Functional Reachability

C.-H. L. Ong N. Tzevelekos
University of Oxford University of Oxford

Abstract—What is reachability in higher-order functional CONTEXTUAL REACHABILITY: Given a PCF term

programs? We formulate reachability as a decision problem M of type A and a subtermV® with occurrencen,
in the setting of the prototypical functional language PCF, is there a program context|-] such thatC[M] is a
and show that even in the recursion-free fragment generated program (i.e. closed term of typg and the evaluation
from a finite base type, several versions of the reachability of C[M] causes control to flow tove?

problem are undecidable from order 4 onwards, and several . o)

other versions are reducible to each other. We characterise a Our starting point is the question: ISSRTEXTUAL REACH-
version of the reachability problem in terms of a new class ABILITY decidable? A precise (and equivalent) way to
of tree automata introduced by Stirling at FoSSaCS 2009, formulate the problem is to replace the subtefi in M

called Alternating Dependency Tree AutomatéhDTA). AS @ o gistinguished error constant— call the resultant term
corollary, we prove that the ADTA non-emptiness problem is

undecidable, thus resolving an open problem raised by Stirling. " —and ask if there is a PCF program-conteXt| such
However, by restricting to contexts constructible from a finite thatC'[M/*] evaluates te.. Here we regard therincipal term
set of variable names, we show that the corresponding solution A/* and thecontextC|[-] as elements of a larger language,
set of a given instance of the reachability problem is regular. pCp, which is PCF augmented with with evaluation rules
Hence the relativised reachability problem is decidable. so extended as to propagatdo the top.
More generally, consider the following parameterised de-
|. INTRODUCTION cision problem, where the (closed) principal term ranges
over L, the (applicative) context ranges ov€g, both £,
In the simplest form, Reachability is the decision problem:and £, are sublanguages of PGFand # ranges over the
Given a state of a state-transition system (e.g. an errdfase type := {t,f,*}.
state paired with a program point), is it reachable from the
start state? Reachability testing has had a major impact in
software model checking; it is now a standard approach to Ay — - — An — o, are there closed;-terms
checking safety properties in industry. In the past decade, N1, -« , Ny such thatM V evaluates td)?
great strides have been made in model-checking reachVe can formulate the preceding reachability problem (equiv
bility of first-order (recursive) procedural programs. ®o alently) asx-REACH [PCF", PCH.
such as SLAM [1] and Blast [7] showcase the remarkable For a sharper analysis, we consider ftfieitary (i.e.
achievements of the computer-aided verification communityecursion-free) sublanguages, fPC&nd fPCF. Note that
in the engineering of scalable software model checkers'divergence” is definable in PCF (e.¥.,(A\x.z)) but not in
Perhaps surprisingly no reachability checker has yet beefPCF. Thus we also consider fPCFfPCF augmented with
developed forhigher-order programming languages such a divergence constant. We obtain two results.
as ML, Ocaml, Haskell, F#. Indeed, to our knowledge, (i) Undecidability By exploiting (the key lemma behind)
reachability of higher-order functional computatiper se Loader's proof of the undecidability of PCF observational
does not appear to have been studied in the literature. Wequivalence [13], we show thatdBITEXTUAL REACHABIL -
initiate just such an investigation here. ITY, *»REACH[PCF,PCH, t-REAcH[fPCF, ,fPCH and
Reachability of higher-order functional programs is quitet-REACH [fPCF,fPCH (and several others) are all unde-
different from that of first-order imperative programs. Eun cidable from order 4 onwards.
tional programs are state-less, and it is unclear what their (i) Equivalence The problemsx-ReAcH [fPCF",fPCH
program points are (because the term being evaluated &nd_-ReacH [fPCF,fPCH are polynomially reducible to
being changed by substitution as the computation unfoldseach other. Whether they are decidable is open.
Further, functional reachability isontextual the flow of Motivated by the open problem, we analyse fP@®m-
control within a (higher-order, open) term should be anal-putation automata-theoretically. Stirling [22] has reden
ysed in relation to all itprogram contextsit is thus much introduced a new kind of tree automata calléliernating
more complex than graph reachability, which is what first-Dependency Tree AutomatADTA) which are an accepting
order reachability boils down to. device for trees with a binding relation callédtbinding
Consider the following decision problem in the rathertrees He showed that the decision problem Higher-Order
purified setting of PCF, generated fronfiaite base typev. Matching is reducible to the ADTA non-emptiness problem,

0-REACH[Lq, Lo]: Given a closedfl;-term M

and asked if the latter is decidable. The second contributioinformation, without predicting the values of bound valésh

of this paper is a characterisation (Theorem 15) of theor analysing control flow. Consequently, these algorithms

problem v-REACH [fPCF,fPCH (for v € o) in terms offer even coarser approximations than CFA.

of ADTA acceptance and ADTA non-emptiness problems. Based on the fully abstract game semantics, traversals are

Thanks to the preceding undecidability result, we obtaé th a (particularly accurate) model of the flow of control within

undecidability of ADTA non-emptiness as a corollary. a term; they can therefore be viewed as a CFA method.
Theorem 15 is proved using a characterisation of fPCF In fact, Hankin and Malacaria [15], [14] proposed a game-

computation bytraversals[19], [4], [3]. A traversal over the semantical approach to CFA. Their work utilised a kind

full computation tregwhich is a souped-up syntax tree) of of traversals over what they cdlowcharts a construction

a term M, X(M), is a certain sequence of nodes of thesimilar (but not identical) to Blum-Ong [4], [19].

tree; unlike a path in the tree, a traversal can “jump” all

over the treé. Given a closed fPCFterm M, we construct outline

an ADTA that simulates traversatsover \f(M) by a set)))

of paths that correspond to the P-views of prefixest.of The rest of the paper is organised as follows. Section ||

The states of the simulating ADTA are based ariable introduces the decision problem templ&t&®EACH Ly, Lo]

profiles[19], which are assertions about the value bound to &nd establishes the undecidability results. Section ttoin

variable when control (in the form of a traversal) reaches itduces ¥-binding trees and traversals. Section IV charac-
Our third contribution concerns a relativised reachapilit terisesv-REACH[fPCF', fPCH, proves the undecidability of

problem. By restricting to contexts constructible from athe ADTA non-emptiness problem, and the decidability of

finite set of variable names, we show that the corresponding "elativised reachability problem.

solution set of a given instance efReAcH [fPCF", fPCH

is recognisable by an alternating tree automaton, and hencell. REACHABILITY IN HIGHER -ORDER COMPUTATION

regular. Thus the relativised problem is decidable. As a

corollary, x-ReACH [fPCF, fPCH is decidable at order 3. Consider (boolean) PCF [20], which is the simply-typed
lambda calculus generated from the base type of booleans
Related work o := {t,f}, augmented with a definition-by-cases construct

