q1 } → q1 → q1.

Open types are used to build up intermediate information about
the necessary typings of non-terminal symbols while keeping the
relation between these different types explicit in the mapping. This
relationship would be lost using concrete types.

358

For notational convenience we use some further conventions. We
use the superscript ‘o’ to mean open (in the sense of containing
variables). Thus open types are ranged over by θo, θo1, · · · ; simi-
larly, open-type environments are ranged over by Γo,Γo1, · · · . The
reification map Θ̂ is extended to open-type environments Γo where
it proceeds point-wise. Let J = Γo ` t : θo be an open-type judge-
ment. We write Θ̂(J) to mean the judgement Θ̂(Γo) `A t : Θ̂(θo).
Further, let ∆ be a finite tree whose nodes are labelled by open-type
judgements (such as typing derivations). We write Θ̂(∆) to mean
the tree that is obtained from ∆ by replacing each judgement J by
Θ̂(J).

Recall that a typing derivation is a tree whose nodes are labelled by
judgements; each such judgement is justified by a rule if it labels
an internal node, or by an axiom if it labels a leaf node. Informally
a pre-derivation is a finite tree whose nodes are labelled with open-
type judgements. In a pre-derivation, a judgement that occurs at a
leaf-node is said to be closed if there is a line above it; otherwise
it is said to be open. A pre-derivation that has no open judgements
is said to be closed; otherwise it is open. We write D for the set of
pre-derivations.

The Model Checking Algorithm

The algorithm proceeds by growing a tree D and an accompany-
ing instantiation map Θ. Each node n of D is associated with a
type binding of the form (F, s : θo) where F is a non-terminal,
s ∈ R(F) and θo is an open type; and n represents the subgoal
of building a derivation for the judgement Γo ` s : θo for some
open-type environment Γo. In the process of constructing such a
derivation (in a bottom-up fashion), new derivation subgoals may
be created, which are represented by the spawning of new nodes
(corresponding to the subgoals); and Θ is updated. The root node
is associated with the binding (S,R(S) : q0) (recall that we write
S →R(S) for the unique rule for S), and it represents the original
goal, namely, to build a derivation for · · · ` R(S) : q0.

Formally, a state of the algorithm is a pair (D,Θ) where D is a
((R× P) × D)-labelled tree, and Θ is an instantiation map. Each
node n of D is labelled by a quadruple, D(n) = (F, s : θo,∆),
such that the judgement at the root of the pre-derivation ∆ has
the form Γo ` s : θo for some term s ∈ R(F) and open-type
environment Γo. Observe that (F, s) uniquely identifies a rule from
R. Henceforth we shall refer to ∆ as the pre-derivation of n, and
the triples (F, s : θo) and (F, s : Θ̂(θo)) respectively as the open-
type binding and reified-type binding of n.

Given a state (D,Θ), a node of D is said to be closed if its
pre-derivation ∆ is closed (and we shall see—Lemma 1—that it
follows that Θ̂(∆) is a valid type derivation of `A); otherwise, the
node is open. The function open, when applied toD, returns the set
of judgements J that is currently open (in some open pre-derivation
of D).

The top loop of the algorithm is shown in Algorithm 1 and follows
the ideas outlined in Example 6. As mentioned earlier, we must
start with the open judgement ∅ ` R(S) : q0 and this informs the
initialisation. (W.l.o.g. we assume that R(S) is a singleton set.)
The open judgements, Γo ` s : θo, are then closed in turn by ap-
plication of the appropriate rule (as implemented by one of the six
Close– procedures), depending on the shape of s.

Termination of the loop depends on the existence of a complete cut
of a certain initial subtree of D. Fix a state (D,Θ). Define

Dcl := {n ∈ dom(D) | n and all its D-ancestors are closed }.

ThusDcl is the largest initial subtree ofD consisting only of closed
nodes.

Let t be a Σ-labelled tree. As usual a subset C ⊆ dom(t) is a cut
of t just if for every maximal path B of t, B ∩ C is a singleton
set. Let C be a cut of Dcl. We write n ≺ C to mean that n is an
ancestor of some element of C (read: n is an interior node of C);
and n 4 C to means that n ≺ C or n ∈ C.

Definition 4. We say that a cut C of the tree Dcl is complete if for
every c ∈ C, either c is a leaf-node3 of D, or there is an interior
node of C that has the same reified-type binding as c.

(Observe that open(D) = ∅ if, and only if, every node of D
is closed. Hence, if open(D) = ∅, the set of its leaf-nodes is a
complete cut; note that D is finite.)

