A Type System Equivalent to the Modal Mu-Calculus Model Checking of
Higher-Order Recursion Schemes

Naoki Kobayashi
Tohoku University

Abstract—The model checking of higher-order recursion
schemes has important applications in the verification of
higher-order programs. Ong has previously shown that the
modal mu-calculus model checking of trees generated by order-
n recursion scheme is n-EXPTIME complete, but his algorithm
and its correctness proof were rather complex. We give an
alternative, type-based verification method: Given a modal mu-
calculus formula, we can construct a type system in which
a recursion scheme is typable if, and only if, the (possibly
infinite, ranked) tree generated by the scheme satisfies the
formula. The model checking problem is thus reduced to a type
checking problem. Our type-based approach yields a simple
verification algorithm, and its correctness proof (constructed
without recourse to game semantics) is comparatively easy to
understand. Furthermore, the algorithm is polynomial-time in
the size of the recursion scheme, assuming that the formula and
the largest order and arity of non-terminals of the recursion
scheme are fixed.

I. INTRODUCTION

The model checking of infinite structures generated by
higher-order recursion schemes has drawn growing attention
from both theoretical and practical communities. From a
theoretical perspective, the recent interest was sparked by
the discovery of Knapik et al. [11] that higher-order recur-
sion schemes satisfying a syntactic constraint called safety
generate the same class of (possibly infinite, ranked) trees
as higher-order pushdown automata. Remarkably they also
showed that these trees have decidable monadic second-
order (MSO) theories [12], subsuming earlier well-known
MSO decidability results for regular (or order-0) trees [19]
and algebraic (or order-1) trees [4]. (MSO logic is a kind of
gold standard of expressivity for logics that describe com-
putational properties: all the standard temporal logics can be
embedded into it, and it is hard to extend it meaningfully
without sacrificing decidability where it holds.) Ong [18]
has subsequently shown that the modal mu-calculus model
checking problem for trees generated by arbitrary order-
n recursion schemes is n-EXPTIME complete (and hence
these trees have decidable MSO theories); further [7] these
schemes are equi-expressive with a new class of automata,
called collapsible pushdown automata. On the practical side,
Kobayashi [14] has recently shown that the verification of
higher-order programs can be reduced to that of higher-order
recursion schemes. He constructed a transformation of a

C.-H. Luke Ong
University of Oxford

higher-order program into a recursion scheme that generates
a (possibly infinite) tree representing all the possible event
sequences of the program; thus, temporal properties of the
program can be verified by model-checking the recursion
scheme.

Ong’s algorithm for verifying higher-order recursion
schemes is rather complex and probably hard to understand:
The algorithm reduces the model-checking problem to a
parity game over variable profiles, and its correctness proof
relies on game semantics [9]. Hague et al. [7] gave an
alternative proof via a reduction of the model checking
of recursion schemes to that of collapsible pushdown au-
tomata; their reduction is also based on game semantics.
Kobayashi [14] showed that given a Biichi tree automaton
with a trivial acceptance condition (a class which Aehlig [1]
has called trivial automata), one can construct an intersec-
tion type system in which a recursion scheme is typable if,
and only if, the tree generated by the scheme is accepted by
the automaton. (Prior to Kobayashi’s work [14], Aehlig [1]
has also proposed a verification method for the same class of
trivial automata. Kobayashi’s type system is closely related
to Aehlig’s, which was not presented in the form of a
type system.) The advantages of the type system are that
the correctness of the algorithm is much simpler, and it
is easier to optimize the algorithm in a number of special
cases, by standard methods for type inference. Specifically,
Kobayashi [14] has shown that, assuming that the automaton
and the largest order and arity of non-terminals of the
recursion scheme are fixed, the verification algorithm runs
in time linear in the size of the recursion scheme.

This paper builds on Kobayashi’s type system [14] and
extends it to a type system capable of the modal mu-
calculus model checking of trees generated by higher-order
recursion schemes. Equivalently (thanks to Emerson and
Jutla [5]), given an alternating parity tree automaton .4, one
can construct a type system 7_4 in which a recursion scheme
G is well-typed if, and only if, the tree generated by G is
accepted by A. Thus, the modal mu-calculus model checking
problem is reduced to a type inference problem.

Our type-based verification algorithm has a number of
advantages:

o The algorithm is simple: the type system, to which
the model checking problem is reduced, is defined by

induction over four rules. The correctness proof is, arguably,
considerably easier to understand than that of Ong’s original
approach [18]. The correctness of the algorithm has two
parts: the correctness of the type system, and that of the type
inference algorithm. For both parts, standard methods (such
as proving type soundness via type preservation) remain
applicable, although the reasoning about parity conditions
is novel and non-trivial. It is also worth noting that this
is the first proof of Ong’s result without recourse to game
semantics.

o It is much easier to discuss the parameterized complex-
ity and possible optimization of the verification algorithm.
In fact, our type-based verification algorithm runs in time
polynomial in the size of the recursion scheme, assuming
that the automaton and the largest order and arity of non-
terminals of the recursion scheme are fixed. In contrast,
Ong’s algorithm [18] runs in time n-EXPTIME in the size
of the scheme, under the same assumption.

o Framed as a type system, we believe that it is easy to
modify the verification algorithm to deal with various exten-
sions of higher-order recursion schemes. For example, one
can extend higher-order recursion schemes with a limited
form of polymorphism that admits (say) a non-terminal of
kind (0 — o) A ((0 — o) — (0o — o)) where o describes
trees, and also with finite data domains such as booleans:
see Section VII.

From a type-theoretic point of view, the type system has
a number of novel features which we think are interesting:
(i) variable bindings in a type environment have flags and
priorities to express when the variables can be used, and
(i1) the well-typedness of recursive definitions is defined via
the winning condition of a parity game. The latter is a non-
trivial generalization of the usual treatment of recursion in
type systems for programming languages.

The rest of this paper is organized as follows. Sec-
tion II gives preliminary definitions. Section III defines the
type system equivalent to the model checking of recursion
schemes, and Section IV proves its correctness. Section V
discusses the type inference algorithm (which serves as a
model-checking algorithm for recursion schemes) and its
complexity. Section VI discusses related work and Sec-
tion VII discusses future directions. A longer version of this
paper is available from the authors’ web page.

II. PRELIMINARIES

This section reviews definitions of higher-order recur-
sion schemes, alternating parity tree automata, and parity
games [6]. Alternating parity tree automata are used for
expressing properties of infinite trees and are equi-expressive
with logics such as MSO and modal p-calculus. Parity
games will be used for defining our type system (more
specifically, for the purpose of typing recursive definitions).

