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Abstract—What is reachability in higher-order functional
programs? We formulate reachability as a decision problem
in the setting of the prototypical functional language PCF,
and show that even in the recursion-free fragment generated
from a finite base type, several versions of the reachability
problem are undecidable from order 4 onwards, and several
other versions are reducible to each other. We characterise a
version of the reachability problem in terms of a new class
of tree automata introduced by Stirling at FoSSaCS 2009,
called Alternating Dependency Tree Automata(ADTA). As a
corollary, we prove that the ADTA non-emptiness problem is
undecidable, thus resolving an open problem raised by Stirling.
However, by restricting to contexts constructible from a finite
set of variable names, we show that the corresponding solution
set of a given instance of the reachability problem is regular.
Hence the relativised reachability problem is decidable.

I. I NTRODUCTION

In the simplest form, Reachability is the decision problem:
Given a state of a state-transition system (e.g. an error
state paired with a program point), is it reachable from the
start state? Reachability testing has had a major impact in
software model checking; it is now a standard approach to
checking safety properties in industry. In the past decade,
great strides have been made in model-checking reacha-
bility of first-order (recursive) procedural programs. Tools
such as SLAM [1] and Blast [7] showcase the remarkable
achievements of the computer-aided verification community
in the engineering of scalable software model checkers.
Perhaps surprisingly no reachability checker has yet been
developed forhigher-order programming languages such
as ML, Ocaml, Haskell, F#. Indeed, to our knowledge,
reachability of higher-order functional computationper se
does not appear to have been studied in the literature. We
initiate just such an investigation here.

Reachability of higher-order functional programs is quite
different from that of first-order imperative programs. Func-
tional programs are state-less, and it is unclear what their
program points are (because the term being evaluated is
being changed by substitution as the computation unfolds).
Further, functional reachability iscontextual: the flow of
control within a (higher-order, open) term should be anal-
ysed in relation to all itsprogram contexts; it is thus much
more complex than graph reachability, which is what first-
order reachability boils down to.

Consider the following decision problem in the rather
purified setting of PCF, generated from afinite base typeo.

CONTEXTUAL REACHABILITY : Given a PCF term
M of typeA and a subtermNα with occurrenceα,
is there a program contextC[-] such thatC[M ] is a
program (i.e. closed term of typeo) and the evaluation
of C[M ] causes control to flow toNα?

Our starting point is the question: Is CONTEXTUAL REACH-
ABILITY decidable? A precise (and equivalent) way to
formulate the problem is to replace the subtermNα in M
by a distinguished error constant⋆— call the resultant term
M⋆ — and ask if there is a PCF program-contextC[-] such
thatC[M⋆] evaluates to⋆. Here we regard theprincipal term
M⋆ and thecontextC[-] as elements of a larger language,
PCF⋆, which is PCF augmented with⋆, with evaluation rules
so extended as to propagate⋆ to the top.

More generally, consider the following parameterised de-
cision problem, where the (closed) principal term ranges
over L1, the (applicative) context ranges overL2, bothL1

and L2 are sublanguages of PCF⋆, and θ ranges over the
base typeo := {t, f, ⋆}.

θ-REACH [L1,L2]: Given a closedL1-term M :
A1 → · · · → An → o, are there closedL2-terms
N1, · · · , Nn such thatMN evaluates toθ ?

We can formulate the preceding reachability problem (equiv-
alently) as⋆-REACH [PCF⋆,PCF].

For a sharper analysis, we consider thefinitary (i.e.
recursion-free) sublanguages, fPCF⋆ and fPCF. Note that
“divergence” is definable in PCF (e.g.Yo(λx.x)) but not in
fPCF. Thus we also consider fPCF⊥, fPCF augmented with
a divergence constant⊥. We obtain two results.

(i) Undecidability. By exploiting (the key lemma behind)
Loader’s proof of the undecidability of PCF observational
equivalence [13], we show that CONTEXTUAL REACHABIL -
ITY , ⋆-REACH [PCF⋆,PCF], t-REACH [fPCF⊥, fPCF] and
t-REACH [fPCF⋆, fPCF] (and several others) are all unde-
cidable from order 4 onwards.

(ii) Equivalence. The problems⋆-REACH [fPCF⋆, fPCF]
and⊥-REACH [fPCF⊥, fPCF] are polynomially reducible to
each other. Whether they are decidable is open.

Motivated by the open problem, we analyse fPCF⋆ com-
putation automata-theoretically. Stirling [22] has recently
introduced a new kind of tree automata calledAlternating
Dependency Tree Automata(ADTA) which are an accepting
device for trees with a binding relation calledΣ-binding
trees. He showed that the decision problem Higher-Order
Matching is reducible to the ADTA non-emptiness problem,



and asked if the latter is decidable. The second contribution
of this paper is a characterisation (Theorem 15) of the
problem v-REACH [fPCF⋆, fPCF] (for v ∈ o) in terms
of ADTA acceptance and ADTA non-emptiness problems.
Thanks to the preceding undecidability result, we obtain the
undecidability of ADTA non-emptiness as a corollary.