Algorithm 1: Model Checking
input : HORSC G = 〈Σ,N ,R, S〉, DTT A = 〈Σ, Q, δ, q0〉
output: Whether G � A, with a witness
D :=
singleton tree with label (S,R(S) : q0, ∅ ` R(S) : q0)
Θ := {α 7→ ∅ | α ∈ A}
while Dcl does not have a complete cut do

foreach (Γo ` s : θo) as J ∈ open(D) do
if s = t u then CloseApp(J)
if s ∈ N then CloseNonTerm(J)
if s ∈ V then CloseVar(J)
if s ∈ B then CloseUnion(J)

if s = case(t, t) then CloseCase(J)
if s ∈ Σ then try CloseTerm(J) with

Trace s→ return (NO, s)
end

end
return (YES,D)

Procedure CloseNonTerm
input : J = Γo ` F : θo in pre-derivation ∆
// θo = α1 → · · · → αn → β
foreach Γo1 ` s : θo1 in pre-derivation ∆ do

Γo1 := Γo1 ∪ {F : θo}
end
J := Γo ` F : θo

foreach λx1 . . . xn.s ∈ R(F) do
Add a fresh node, labelled (F, λx1 . . . xn.s : θo, J ′), as
the rightmost child of the node of D containing J where

J ′ :=
{xi : αi | 1 ≤ i ≤ n} ` s : β

∅ ` λx1 . . . xn.s : θo

end

Example 8 (Completion of analysing G2 againstA2). We will now
look at the completed data structures, continuing from Example 6.
∆1, ∆2 and ∆3 are the pre-derivations explored in the previous
example, with ∆2, ∆3 and ∆4 being required to prove ∆1, as
can be seen from D in Table 2. Tracing the computation from
Example 6 to this state is left as an exercise to the reader. In this
case, the open pre-derivations ∆5 and ∆6 trivially have the same
reified-type binding as ∆3 and ∆4 (H,H : b1 andH, b1 : b1). As a

3 which means that ∅ ` s : Θ̂(θo) is valid (since c is closed and thanks to
Lemma 1, page 8), where (F, s : θo) is the open-type binding of c

359

Procedure AddDer
input : Type variable α, open type θo

// Find intro. of α in pre-derivations of
D

if ∃ ! J ′ = Γo ` t : α→ θo1 · · ·
Γo ` t u : θo1

then

J ′ := Γo ` t : α→ θo1 Γo ` u : θo · · ·
Γo ` t u : θo1

else (θo = bi)

∃ ! J ′ = Γo ` t : α · · ·
Γo ` case(t, t1, . . . , tn) : θo1

J ′ := Γo ` t : α Γo ` ti : θo · · ·
Γo ` case(t, t1, . . . , tn) : θo1

end
Θ := Θ[α 7→ Θ(α) ∪ { θo }]

Procedure CloseApp
input : J = Γo ` t u : θo

J :=
Γo ` t : α→ θo (α fresh)

Γo ` t u : θo

Procedure CloseV ar
input : J = Γo ` x : θo

J := Γo ` x : θo

AddDer(Γo(x), θo)

Procedure CloseTerm
input : J = Γo ` a : θo

// θo = α1 → · · · → αn → q
if (q, a) /∈ δ then

raise (Trace 〈counter-example trace〉)
else (δ(q, a) = q1 . . . qn)

J := Γo ` a : θo

foreach i ∈ {1, . . . , n} do
AddDer(αi, qi)

end
end

Procedure CloseCase
input : J = Γo ` case(t, t1, . . . , tn) : β

J :=
Γo ` t : β

Γo ` case(t, t1, . . . , tn) : θo

Procedure CloseUnion
input : J = Γo ` bi : β

J := Γo ` bi : bi
Γo ` bi : β

AddDer(β, {bi})

result the environment Γ = {S : q0, G : (q1 → q0)→ q0, H : b1}
is guaranteed to be a witness to [[G2]] � A2.

Correctness

First we observe that Algorithm 1 never gets stuck: every open
judgement is matched by one of the six rules (corresponding to the
six Close- procedures). We formulate it as an important invariant
of the algorithm.

Lemma 1 (Invariant). Let (D,Θ) be a state of the algorithm, n be
a node of D, and D(n) = (F, s : θo,∆) where the judgement at
the root of the pre-derivation ∆ is Γo ` s : θo (where s ∈ R(F)).

(i) Every internal judgement (respectively closed judgement) of
Θ̂(∆) is an instance of a rule (respectively axiom) of `A. Hence,
if n is closed then Θ̂(∆) is a valid type derivation, witnessing
Θ̂(Γo) ` s : Θ̂(θo).