Higher-Order Recursion Schemes: A higher-order re-
cursion scheme is a grammar for describing an infinite tree.

A kind! is either o, describing a tree, or kK1 — Ko, describing
a function that takes an entity of kind x; and returns an entity
of kind k3. The order and arity of k, written ord(x) and
arity (k) respectively, are defined by:

ord(o) :==0
arity(o) := 0

ord(k1 — ko) := maz(ord(k1) + 1, ord(k2))
arity(k1 — K2) 1= arity(k) + 1

A (deterministic) higher-order recursion scheme (or re-
cursion scheme, for short) G is a quadruple (X, N, R,S),
where

e X is a ranked alphabet i.e. a map from a finite set of
symbols called ferminals to kinds of order 0 or 1.

o N is a map from a finite set of symbols called non-
terminals to kinds.

o R is a map from the set of non-terminals (i.e. dom(N))
to terms of the form Az.t. Here, & abbreviates a sequence
of variables, and ¢ is a term constructed from non-terminals,
terminals, and variables (see below).

¢ S is a special non-terminal called the start symbol.
We require that A(S) = o. The set of (typed) terms is
defined in the standard manner: A symbol (i.e., a terminal,
non-terminal, or variable) of kind x is a term of kind x. If
terms t; and t5 have kinds k1 — ko and ki respectively,
then ¢; ts is a term of kind ks. For each R(F) = \Z.t, F' T
and ¢ must be terms of kind 0,2 and the variables that occur
in t are contained in Z. The order of a recursion scheme is
the highest order of its non-terminals.

By abuse of notation, we often write @ € ¥ and F' € N/
for a € dom(X) and F € dom(N).

The rewriting relation —¢ is defined inductively by:

o FF§5—g [5/Z]t if R(F) = \z.t.

o If t —¢g ', then ts —¢ t's and st —¢ st’.

We omit the subscript G whenever it is clear from the
context.

Let A be a set of symbols. A A-labelled tree is just a
partial function ¢ from {1, ...,n}* (for some fixed n > 1) to
A such that dom(t) is prefix-closed. Note that ¢ is unranked
i.e. nodes in ¢ that have the same label are not required to
have the same number of children. When considering the
possibly infinite term-trees that are generated by recursion
schemes, we assume a given ranked alphabet X (say). Let
n be the largest arity of symbols in 3; a X-labelled tree
is thus a partial function ¢ from {1,...,n}* to dom(X)
such that dom(t) is prefix-closed. Further, ¢ is said to be
ranked just if whenever t(w) = a and arity(X(a)) = m,
then {i | wi € dom(t)} = {1,...,m}. A (possibly infinite)
sequence 7 over {1,...,n} is a path of t if every finite
prefix of 7 is in dom(t).

"They are usually called rypes [18]. We use the term “kinds” to avoid
confusion with the intersection types introduced later.

2By the definition of terms, ¢ does not contain A-abstractions. We think
however that the type system presented in Section III is correct even if
A-abstractions are allowed in ¢.

Given a term t, we define a (finite) tree ¢+ by:

f if ¢ is a terminal f
tt =< tittoh if tis of the form tity and t1 - # L
1 otherwise

For example, (f (F a) b)" = f L b. Let C be the partial
order on dom(X) U {L} defined by Va € dom(X).L C
a. It is extended to a partial order on trees by: t C s iff
Yw € dom(t).(w € dom(s) A t(w) C s(w)). For example,
1CfLLEfLbLC fab. For a directed set 1" of trees,
we write | |T for the least upper bound of elements of T
with respect to C.

The tree generated by G, or the value tree of G, written
[G]. is LI{t*+ | S — t}. By construction, [G] is a possibly
infinite, ranked (XU{_L})-labelled tree (but see Remark 2.1).

Example 2.1: Consider the recursion scheme Gy, =
(X,N,R,S), where: ¥ = {a:0— o0 —o0,b:o—o0,c:0},

={S:0,F:0o - of,and R = {S — F ¢,F —
Az.a z (F(bz))}. S is reduced as follows.

S— Fc—ac (F(bc))
— ac(a(bc) (F(b(bc)))) —..

The value tree [Go] is depicted as follows.

a
— T~
C a
— ™~
a
— ™~

oO—0oT
o’

a
‘ —
b b
L]

Alternating Parity Tree Automata: Given a finite set
X, the set BY(X) of positive Boolean formulas over X is
defined as follows:

BY(X)20 u=t|f|z|0AO]|OVE

where x ranges over X. We say that a subset Y of X satisfies
6 just if assigning true to elements in Y and false to elements
in X \ Y makes 6 true.

An alternating parity tree automaton (or APT for short)
over Y-labelled trees is a tuple A = (%, Q, 6, qr,) where

o X is a ranked alphabet; let m be the largest arity of the
terminal symbols.

o () is a finite set of states, and g; € @ is the initial state.

e 0:Qx3Y — BY({l,...,m} x Q) is the transition
function where, for each f € X and ¢ € @, we have
5(a. f) € BY({1,..., arity()} x Q).

e 2:Q —{0,---, M — 1} is the priority function.

A run-tree of an alternating parity tree automaton A over a
3>-labelled ranked tree ¢ is a (dom(t) x Q)-labelled unranked
tree r satisfying:

e € € dom(r) and r(e) = (¢, ¢r); and

o for every 8 € dom(r) with r(8) = («,q), there is a
set S that satisfies 0(q,t(«)); and for each (i,q’) € S, there
is some j such that 85 € dom(r) and r(8j7) = (ai,¢’).

Let m = 7 7o - - - be an infinite path in r; for each i > 0,
let the state label of the node 7 ---m; be g,, where gy,,
the state label of €, is ¢;. We say that 7 satisfies the parity
condition just if the largest priority that occurs infinitely
often in Q(gn,) 2an,) 2gn,) -+ is even. A run-tree r
is accepting if every infinite path in it satisfies the parity
condition.

Ong [18] showed that there is a procedure that, given a
recursion scheme G and an alternating parity tree automaton
A, decides whether A accepts the value tree of G.

Theorem 2.1 (Ong [18]): Let G be a recursion scheme of
order n, and A be an alternating parity tree automaton. The
problem of checking whether A accepts [G] is n-EXPTIME-
complete.