Theorem 15 is proved using a characterisation of fPCF⋆

computation bytraversals[19], [4], [3]. A traversal over the
full computation tree(which is a souped-up syntax tree) of
a termM , λf(M), is a certain sequence of nodes of the
tree; unlike a path in the tree, a traversal can “jump” all
over the tree.1 Given a closed fPCF⋆-termM , we construct
an ADTA that simulates traversalst over λf(M) by a set
of paths that correspond to the P-views of prefixes oft.
The states of the simulating ADTA are based onvariable
profiles[19], which are assertions about the value bound to a
variable when control (in the form of a traversal) reaches it.

Our third contribution concerns a relativised reachability
problem. By restricting to contexts constructible from a
finite set of variable names, we show that the corresponding
solution set of a given instance of⋆-REACH [fPCF⋆, fPCF]
is recognisable by an alternating tree automaton, and hence
regular. Thus the relativised problem is decidable. As a
corollary, ⋆-REACH [fPCF⋆, fPCF] is decidable at order 3.

Related work

The aim ofControl Flow Analysis(CFA) is to approxim-
ate the flow of control within a program phrase in the course
of a computation (see e.g. Midtgaard’s survey [16] and the
book by Nielson et al. [18]). In a functional computation,
control flow is determined by a sequence of function calls
(possibly unknown at compile time); thus CFA amounts to
approximating the values that may be substituted for bound
variables during the computation. Since these values are
(denoted by) pieces of syntax, CFA reduces to an algorithm
that assignsclosures(subterms of the examined term paired
with substitutions for free variables) to bound variables.
Reachability analysis and CFA are clearly related: for exam-
ple, the former can aid the latter because unreachable parts
of the term can be safely excluded from the range of closure
assignment. There are however important differences: on
one hand, CFA algorithms areapproximation algorithms
designed to address a more general problem; on the other,
because CFA considers terms in isolation of its possible
(program) contexts, the corresponding notion of reachability
essentially amounts to reachability in the reduction graph.

Also relevant are (mainly type-theoretic [2], [9]) methods
to detect useless code(which subsumes dead code). A
subterm of a term isuselessif it does not contribute to
the evaluation. State-of-the-art algorithms employ only static

1Intuitively, and using the language of game semantics, a traversal over
λf(M) is a representation of an interaction sequence which is obtained by
hereditarilyuncovering(in the sense of Hyland and Ong [8, p. 341]) a play
in the strategy-denotation ofM .

information, without predicting the values of bound variables
or analysing control flow. Consequently, these algorithms
offer even coarser approximations than CFA.

Based on the fully abstract game semantics, traversals are
a (particularly accurate) model of the flow of control within
a term; they can therefore be viewed as a CFA method.
In fact, Hankin and Malacaria [15], [14] proposed a game-
semantical approach to CFA. Their work utilised a kind
of traversals over what they callflowcharts, a construction
similar (but not identical) to Blum-Ong [4], [19].

Outline

The rest of the paper is organised as follows. Section II
introduces the decision problem templateθ-REACH [L1,L2]
and establishes the undecidability results. Section III intro-
ducesΣ-binding trees and traversals. Section IV charac-
terisesv-REACH [fPCF⋆, fPCF], proves the undecidability of
the ADTA non-emptiness problem, and the decidability of
a relativised reachability problem.

II. REACHABILITY IN HIGHER -ORDER COMPUTATION

Consider (boolean) PCF [20], which is the simply-typed
lambda calculus generated from the base type of booleans
o := {t, f}, augmented with a definition-by-cases construct
(or conditional) and a fixpoint operator at every type:

Types A,B ::= o | A→ B

Terms M,N ::= t | f | if | x | λx.M | MN | YA

Each typeA can be written in the formA1→· · · → An→ o
(by convention, arrows associate to the right) which we ab-
breviate to(A1, · · · , An, o). The numbern, denotedar(A),
is called thearity of A. Theorder of A is given recursively
by ord(A) := max{ord(A1) + 1, · · · , ord(An) + 1, 0} ;
thusord(o) = 0. Reductionin PCF is defined by means of
a small-step reduction relation, with redexes as follows

(β) (λxA.M)N →M [N/x]
(Y) YAM →M (YAM)

(if)

{
if t → λxoyo.x
if f → λxoyo.y

and evaluation contexts defined byE ::= [-] | EM | if E.
Because of recursion, PCF is not normalising. We say that
M observationally approximatesN , writtenM . N , just if
for every program contextC[-] and v ∈ {t, f}, if C[M ] ։

v then C[N ] ։ v . This yields a notion ofobservational
equivalence: M ∼= N if M . N andN . M .

Given a PCF termM , we can think of a program point as
a pairLα, whereL is a subterm ofM , andα, which is a path
in the syntax tree ofM , indicates an occurrence ofL in M .
Let C[-] be a program context forM . As the computation of
C[M ] unfolds,Lα may be eliminated, copied or modified
(by substitution) as a result of the rewrite rules — the terms
into whichLα may evolve in this way are calledresiduals.
We can express Contextual Reachability as follows.



CONTEXTUAL REACHABILITY : Given a PCF term
M and a program point given by an occurrenceα of
a subtermL of M , is there a program contextC[-]
for M such thatC[M ] ։ E[Lα

σ ], for some evaluation
contextE[-] and substitutionσ?