(ii) Let Γo = {F1 : θo1, . . . , Fl : θol } and for each i, R(Fi) =
{ si1, . . . , siri }. Then

⋃l
i=1 {ni1, · · · , niri } is the set of succes-

sor nodes of n, where D(nij) = (Fi, sij : θoi ,∆ij) for each i.

Proof. (Sketch) Given (D,Θ) we prove that each of the six rules
(corresponding to the six Close- procedures) preserve these prop-
erties.

Lemma 2. Let (D,Θ) be a state of the algorithm. Suppose there
is a complete cut C of Dcl. Define Ξ to be the set:

Ξ := {F : Θ̂(θo) | ∃n . n 4 C ∧ D(n) = (F, s : θo,∆) }

Then `G,A Ξ (in the sense of Theorem 1).

Proof. Take n 4 C with D(n) = (F, s : θo,∆). We need
to show that there exists Γ ⊆ Ξ such that Γ `A s : Θ̂(θo),
for every s ∈ R(F). We may assume that n ≺ C; for if not,
since C is a complete cut, there is some interior node n′ of C
that has the same reified-type binding as n; and so, we take n′

instead of n. Since n is a node in Dcl, by Lemma 1, for some
Γo = {F1 : θo1, . . . , Fl : θol }, we have

F1 : Θ̂(θo1), . . . , Fl : Θ̂(θol) `A s : Θ̂(θo)

where the set of successors of n is N =
⋃l
i=1 {ni1, . . . , niri },

with D(nij) = (Fi, sij : θoi ,∆ij) for each sij ∈ R(Fi). If
N = ∅, we are done. Otherwise, take an arbitrary successor of
n, say, n11. Since C is a cut, n11 ≺ C or n11 ∈ C. If the latter,
sinceC is complete, there is an interior node ofC that has the same
reified-type binding as n11. Thus there is a subset N ′ consisting of
interior nodes of C such that the set of reified-type bindings of
nodes in N coincide with the set of reified-type bindings of nodes
in N ′, and we are done. Now take s′ ∈ R(F). By assumption,
s′ 4 C, using the same reasoning as before, we can show the
desired result.

Theorem 2 (Correctness). Let G = 〈Σ, Q, δ,R, S〉 be a HORSC
and A a DTT.

(i) If Algorithm 1 returns YES then A accepts [[G]].

(ii) If Algorithm 1 returns NO then A rejects [[G]].

(iii) Algorithm 1 terminates on every input.

360

(S, case(H,G succ,G pred) : q0,∆1) (G,λg.g zero : α1 → q0,∆2)

(H,H : β,∆3)

(H, b1 : β,∆4)
(H,H : β,∆5)

(H, b1 : β,∆6)

D =

∆1 = VAR
Γo `A H : β

VAR
Γo `A G : α1 → q0

TERM
Γo `A succ : α2 → q0

APP
Γo `A G succ : q0

∨-ELIM
Γo `A case(H,G succ,G pred) : q0

∆2 =

VAR
{g : α1} ` g : α2 → q0

TERM
{g : α1} ` zero : q1

APP
{g : α1} ` g zero : q0

ABS` λg.g zero : q0

∆3 =
BASE`A b1 : b1 ∨-INTRO`A b1 : β

∆5 = H : β `A b1 : β

∆4 = VAR`A H : β ∆6 = `A H : β

Θ = {α1 7→ {α2 → q0}, α2 7→ {q1}, β 7→ {b1}} Γo = {G : α1 → q0, H : β}

Table 2. A terminating state (D,Θ) of the algorithm with input G2 and A2 (Example 8).

Remark 3 (Round). We organise the computation of the while-
loop in Algorithm 1 into rounds. In each round, for each J ∈
open(D) we apply the appropriate Close- procedure repeatedly to
the judgement that is opened up, until we reach a non-terminal.
Thus at the end of each round, the open judgements (if any) are all
non-terminals.

Proof. (i) follows from Lemma 2.

(ii) It suffices to show that given a state (∆,Θ), for every judge-
ment Γ ` t : θo ∈ ∆ with q as the result type of θo, we can
construct a term t′ that is a subterm of some u such that S →∗G u;
further if there is a run tree r, then r(β) = q where u(β) = t′. Intu-
itively this means that for every such judgement determines a path
in a runtree. (iii) Let N = {F1, . . . , Fm } where F1 = S, and let
N be the product of the number of rewrite rules and the total num-
ber of types (of the relevant kinds) of G. Using our standard notion
of round (Remark 3), the open nodes of a state treeD are necessar-
ily leaf nodes. To show termination of the algorithm (in case of a
yes-instance), we aim to exhibit a state tree such that every path in it
is either sufficiently long to guarantee a recurrence of a reified type
binding, or it ends in a closed node. To this end, we systematically
compute all traversals. For each traversal, we keep on extending it
until we reach a closed node, or it has induced a path in the state
tree of length greater than N . Termination of such a computation
of traversals is a consequence of [16, Lemma 14 (long version)].
An alternative argument from first principles is Lemma 3, which is
proved in the long version of this paper.