Remark 2.1: In this paper, we only consider recursion
schemes whose value trees do not contain L. Given a
recursion scheme G and an alternating parity tree automaton
A, one can construct G’ and A’ such that (i) the value tree
of G’ does not contain L, and (ii) A" accepts G’ if, and only
if, A accepts G.

Example 2.2: Let ¥ be the alphabet used in Exam-
ple 2.1. Let A; be the alternating parity tree automaton
(2, {q0,a1},61,90,{q0 — 2,41 +— 1}), where, for each
q € {qo, a1}, d1(q,2) = (L,q) A (2,9), 1(g,0) = (L, qn),
and 61 (g, c) = true. Then, A; accepts a X-labelled tree ¢ if,
and only if, in every path of ¢, c occurs eventually after b
occurs.

Parity Games: A parity game is a tuple
(Vo, V3,00, E,Q) such that E C V x V is the edge
relation of a directed graph whose node-set V' is the
disjoint union of V4 and V3; vg € V is the start node;
and Q : V — {0,--- , M — 1} assigns a priority to each
node. A play consists in the players, V and 3, taking turns
to move a token along the edges of the graph. At a given
stage of the play, suppose the token is on node v € W
(respectively v € V3), then V (respectively 3) chooses an
edge (v,v’) and moves the token onto v’. At the start of a
play, the token is placed on vg. Thus we define a play to be
a finite or infinite path m = vg vp, U, - -+ in the graph that
starts from vy. Suppose 7 is a maximal play. The winner
of 7 is determined as follows:

o If 7 is finite, and it ends in a V3-node (respectively
Vi-node), then V (respectively 3) wins.

o If 7 is infinite, then 3 wins if 7w satisfies the parity
condition i.e. the largest number that occurs infinitely often
in the sequence Q(vg) Q(vy,) Q(vn,) - -+ is even; otherwise
V wins.

A J-strategy (or strategy, for short) VW is a map from
plays that end in a V3-node to a node that extends the play.
We say that a strategy W is winning just if 3 wins every
(maximal) play 7 that conforms with the strategy (i.e. for
every prefix my of 7 that ends in a V3-node, m9 W(mo)
is a prefix of m). Finally a strategy W is memoryless just
if W’s action is determined by the last node of the play;

st priority in this
luding the root
ind qy) is m,

Figure 1. A tree function described by (q1,m1) A (g2, m2) — ¢

formally, for all plays m; and my that are consistent with
W, if their respective last nodes are the same V3-node, then
W(m) = W(ms). It is known that if there is a winning
strategy for a parity game, then there is also a memoryless
winning strategy for the game.

III. TYPE SYSTEM

Given an alternating parity tree automaton A4 =
(@,%,9,q1,9), we construct a type system 74 in which
a recursion scheme is well-typed if, and only if, the tree
generated by the recursion scheme is accepted by .A. Let ¢
and m respectively range over the states and priorities of .A.
We define:

Atomic types 0 = q | T — 0

Types 7 = A{(B1,m1),..., 0k, mi)}

Notations: We write (61,m1) A -+ A (0, myg), or
simply /\f=1 (0;,m;), for types A{(01,m1),..., (O, my)}.
We write T for the type A (. Given a priority Q(q) for
each element ¢ of), we extend it to all atomic types by
Q(r — 0) :=Q(0).

Intuitively, the type (qi1,m1) A -+ A (qg,mi) — ¢
describes a function that takes a tree (say, x) that can be
accepted from each of the states ¢, ..., qg, and returns a
tree that is accepted from state q. (See Figure 1 for an
illustration.) The priority m; describes the maximal priority
in the path from the root of the output tree (of type ¢) to the
input tree of type g;. In other words, the input tree can be
used as a tree of type ¢; only after visiting a state of priority
m;, and before visiting a state of priority greater than m;.

The set of “well-formed” types is defined by the relations
7k and 6 ::, Kk, which should be read “7 is a type of kind
k” and “6 is an atomic type of kind x” respectively. We also
impose a condition on priorities.

Definition 3.1 (Well-formed types): The relations 7 :: K
and 0 ::, k are the least relations closed under the following
rules:

T KL 0:: Ko
i a0 © T—0 i, K1 — ko
0; gk foreachic{l,...,n}

NG, m1), ..., (On,mp)} = K

A type T (respectively, atomic type 6) is well-formed just
if (i) 7 :: k (respectively, 6 ::, k) for some &, and (ii) for
each subexpression of the form A*_, (6;,m;) — 6, we have
m; > max(Q(0'),(6;)) for each 1 <4 < k.

For example, g1 A ((g2,1) — g3) is not well-formed, as it
combines types of different kinds. (g1,m1) A (g2, m2) — ¢
is well-formed if m; > Q(q), 2(¢q1) and ma > Q(q), Q(g=2);
this reflects the intuition that m, and mo are the largest
priorities in the paths shown in Figure 1, including the root
and leaf nodes. Henceforth we consider only well-formed

types.

Type Environment and Judgement: A type judgement
has the form I - ¢ : 0, where ¢ is a A-term (where non-
terminals are treated as variables), and I', called a fype
environment, is a set of bindings of the form z : (6, m)".
Expressions of the form, (0, m)” where b € {t, £}, are called
flagged types, which are ranged over by meta-variables o.

Note that I may contain multiple occurrences of the same
variable. In the type environment I', each (atomic) type of
a variable is annotated with a flag b, indicating when the
variable can be used as a value of that type. For example,
x:(g,m)" € T means that = can be used only before visiting
a state with priority larger than m. If the flag is £ (i.e. x:
(g,m)" € T), then it is additionally required that z can
be used only after visiting a state with priority m. Thus, if
z:(q,m)" €T, then the largest priority seen in the path (of
the value tree) from the current tree node to the node where
x is used must be exactly m.

Example 3.1: Suppose the priority of ¢, 2(q), is 0.

(i) The judgement {z : (¢,1)*} F z : ¢ is invalid. The
type environment says that can be used only after visiting
a state of priority 1, but the current state ¢ has only priority
0, so z cannot be used.

(ii) The judgement {x: (q,1)°} - 2 : ¢ is however valid:
since the flag is t, « can be used any time before a priority
larger than 1 is seen.

(i) The judgement {z : (q,l)f,y : ((¢,1) — q, O)f} H
y x : q is also valid, because y uses the argument z only
after visiting a state of priority 1.