The aim ofControl Flow AnalysigCFA) is to approxim- (or conditional) and a fixpoint operator at every type:

ate the flow of control within a program phrase in the course Types A4, B :=o | A— B

of a compL_Jtat|on (see e.g. Midtgaard's survey [16] am_j the Terms M,N =t |f|if | 2| o.M | MN | Ya
book by Nielson et al. [18]). In a functional computation,
control flow is determined by a sequence of function callsEach typeA can be written in the formrd; —--- — A4, — o
(possibly unknown at compile time); thus CFA amounts to(by convention, arrows associate to the right) which we ab-
approximating the values that may be substituted for boundreviate to(Ay, - - - , A, 0). The numbemn, denotedar(A),
variables during the computation. Since these values aris called thearity of A. Theorder of A is given recursively
(denoted by) pieces of syntax, CFA reduces to an algorithnby ord(A) := max{ord(A;) +1,---,ord(4,) + 1,0};

that assignslosures(subterms of the examined term paired thus ord(o) = 0. Reductionin PCF is defined by means of
with substitutions for free variables) to bound variables.a small-step reduction relation, with redexes as follows
Reachability analysis_and CFA are clearly related: for exam 8) (\AM)N — M[N/a] it — Azoy°.

ple, the former can aid the latter because unreachable part%Y) Y4 M — M (YaM) (if) { ifFF — Azoy.y

of the term can be safely excluded from the range of closure '
assignment. There are however important differences: oand evaluation contexts defined & ::= [-] | EM | if E.

one hand, CFA algorithms arapproximation algorithms Because of recursion, PCF is not normalising. We say that
designed to address a more general problem; on the othel/ observationally approximated/, written M < N, just if
because CFA considers terms in isolation of its possibldor every program context'|-] andv € {t,f}, if C[M] —
(program) contexts, the corresponding notion of reachgbil v then C[N] — v. This yields a notion ofobservational
essentially amounts to reachability in the reduction graph equivalence M = N if M S N andN < M.

Also relevant are (mainly type-theoretic [2], [9]) methods Given a PCF term\/, we can think of a program point as
to detectuseless codgwhich subsumes dead code). A apairL®, whereL is a subterm of\/, and«, which is a path
subterm of a term isuselessif it does not contribute to in the syntax tree of\/, indicates an occurrence éfin M.
the evaluation. State-of-the-art algorithms employ otdyis Let C[-] be a program context fa¥/. As the computation of

C[M] unfolds, L* may be eliminated, copied or modified
Inwitively, and using the language of game semantics, arsabever (b substitution) as a result of the rewrite rules — the terms
AY(M) is a representation of an interaction sequence which igreutdy
into which L“ may evolve in this way are calleg@siduals

hereditarilyuncovering(in the sense of Hyland and Ong [8, p. 341]) a play “
in the strategy-denotation d¥/. We can express Contextual Reachability as follows.

CONTEXTUAL REACHABILITY: Given a PCF term
M and a program point given by an occurrencef
a subtermL of M, is there a program contexi[-]
for M such thatC[M] — E[L%], for some evaluatior
context F'[-] and substitutiors?

Because the reduction is leftmost and call-by-name, it

suffices to consider onhapplicative contexts (thanks to

For ease of comparison between problems, we introduce
the following decision problem templatesith parameters,
L1 (principal term) and £, (test-termy where £, and Lo
are sublanguages of PCRandé is a base-type value di;.

0-REACH[Ly,Lo]: Given a closed £;-term
M (A1,---,An,0), are there closedC,-terms
Ny,---, N, such thatM N —» 07?

a Context Lemma [17]). We can reformulate the decision

problem as follows.

REACHABILITY: Given a closed PCF term\/
(41,--+, Ay, 0) and an occurrence of a subtermL
of M, are there closed PCF termig,, ..., NV,, such
that M N — E[LZ], for some evaluation context|-]
and substitutiors?

For example take the term

M = Xpa.if (px) (if (p(p2)) PL)Q
of type (o — 0) — o — o. ThenL is “reachable” using the
test-termsneg : 0 — o (negation function) and : o.
M negf — ift(if (neg(negf)) P, L,) Qo
— if (neg (negf)) P, L, — L,
Is REACHABILITY decidable? In the course of our in-
vestigation, we shall consider a related language ‘P&

Using the template,x-REACHABILITY is the problem
-REACH|[PCE, PCH, where PCF is the set of PCF
terms that have exactly one occurrencexof

Finitary sublanguagesfPCF and fPCF

Let us now consider the respectifigitary (i.e. recursion-
free) and hence (strongly) normalizing fragments of PCF
and PCF, written fPCF and fPCFE It is straightforward to
see that there is no loss of generality in restricting todimnit
test-terms:

Lemma 2: The decision problemsREACH [PCF*, PCH
and x-REACH [PCFE* fPCH are equivalent.

Henceforth we focus on finitary languages. Further, we
may WLOG restrict our attention to principal- and test-
terms that are3-normal forms (¢-NF). A first result is the
following.

Lemma 3: The decision problemsREACH [fPCF*, fPCH
and x-REACH [fPCF,fPCH are (polynomially) reducible

several of its finitary sublanguages, and ask if reachgbilit ;5 aach other.

is decidable in each case.

PCF-with-error: PCF

Note that-REACH [fPCF*, fPCH is non-trivial. To check
if a given fPCF*-term M : (A,---,A,,0) is a yes-
instance, it suffices to evaluafed N for a representativeV;

By PCF we mean PCF terms generated from the basef each observational equivalence class of each tfpe

type o := {t,f,x}. The distinguished constartis an error

Unfortunately these classes are not effectively preséatab

constant in the sense of Cartwright et al. [5]. The redexeshe equivalence is taken in fPCrhere Loader’s result [13]

of PCF are those of PCF and

(ifx) ifx — Ax®y®.x

applies (see below). In contrastREACH [fPCF, fPCH (v €
{t,f}) is decidable, because the equivalence classes are
given by elements of the appropriate type in the hierarchy

while evaluation contexts remain the same. Thus, as soo@f higher-order functions on a boolean base type [23].

asx is encountered, it is propagated to the outer-most Ieve|I:

(in particular, we havef x M N — x). The notion of

observational approximation is now given byt < N just

if for every program context[-] and everyv € {t,f,*}, if

C[M] — v thenC[N] — v. Note that « £ t,f.
REACHABILITY can now be given the following equiva-

lent but simpler formulation.

*-REACHABILITY : Given a closed PCFterm M :

(44,---,A,,0) that has exactly one occurrence
*, are there closed PCF termd§, - - - , N,, such that
MN — x?