Correspondence with Traversals

The computation of the algorithm can be represented by a possibly
infinite tree, called justified judgement tree, which is defined to be a
(justified) tree of judgements (i.e. the nodes are labelled by judge-
ments; we shall refer to a node by its label) such that J ′ is a suc-
cessor of J just if the execution of the call CloseΞ(J) (where the
suffix Ξ, which is one of Abs,NonTerm, V ar, Term,Case and
Union, is determined by the head symbol of the term in J) con-
structs the open judgement J ′ either in the same pre-derivation as
J or in a new pre-derivation. Thus each path in the justified judge-
ment tree represents a sequence of judgements that are successively

closed by one of the four CloseΞ procedures. The judgement tree
is justified in the sense that some nodes have a pointer back to an
ancestor node. In the long version of this paper, we show that the
justified judgement tree and the traversal tree (in the sense of [16])
are isomorphic with respect to both the successor and pointer rela-
tions.

Theorem 3 (Correspondence). (i) There is a bijective map Φ
from maximal paths in the traversal tree to maximal paths in the
computation tree. (ii) Further, for every maximal path π, the Σ-
projection of π to Σ coincides with the Σ-projection of Φ(π).

Lemma 3. If a traversal is well-founded (in the sense that there
exists N ≥ 0 such that all paths that are induced in the state tree
have length less than N) then it is finite.

Optimisations

A crucial optimisation is Actual Parameter Revisit Avoidance. Fix
a node n with open-type binding F : θo, and a variable x that
occurs more than once inR(F). Suppose at state (D,Θ), the open
judgement J2 = Γo ` x : θo2 in the pre-derivation of n (call it ∆)
is chosen and CloseVar(J2) is called with Γo(x) = α and θ2

0 =
β1 → · · · → βn → q. Suppose at an earlier state, a judgement of
the form J1 = Γo ` x : θo1 with θo1 = α1 → · · · → αn → q was
closed (and let J1 be the first such), and so, we have θo1 ∈ Θ(α).
Then we optimise as follows.

(i) When executing AddDer(α, θo2) as called by CloseVar(J2),
do not search for J ′ nor update it (using the notation of
the procedure AddDer), instead, after executing Θ(α) :=
Θ(α) ∪ { θo2 }, perform: for each i, Θ(βi) := Θ(αi); and
for each θ′o ∈ Θ(βi), call AddDer(βi, θ

′o).

(ii) Subsequently, every call to AddDer(αi, θ
′o) automatically

triggers a call to AddDer(βi, θ
′o), for i ∈ { 1, · · · , n }.

To see why the optimisation is sound, consider AddDer(α, θo1),
which constructs a new open judgement Γo1 ` u : θo1 (say). Eventu-
ally for some i ∈ { 1, · · · , n }, AddDer(αi, θ

′o) is called, which
performs the update Θ(αi) := αi ∪ { θ′o } with control then re-
turning the original pre-derivation ∆, seeking to prove a typing

361

θ′
o for the ith-argument (of the first occurrence) of x. Let this se-

quence of calls to a Close procedure between AddDer(α, θo1) and
AddDer(αi, θ

′o) be Υi,θ′o . Now consider a call to CloseVar(J2)
which calls AddDer(α, θo2), and which constructs a new open
judgement Γo1 ` u : θo2 (say). Note that for each i and θ′o, Υi,θ′o

determines a corresponding sequence of calls to a Close procedure
between AddDer(α, θo2) and AddDer(βi, θ

′o). The optimisation
removes such call sequences for each i and θ′o (but not their ef-
fects). Our experiments (see Section 5) demonstrate that the opti-
misation results in close to an order-of-magnitude improvement for
HORS of orders 4 or higher.

Translated into the language of traversals, the optimisation says that
if the traversal reaches a variable x with state q, instead of jumping
to the actual parameter of x, one can immediately traverse down-
wards with state q′ to the i-child of x, provided the traversal has vis-
ited another occurrence of x before with state q and subsequently
visiting its (the earlier occurrence’s) i-child with state q′.