Notations: We shall often drop the set braces to save
writing. We write I', x : /\f:1 (6;,m;)" as a shorthand for
ru{z: (Gl,ml)bl,. ., T (Qk,mk)bk} where z is assumed
not to occur in I'. We write dom(I") for the set {z |
30, m,b.x: (6,m)" € T'}. For technical convenience, we
assume type environmen/ts I' satisfy an injectivity condition:
If z: (H,m)b,x :(0,m)” €T thenb=1V.

The type judgement I' - ¢ : 6 is defined by induction over
the following rules.

(0,m)" 19(6) = (6,m)"
z:(0,m)'Fz:0
{(i,qi5) | 1 <i <n,1 <j <k;} satisfies §4(q,a)
0+

a: /\?1:1(6113'77711]') o A§:1(anamnj) —4q
where m;; = max((g;;), (q))
(T-CONST)

Fol_toi(91,7711)/\"'A(9k7mk)—>9
FZTmll—tlel fOFCaChiE{l,...,k}

ToUT U---UlgHtgty:0

oo Mgy 0my) Ht:0 1CJ
' Ax.t: /\iGJ(Hi,mi) — 0

(T-VAR)

(T-APP)

(T-ABS)

The operation (-) Tm used in the rules T-VAR and T-APP
above are defined as follows.

6,m)" it m' <m
@,m)" Tm' =< (B,m) ifm' =m

undefined if m’ > m
{z1:01,...;xn:opt Tm:={z1:01Tm,..., 2y :0, T M}

In T-VAR, x can be used either if b = t and the current
priority is less than or equal to m, or if b = £ and the current
priority is m. The rule T-CONST is for input symbols. The
premise means that when reading «, the automaton A in
state ¢ can spawn new states ¢;;, and read the i-th subtree
with state ¢;;. Thus, in order for a tree aty---t, to have
type ¢ (i.e. to be accepted from state q), it is sufficient that
t; has type ¢;; for every j € {1,...,k;}. For example, for
the automaton A; in Example 2.2, a has type (go,2) —
(90,2) — qo and (q1,1) — (q1,1) — q1.

In T-APP, the first premise requires that the argument of
to should have types 61, ...,0;. Thus, the second premise
requires that ¢; has these types. Furthermore, the first
premise means that the argument is used as a value of type
0; only in a context where the largest priority that has been
seen (since the function t(is called) is m,;. The operation
T'; T m; takes that into account.

The rule T-ABS for abstraction is standard, except that
weakening on z is allowed,® and that the bindings on x are
annotated with flag £, indicating that can be used only
after the expected priority is seen.

Remark 3.1: In rule T-APP, k£ can be 0. Thus, for exam-
ple, z: (T — 0,Q(q))" - x t : q is derivable for any ¢, even
if ¢ is ill-typed or contains variables other than z.

Example 3.2: Recall the automaton A; in Example 2.2.
Let 6 = (g0,2) A (q1,2) — qo. 0a = (90, 2) — (q0,2) — qo.
and Ty = F:(0,2)%,2:(q1,2)". The term M\z.a x (F(bx))

3For technical convenience, this is the only place where weakening is
allowed.

is typed as follows.
PFa:0, 2:(q,2) Fxz:q0 T1FF(bx):q
F:(6,2)2:(q0.2)" A(1,2)" Faz (Fb)) : go
F:(0,2)F A v.ax (F(bx)): 0
Here, I'1 F F(bx) : qp is derived by:

F:(0,2FF:0 TIybFbxr:q Tobbr:q
IMEF(oz):q

where 'y = z: (¢1, 2)t, and I's - bz : ¢; is derived from
OFb:(q1,N(q) = qand Ty -z : gy

Typing for recursion schemes: We now define the
typing relation - 4 G for recursion schemes in terms of parity
games.

Definition 3.2: Given an alternating parity tree
automaton A = (X,Q,0,q7,Q?) and a recursion
scheme G = (X,N,R,S), we define a parity game
V&, Va, (S, q1,92(qr)), E, Q) as follows.

Vi = {(F,0,m) | F € dom(N),0 = N(F)}
Vo = {T'| dom(T") C dom(N), all flags in T" are £}
E = {(F,0,m),T) | T-R(F):60} U

{((F,0,m) | F: (0,m)" €T}

and the priority function Q' maps (F,6,m) to m and T to
0. G is well-typed, written 4 G, if player 3 has a winning
strategy for the game.

The above definition may be understood intuitively as
follows. The player 3 tries to prove that the recursion scheme
is well-typed, and the other player V tries to disprove it. At a
node (F, 6, m), the player 3 has to pick a type environment
I under which R(F) has type 6. The player V then picks a
binding F’: (¢, m’)" from I, and asks 3 to show why F”
has type 6’, and then it is again the player 3’s turn to choose
a type environment IV under which R(F”) has type ¢’. The
play continues indefinitely, or ends when one of the players
is unable to move. The player 3 wins a play if at some point,
it chooses the empty type environment (so that V cannot pick
a binding), or if the play is infinite, and the largest priority
occurring infinitely often is even. The recursion scheme is
well-typed if the player 3 has a strategy that wins every
play, whatever choice is made by the player V.

Example 3.3: Recall the recursion scheme G in Exam-
ple 2.1 and the automaton .4; in Example 2.2. Let 6 be
(go0,2) A (1,2) — qo- Then, F': (19,2)f F F c: gy and
F:(0,2)" F \z.a z (F(bx)) : 6 are valid judgments (recall
Example 3.2 for the derivation of the second judgement). A
memoryless winning strategy W for the parity game is given
by: W(S, q0,2) = F: (0,2)" and W(F,0,2) = F: (0,2)".

Remark 3.2: Note that it is unsound to use the usual rule
for recursion:

L,F:(0,m) +R(F): 0
THR(F):6

and define 4 G by O F .S : g7. For example, let A} be the
alternating parity tree automaton obtained from .4; of Ex-
ample 2.2 by replacing the inital state replaced with g;, and
let G be the recursion scheme G = (%, {S}, {S—b(5)}, 5).
Then, () = S : ¢q; is derivarable, but the value tree of G is
not accepted by Aj.

The standard rule for recursion can be considered a
degenerate case of our definition (using parity games), where
all the priorities are 0. In fact, Kobayashi’s type system [14]
is obtained as a special case of our type system 74 where
the priorities are restricted to 0.

IV. CORRECTNESS OF THE TYPE SYSTEM
A. Soundness

Suppose that we are given a recursion scheme G =
(3,N,R,S) and an alternating parity tree automaton A
such that -4 G. The goal is to show that there exists an
accepting run-tree of A over [G].