Lemma 1: The decision problerREACHABILITY andx-
REACHABILITY are (polynomially) reducible to each other.

initary PCF-with-bottom:fPCF_

Next we introducefinitary PCF-with-bottom(as consid-
ered by Loader [13]), written fPCF, which is syntactically
just fPCF with x replaced by.L; the reduction rules are
the same as in fPCEF As a result, the two languages have
the same notion of observational equivalén¢ahich is
undecidable [13]), which implies the following equivalenc

Lemma 4: For everyw € {t,f «}, settingv’ := L if
v = x and v’ := v otherwise,v-REACH [fPCF",fPCH
and v'-ReACH [fPCF_, fPCH are (polynomially) reducible
to each other.

2in the sense thal/ = N in fPCF* iff M[L/x] 2 N[L/+] in fPCF_.
Note that because reduction to meansdivergencerather than error,the
two languages have distinct notions of observational appration.

Finitary PCF-with-error-and-bottomfPCF;|

IIl. 3-BINDING TREES AND TRAVERSALS

We do not know if the reachability problems of Lemma 4 AssumeX is a ranked alphabet (i.e. each symbot X

are decidable. On the other hand, taking fRCE® be
the (finitary) language generated from base type:=
{t,f, L,x}, its »-REACHABILITY problem (i.e.x-REACH
[fPCF|,fPCH) is undecidable. As before, we write fPCF

for the set of fPCE terms in whichx occurs exactly once.

Lemma 5: Ifx-REACH [fPCF],fPCH is decidable, then
so ist-REACH [fPCF_, fPCH.
Proof: M € t-REACH[fPCF_,fPCRH iff A\Z.if (MT)*L
€ »-ReEACH [fPCF[", fPCH, for every fPCRH-termM. ®
Lemma 6: Ift-REAcCH [fPCF_,fPCH is decidable, then
so is the problem: Given a systemfBICF, -equations

Xal...al = b

Xa?...a2 = b2
1 n (1)
m m v m

Xal"...a) =)

where each:/ is a term of typed; and eachy’ € {t,f}, is
there a solution (ifPCF,) for X : (44,...,4,,0)?

Proof: Note that t-ReacH[fPCF ,fPCF,] and

has an arityar(s) > 0) that is partitioned inta@, ¥,,, and
Yest, WhereXy consists obindersof arity 1, 3., consists
of variables and X..; consists ofconstants A X-treeis a
finite 3-(node-)labelled tree that satisfies:
Bipartition: If node n is X -labelled thennl is la-
belled in X,.. U X, and if noden is labelled in
YvarUXest @andni is a successor then it 15, -labelled.

The long transform of a fPCF-term is obtained by:
(i) hereditarily n-expanding every subterm (even if it is of
base type so that : o expands to\.e : o, a term with a
“dummy” lambda) provided it does not occur as the first
argument of the application operator; then (ii) inserting
long-apply symbolsa“~4 j.e. replacing every base-type
subterm of the shapé\z.P)Q;---Q, wheren > 1 by
@ (\z.P)Q;---Q,.° E.g. (to avoid notational clutter, we
shall often omit type superscripts of variables and corts}an

(MA@) (Az®.x)t — XA A Npy.o(\y)) (Az.z) (At)

where A = ((0,0),0,0).

t-REACH [fPCF_, fPCH are equivalent. Given such a system Thecomputation treeof a fPCF-term M, written A\(M),

of equations we can construct a tetg: (o, ...,
that, for eacty; : o,

Gey-ooepp = {

0,0) such

t if ¢; 2 b for eachi

1 otherwise
in fPCF,. Take M : ((A1,...,A,,0),0) to be
AX0f (G(Xaf ...al)...(Xa...a™)t L.

Then, the system of equations has a solution in fPQfF
M € t-REACH[fPCF ., fPCF_]. []

Corollary 7: The following problems are undecidable.
() t-ReACH[fPCF,_,fPCH, t-REACH [fPCF", fPCH

(i) t-ReACH[fPCF_,fPCF,]

(i) *-REACH [fPCF]",fPCH, x-REACH [fPCF; , fPCH

(iv) »-REACH|[PCE*, PCH

(v) »-REACH [PCF, PCH

(vi) REACHABILITY

is its long transform viewed as 3-tree with (typed, parti-
tioned) alphabet: = ¥, + X, + Yt given as follows.
Each symbolk# has arityar(A).
e Yt is a finite subset of{if(>®%?) o fo s} U
{@4=4: ar(A) > 1}.
o Yy IS a finite set of (typed) variables.
o X, is afinite subset of Az -~ @, 11 > 0, 22 € Ty}
where each\z{* - .- z/4» has type(A;,--- , A,,0).
We call such & a fPCF-alphabet

Example 3.1:Consider the fPCFterm M:
(AP 2°.® (A\y°.if y (P(A2°.2)%)) t) (Apz.0x) t @ 0

Its computation tree\(M) is shown in Figure 1 (ignore
dotted arrows for now). Observe that nodes on levels 0, 2,
4, etc. are labelled with “lambdas”, and those on levels 1, 3,

Proof: (i) Loader [13] has shown that solvability of © etc. arg.labelled _vyith non-lambda symbols — this is just
the system of equations (1) (as defined in Lemma 6) idhe bipartition condition.

undecidable. (ii) is equivalent to (i), (iii) follows fromi)(

A X-binding tree in the sense of Stirling [22], is &-

and (v) follows from (iv). (iv) is undecidable because of tree which is equipped withlsindingrelation between nodes

Lemma 2 and the fact that fP€Hs a sublanguage of PCFE
(vi) then follows from Lemma 1. []

such that, for every.,,,-labelled noden, there is a unique
ancestor nodé of n that isXy-labelled andindsn, written

Solvability of the system of equations (1) is undecidableb +» n. An important example of-binding tree is the
at order 3 [13]. Hence problems (i-vi) above are undecidabléomputation tree of a (closed) fPGlerm, whereX is the
at order 4 onwards. For (i, ii), this is optimal becauseunderlying fPCF-alphabet: the binding relatioh .~ n is
fPCF.-test-terms of order 2 can be effectively generatedust the standard binding relation between noddabelled
[21] Coronary 19 shows that it is Opt|ma| for (|||) too. with aVariable]S‘i and node$ labelled with a\-binder of the

We have seen that the following problems are polynomiform Az -- -z, with 1 < i < k.* For example, in Figure 1,

ally reducible to each other. Are they decidable?
(i) »-ReACH [fPCF,fPCH
(i) L-ReACH[fPCF,_,fPCH

the binding relation is shown as dotted arrows.

3Note thatA — A = (A, A1,--- ,Ap,0) for A= (A1,---, Ap,0).
4The binding relation 8 .~ n” corresponds to the presence ofstifi-

Much of the rest of the paper is concerned with this questioncation pointer in a game-semantic reading of fPCEerms [8], [4], [3].