The canonical types optimisation aids with the critical part of a
complete cut (and thus termination) is finding two nodes with the
same concrete type bindings. We can increase the chance of finding
two such nodes using subtyping to yield canonical types. Given any
intersection type

∧
i∈I θi → θ it is sufficient to consider instead∧

j∈J θj → θ where J ⊆ I and for all k ∈ I \J , there exists some
j ∈ J such that θj ≤ θk (where ≤ is standard intersection type
subtyping). Intuitively, this θk may be removed because θj already
places a stronger requirement on a parameter to this function. Any
typing tree that uses x : θk could therefore be replaced with one
that uses x : θj instead. Removing these redundant types during
reification of open types allows us to consider a smaller space of
canonical types.

At a lower-level, reification caching was introduced to handle the
relatively expensive calculation of Θ̂ as the requirement to search
for a cut after each round of operation led this to dominate the
runtime of the algorithm. By caching the result of Θ̂ for each α
and maintaining a dependency mapping (such that if α′ ∈ Θ̂(α)
then α depends on α′) we can avoid the majority of Θ lookups
while preserving correctness by invalidating cache entries in the
transitive closure of the dependencies for any α that we update.

Finally, an unguided execution of the algorithm can yield a vast
number of subgoals very quickly. Every time a terminal symbol
of arity n is encountered, the number of subgoals rises by n − 1.
To address this, our implementation uses a search guided by the
termination check. While searching for a complete cut using a
breadth-first search of D, any subtree rooted at a node with a type
binding already seen is not explored, and any open judgements
within this subtree are not expanded at this time. This focuses
the attention of the algorithm on areas of the tree that could not
currently form part of a complete cut. In the extremal case, all
open judgements are contained in such subtrees, and the algorithm
terminates.

5. Empirical Results and Evaluation

We have constructed TRAVMC, an implementation of Algorithm 1
presented in Section 4. The implementation, and all the exam-
ples presented here, can be accessed through a web interface at
http://mjolnir.cs.ox.ac.uk/horsc/. For comparison we
have considered not just HORSC, but also standard HORS, which
can be handled by our algorithm as a degenerate case.

Instance O S R H G T TB T′

example2-1 1 2 Y 2 1 34 0 33
fileocamlc 4 21 Y 8 1680 60 23 718
fileocamlc2 4 22 Y 7 1980 58 18 918
fileorder5-2 5 30 Y 109 – 201 167 –
filewrong 4 11 N 0 – 86 47 85
flow 4 7 Y 1 3 32 0 32
g35 3 11 Y – 136 – – –
g41 4 8 Y – 608 55 15 –
lock2 4 11 Y 10 – 64 23 132
m91 5 25 Y 39 – 429 381 –
order5 5 9 Y 5 – 62 8 46
order5-variant 5 11 Y 12 – 47 7 317
stress 1 13 Y 29 3 187 133 180

Table 3. HORS MC comparison

HORSC O S R T TH
checknz 1 27 Y 46 36
checkpairs 1 86 N 53 93
filepath 1 369 Y 1950 –
filter-nonzero 4 49 N 74 156
filter-nonzero-1 4 69 Y 1756 –
last 1 60 Y 71 45
map-head-filter 2 110 N 62 116
map-head-filter-1 2 190 Y 1080 1538
map-plusone 4 39 Y 83 161
map-plusone-1 4 49 Y 296 860
map-plusone-2 4 63 Y 4144 –
mkgroundterm 1 108 Y 179 96
risers 1 165 Y 113 127
safe-foldr1 2 145 Y 450 625
safe-head 2 106 Y 71 56
safe-init 2 235 Y 209 288
safe-tail 2 154 Y 88 74

RSFD O S R T H
gap id 3 26 Y 248 15
homrep 4 12 Y 1767 7
merge addr 1 7 Y 52 1
mult 1 5 Y 52 1
remove b 2 7 Y 54 2
xhtmlm-drop-a 1 33 Y 1252 146
xhtmlm id 1 33 Y 996 64
xhtmls-remove-meta 1 13 Y 277 9
xhtmlf id 1 51 Y – 456

Table 4. HORSC MC results

HORS Model Checking

For HORS, we have used a benchmark suite containing a number of
examples from the literature, along with some fresh examples. The
columns “O”, “S” and “R” in the table indicate the order, number
of rules and result of the example respectively. The “H” and “G”
columns contain timing data (in milliseconds) for Kobayashi’s hy-
brid (TRECS version 1.32) and game-based algorithms (GTRECS
version 0.104). Those labelled “T” or “TB” (resp. “T′”) are for
the algorithm introduced in this paper with (resp. without) the Re-
visit Avoidance optimisation at order 1, the subscript B indicating
a ‘batch’ processing mode. Where an algorithm did not terminate
within 10 seconds this is indicated by “–”.

4 We did not have access to a GTRECS binary, as a result experiments were
carried out through the author’s web interface. Timings are not directly
comparable, but indicative.