We first note the following type preservation property,
which can be proved in a standard manner.

Lemma 4.1 (Type preservation by [3-reduction): If T'
(Az.to)ty : 6, then there exists I such that T” F [¢1 /]ty : 6
and IV CT.

Now we shall define a rewrite system for generating an
accepting run-tree of A over the value tree of G. The rewrite
relation is a binary relation on (finite, unranked) RLab-
labelled trees, where an element of RLab is either of the
form (o, q) or (a,l,T'F¢:¢q) where T F ¢ : ¢ holds. Here
! is a natural number, and « is an element of {1,..., A}*,
where A is the largest arity of the terminal symbols of G. By
the assumption 4 G, there exists a (memoryless) winning
strategy W for the parity game associated with -4 G. W can
be considered as a map from tuples of the form (F, 6, m) to
type environments. We write I' 9,y for W(F, 6, m) below.

In a type judgment I' - Ft : g, we often annotate the
head symbol F' with its type and priority, as I' - F ©:m)g .
g. It means that T' - Ft : ¢ is derived from the typing
F:(6,m)" - F : 6 for the occurence of F as the head
symbol, followed by applications of T-APP.

The initial tree of the rewrite system is
(,1,5°: (qr,Q(qr))" F S° : q7). Here, each non-terminal
symbol is annotated with a natural number, to indicate
when the symbol was introduced. The rewrite relation ¢ > ¢’
is defined by in/duction over the following rules:

() I T+ F ™7 g holds, then

(a, ,T - F't:q) > (a,l+1,T" + [t/Z]p(t') : q)

writing p(—) = [F}/F,...,F./F,](-) and R(F;) =
ATt

Here, I is determined as follows: Take the derivation of
I + Fil/’(e’m)f : ¢, and replace the T-VAR instance F':
@,m)" = F : 0 by p(Cir 0m) F p(R(F)) : 6, yielding
(a derivation for) I'y U p(I' (g, 9,m)) p(R(F;))t. Note that

T U{F:(8,m)"} = T holds but not necessarily I'y = I'\ {F:
(G,m)b}. By the type preservation property (Lemma 4.1),
there exists I such that T" € 'y U p(I' (g, ,6,m)) and T” -
[t/Z]p(t") : q. Thus, we choose one such I above.
Note that it is necessary to rename non-terminals F; to Fj;
in order to state Lemma 4.3.

@) If {(i,q:5) | 1 < i < m1 < j < k;} satisfies
04(g,a), and ' - aty -- - t,, : ¢ is derived from I'; ; F ¢; :
Qi,5> then

(a, [, T Fati-tn:q)>
<Oé, Q>(<a17 l,Fl,l Ft: q171>> ey <O£1, l7 Fl,kl ity ql»k1>
codan, LT Ftn i gna)y o {an, Tk, Fitn : @k,))

(iii) If T > T then C[T] > C[T"] for every tree context
C.

The following lemma follows from the definition of © .

Lemma 4.2: It (,1,5%: (q1,Q(qr))" F SO : q1) »*
Cl{o, [, T Ft:q)], then T" - ¢ : ¢ holds.

By the priority of a tree context C[], (wherein the hole
[] is assumed to have the state ¢), written Q(C[],), we
mean the largest priority occurring in the path from the
root of C[], to its hole [],. The following lemma confirms
that variables in the type environment are used correctly,
according to the intuition on type environments explained
in Section III

Lemma 4.3: Suppose {0, 10, To F 50 : qo) >*
Cl{a,1,T = F@m™¢t . ¢)], and F is not introduced by
renaming (i.e. via p(—)) in any of the intermediate
reduction steps. Then, either (i) F' : (G,m)f € I'p and
m = Q(C[],); or (i) F: (,m)" € Ty and m > Q(C[],)
hold.

Theorem 4.4 (Soundness): Let A be an alternating parity
tree automaton, and G be a recursion scheme. If - 4 G, then
the tree generated by G is accepted by A.

Proof- We write T* for the (unranked) tree obtained
by replacing each label of the form («,!,T'F¢:q) with
(a,q). Let To > Ty > Tp > T3 > --- be a maximal*
fair (possibly infinite) reduction sequence, where T :=
(6,1,5%: (qr,Q(qr))" + S° : q;). By the definition of >,
every T% is a prefix® of a run-tree of A. By Lemma 4.2,
reductions of (e,1,5°: (qr,Q(qr))" F S°: qr) never get
stuck: It either ends up with a finite tree all of whose labels
are of the form (a, ¢), or continues indefinitely. Thus, every
leaf of the form («,l,T'F ¢ :¢) occuring in the sequence
is eventually reduced. Thus, together with the assumption
that the value tree of G does not contain L (Remark 2.1), it
follows that T' := |J,,, T;* is a run-tree (ie. a tree that
satisfies the conditions on accepting run-trees except the
parity condition) of A over the value tree of [G].

4A reduction sequence is maximal if it is either infinite or finite and the
last tree is irreducible.

SA tree Ty is a prefix of Ty if dom(T1) C dom(T2) and T1(a) =
T> () for every o € dom(T1).

It remains to show that 7" satisfies the parity condition.
Now, for any infinite path 7 of 7, there must exist an infinite
reduction sequence:

<67 LSO : (qfvg(qf))iF 59 QI>
> * Cl[<041,117].—‘1 |_F111 tl Zg1>]
> * Cl [CQKO&Q,ZQ,FQ + Filzl to g2>ﬂ
> * Cl[CQ[CgKOég,l?,,F?, [FZI; t3 : Q3>]]] >*...

such that the holes of Cy,C1[Cs],C1[Co[C5]],. ..
occur in the path. For each &k > 0,
the reduction (g, lg, T Fillf*ltk; L k) D"
Crr1 (ot 1, Tig1 F Fil:+1tk+1 “Qr+1)] must be

of the form
(o, I, Ty Fil:_ltNk S qk)

> {ag, b + 1,1 F [te/Z)p(t) : ax)
F_lk»(‘gk-+17

Me+1)7 .
> Crpa (g1, ogr, Tion B FCT tht1 ¢ Q1))

where p = [Fl¥/Fy,...,Fl*/F,] and R(F;,) = \&.t/,
with T}, C I’ U p(l“(pik_,gk’mk)). Note that all the bind-
ings on Fil:“ in p(I'(F,, 6,,my)) have the flag f. Thus,
by Lemma 4.3, Q(Cii1[lg..) ey
(Ok41,miy1)" € T, which implies Fj, | : (011, mpp1)" €

F(Fik10kamk)’ o)]
Now from the preceding infinite > -reduction sequence,
we can extract an infinite sequence

mpy+1 and

(F1, 41, 2q1)) T'(Fyg1.0) (Fiys 01,m1) Ty 0,,ma)
(Fizs 02,m2) D(Fy 0ma)
which is a winning play. It follows that the largest priority
that occurs infinitely often in mq, mo, ... is even. Therefore,
the largest priority that occurs in the infinite path 7 of ¢ must
also be even. |

B. Completeness

Let A be an alternating parity tree automaton. Assume an
accepting run-tree of A over the value tree of a recursion
scheme G. The goal is to show -4 G.