Because the reduction is leftmost and call-by-name, it
suffices to consider onlyapplicative contexts (thanks to
a Context Lemma [17]). We can reformulate the decision
problem as follows.

REACHABILITY : Given a closed PCF termM :
(A1, · · · , An, o) and an occurrenceα of a subtermL
of M , are there closed PCF termsN1, . . . , Nn such
thatMN ։ E[Lα

σ ], for some evaluation contextE[-]
and substitutionσ?

For example take the term

M := λϕx . if (ϕx) (if (ϕ (ϕx))P L)Q

of type (o→ o) → o→ o. ThenL is “reachable” using the
test-termsneg : o→ o (negation function) andf : o.

M neg f ։ if t (if (neg (neg f))Pσ Lσ)Qσ

→ if (neg (neg f))Pσ Lσ ։ Lσ

Is REACHABILITY decidable? In the course of our in-
vestigation, we shall consider a related language PCF⋆ and
several of its finitary sublanguages, and ask if reachability
is decidable in each case.

PCF-with-error: PCF⋆

By PCF⋆ we mean PCF terms generated from the base
type o := {t, f, ⋆}. The distinguished constant⋆ is an error
constant in the sense of Cartwright et al. [5]. The redexes
of PCF⋆ are those of PCF and

(if ⋆) if ⋆→ λxoyo.⋆

while evaluation contexts remain the same. Thus, as soon
as⋆ is encountered, it is propagated to the outer-most level
(in particular, we haveif ⋆ M N ։ ⋆). The notion of
observational approximation is now given by:M . N just
if for every program contextC[-] and everyv ∈ {t, f, ⋆}, if
C[M ] ։ v thenC[N ] ։ v. Note that ⋆ 6. t, f.

REACHABILITY can now be given the following equiva-
lent but simpler formulation.

⋆-REACHABILITY : Given a closed PCF⋆-term M :
(A1, · · · , An, o) that has exactly one occurrence of
⋆, are there closed PCF termsN1, · · · , Nn such that
MN ։ ⋆?

Lemma 1: The decision problemsREACHABILITY and⋆-
REACHABILITY are (polynomially) reducible to each other.

For ease of comparison between problems, we introduce
the followingdecision problem templatewith parametersθ,
L1 (principal term) andL2 (test-terms), whereL1 andL2

are sublanguages of PCF⋆, andθ is a base-type value ofL1.

θ-REACH [L1,L2]: Given a closed L1-term
M : (A1, · · · , An, o), are there closedL2-terms
N1, · · · , Nn such thatMN ։ θ ?

Using the template,⋆-REACHABILITY is the problem
⋆-REACH [PCF1⋆,PCF], where PCF1⋆ is the set of PCF⋆-
terms that have exactly one occurrence of⋆.

Finitary sublanguages:fPCF and fPCF⋆

Let us now consider the respectivefinitary (i.e. recursion-
free) and hence (strongly) normalizing fragments of PCF
and PCF⋆, written fPCF and fPCF⋆. It is straightforward to
see that there is no loss of generality in restricting to finitary
test-terms:

Lemma 2: The decision problems⋆-REACH [PCF1⋆,PCF]
and ⋆-REACH [PCF1⋆, fPCF] are equivalent.

Henceforth we focus on finitary languages. Further, we
may WLOG restrict our attention to principal- and test-
terms that areβ-normal forms (β-NF). A first result is the
following.

Lemma 3: The decision problems⋆-REACH [fPCF1⋆, fPCF]
and ⋆-REACH [fPCF⋆, fPCF] are (polynomially) reducible
to each other.

Note that⋆-REACH [fPCF1⋆, fPCF] is non-trivial. To check
if a given fPCF1⋆-term M : (A1, · · · , An, o) is a yes-
instance, it suffices to evaluateMN for a representativeNi

of each observational equivalence class of each typeAi.
Unfortunately these classes are not effectively presentable:
the equivalence is taken in fPCF⋆ where Loader’s result [13]
applies (see below). In contrast,v-REACH [fPCF, fPCF] (v ∈
{t, f}) is decidable, because the equivalence classes are
given by elements of the appropriate type in the hierarchy
of higher-order functions on a boolean base type [23].

Finitary PCF-with-bottom:fPCF⊥
Next we introducefinitary PCF-with-bottom(as consid-

ered by Loader [13]), written fPCF⊥, which is syntactically
just fPCF⋆ with ⋆ replaced by⊥; the reduction rules are
the same as in fPCF⋆. As a result, the two languages have
the same notion of observational equivalence2 (which is
undecidable [13]), which implies the following equivalence.

Lemma 4: For everyv ∈ {t, f, ⋆}, setting v′ := ⊥ if
v = ⋆ and v′ := v otherwise,v-REACH [fPCF⋆, fPCF]
and v′-REACH [fPCF⊥, fPCF] are (polynomially) reducible
to each other.

2in the sense thatM ∼= N in fPCF⋆ iff M [⊥/⋆] ∼= N [⊥/⋆] in fPCF⊥.
Note that because reduction to⊥ meansdivergencerather than error,the
two languages have distinct notions of observational approximation.