@
/0/ $2\
APz Apr TN
7Y 10N
/‘<I>\ - Pt
i 2 |
Ay A A
A | B
if t o T
/l \ :
1 2 ‘
I \ \
Y L x
P 2
o
Tz *
Figure 1. A computation tree. For technical convenience, |éftenost

child of a @-labelled node is its 0-child; the leftmost child of every @th
node is its 1-child.

Remark 3.2:1t is not possible, in general, to use a fixed,
finite set of variable-names to construct an infinite family o

By avariable assignmenE of type A, written = : A, we
mean an injective mag from (labelled) proper subtypel
of A to finite sets of variable names (writtéh : B +—
=B), such that if B, and B, are distinct subtypes, then
=B N =82 = (). We may write¢? to denote an element of
=B. The associatedfPCF -alphabet Xz has the following
components,

¥y = {Af{gl"'fﬁm!(Blr",Bn%O)SA}
Svar := =5

var B<A
Yest 1= Val U {if,@4~41

where Val := {t,f,x}.” A variable assignmerg is said to
be singletonjust if 28 is a singleton set for ever (and
if so, we write=8 = {¢B}).

We say that aX=-binding tree iswell-typed just if:
(i) whenever a node has 3, .- or Y. -label of typeB =
(Bi,- -+ ,Bm,o0), then it hasm children, and itsi-th child
has aX,-label of type B;; (ii) if a node b has aX,-label
AP €Bmandb o~ n, thenn hasX,,,-label ¢7.

Lemma 9: Let= : A = (4,4, ---,A,,0) be a singleton
variable assignment. Every clos#iCF-term M : B < A
in B-NF is representableas a well-typed>=-binding tree,

simply-typed lambda terms of the same type. Consider, fo{yhich is written\=(M). 8 In caseM : A, the same holds

example, themonster type((((o, 0),0),0),0,0), which has
the following family of terms,

M, == dpz.p(Az1.(p(Az2.(- - (Azp.2n (- - - 22(21 1))))))).

for M N : o where eachV; : A; is a closed3-NF.

Lemma 10: Le€ : A = (Ay,---, An,0) be a variable
assignment. Everyvell-typed Y=-binding tree represents
some closedPCF -term.

for n > 1 [22]. The key advantage of representing computa-

tion trees as:-binding trees is that we can “economise” on

variable names (see Lemma 8). For example, the precedinH

family of terms can be represented asinding trees, each

aversals over a fulk-binding tree

Traversals[19], [4], [3] are a representation of higher-

using only two variable names and the following bindingsorder computation based on fully abstract game semantics

(indicated by dotted arrows).

(- (z2))
Let us now assume that each subtypeof a type A

is implicitly labelled with its occurrencen in A, written

B* < A, so that different occurrences of the same type ar

distinguished; we use< for the proper subtype relation. To

ek

avoid notational clutter, we shall omit the occurrence of a°

[8]. Let M be a fPCF-term. Formally a traversal over the
full computation treeof M (which is an extension ok(M)
with value nodes))f (M), is a certain sequence of nodes of
the tree that starts from the root). However, unlike a path in
the tree, a traversal can “jump” all over the tree. Intuitive

draversals capture the flow of control i (M) from the

perspective of game semantics. Here we define traversals
ver aX-binding tre€ T that represents/.

subtype whenever what we mean is clear from the context. We define enabling a family of binary relationst-

The subtypes of a typd = (44, --- , A,,0) are partitioned
into two group$, O(A) and P(A), recursively by:

O(4) :={A} u |

n

n
1=

(P(A), P(4) 0(4,).

i=1

Lemma 8: For every typel, at most|P(A)| variable-
names are needed to represeneryclosedfPCF-term M :
A in 6-NF as a binding tree.

SFor example, the monster typé((o,0),0),0),0,0) has five proper
(labelled) subtypes, namety} 111, (0, 0)111, ((0,0), 0)', (((0, 0), 0), 0)*
ando?.

5They correspond to O- and P-moves in the game semanties of

between nodes of the tréE where(0 < i < m (where

m is the largest arity of the types of the subterms\éf by

the following rules.

(el) Every lambda node3, which is thei-child® of its
parent nodey, is i-enabledby a.

"Because we assume that the principal term i84aLNF, we need only
one long-apply symbol, which is at the topmost level, of type-> A.

8e.g. the binding tree of (2) in Remark 3.2.

9This subsumes the two cases we shall consider in the sequél:=f
A=(M) where E is a singleton variable assignment (corresponding to
Theorem 15); (i) = A(M) where M is a 8n-LNF that is consistent
with a variable assignmer® (corresponding to Theorem 17).

10Recall the ordering convention in computation trees (Figijre

(e2) If the node 3, which is labelled with variable;, is 8) (If-t): If toif- Aot is a traversal, so is
bound by nodex which is labelled with\¢; - - - &, then e ’
we say thats is i-enabledby a. teif At A
Thefull tree of T, written 7%, is obtained froni” by adding, 9) (If-f): I t-if-A...f is a traversal, so is
for eachv € Val, av-labelled leat! as a child of every node Lif 1)\ F)
of the tree, except those nodes labelled by an elemehtbf A A _ _
and their respective parent nodes. We extend the enablin&o) (If'*)f It t-if-A-- % s a traversal, so is
relation of T to Tt by an additional rule: R R
(e3) For each leaf node that is labelled by a value € Val, 11) (f-CC): If ¢-if-X---v-X--- u is a traversal,
we say thatu is v-enabledby its parent node. "
We say that nodeJ is enabledby « just if 3 is z-enabled with i € {2,3}, then soist-if - A --- v A -+ w-w

by:" fodr So;n;f (_ne_cg_ssla_r]:Iy L_mlque)e {gl’ '('j'b’m} Y Val('j It follows that the way a traversal can grow is deterministic
node o IS initial 1T 1t Is not enabled by any node. A yaversal overl™ is said to bev-completejust if every

It foltlr?ws thtat tZe |n|t(|jal ngdesthot[a fUIll EOT%Uta.tt'ﬁn .ttrhee %uestion node that occurs in it justifies some answer node;
are the root node and nodes that are labelied with either g, ypor the opening question-jjustifies av-labelled node.