We define a reduction relation > on (finite, unranked)
RLab’-labelled trees as follows, where an element of
RLab’ is either of the form (o, q) or (3,1,t,q). Here [
is a natural number, § is a sequence of pairs of natural
numbers, and « is an element of {1,..., A}*, where A is
the largest arity of the terminal symbols of G. We use 3 and
l to uniquely identify each leaf introduced by reductions.
The initial tree is (€, 0, S, qr). The reduction relation > is
defined by induction over the following rules:

(i) If R(F) = Az.t/, then:

(B:1,Ft,q) > (B,1+1,[t/7)t',q)
(ii) If fst(B3) = « and the children of the node {«, ¢) of
the run-tree are {(ai,q; ;) |1 <i<n,1<j <k}, then:

<Balvat1 o tn7q> >
<f5t(/6)7q>(<ﬂ(17 1)7l7t17q1,1>7 [ERE </6(17k1)7l7t17q1,k1>7

. <B(TL, 1)7l7tn7qn71>7 BRI <ﬁ(n» kn)7l7tn7q7l,kn>)

Here fst((mq,n1)(me,n2)(ms,ng) -+) = mimams - --.
(iii) If ¢ > ¢/, then C[t] > C[t] for any tree context C.
There is a (fair) infinite reduction sequence

<€?0557QI> > Tl > TQ D

such that | | 73" coincides with the accepting run-tree of A
over the value tree of G. We pick one such infinite reduction
sequence, and extract type information from it, as shown
below.

We assume below that each subterm is implicitly labelled,
so that different occurrences of the same term are distin-
guished. For example, when we write (3,1, tot1,q) >*
C{B', U, t1ta, q')], we assume that ¢1 in ¢1¢o originates from
t1 in the argument position of tgt; (i.e. the former ¢; is a
residual of the latter ¢; w.r.t. the reduction sequence). As
before, we write Q(C/[],) for the largest priority in the path
from the root of the RLab’-tree context C' to the hole [],
which is assumed to have state q.

Type 0(1,,5,1) of a prefix to: A term 1 is called a prefix
of t if ¢ is of the form ¢ot; - - - tg. For each leaf (3,1,t,q)
and a prefix to of ¢, we can determine the type 0, 31y by
induction on the kind of ¢y as follows.

(1) If the kind of g is o, then 9(7507571) := ¢ (note that the
leaf is (0,1, to, q)).

@i1) If the kind of ty is k1 — -+ — K, — o, then the
leaf is of the form (3,1, tgt; - - - tn, q). Let S; be the set of
pairs (e(ti,ﬁ/,l’)a Q(C[]q’)) such that <ﬁa la tot1 -« tn, Q> >*
C[(B',1',t;t',¢)]. Note that since the kind of &, is less
than that of ¢y, by the induction hypothesis, we can
determine 6, g ;. Note also that although the set of
trees C[(8,0',t;t',¢')] such that (B,1,tot - -tn,q) >*
C’[(ﬂ’,l’,tﬁ’,q’ﬂ may be infinite, S; is finite. Thus we can
define

e(tOﬁJ) = /\Sl—>—>/\5n—>q

Type environment T, 51y of a prefix to: Next, we
determine a type environment I'(;, g5y for each prefix term
to of the leaf (3,1,tot1 - tn,q), with a view to proving
Lto,8,0) I to : 0(ty,8,1)> by induction on the structure of the
term.

o Ifth=a (E E), then F(to,ﬁ,l) = 0.
o Ifty=F (E N), then F(F,ﬁ,l) =F: (H(F,ﬁ,l)v Q(q))f
o If tg = tp,1t0,2, then let S be the set of triples

(8,1, 2Cllg))

such that (3,1, tot1 - - - t,,q) >* C[(B,1',tot’,q')]. Let S’
be a subset of S such that for every (7,1, m) € S, there
exists exactly one (8',I',m) € S’ such that 0., 3 1) =
9(15072“3//7[//). We then define F(tg,ﬁ,l) as

Liton) YU (T ompan tm | (B.0,m) € S'})

where Tt m := {z : (6, max(m,m"))* | z: (8, m’)* € T'}.

Remark 4.1: The typing rule T- APP requires that there is
exactly one type environment for each (6;,m;). Accordingly,
by construction S’ contains exactly one element for each
(0, m) of type tg2.

The following lemma intuitively states that for each
binding of a type environment I'(; gy, there exists at least
one corresponding use of the variable.

Lemma 4.5: If (€,0,S5,q1) >* C[(6,l,t,q)] and F :
(H,m)f € I'(¢,3,, then there exist C',3,U',¢,q such that
(B,1,t,q) >* C'[(B,I',Ft,q")] and m = Q(C"[],) with
0= 0(rp 1)

The following lemma guarantees the consistency of typ-
ing: the conclusion says that the body of F, R(F') = \Z.t,
can be given the same type (i.e. 0(r g,)) as F.

Lemma 4.6: It {€,0,S,qr) »>* C[(5,l,Fs,q)] >
C[(B,1 4+ 1,[s/Z]t,q)], then there exists T' such that
TEMz.t: G(Fﬁ,l) and I’ - F([E/i]t,ﬁ7l+1)~

Theorem 4.7 (Completeness): Let A be an alternating
parity tree automaton, and G be a recursion scheme. If the
tree generated by G is accepted by A, then -4 G.