Finitary PCF-with-error-and-bottom:fPCF⋆
⊥

We do not know if the reachability problems of Lemma 4
are decidable. On the other hand, taking fPCF⋆

⊥
to be

the (finitary) language generated from base typeo :=
{t, f,⊥, ⋆}, its ⋆-REACHABILITY problem (i.e.⋆-REACH

[fPCF⋆
⊥
, fPCF]) is undecidable. As before, we write fPCF1⋆

⊥

for the set of fPCF⋆
⊥

terms in which⋆ occurs exactly once.
Lemma 5: If⋆-REACH [fPCF1⋆

⊥
, fPCF] is decidable, then

so is t-REACH [fPCF⊥, fPCF].
Proof:M ∈ t-REACH [fPCF⊥, fPCF] iff λx. if (Mx)⋆⊥

∈ ⋆-REACH [fPCF1⋆
⊥
, fPCF], for every fPCF⊥-termM .

Lemma 6: If t-REACH [fPCF⊥, fPCF] is decidable, then
so is the problem: Given a system offPCF⊥-equations






X a1
1 . . . a

1
n

∼= b1

X a2
1 . . . a

2
n

∼= b2

· · ·
X am

1 . . . am
n

∼= bm

(1)

where eachaj
i is a term of typeAi and eachbj ∈ {t, f}, is

there a solution (infPCF⊥) for X : (A1, . . . , An, o)?
Proof: Note that t-REACH [fPCF⊥, fPCF⊥] and

t-REACH [fPCF⊥, fPCF] are equivalent. Given such a system
of equations we can construct a termG : (o, . . . , o, o) such
that, for eachci : o,

Gc1 · · · cn ∼=

{
t if ci ∼= bi for eachi
⊥ otherwise

in fPCF⊥. TakeM : ((A1, . . . , An, o), o) to be

λX.if (G (X a1
1 . . . a

1
n) . . . (X am

1 . . . am
n )) t ⊥ .

Then, the system of equations has a solution in fPCF⊥ iff
M ∈ t-REACH [fPCF⊥, fPCF⊥].

Corollary 7: The following problems are undecidable.
(i) t-REACH [fPCF⊥, fPCF], t-REACH [fPCF⋆, fPCF]

(ii) t-REACH [fPCF⊥, fPCF⊥]
(iii) ⋆-REACH [fPCF1⋆

⊥
, fPCF], ⋆-REACH [fPCF⋆

⊥
, fPCF]

(iv) ⋆-REACH [PCF1⋆,PCF]
(v) ⋆-REACH [PCF⋆,PCF]
(vi) REACHABILITY

Proof: (i) Loader [13] has shown that solvability of
the system of equations (1) (as defined in Lemma 6) is
undecidable. (ii) is equivalent to (i), (iii) follows from (i),
and (v) follows from (iv). (iv) is undecidable because of
Lemma 2 and the fact that fPCF1⋆

⊥
is a sublanguage of PCF1⋆;

(vi) then follows from Lemma 1.
Solvability of the system of equations (1) is undecidable

at order 3 [13]. Hence problems (i-vi) above are undecidable
at order 4 onwards. For (i, ii), this is optimal because
fPCF⊥-test-terms of order 2 can be effectively generated
[21]. Corollary 19 shows that it is optimal for (iii) too.

We have seen that the following problems are polynomi-
ally reducible to each other. Are they decidable?

(i) ⋆-REACH [fPCF⋆, fPCF]
(ii) ⊥-REACH [fPCF⊥, fPCF]

Much of the rest of the paper is concerned with this question.

III. Σ-BINDING TREES AND TRAVERSALS

AssumeΣ is a ranked alphabet (i.e. each symbols ∈ Σ
has an arityar(s) ≥ 0) that is partitioned intoΣλ,Σvar and
Σcst, whereΣλ consists ofbindersof arity 1, Σvar consists
of variables, andΣcst consists ofconstants. A Σ-tree is a
finite Σ-(node-)labelled tree that satisfies:

Bipartition: If node n is Σλ-labelled thenn1 is la-
belled in Σvar ∪ Σcst; and if noden is labelled in
Σvar∪Σcst andni is a successor then it isΣλ-labelled.

The long transform of a fPCF⋆-term is obtained by:
(i) hereditarily η-expanding every subterm (even if it is of
base type so thate : o expands toλ.e : o, a term with a
“dummy” lambda) provided it does not occur as the first
argument of the application operator; then (ii) inserting
long-apply symbols@A�A i.e. replacing every base-type
subterm of the shape(λx.P )Q1 · · ·Qn where n ≥ 1 by
@(λx.P )Q1 · · ·Qn.3 E.g. (to avoid notational clutter, we
shall often omit type superscripts of variables and constants)

(λϕ(o,o).ϕ) (λxo.x) t 7→ λ.@A�A(λϕy.ϕ(λ.y)) (λx.x) (λ.t)

whereA = ((o, o), o, o).
Thecomputation treeof a fPCF⋆-termM , writtenλ(M),

is its long transform viewed as aΣ-tree with (typed, parti-
tioned) alphabetΣ = Σλ + Σvar + Σcst given as follows.
Each symbolsA has arityar(A).