long-apply symbol oif. An O-nodeis either a lambda node,
or a leaf whose parent is not a lambda nodeP/Aodeis Theorem 11 (Correspondence): LeP be a fPCF-
a node that is not labelled with a lambda, or a leaf whoserogram, T a binding tree that represent®, andv € Val.
parent is a lambda node. Thus, nodes of a full computationVe haveP — v iff there is av-complete traversal overF?.
tree that occur on levels 0, 2, 4, etc. are O-nodes, and those pgof: Using the language of game semantics, a traver-

that occur on levels 1, 3, 5, etc. are P-nodes. A node of 35| gverT is a representation of an interaction sequence
full computation tree is aanswer nodef it is labelled with hich is obtained by hereditarilyncovering(in the sense of
an element ofVal; otherwise it is aquestion node Hyland and Ong [8, p. 341]) a play in the strategy-denotation

A justified sequenceover T* is an O/P-alternating se- of 1/. See preprint [4] or Blum’s thesis [3] for a proof
guence of nodes that satisfies theinter condition Every

non-initial node that occurs in it has a pointer to some Example 3.4:Let = be the variable assignment of Exam-
earlier occurrence of the node (ifi') which enables it. ple 4.2. Consider the base-type tefh\' where:

Notation ---ng --- n means thatr points tong andn A7 .= A\&.® (A\p.¢ (Az.z) (A.® (Ap.t) (A (Az.x) (A1) (A.F)
is j-enabled byny. We say thatn is j-justified by ng in N = b if A\ A\ A\
the justified sequence. Note that henceforthpbygramwe = Mydf A (Aaz.a (X2))) (Ay) (Ay).
mean a closed term of base type. In Figure 2, we display a-complete traversal ovex' (M N),
Definition 3.3: Let P be a fPCF program, and” be ax- Which is the justified sequende 2-3---59 - 60, where the
binding tree representing. Traversalsover the full tree7f ~ humbers are node-names indicated as superscripts.
are Just|f|9d sequences of nodes defined by induction over We close this section by recalling the notion wiew
the following rules. We let range over traversals, over
nodes Iabeflled by nobi-, SﬁmbOIS’ angée;nd “ho‘_’elr Vaf' which were introduced in game semantics [8]. Intuitively
For ease 0 readm'g, we refer to nodesIofby t. ?'r abels. the P-view of a justified sequence is a certain subsequence
1) (Rood: The singleton sequence, comprising the rootconsisting of moves which the player P considers relevant

(of a justified sequence) and the condition \@&ibility,

nodee, is a traversal. _ o for determining his next move in the play. Formally tRe
2) (App: If t-@ is a traversal, so ig- @ - \¢. view, "¢, of a justified sequenceis a subsequence defined
3) (Lam): If ¢-X¢ is a traversal and is the 1-child of by recursion as follows, where we letrange over O-nodes

node ¢ in T*, then so ist - A - n. andp over P-node$?
4) (Van): If t-n-X --- ¢ isa traversal where is not rt00 = o if node o is initial

labelled byif, then so ist - n'- A& £ 7. ftep--oli=Ttpo

-Val): NE - i i tepl = TtTp

5) (O-Val: If t-A&-n v is a traversal, so is

t-AEn v A justified sequence satisfies P-visibility just in case

6) P-Val): If ¢t-n-A---v is a traversal where €very non-initial P-node that occurs ihpoints to some
node n is labelled by@ or a variable, then so is (necessarily O-) node appearing in the P-view at that point.
t.n.)\g...v.v_]

7) (If):1f ¢-if is a traversal, so ist - if - A. 12In the third clause, suppose the P-nogepoints to some node-

occurrencd (say) int; if [appears ift™, thenp in "t7- p is defined to

11By aleaf of a tree, we mean a terminal node. point to/; otherwisep has no pointer.

*
0/ Xl
AP m:*[ss])\w [5,19] [42,56]
‘ [4] [57] ‘ [6,20] [41,55]
o * if *
(1/ \2\ M/ 1/ % YN@%
Ag i/ [52] \)\[\,—l ¢ (261, [54] 2 [ﬁ/ " \
(P[IO] [51] £ w[fz] t[25]* [53] y[28] *[39] y
e \ -
{3 [48 A 17] & 144)‘az[lisll 4 [36:50]
I[ﬂ/ [47) ol L 1431 a[3’32]/*[35’49]
e ?'/ —
(d A\ 29] 38] A\ [15]
£ [24] o [30] LB 16]
ol
RN
e A
i f
I
« 134 t

Figure 2. Ax-complete traversal over the full computation tree\éfV as
defined in Example 3.4. Note that only those value leaves thdicjpate
in the traversal are depicted.

IV. ALTERNATING DEPENDENCYX-TREE AUTOMATA
AND CHARACTERISATION OF REACHABILITY

Definition 4.1 (Stirling [22]): An alternating dependency
>-tree automaton(ADTA) is a quadrupleA = (Q, X, qo, A)
where @) is a finite set of statesy is a finite alphabet,
qo € Q is the initial state, and\ is a finite set of transition
rules each of which has one of the following forms.

() ¢gs= (Q1, - ,Qr) wheres € Xy,,Ucg, ar(s) =
geQandQy, - ,Qr C Q.

(i) gs= ¢ s wheres € X, s’ € X, andq, ¢’ € Q

(i) (¢',q)s = q1xwheres € X,z € ¥y, andq’, q,q1 €

Q.
A run-tree of an ADTA (Q, 3, qo, A) on aX-binding treet
is a (X x @Q)-labelled (unranked) tree whose nodes are pair
of the form (n, o) wheren is a node oft anda € Q™ is a
non-empty sequence of states, labelledy;) if n is labelled
s in t and g is the last element of the sequenee which
is defined top-down with root nod&, o) wheree is the
root node oft. Consider a nodén, «) of a partial run-tree
which does not have successors.

() If s € Zyar Ut andgs = (Q1,- -+ ,Qk) IS a A-
rule, then the successors 60f,«) are (ni,«q’), for
eachq’ € (Q; and eachl <i < k.

(i) If s € Xy, nlislabelleds’ € X andgs = ¢’ s is
a A-rule, then(nl,aq’) is the successor df, o).

(i) If s € Xy, nl is labelledz € X, m v~ nl in

kl

t, (m,o’¢’) equals or is an ancestor ¢f,«), and
(¢',q9)s = qrz is a A-rule, then(nl,aq;) is the
successor ofn,).
A run-tree of A on t is acceptingif whenever(n, aq) is a
leaf labelled(s, ¢) of the run-tree, then eitherhas arity 0 or
the ruleqgs = (0,---,0) is in A. The ADTA A acceptsa
Y¥-binding treet if there is an accepting run-tree éfon ¢.

Lemma 12 (Stirling [22]): ADTA are closed under union
and intersection.

Given aX-binding treeT that represents a closed fPGF
term in 3-NF, we construct an ADTA that simulates traver-
sals (over the full computation treE’) by a set of (anno-
tated) paths inl". The states of the simulating ADTA are
defined usingvariable profiles[19], which are assertions
about the value bound to a variable when control —in the
form of a traversal —reaches it.