Proof: From an accepting run-tree of A over the value
tree of G, we can construct an infinite reduction sequence
(6,0,S,q1) » Ty » Ty > --- that converges to the run-
tree. We shall construct a winning strategy W for the parity
game (Vy, V3, vg, E,Q)) associated with F4 G : qr below.
We annotate each state I of V4 occurring in VW with a label
of the form [3, 1, ¢] to indicate the corresponding node in the
reduction sequence (¢,0,.5,q;) > T1 > Ty > ---. Note that
by the construction of W below, I#4 C T, 5y holds. The
winning strategy WV is defined as follows. Consider a play
7 (F,0,m) € (VaV)*V3 that conforms to W. Let T1%4H
be (S : (qr,Q(qr))E05] if 7 = ¢; otherwise, let it be the
last state of 7 (in V4). It must be the case that F': (6, m)f €
rieLtl L¢3, By Lemma 4.5, there must exist C, 3,1’
such that

<ﬁ7l7t7Qt>
> C[B, U, Fs,q)] > CBLU+1,[5/2tr,q')]

with Q(C[]y) = m and 0 = Opp ;) where R(F) =
AT.tF.

By Lemma 4.6, there exists IV such that IV F A\Z.tp :
Orpry and T C 57z (F),8 041 We pick one such
I, and define W(r (F,6,m)) as T/I0" U +1.5/tr],

To check that VW is indeed winning, consider an infinite

play:
(F0, 90, m0) F([)ﬁo’lo’to] (Fi,01,m1) DYV (Fy 0y my) -
that conforms to W where (Fo,qo,mo) = (5, q1,2(qr))-
Then the reduction sequence (€,0,S,qr) > Ty > Tp > ---
must be of the form:

(6,0,8,q1) > (Bo,lo, R(S), qo)

>* C1[(B1,1h — 1, Fisy,qu)] > Ci[(B1, it qn))

>* C1[Cal(Ba,l2 — 1, F252,q2)]] > C1[C2[(B2, 12,2, ¢2)]]
>*

where Q(C;[]q,) = m;(¢ > 1). Since the reduction sequence
converges to the accepting run-tree of A over the value
tree of G, the largest priority that occurs infinitely often in

mg, M1, Mo, ... must be even. Thus, we have -4 G. [|

V. TYPE INFERENCE ALGORITHM

Thanks to the development of the previous sections,
the model checking of higher-order recursion schemes is
reduced to a type inference problem. The reduction allows us
to analyze the parameterized complexity of model checking
higher-order recursion schemes. The main result is that,
assuming that the size of kinds, the largest priority, and the
number of states of the alternating parity tree automaton
are bounded by a constant, the time complexity of the type
checking problem (hence also the recursion scheme model
checking problem) is polynomial in the size of the grammar.

The type-checking algorithm consists of the following two
phases:

e Step 1: Construct the parity game (V4, V3, vo, E,Q)
associated with the type system.

o Step 2: Decide whether there is a winning strategy for
the parity game.

We assume below that each rule of the recursion scheme
is of the form F +— AZ.c (Fy 1) ---(Fy Z), where c is
a terminal, a non-terminal, or a variable, and J may be 0.
Note that any recursion scheme G can be transformed into
G’ such that G’ satisfies the assumption above and the size
of G’ is linear in that of G.

We write A for the maximum arity, N for the order of
the recursion scheme, P for the number of rewrite rules, ()
for the number of states of the automaton, and M — 1 for
the largest priority of the states. For a kind « of order n, an
upper-bound of the number of types of kind «, written K,
is given by:

Ko=Q Kny1=Q2MKn,

Note that K, is bounded by exp, ((AQM)'T€) for any
e > 0, where exp, () is defined by: exp,(z) = x and
exp ., (2) = 2005,

For step 1, we first compute the set

S; ={(T,0) [T+ R(F;) : 0 and all flags in I" are £.}

for each non-terminal F;. Assume that R(F;) is of the form
AT.c(F{Zy1)--- (F2y). We first compute:

Si,O = {(Fo,go) | FO Fec: 90, and 00 a Iic}

where . is the kind of ¢ and all flags in I'y must be f. I'y
is a singleton set or empty, so that |.S; | is at most M K.
Next, for each (I'g,71 — -+ — 75 — 0) € Sip with
T; = /\kelj (0K, mj 1), we compute

Sng = {Fj,]g | Fj7k ijJg }— F;&,‘} . Gj,k
and all flags in T'; , are £}.

The number of candidates for the type of Fj’ is at most
Ky, so that |S;| is at most MK, for each j, k. Note
also that since the order of the kind of 6;; is at most
N—1, |I;| is bounded by M K _1. By choosing one element
I'; x from each of the sets S; ;, we can derive a judgement
Lo U (Uj Tjw) b e(FiT1) -+ (Fjz) : 0. S; is the set of
all pairs (I',0) such that I’ = XZ.c(F{zq)--- (Fjzy) : 0
is obtained by applying T-ABS to T'g U (U;,Tjx) F
c(F{Z1)--- (FZs) : 6. The number of elements of .S; gen-
erated from each element of S, ¢ is at most K'n xII; x| S; k|,
which is bounded by Ky (MK y)AME~-1_ Thus, the size
of S; is bounded by

(MEy)x(Kn(MEy)MEv=1) = expy (O((AQM)'))

for N > 2.

Since the size of each type environment in S; is at
most 1 + |I1| + -+ + |I;] < 1+ AMKy_1, both the
set Vi, U V3 of vertices and the set £ of edges have size
P x expy (O((AQM)'+9)).

In Step 2, we can use Jurdzifiski’s algorithm [10] for
solving parity games. The time complexity for Step 2 is

O(|Vv U VH||E| LM/QJ) = O(P1+LM/2J eXpN((AQM)1+e))
Thus, the time complexity of our algorithm is
O(Pl"rl_M/QJ eXpN((AQM)1+€)),

for N > 2. If N, A, @, and M are bounded by constants,
then the algorithm runs in time O(P'+M/2]) Since P
is bounded by the size of the recursion scheme, the time
complexity is polynomial in the size of the recursion scheme,
under the assumption that the largest arity A is bounded
above by a constant.

VI. RELATED WORK

As summarized in Section I, studies of model checking
recursion schemes were initiated by Knapik et al. [11], [12],
who showed the decidability of the MSO theory for safe
recursion schemes. Their verification algorithm is based on
a reduction of the model-checking of an order-n recursion
scheme to that of a recursion scheme of order n — 1.
They [12] also showed the equi-expressivity of safe recur-
sion schemes and higher-order pushdown automata. Cachat
and Walukiewicz [2], [3] showed n-EXPTIME completeness
of the modal p-calculus model checking problem over the
configuration graph of higher-order pushdown automata.
For the full higher-order recursion schemes (without the
safety restriction), there are two previous proofs of the
decidability of the modal p-calculus model checking. One is
Ong’s original proof [18], and the other is due to Hague et
al. [7]. The former reduces the model checking problem to
parity games over variable profiles, while the latter reduces it
to a parity game over the configuration graph of a collapsible
pushdown automaton. Both proofs use game semantics, and

are probably rather hard to understand (at least for readers
unfamiliar with game semantics).