• Σcst is a finite subset of{if(o,o,o,o), to, fo, ⋆o} ∪
{@A�A : ar(A) ≥ 1}.

• Σvar is a finite set of (typed) variables.
• Σλ is a finite subset of{λx1 · · ·xn : n ≥ 0, xAi

i ∈ Σvar}
where eachλxA1

1 · · ·xAn
n has type(A1, · · · , An, o).

We call such aΣ a fPCF⋆-alphabet.
Example 3.1:Consider the fPCF⋆-termM :

(λΦxo.Φ(λyo.if y (Φ(λzo.z)⋆)x) t) (λϕxo.ϕx) t : o

Its computation treeλ(M) is shown in Figure 1 (ignore
dotted arrows for now). Observe that nodes on levels 0, 2,
4, etc. are labelled with “lambdas”, and those on levels 1, 3,
5, etc. are labelled with non-lambda symbols — this is just
the bipartition condition.

A Σ-binding tree, in the sense of Stirling [22], is aΣ-
tree which is equipped with abindingrelation between nodes
such that, for everyΣvar-labelled noden, there is a unique
ancestor nodeb of n that isΣλ-labelled andbindsn, written
b x n. An important example ofΣ-binding tree is the
computation tree of a (closed) fPCF⋆-term, whereΣ is the
underlying fPCF⋆-alphabet: the binding relationb x n is
just the standard binding relation between nodesn labelled
with a variablexi and nodesb labelled with aλ-binder of the
form λx1 · · ·xk, with 1 ≤ i ≤ k.4 For example, in Figure 1,
the binding relation is shown as dotted arrows.

3Note thatA � A = (A, A1, · · · , An, o) for A = (A1, · · · , An, o).
4The binding relation “b x n” corresponds to the presence of ajustifi-

cation pointer, in a game-semantic reading of fPCF⋆ terms [8], [4], [3].
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Figure 1. A computation tree. For technical convenience, theleftmost
child of a @-labelled node is its 0-child; the leftmost child of every other
node is its 1-child.

Remark 3.2:It is not possible, in general, to use a fixed,
finite set of variable-names to construct an infinite family of
simply-typed lambda terms of the same type. Consider, for
example, themonster type((((o, o), o), o), o, o), which has
the following family of terms,

Mn := λϕx.ϕ(λz1.(ϕ(λz2.(· · ·ϕ(λzn.zn(· · · z2(z1 x))))))).

for n ≥ 1 [22]. The key advantage of representing computa-
tion trees asΣ-binding trees is that we can “economise” on
variable names (see Lemma 8). For example, the preceding
family of terms can be represented asΣ-binding trees, each
using only two variable names and the following bindings
(indicated by dotted arrows).

λϕx. ϕ(λz. (· · ·ϕ(λz. z(· · · (z x))))) (2)

Let us now assume that each subtypeB of a typeA
is implicitly labelled with its occurrenceα in A, written
Bα ≤ A, so that different occurrences of the same type are
distinguished5; we use< for theproper subtype relation. To
avoid notational clutter, we shall omit the occurrence of a
subtype whenever what we mean is clear from the context.
The subtypes of a typeA = (A1, · · · , An, o) are partitioned
into two groups6, O(A) andP (A), recursively by:

O(A) := {A} ∪
⋃n

i=1
P (Ai) , P (A) :=

⋃n

i=1
O(Ai) .

Lemma 8: For every typeA, at most |P (A)| variable-
names are needed to representeveryclosedfPCF⋆-termM :
A in β-NF as a binding tree.

5For example, the monster type((((o, o), o), o), o, o) has five proper
(labelled) subtypes, namelyo1111, (o, o)111, ((o, o), o)11, (((o, o), o), o)1

ando2.
6They correspond to O- and P-moves in the game semantics ofA.

By a variable assignmentΞ of typeA, written Ξ : A, we
mean an injective mapΞ from (labelled) proper subtypesB
of A to finite sets of variable names (writtenΞ : B 7→
ΞB), such that ifB1 and B2 are distinct subtypes, then
ΞB1 ∩ ΞB2 = ∅. We may writeξB to denote an element of
ΞB . The associatedfPCF⋆-alphabetΣΞ has the following
components,

Σλ := {λξB1

1 · · · ξBm
m : (B1, · · · , Bm, o) ≤ A}

Σvar :=
⋃

B<A ΞB

Σcst := Val ∪ {if,@A�A}

whereVal := {t, f, ⋆}.7 A variable assignmentΞ is said to
be singleton just if ΞB is a singleton set for everyB (and
if so, we writeΞB = {ξB}).

We say that aΣΞ-binding tree is well-typed just if:
(i) whenever a node has aΣvar- or Σcst-label of typeB =
(B1, · · · , Bm, o), then it hasm children, and itsi-th child
has aΣλ-label of typeBi; (ii) if a node b has aΣλ-label
λξB1

1 · · · ξBm
m , andb x n, thenn hasΣvar-label ξBi

i .

Lemma 9: LetΞ : A = (A1, · · · , An, o) be a singleton
variable assignment. Every closedfPCF⋆-termM : B ≤ A
in β-NF is representableas a well-typedΣΞ-binding tree,
which is writtenλΞ(M). 8 In caseM : A, the same holds
for MN : o where eachNi : Ai is a closedβ-NF.