Let =: A be a variable assignment. We define the set of
variable profilesof type B w.r.t. = recursively as

VP=(B) := {(z,v,p) :v € Val, z € B, p C Ull\/PE(Bi)}

where B = (By, -+, B,,0) < A. Thus, in casen = 0,

we haveVPz (o) = {(z,v,0) : x € Z°, v € Val}. To save

writing, we shall write base-type variable profiles as pairs

(x,v). Finally, setVPz to be the union of set¥P=(B), as

B ranges over proper subtypes df Whenever it is clear

from the context, we shall omit the subscriptfrom VPz=.
Example 4.2:Let A = (((((0,0),0,0),0),0,0),0). Con-

sider the following (singleton) variable assignmént A.

(((((o, 0), 0)

Tr «

07 0)7 0)7 07 0)7
z e v oy @
Then, all of the following are variable profiles w.rd.

6= (O‘7t’ {(va)})v 01 = (@atv {(Z’*)v'g})a
= (@, {(¥,x,{d1,02})}), 02:= (o, {(a, %, 0)}).

Definition 4.3: Let = be a singleton variable assignment
of type A = (4, -+, A,,0) and X be Xz or Xg \ {*}.
Thetraversal-simulating ADTAA(X, o) = (Q, %, qo, A),
where@ = Val x P(VPz) and the transition relatior is
gefined as follows.

- (App (v,0) @4 = ({(v,
p € U; VP=(4) andQ; = {(u, p') : (€, u,p') € p},
var) (v,p) EBvBmo) = (Qq,---Q,,) Where
Qi ={(u,p) : (€%",u,p) € p},

Lam-V) ((u, p0), (v,p)) A = (v,p1)®
(:C,U,pl) € po; _

Lam-Q (v,p) A = (v,0) w here$ € {if, v}
(f-t) (v,0)if = {(t,0)}, {(v,0)},0),

(-6 (v, 0)if = ({(F,0)},0,{(v,0)}),

(If-%) (%, 0)if = ({(x,0)},0,0).

To illustrate the transition
an inputX-binding tree.

)} le"' aQ’n) Where

n

w

where
$
(v,0)},

b Q)

No o

rules of the automaton,tlée

- Assume the current state (s, p) at noden of ¢, andn A (%, 0)
is labelled \¢. If nl is labelled with variabler; andm
@l

|
nl thenm is labelled)z, - - -z, for somek and the state (,0)
at m has the form(u, pp). One of the profiles for;, say - # ~,
(24,0, p1) € po, Where the value is the same as the value (3] -~ 5] ~ (19]
atn, is chosen and the statesat is (v, p1). AR (6, p5) - APy (6 pa) - Ayt (, p2)
« If the state is(v, p) at noden of ¢ andn is labelled | | |
¢(B1.,Bm.0) thenp consists of profiles of i wherel < M (%, pa) ifl%) (%, 0) if 2% (x, 0)
1 <m, reflecting the eventual return of the traversal to the ! ! b e
successors ofi. . _ A (x, p3) AT (%, 0) A2 (¢,) A7 (%,)
« If the state is(x,?) at noden of ¢, andn is labelled | | | |
if, then each of ruleslf(-t), (If-f) and (f-x) is applicable, 0] 5 (2] (28]
reflecting the three cases in which a tetiiB PQ) can ¢ pl)\ v (e p3)\ Y (4 0) v O 0)
evaluate tox: B evaluates ta and P evaluates tox; B } ~ N
evaluates td andQ evaluates to-; or B evaluates to-. Az (e p0) AT, 0) Azl (x,01) AazBU (x,0)
Lemma 13:Let ¥ be Xz (respectivelyS=\{x}), v € Val, | | | |
andt a X-binding tree accepted by the traversal-simulating zM (x,0) @18 (x,p2) o' (x, po) ol (x,0)
ADTA A(%, (v,0)). Thent is well-typed. Hence, by Lemma b ™S S
10, t represents a closed fPGHrespectively fPCF-) term. Ao (¢, 0) A2 (4,) AL (s, 0)
Example 4.4:Consider the program/ N : o as defined | | |
in Example 3.4. Figure 3 gives an accepting run-tree of [24] (30] [16]
the ADTA A(Xz, (x,0)) over theXz-binding treeA\(M N) = {(x L o D) 20
(which is 'p.reC|ser/\5(]V[N)). - . p1 = {(z. %), (@, %, po)} A2t (1, 0)
Proposition 14: Let= : A be a singleton variable as- p2 == {(y,%), (¢,t,0)} '
signment whered = (A4,--- , A,,0), P:= MN afPCF- p3 = }Eiv * Pl%}(% *0)} » |
. .) _ P4 = %, P3 ‘ 7@
program wherelM : A andN; : A; are -NFs, andv € Val. D5 = (U 5 pa). (U, p2)} x4 (%, 0)

() If there is an accepting run-tree of the ADTA
A(%z, (1,0)) over A=(P), then there is a-complete 282 5 A Etmls B Te J e htached to the node
" traversal qver the full binding treafE(P). labels refer to the cgrres.pc;rSdiagcorrF:plete ?raversal.)
(i) Supposet is a vo-complete traversal ovekL(P) and
let P be the set of P-viewSu" as u ranges over
prefixes oft. Each element of is a finite sequence
of the shapet w where the question-prefik consists
of only question nodes, and the answer-suffjxvhich
is of length at most 2, consists of only answer nodes.
Then the set of question-prefixes of element® a

an accepting run-tree of the ADTAXz, (vo, 0))) over Proof: That (i) and (i) are equivalent is an imme-
the Y=-binding tree =z (P). diate consequence of the definition of the decision prob-

lem, computational adequacy of innocent game semantics
ment withA = (A,,--- , A, 0), v € Val, and M a closed for fPCF* (by a proof similar to that of [8, Proposition

fPCF-term in 3-NF. The following are equivalent. 7.5, p. 373]), and Theorem 11. That (ii) and (iii) are
() M € v-REACH[fPCF",fPCH equivalent follows from Proposition 14. Unpacking the

(i) There exist closedPCRterms N : Ay,--- , N, : A definition of run-tree over th&z-binding tree \=(MN),
e " statement (iii) is equivalent to: there exist closed fPCF-
— . . — n .
the full computation tree\L (M N), terrrls Nlr,f AI’A'.” 2N o An, Srl;d p _dUizlpl wherﬁ
(iii) There exist closedPCFterms N, : Ay,---, N, : 4, Pi = Ui (€7, vijo pig)} C VP=, and r; > 0 suc
(in B-NF) such that there is an accepting run-tree that: (a) there is an accepting run-tree/qfls, (v, p)) over

of the ADTAA(X=, (v,())) over the computation tree A=(M), and (b) for eacll < i <n andl < j < r;, there
A=(MN). is an accepting run-tree d&(X;, (vi;, pi;)) over Az, (N;).