Our type-based approach is a generalization of
Kobayashi’s type system [14]; when priorities are restricted
to 0, our type system coincides with his system. Our type
system is also inspired by Ong’s variable profiles [18].
In fact, variable bindings (in type environments) in our
type system are similar to Ong’s variable profiles: both
are assertions for variables about the state being simulated
and the largest priority encountered for a relevant part of
the computation, and both are defined by recursion over
the kind in question. Nevertheless, the details of their
constructions are dissimilar, and they give rise to radically
different correctness arguments.

In addition to the advantages discussed in Section I, a
general advantage of the type-based approach is that, when
the verification succeeds, it is easy to understand why the
recursion scheme satisfies the property, by looking at the
type of each non-terminal (and the winning strategy).

Naik and Palsberg [17], [16] constructed an intersection
type system that is equivalent to model checking of an
imperative language and an interrupt calculus. They consider
only the reachability problem, and do not treat higher-order
languages. Kobayashi [14] showed that the model checking
of temporal properties of higher-order programs can be
(rather straightforwardly) reduced to that of higher-order
recursion schemes. Thus, combined with Kobayashi’s reduc-
tion, our type system can be regarded as an extension of Naik
and Palsberg’s scenario to the full modal p-calculus and
higher-order programs. Type systems for tree-manipulating
programs have been studied in the context of programming
languages for XML processing [8]. Programming languages
for XML processing are concerned with finite trees, while
our type system deals with infinite trees; that is why we
need the notion of priorities and parity games for typing
recursion.

VII. CONCLUSION

We have presented a novel type system that is equivalent
to the modal p-calculus model checking of higher-order
recursion schemes. Compared to existing approaches [18],
[71, our type-based method gives a simpler algorithm, and its
correctness proof seems easier to understand. Furthermore,
our approach yields a polynomial-time algorithm, assuming
that the automaton and the largest order and arity of non-
terminals of the recursion scheme are fixed. From a type-
theoretic point of view, our type system introduces a novel
approach to typing recursion, via parity games.

Future work includes: (i) implementation of a model
checker, (ii) studies of the complexity of the model-checking
problem for various restricted fragments of the modal u-
calculus, and (iii) extensions of the type system for various
extensions of recursion schemes. Our type-based approach
seems indeed convenient for these tasks. For (i), we have

already implemented a prototype type-based model checker
for a subclass of the modal p-calculus [13]. For (ii), the
reader is referred to [15]. For (iii), for instance, one can
easily extend rewriting rules of recursion schemes with
boolean parameters, and conditionals on them. For example,
F defined by the rewrite rule F' b x y — if b then z else y
would be given an intersection type (true — (qo, 2(qo)) —
T — qo) A (false = T — (q1,q1)) — @)

ACKNOWLEDGMENT

This work was partially supported by Kakenhi 20240001
and EPSRC EP/F036361.

REFERENCES

[1] K. Aehlig. A finite semantics of simply-typed lambda terms
for infinite runs of automata. Logical Methods in Computer
Science, 3(3), 2007.

[2] T. Cachat. Higher order pushdown automata, the caucal
hierarchy of graphs and parity games. In Proceedings
of ICALP 2003, volume 2719 of LNCS, pages 556-569.
Springer-Verlag, 2003.

[3] T. Cachat and I. Walukiewicz. The complexity of games
on higher order pushdown automata. CoRR, abs/0705.0262,
2007.

[4] B. Courcelle. The monadic second-order logic of graphs
IX: machines and their behaviours. Theoretical Computer
Science, 151:125-162, 1995.

[5] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus
and determinacy (extended abstract). In FOCS 1991, pages
368-377, 1991.

[6] E. Gréadel, W. Thomas, and T. Wilke, editors. Automata,
Logics, and Infinite Games: A Guide to Current Research,
volume 2500 of LNCS. Springer-Verlag, 2002.

[7] M. Hague, A. Murawski, C.-H. L. Ong, and O. Serre.
Collapsible pushdown automata and recursion schemes. In
Proceedings of 23rd Annual IEEE Symposium on Logic in
Computer Science, pages 452-461. IEEE Computer Society,
2008.

[8] H. Hosoya, J. Vouillon, and B. C. Pierce. Regular expression
types for XML. ACM Trans. Program. Lang. Syst., 27(1):46—
90, 2005.

[9] J. M. E. Hyland and C.-H. L. Ong. On Full Abstraction
for PCF: 1. Models, observables and the full abstraction
problem, II. Dialogue games and innocent strategies, III. A
fully abstract and universal game model. Information and
Computation, 163:285-408, 2000.

[10] M. Jurdzinski. Small progress measures for solving parity
games. In Proc. STACS, volume 1770 of LNCS, pages 290—
301. Springer-Verlag, 2000.

[11] T. Knapik, D. Niwiriski, and P. Urzyczyn. Deciding monadic
theories of hyperalgebraic trees. In TLCA 2001, volume 2044
of LNCS, pages 253-267. Springer-Verlag, 2001.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-order
pushdown trees are easy. In FoSSaCS 2002, volume 2303
of LNCS, pages 205-222. Springer-Verlag, 2002.

N. Kobayashi. Model-checking higher-order functions. Un-
published, 2009.

N. Kobayashi. Types and higher-order recursion schemes for
verification of higher-order programs. In Proc. of POPL,
2009.

N. Kobayashi and C.-H. L. Ong. Complexity of model
checking recursion schemes for fragments of the modal mu-
calculus. In Proceedings of ICALP 2009, LNCS. Springer-
Verlag, 2009.

M. Naik. A type system equivalent to a model checker. Master
Thesis, Purdue University.

M. Naik and J. Palsberg. A type system equivalent to a model
checker. In ESOP 2005, volume 3444 of LNCS, pages 374—
388. Springer-Verlag, 2005.

C.-H. L. Ong. On model-checking trees generated by higher-
order recursion schemes. In LICS 2006, pages 8§1-90. IEEE
Computer Society Press, 2006.

M. O. Rabin. Decidability of second-order theories and
automata on infinite trees. Trans. Amer. Maths. Soc, 141:1-
35, 1969.