Lemma 10: LetΞ : A = (A1, · · · , An, o) be a variable
assignment. Everywell-typed ΣΞ-binding tree represents
some closedfPCF⋆-term.

Traversals over a fullΣ-binding tree

Traversals[19], [4], [3] are a representation of higher-
order computation based on fully abstract game semantics
[8]. Let M be a fPCF⋆-term. Formally a traversal over the
full computation treeof M (which is an extension ofλ(M)
with value nodes),λf(M), is a certain sequence of nodes of
the tree that starts from the root). However, unlike a path in
the tree, a traversal can “jump” all over the tree. Intuitively
traversals capture the flow of control inλf(M) from the
perspective of game semantics. Here we define traversals
over aΣ-binding tree9 T that representsM .

We define enabling, a family of binary relations⊢i

between nodes of the treeT where 0 ≤ i ≤ m (where
m is the largest arity of the types of the subterms ofM ) by
the following rules.
(e1) Every lambda nodeβ, which is the i-child10 of its

parent nodeα, is i-enabledby α.

7Because we assume that the principal term is inβη-LNF, we need only
one long-apply symbol, which is at the topmost level, of typeA � A.

8e.g. the binding tree of (2) in Remark 3.2.
9This subsumes the two cases we shall consider in the sequel: (i) T =

λΞ(M) where Ξ is a singleton variable assignment (corresponding to
Theorem 15); (ii)T = λ(M) whereM is a βη-LNF that is consistent
with a variable assignmentΞ (corresponding to Theorem 17).

10Recall the ordering convention in computation trees (Figure1).



(e2) If the nodeβ, which is labelled with variableξi, is
bound by nodeα which is labelled withλξ1 · · · ξn, then
we say thatβ is i-enabledby α.

The full tree of T , writtenT f , is obtained fromT by adding,
for eachv ∈ Val , av-labelled leaf11 as a child of every node
of the tree, except those nodes labelled by an element ofVal

and their respective parent nodes. We extend the enabling
relation ofT to T f by an additional rule:
(e3) For each leaf noden that is labelled by a valuev ∈ Val ,

we say thatn is v-enabledby its parent node.
We say that nodeβ is enabledby α just if β is x-enabled
by α, for some (necessarily unique)x ∈ {0, · · · ,m} ∪Val .

A node ofT f is initial if it is not enabled by any node.
It follows that the initial nodes of a full computation tree
are the root node and nodes that are labelled with either a
long-apply symbol orif. An O-nodeis either a lambda node,
or a leaf whose parent is not a lambda node. AP-node is
a node that is not labelled with a lambda, or a leaf whose
parent is a lambda node. Thus, nodes of a full computation
tree that occur on levels 0, 2, 4, etc. are O-nodes, and those
that occur on levels 1, 3, 5, etc. are P-nodes. A node of a
full computation tree is ananswer nodeif it is labelled with
an element ofVal ; otherwise it is aquestion node.

A justified sequenceover T f is an O/P-alternating se-
quence of nodes that satisfies thepointer condition: Every
non-initial node that occurs in it has a pointer to some
earlier occurrence of the node (inT f ) which enables it.
Notation: · · ·n0 · · · n

j

means thatn points to n0 and n
is j-enabled byn0. We say thatn is j-justified by n0 in
the justified sequence. Note that henceforth byprogramwe
mean a closed term of base type.

Definition 3.3: Let P be a fPCF⋆ program, andT be aΣ-
binding tree representingP . Traversalsover the full treeT f

are justified sequences of nodes defined by induction over
the following rules. We lett range over traversals,n over
nodes labelled by non-Σλ symbols, andu and v over Val .
For ease of reading, we refer to nodes ofT f by their labels.

1) (Root): The singleton sequence, comprising the root
nodeε, is a traversal.

2) (App): If t · @ is a traversal, so ist · @ · λξ

0

.
3) (Lam): If t · λξ is a traversal andn is the 1-child of

nodeλξ in T f , then so is t · λξ · n.

4) (Var): If t · n · λξξ · · · ξ
i

is a traversal wheren is not

labelled byif, then so is t · n · λξξ · · · ξ
i

· λη

i

.
5) (O-Val): If t · λξ · n · · · v is a traversal, so is

t · λξξ· n · · · v · v.
6) (P-Val): If t · n · λξ · · · v is a traversal where

node n is labelled by @ or a variable, then so is

t · n · λξ · · · v · v.
7) (If ): If t · if is a traversal, so ist · if · λ

1

.

11By a leaf of a tree, we mean a terminal node.

8) (If-t): If t · if · λ
1

· · · t is a traversal, so is

t · if · λ
1

· · · t · λ

2

.

9) (If-f): If t · if · λ
1

· · · f is a traversal, so is

t · if · λ
1

· · · f · λ

3

.

10) (If-⋆): If t · if · λ
1

· · · ⋆ is a traversal, so is

t · if · λ
1

· · · ⋆ · ⋆.

11) (If-CC): If t · if · λ
1

· · · v · λ

i

· · · u is a traversal,

with i ∈ {2, 3}, then so is t · if · λ
1

· · · v · λ

i

· · · u · u.