. : n : Thanks to Lemma 13 it is straightforward to see that the
iv) There existe = [JI'_, p; Wherep; = {(£4%, vij, pij) - . : :)
) 1 <j< T_}Spc VL&:.I\f)vith N >p0 ang(é Zf l/:))eji?ng preceding statement is equivalent to (iv). []
the obvious restriction oE to A;, such that: Stirling has asked [22§5]: “There are significant open
(1) A(Xs, (v, p)) acceptsiz(M), and guestions for the alternating [dependency tree] autonaata:

(2) for each1 <i <n the language ofX;-binding
trees recognised by the intersection automaton
152, A(%i, (vij, pij)) —which is an ADTA by
Lemma 12 —is non-empty, whele=3%z=\ {*}.

Theorem 15: LeE : A be a singleton variable assign-

(in B-NF) such that there is a-complete traversal over

they more expressive than the non-deterministic automata, consisting of profiles of variables that are currently with
(NDTA), and is their non-emptiness problem decidable?”.the scope of an enclosing binder.
We can now answer both questions. Remark 4.6:The ATA in Definition 4.5 has much in
Corollary 16: The ADTA non-emptiness problem is un-common with the traversal-simulating alternating panget
decidable. Since the non-emptiness problem is decidable f@utomaton of Ong [19] (even though the latter is an accept-
NDTA [22], ADTA are more expressive than NDTA. ing devise ofinfinite ranked trees generated by higher-order
Proof: Suppose the ADTA non-emptiness problem isfecursion schemes). The state of the former, which has the
decidable. It then follows from the equivalence of (iv) and form (v, p,7), is a more compact representation of the state
(i) of Theorem 15 that the problemReacH [fPCF,fPCH ©f the latter, which has the form (¢, v, p).

is decidable, which contradicts Corollary 7 (i).] Let Z : A be a variable assignment. A closed fPG@Erm
M : B < A in gn-long normal form (3n-LNF) is consistent
A relativised version of reachability with = if A\(M) is aX=-tree®® Let fPCF be the set of such

terms M, and fPCIz be itsx-free restriction. The following
theorem is proved using the same argument as in the proof
of Theorem 15, via the ATA analogue of Proposition 14.

Theorem 17: LeE : A be a variable assignment with
A= (A, ,A,,0,E =Z] Aj,v e Val,and M a
qs = (Q1, - ,Qk) cIo_sedfPCFg-term in3n-LNF. The following are equivalent.
wheres € X with ar(s) =k, ¢ € Q and@Qy, -+, @ € Q. (|(3 %eerevésiilez[sfgga%&igﬁ]éNl AL, N A
A run-tree of an ATA (Q, %, q, A) on aX-treet is a (in #n-LNF) such that there is a-complete traversal
(X x @)-labelled (unranked) tree whose nodes are pairs of over the full computation trea‘(MN)
. 4 .
the form (n, a) wherex is a node oft anQa 6. Q"isa (iii) There exist closedPCFz,-terms Ny : Ay,--- | N, :
non-empty sequence of states, labelledy) if » is labelled A, (in By-LNF) such that there is an accepting run-
s in t andgq is the last element of the sequenegwhich is trge of the ATAB(S=, (v, 0, 0)) over the computation
defined top-down with root nodg, qo) wheree is the root tree \(MN) =
node oft. Consider a nodén, «) of a partial run-tree which . i n .
does not have successor@slql?; (Q? -+, Q) € A then (1v) There exists T/FL,JiZI pawherepi :H{(ghAl’vij’ pis)
))R 1<5<r} CVPs, andr; > 0, such that:
the successors dfn,) are (ni,aq’), for eachl < i < k (1)_ é@: %v_p (Z)))Iacce[:ts/\(M) and
and¢’ € Q;. A run-tree ofA on ¢ is acceptingif whenever NPT '

. : (2) for eachl <i < n, settingX; = Xz, \ {x}, the
(s,q) is a label of a leaf of the run-tree then eithehas languade ofs.-trees recoanised b tﬁe intersection
arity 0 orgs = (0,--- ,0) is aA-rule. The ATAA accepts guag : g y

a Y-treet if there is an accepting run-tree éfon ¢. aut.omatonHj:l B(E:, (vig i3, 0)) 18 non-.empty. :
AlternatingX-tree automata are closed under intersection,
Definition 4.5: Let = be a variable assignment of type and their acceptance problem is decidable. Further, their
A = (Ai,-+,Ay,0) and ¥ be ¥z or ¥z \ {x}. The non-emptiness problem is also decidable; and if an alter-
traversal-simulating ATAB(X, qo) := (@, %, g0, A) where nating S-tree automaton has a non-empty languagé;-a
Q@ = Val x P(VPz) x P(VPz), and the transition relation tree accepted by it can be effectively constructed (see for

An alternating X-tree automaton(or ATA for short) is a
quadruple(@, X, g0, A) whereQ is a finite set of states,
is a finite ranked alphabefy € Q is the initial state, and\
is a finite set of transition rules of the form:

A is defined as follows (e = (Bi, -+, By, 0) < A). example the draft book [6]). Thus we can conclude:

L (v,0,0) a4 = ({(v,p, @)}7621,"'75%) where p C Corollary 18 (Decidability): For every variable assign-
Ui:l\/PESBAi) and@; = {(u,p',0) : (£ 5“79];) €p} ment= : A, v € Val, and closedPCF-term M : A in 3n-

2. (v,p,m) €7 = (Q, -+, Qm) Where m = {(£7, v, p)} LNF, the set{N € (fPCFz)" : N; in 1-LNF, MN — v}
U Ui,,j’¥'1r,_1 mige po = UpjZia (&7 vigspig) and s regular. Hence, the relativised decision problem
Qi = U;Zi{(vij, pijs mig) } v-REACH [fPCR., fPCF=] is decidable.

3. (v,p,m) A = (v, p1,p U T) p Where(p, v, p1) € pUT Corollary 19: The problems-ReAcH [fPCF, fPCH and

4. (v,p,m) A = (v,0,pUm) § wheres € {if, v} *-REACH[fPCF,, fPCH are decidable at order 3.