362

http://mjolnir.cs.ox.ac.uk/horsc/

Table 3 shows that for most examples TRAVMC performs approx-
imately an order of magnitude slower than the current version of
TRECS. However, given the immature state of our implementa-
tion, we believe that this gap may be crossed given careful opti-
misation. For the very rapid examples (around 100ms and below),
we found that the runtime was dominated by the first round of ex-
pansion. We believe that this is JIT overhead tied to our use of F#
on .NET (both TRECS and GTRECS are implemented in OCaml).
This is supported by our batch mode experiment, which saw all ex-
amples processed consecutively by a single invocation of the model
checker, avoiding the repeated startup overhead commonly associ-
ated with JIT compilers and reduced the runtime by around 50ms
consistently. One area where we believe significant speedups may
be gained are in extending the Actual Parameter Revisit Avoidance
optimisation to orders 2 and above. Although some savings are still
made at higher orders in the current implementation, the amount of
work which is potentially avoided can be increased exponentially
by extending the optimisation to each order. Furthermore, in or-
der to keep the cost of checking the termination condition low, it
is currently somewhat conservative, but it is possible that a more
thorough procedure, if carefully engineered, could potentially de-
tect termination earlier. Exploring this trade-off could provide sub-
stantial benefits.

It is worth noting that both TRECS and TRAVMC could handle
almost all of the examples without trouble, implying that further
work on more taxing examples is needed to better understand where
each algorithm breaks down. One direction in which both algo-
rithms struggled is a set of examples introduced by Kobayashi [10]
known as Gn,m. When checked by the hybrid algorithm, these ex-
amples require O(expn(m)) expansions to obtain type informa-
tion for non-terminals at the bottom of a hyper-exponential tree.
Our new algorithm’s performance improved markedly due to the
Revisit Avoidance optimisation, checking G4,1 even faster than
Kobayashi’s linear-time algorithm GTRECS, although higher val-
ues of n andm resulted in timeouts. We believe the speedup will be
lifted to higher values of nwith a full implementation of the Revisit
Avoidance optimisation.

Such examples display the power of GTRECS fully and it is en-
couraging to note that TRAVMC seems to be able to handle some
such recursion schemes. In more realistic cases, TRAVMC outper-
forms GTRECS by several orders of magnitude.

HORSC Model Checking

For HORSC, we have generated some examples as the output of
an abstraction procedure based on earlier work [17]. The abstrac-
tion procedure operates on a pattern-matching recursion scheme
(PMRS), which can be thought of as an instance of a simply-typed
programming language with higher-order, recursive functions and
pattern-matching over algebraic data-types. The abstract models
that are produced are not strictly HORSC, since they can have pat-
terns on the left-hand side of grammar rules which include free
variables (though such variables are not allowed to appear on the
right-hand side of grammar rules), so they are first put through a
translation which is detailed in the long version of this paper. For
some examples (those with numbers appended) we performed re-
finement of the abstraction and here we give the timings for each
round of model checking. See Table 4, where the columns are la-
belled as before.

In order to evaluate the usefulness of a primitive case analysis
construct, which is afforded by HORSC, we have compared the
results of checking these HORSC model checking instances with
corresponding HORS encodings (using TRAVMC in both cases).

In each case, the HORS encoding of the HORSC is obtained by
determinising and modelling the constants as projection functions.
Unavoidably, this raises the order and arity, and hence worst-case
complexity significantly (see Remark 2). The time to check the
original instance is given in column “T” and to check the encoding
can be seen in the column “TH”. For some examples, particularly
the simpler ones, checking HORS is fast enough, but as the size
and order of the example increases, this approach breaks down. We
believe that this offers a compelling argument for the introduction
of HORSC.

Pattern-match safety An important verification problem in func-
tional programming is that of ensuring that partial pattern matches
never receive one of the missing cases and so are ‘safe’. Pattern-
match safety is reducible to reachability, and the results for these
can be seen at the top of the table. One simple example is the
list-processing function last, which assumes that its input is a non-
empty list. The CATCH tool [14] targets this verification problem,
and we have used some of the same examples: the Risers pro-
gram and Safe and FilePath libraries, which contain partial pattern
matching that we verify to be safe. The input HORSC is in both
cases rather large, but the algorithm still terminates quickly.

A more complex example uses filter to remove empty lists from the
input before invoking head on the remaining lists (map-filter-head).
The mkgroundterm program contains a counting function that sums
the values of constants within a ground term. By guarding the input
to this partial function (by removing variables), we are able to prove
that the program is safe.