It follows that the way a traversal can grow is deterministic.
A traversal overT f is said to bev-completejust if every
question node that occurs in it justifies some answer node;
further, the opening question (v-)justifies av-labelled node.

Theorem 11 (Correspondence): LetP be a fPCF⋆-
program,T a binding tree that representsP , and v ∈ Val .
We haveP ։ v iff there is av-complete traversal overT f .

Proof: Using the language of game semantics, a traver-
sal overT f is a representation of an interaction sequence
which is obtained by hereditarilyuncovering(in the sense of
Hyland and Ong [8, p. 341]) a play in the strategy-denotation
of M . See preprint [4] or Blum’s thesis [3] for a proof.

Example 3.4:Let Ξ be the variable assignment of Exam-
ple 4.2. Consider the base-type termMN where:

M := λΦ.Φ(λϕ.ϕ (λx.x) (λ.Φ(λϕ.t) (λ.ϕ (λx.⋆) (λ.t)))) (λ.f)

N := λψy.if (λ.ψ (λα z.α (λ.z))) (λ.y) (λ.y).

In Figure 2, we display a⋆-complete traversal overλf(MN),
which is the justified sequence1 · 2 · 3 · · · 59 · 60, where the
numbers are node-names indicated as superscripts.

We close this section by recalling the notion ofview
(of a justified sequence) and the condition ofVisibility,
which were introduced in game semantics [8]. Intuitively
the P-view of a justified sequence is a certain subsequence
consisting of moves which the player P considers relevant
for determining his next move in the play. Formally theP-
view, ptq, of a justified sequencet is a subsequence defined
by recursion as follows, where we leto range over O-nodes
andp over P-nodes.12

pt · oq := o if node o is initial
pt · p · · · o

i

q := ptq · p · o
i

pt · pq := ptq · p

A justified sequencet satisfies P-visibility just in case
every non-initial P-node that occurs int points to some
(necessarily O-) node appearing in the P-view at that point.

12In the third clause, suppose the P-nodep points to some node-
occurrencel (say) in t; if l appears inptq, thenp in ptq · p is defined to
point to l; otherwisep has no pointer.
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Figure 2. A⋆-complete traversal over the full computation tree ofMN as
defined in Example 3.4. Note that only those value leaves that participate
in the traversal are depicted.

IV. A LTERNATING DEPENDENCYΣ-TREE AUTOMATA

AND CHARACTERISATION OF REACHABILITY

Definition 4.1 (Stirling [22]): An alternating dependency
Σ-tree automaton(ADTA) is a quadrupleA = 〈Q,Σ, q0,∆ 〉
whereQ is a finite set of states,Σ is a finite alphabet,
q0 ∈ Q is the initial state, and∆ is a finite set of transition
rules each of which has one of the following forms.

(i) q s⇒ (Q1, · · · , Qk) wheres ∈ Σvar∪Σcst, ar(s) = k,
q ∈ Q andQ1, · · · , Qk ⊆ Q.

(ii) q s⇒ q′ s′ wheres ∈ Σλ, s′ ∈ Σcst, andq, q′ ∈ Q
(iii) (q′, q) s⇒ q1 x wheres ∈ Σλ, x ∈ Σvar andq′, q, q1 ∈

Q.
A run-tree of an ADTA 〈Q,Σ, q0,∆ 〉 on aΣ-binding treet
is a (Σ×Q)-labelled (unranked) tree whose nodes are pairs
of the form(n, α) wheren is a node oft andα ∈ Q+ is a
non-empty sequence of states, labelled(s, q) if n is labelled
s in t and q is the last element of the sequenceα, which
is defined top-down with root node(ε, q0) where ε is the
root node oft. Consider a node(n, α) of a partial run-tree
which does not have successors.

(i) If s ∈ Σvar ∪ Σcst and q s ⇒ (Q1, · · · , Qk) is a ∆-
rule, then the successors of(n, α) are (ni, α q′), for
eachq′ ∈ Qi and each1 ≤ i ≤ k.

(ii) If s ∈ Σλ, n1 is labelleds′ ∈ Σcst and q s ⇒ q′ s′ is
a ∆-rule, then(n1, α q′) is the successor of(n, α).

(iii) If s ∈ Σλ, n1 is labelledx ∈ Σvar, m x n1 in

t, (m,α′ q′) equals or is an ancestor of(n, α), and
(q′, q) s ⇒ q1 x is a ∆-rule, then (n1, α q1) is the
successor of(n, α).

A run-tree ofA on t is acceptingif whenever(n, αq) is a
leaf labelled(s, q) of the run-tree, then eithers has arity 0 or
the ruleq s ⇒ (∅, · · · , ∅) is in ∆. The ADTA A acceptsa
Σ-binding treet if there is an accepting run-tree ofA on t.

Lemma 12 (Stirling [22]): ADTA are closed under union
and intersection.

Given aΣ-binding treeT that represents a closed fPCF⋆-
term inβ-NF, we construct an ADTA that simulates traver-
sals (over the full computation treeT f ) by a set of (anno-
tated) paths inT . The states of the simulating ADTA are
defined usingvariable profiles [19], which are assertions
about the value bound to a variable when control — in the
form of a traversal — reaches it.