5. (v,0,m Um)if = ({(t,0,m)},{(v,0,m2)},0) Proof: We consider onlyx-REACH [fPCF*, fPCH. For

6. (v,0,m Uma)if = ({(F,0,m)},0,{(v,0,72)}) *-REACH [fPCF; ,fPCH, the same analysis as above can

7. (%, 0,m)if = ({(x,0,m)},0,0) lead to an analogue of Theorem 17 where principal terms

The ATA B(Z, (v, p, 7)) simulates traversals in the same are taken from PCFz, and thus an argument simi-
way as ADTAA(X, (v, p)). Since ATA is defined ovek- lar to the following applies. It suffices to show that,
trees (as opposed ¥r-binding trees), it relies on the symbols |, . L
. L . Not all closedsn-LNFs M : B < A are consistent with (singleton)
in ¥ and Xy.: to work out the b'ndmg relatlon' Conse- = : A. For example, each term/,, in Remark 3.2 is inconsistent with
guently an ATA state has a third componentesivironment every assignmerE such that=(°:°) contains less than names.

given a closed fPCFterm M in (n-LNF of order-3 REFERENCES

t_ype A = (A1,---, Ay 0), we can find an assignment 1] T, gall and S. K. Rajamani. The SLAM Project: Debugging
= : A such thatM € x-ReACH[fPCF|fPCH iff M € system software via static analysis. Pnoc. POPL, 2002.
*-REACH[fPCR, fPCRs]. For this, it suffices to find an |51 5. Berardi, M. Coppo, F. Damiani, and P. Giannini. Type-
assignment= : A such that every (up tev-equivalence) based useless-code elimination for functional programs. In
closed gn-LNF N; : A; is consistent withz, = = | Proc. SAIG 2000.
A;. In fact, it suffices to show that every sucN; is [3] W. Blum. The Safe Lambda CalculuBhD thesis, University
consistent with some singleton assignméht: A;. Take of Oxford, Dec 2008.
N; - AiB: (Bi,-+,Bm,o) of order at most 2. Then 4] w, Blum and C.-H. L. Ong. Local computation of-
Ni=Xa ' Bm .N' for somez,...,z,, and open term reduction: a concrete presentation of game semantics. 2009.
N o Whose free variables are contalned in thes. We Preprint, downloadable at william.famille-blum.org/research/.
show thatV’ cannot contaim\-abstractions and therefore all [5] R. Cartwright, P.-L. Curien, and M. Felleisen. Fully abstract
its variables (be they free or bound) are within thés; thus semantics for _observably sequential language$ormation
N; is consistent with any singleto; : A;. Indeed, since and Computation111:297-401, 1994.
N; is closed and inBn-LNF, N’ must be of the formu L, [6] H. Common, M. Dauchet, R. Gilleron, F. Jacquematdl.
where« is either a constant or Sorm% (and thus of order Tree Automata TeChnqueS and AppllcaIIDZGO?. Draft book.
at most 1). Ifa : 0 then we are done; otherwise, we repeat [7] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre.
the same argument for eadh, : o. n Temporal-safety proofs for systems code. Fmoc. SPIN
Workshop 2003.

Connections to observational equivalence [8] J. M. E. Hyland and C.-H. L. Ong. On Full Abstraction for
Consider the following generalisation of our reachability PCF:LILIIL. I_nfo' and Comp'163'285_408’_ 2000. o
template, wherd is a sequencé, - - - , 6,, of £;-values. [9] N. Kobayashi. ~ Type-based useless-variable elimination.

Higher Order Symbolic Computatiph4(2-3):221-260, 2001.
#-REACH [£1, Lo]: Given closedl,-terms My, - - -, M, [10] N. I_(_oba_yashi. Types and higher-order recursion schemes fo
of type (A,---,An,0), are there closedC,-terms verification of higher-order programs. Proc. POPL, 2009.
Ny, -+, N, s.t. M;N — 0, for eachl < i < m? [11] N. Kobayashi and C.-H. L. Ong. Complexity of model

checking recursion schemes for fragments of the modal mu-

calculus. InProc. ICALR, 2009.
The generalised decision problem can be charactense(%2 N. Kob hi and C-H. L. A h |

by use of ADTA's and ATA (in its relativised version) in [12] obayashi and C. Ong. ‘A type theory equivalent

. . .) to the modal mu-calculus model checking of higher-order
exactly the same fashion as its one-dimensional counterpar ecyrsion schemes. IRroc. LICS 2009.
(Yla analogues of Theorelms 15 and 17). ,On the othelr han?lB] R. Loader. Finitary PCF is not decidableTheoretical
given fPCH -terms M, M’ : A, M Z M" iff (M, M’) Computer Science266:342—364, 2001.
belongs to(6;, 02)-REACH [fPCF., fPCF, | where (0, 6>) [14] P. Malacaria and C. Hankin. Generalised flowcharts and
is one of (t,1),(t,f),(f,L) and (f,t). This gives us a games. InProc. ICALP 1998,
means to relate these classes of automata with observatio ?5 P Malacaria and C. Hankin. A new aporoach to control flow
approximation and equivalence of fPCKand of other ex-] aacana a a ew approach fo control flo

. . . . analysis. InProc. Compiler Constructign1998.
tensions of fPCF). For example, observational approxionati

oy ; , [16] J. Midtgaard. Control-flow analysis of functional programs.
of third-order fPC can be decided by use of ATAS. Tech. Report BRICS RS-07-18, DAIMI, U. of Aarhus, 2007.
V. FURTHER DIRECTIONS [17] R. Milner. Fully abstract models of typed lambda-calculus.

Theoretical Computer Sciencé:1-22, 1977.

é18] F. Nielson, H. R. Nielson, and C. HankinPrinciples of
Program Analysis Springer-Verlag New York, 1999.

(i) Variable profiles are a useful construct for an automata
theoretic simulation of traversals, which are an accurat
model of control flow. It would be interesting to investigate [19] C.-H. L. Ong. On model-checking trees generated by higher-

possible applicati_ons of variable profiles to CFA. (ii) The_ order recursion schemes. Rroc. LICS 2006. Long version
MSO theory of higher-order recursion schemes (HORS) is downloadable at users.comlab.ox.ac.uk/luke.ong/.

decidable. An alternative approach to functional readtgbi 20]
is to cast the problem in the setting of HORS extendea[Theoretical Computer SciencB:223—255, 1977.

with booleans. As the extt}ansmn can be'CPS-tra_nsforme 1] K. Sieber. Reasoning about sequential functions via logical
out, one can then use Ong’s model-checking algorithm [19 relations. InProc. Applic. of Categories in Comp. S¢992.

or Kobayashi and Ong’s method based on intersection typ o1 C. stirli D d ¢ tomata. Rroc. FoSSacs
[10], [12], [11]. (iii) Finally, an obvious open problem ike 6‘[5] 200 ming. bependency free aufomata. Hpe. aG

following. [23] M. Zaionc. On the lambda definable higher-order boolean
Conjecture 20:x-REACH [fPCF, fPCH is decidable. functionals. Fundamenta Informaticael2, 1989.

G. D. Plotkin. LCF considered as a programming language.