Output term While pattern-match safety reduces to reachability,
we can check more interesting properties such as verifying some
structure of the output of a function. The filter-nonzero example
uses filter with a nonzero function and verifies that the output list
contains no element equal to zero. For the map-plusone example,
we add one to all elements of an input list of naturals and verify
again that the output list contains no zeroes.

RSFD Kobayashi, Tabuchi and Unno model check recursion
schemes with finite data domains (RSFD) as part of their work [13].
RSFD form a sub-class of HORSC in which there are additional
typing restrictions on the scrutinee appearing in each case analysis.
Since each RSFD can be viewed as a HORSC, our tool is also able
to solve the RSFD model checking problem. We have compared the
performance of our tool (column “T”) versus the TRECS (version
1.32) tool of Kobayashi et al. (column “H”) in the second part of
Table 4. The data reveals that, perhaps unsurprisingly, the specialist
RSFD checker is more efficient in all examples. Indeed, the partic-
ular additional restrictions imposed in the definition of RSFD make
the class particularly appealing from an algorithmic point of view,
though one which is not expressive enough for our purposes. How-
ever, even at higher orders or with a large number of automaton
states, our tool can solve almost all the example instances.

6. Related Work

MSO Model Checking Problem The MSO model checking prob-
lem for order-n recursion schemes was first proved to be decidable
(with optimal complexity of n-EXPTIME) by Ong [16]. His proof
used game semantics to reduce the model checking problem to the
solution of parity games over variable profiles. To date, three other
proofs are known, employing different methods to build appropri-
ate parity games. Hague et al. [4] constructed configuration graphs
of collapsible pushdown automata; Kobayashi and Ong [12] used

363

intersection types; and Salvati and Walukiewicz [19] appealed to
Krivine machines. For the restricted class of trivial automata (but
for the full hierarchy of HORS), Aehlig [1] gave a decidability
proof based on a novel finite semantics for simply-typed lambda
calculus. Kobayashi’s proof of the same result, which was based on
intersection types [8], used a similar idea.

Practical Model Checking Algorithms for HORS As discussed
in the Introduction, the first practical model checking algorithm
for HORS against trivial automata was Kobayashi’s hybrid algo-
rithm [7], which was implemented in the model checker TRECS
[9]. There are important differences between the hybrid algorithm
and our traversal algorithm. The hybrid algorithm extracts intersec-
tion types by partial evaluation of the HORS followed by an over-
approximation; whereas the traversal algorithm (following game
semantics) harvests variable profiles from the traversals in game
semantics. Secondly the hybrid algorithm uses a loop—each itera-
tion being a greatest fixpoint construction starting from a seed type
environment—which will eventually compute a `G,A-complete
type environment in case (G,A) is a yes-instance. In contrast,
the traversal algorithm builds a `G,A-complete type environment
“from below”.

Kobayashi’s FoSSaCS’11 algorithm [10] is inspired by game se-
mantics, even though the formal development of the algorithm is
purely type-theoretic, and no concrete relationship with game se-
mantics is known. A notable feature of the algorithm is its sim-
plicity, which consists of two fixpoint constructions, first least then
greatest. Thanks to Rehof and Mogensen’s optimisation [18], a con-
sequence of the fixpoint design is its linear-time complexity in the
size of the HORS, assuming that the other parameters are fixed.
The main innovation of the algorithm lies in the least fixpoint com-
putation. Given a candidate type environment Γ, for each subset
Γ1 ⊆ Γ, and each F : θ ∈ Γ, more “expansive” versions of Γ1

and θ, namely, Γ′ and θ′ (satisfying Γ1 �O Γ′ and θ �P θ′) re-
spectively, are selected such that Γ′ ` R(F) : θ′. (The expansive
relations �O and �P represent Opponent and Proponent moves
respectively.) The type environment that is constructed in the next
iteration consists of Γ extended by Γ′ ∪{F : θ′ }, for all F : θ and
for all such Γ′ and θ′. Our traversal algorithm may be viewed as a
process of approximating a (canonical) `G,A-complete type envi-
ronment from below. There are however two differences. First the
successive approximants are not related by containment. Secondly,
our algorithm selects just one such pair of Γ′ and θ′, as determined
by the traversal development.

7. Conclusions and Further Directions

We have presented a practical algorithm for the universal model
checking problem for higher-order recursion schemes with cases
(HORSC) against deterministic trivial automata. The algorithm is
based on traversals, and is induced by the fully abstract game se-
mantics of the recursion schemes, but presented as a goal-directed
construction of derivations in an intersection and union type sys-
tem. We view HORSC model checking as a suitable backend for
an approach to verify functional programs (presented as pattern-
matching recursion schemes) via an abstraction-refinement pro-
cedure. Preliminary experiments with our tool implementation
TRAVMC indicate that the algorithm performs remarkably well
on a number of small but realistic examples generating schemes
with hundreds of rules. We hope to explore the scalability of our
approach by verifying larger examples of pure functional programs
from the literature.

8. Acknowledgements

We would like to thank our reviewers for their helpful comments
on the first version of this paper. We would also like to thank
Naoki Kobayashi for his assistance when benchmarking against his
tools, and for offering an automated approach for performing the
translation from HORSC to HORS (see Section 5).

References
[1] Klaus Aehlig. A finite semantics of simply-typed lambda terms for

infinite runs of automata. Logical Methods in Comp. Sci., 3(3), 2007.
[2] Thomas Ball, Rupak Majumdar, Todd D. Millstein, and Sriram K.

Rajamani. Automatic predicate abstraction of C programs. In PLDI,
pages 203–213, 2001.

[3] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar.
The software model checker blast. STTT, 9(5-6):505–525, 2007.

[4] Matthew Hague, Andrzej S. Murawski, C.-H. Luke Ong, and Olivier
Serre. Collapsible pushdown automata and recursion schemes. In
LICS, pages 452–461, 2008.

[5] J. M. E. Hyland and C.-H. Luke Ong. On full abstraction for PCF: I,
II, and III. Inf. Comput., 163(2):285–408, 2000.

[6] Teodor Knapik, Damian Niwinski, and Pawel Urzyczyn. Higher-order
pushdown trees are easy. In FoSSaCS, pages 205–222, 2002.

[7] Naoki Kobayashi. Model-checking higher-order functions. In PPDP,
pages 25–36, 2009.

[8] Naoki Kobayashi. Types and higher-order recursion schemes for
verification of higher-order programs. In POPL, pages 416–428, 2009.

[9] Naoki Kobayashi. http://www-kb.is.s.u-tokyo.ac.jp/

˜koba/trecs/. 2009.
[10] Naoki Kobayashi. A practical linear time algorithm for trivial au-

tomata model checking of higher-order recursion schemes. In FOS-
SACS, pages 260–274, 2011.

[11] Naoki Kobayashi and C.-H. Luke Ong. Complexity of model checking
recursion schemes for fragments of the modal mu-calculus. In ICALP
(2), pages 223–234, 2009.

[12] Naoki Kobayashi and C.-H. Luke Ong. A type system equivalent
to the modal mu-calculus model checking of higher-order recursion
schemes. In LICS, pages 179–188, 2009.

[13] Naoki Kobayashi, Naoshi Tabuchi, and Hiroshi Unno. Higher-order
multi-parameter tree transducers and recursion schemes for program
verification. In POPL, pages 495–508, 2010.

[14] Neil Mitchell and Colin Runciman. Not all patterns, but enough - an
automatic verifier for partial but sufficient pattern matching. In Haskell
’08: Proceedings of the first ACM SIGPLAN symposium on Haskell,
pages 49–60. ACM, September 2008.

[15] Robin P. Neatherway, C.-H. Luke Ong, and Steven J. Ram-
say. A traversal-based algorithm for higher-order model check-
ing. Long version, available from: http://mjolnir.cs.ox.
ac.uk/papers/traversal.pdf, 2012.

[16] C.-H. Luke Ong. On model-checking trees generated by higher-
order recursion schemes. In LICS, pages 81–90, 2006. Long
version (55 pp.) http://www.cs.ox.ac.uk/people/luke.
ong/personal/publications/ntree.pdf.

[17] C.-H. Luke Ong and Steven J. Ramsay. Verifying functional programs
with pattern matching algebraic data types. In POPL, pages 587–598,
2011.

[18] Jakob Rehof and Torben Æ. Mogensen. Tractable constraints in finite
semilattices. Sci. Comput. Program., 35(2):191–221, 1999.

[19] Sylvain Salvati and Igor Walukiewicz. Krivine machines and higher-
order schemes. In ICALP (2), pages 162–173, 2011.

364

http://www-kb.is.s.u-tokyo.ac.jp/~koba/trecs/
http://www-kb.is.s.u-tokyo.ac.jp/~koba/trecs/
http://mjolnir.cs.ox.ac.uk/papers/traversal.pdf
http://mjolnir.cs.ox.ac.uk/papers/traversal.pdf
http://www.cs.ox.ac.uk/people/luke.ong/personal/publications/ntree.pdf
http://www.cs.ox.ac.uk/people/luke.ong/personal/publications/ntree.pdf

	Introduction
	Higher-Order Recursion Schemes with Cases
	An Intersection and Union Type System
	The HORSC Model Checking Algorithm
	Empirical Results and Evaluation
	Related Work
	Conclusions and Further Directions
	Acknowledgements