Let Ξ : A be a variable assignment. We define the set of
variable profilesof typeB w.r.t. Ξ recursively as

VPΞ(B) := {(x, v, ρ) : v ∈ Val , x ∈ ΞB, ρ ⊆
⋃m

i=1
VPΞ(Bi)}

whereB = (B1, · · · , Bm, o) < A. Thus, in casem = 0,
we haveVPΞ(o) = {(x, v, ∅) : x ∈ Ξo, v ∈ Val}. To save
writing, we shall write base-type variable profiles as pairs
(x, v). Finally, setVPΞ to be the union of setsVPΞ(B), as
B ranges over proper subtypes ofA. Whenever it is clear
from the context, we shall omit the subscriptΞ from VPΞ.

Example 4.2:Let A = (((((o, o), o, o), o), o, o), o). Con-
sider the following (singleton) variable assignmentΞ : A.

(((((o, o), o, o), o), o, o), o)
x α z ϕ ψ y Φ

Then, all of the following are variable profiles w.r.t.Ξ.

θ := (α, t, {(x, f)}), δ1 := (ϕ, t, {(z, ⋆), θ}),

η := (Φ, ⋆, {(ψ, ⋆, {δ1, δ2})}), δ2 := (ϕ, f, {(α, ⋆, ∅)}).

Definition 4.3: Let Ξ be a singleton variable assignment
of type A = (A1, · · ·, An, o) and Σ be ΣΞ or ΣΞ \ {⋆}.
The traversal-simulating ADTAA(Σ, q0) := 〈Q,Σ, q0,∆ 〉,
whereQ = Val × P(VPΞ) and the transition relation∆ is
defined as follows.
1. (App) (v, ∅) @A�A ⇒ ({(v, ρ)}, Q1, · · · , Qn) where
ρ ⊆

⋃
i VPΞ(Ai) andQi = {(u, ρ′) : (ξAi , u, ρ′) ∈ ρ},

2. (Var) (v, ρ) ξ(B1,··· ,Bm,o) ⇒ (Q1, · · · , Qm) where
Qi = {(u, ρ′) : (ξBi , u, ρ′) ∈ ρ},

3. (Lam-V) ((u, ρ0), (v, ρ)) λξ ⇒ (v, ρ1)x where
(x, v, ρ1) ∈ ρ0,

4. (Lam-C) (v, ρ) λξ ⇒ (v, ∅) $ where$ ∈ {if, v}
5. (If-t) (v, ∅) if ⇒ ({(t, ∅)}, {(v, ∅)}, ∅),
6. (If-f) (v, ∅) if ⇒ ({(f, ∅)}, ∅, {(v, ∅)}),
7. (If-⋆) (⋆, ∅) if ⇒ ({(⋆, ∅)}, ∅, ∅).

To illustrate the transition rules of the automaton, lett be
an inputΣ-binding tree.



• Assume the current state is(v, ρ) at noden of t, andn
is labelledλξ. If n1 is labelled with variablexi andm x

n1 thenm is labelledλx1 · · ·xk for somek and the state
at m has the form(u, ρ0). One of the profiles forxi, say
(xi, v, ρ1) ∈ ρ0, where the valuev is the same as the value
at n, is chosen and the state atn1 is (v, ρ1).

• If the state is(v, ρ) at noden of t and n is labelled
ξ(B1,··· ,Bm,o), thenρ consists of profiles ofξBi where1≤
i≤m, reflecting the eventual return of the traversal to the
successors ofn.

• If the state is(⋆, ∅) at noden of t, andn is labelled
if, then each of rules (If -t), (If -f) and (If -⋆) is applicable,
reflecting the three cases in which a term(if B P Q) can
evaluate to⋆ : B evaluates tot andP evaluates to⋆ ; B
evaluates tof andQ evaluates to⋆ ; or B evaluates to⋆ .

Lemma 13:Let Σ beΣΞ (respectivelyΣΞ\{⋆}), v ∈Val ,
and t a Σ-binding tree accepted by the traversal-simulating
ADTA A(Σ, (v, ∅)). Thent is well-typed. Hence, by Lemma
10, t represents a closed fPCF⋆- (respectively fPCF-) term.

Example 4.4:Consider the programMN : o as defined
in Example 3.4. Figure 3 gives an accepting run-tree of
the ADTA A(ΣΞ, (⋆, ∅)) over theΣΞ-binding treeλ(MN)
(which is preciselyλΞ(MN)).

Proposition 14: LetΞ : A be a singleton variable as-
signment whereA = (A1, · · · , An, o), P := MN a fPCF⋆-
program whereM : A andNi : Ai areβ-NFs, andv ∈ Val .

(i) If there is an accepting run-tree of the ADTA
A(ΣΞ, (v, ∅)) over λΞ(P ), then there is av-complete
traversal over the full binding treeλf

Ξ(P ).
(ii) Supposet is a v0-complete traversal overλf

Ξ(P ) and
let P be the set of P-viewspuq as u ranges over
prefixes of̂t. Each element ofP is a finite sequence
of the shapet w where the question-prefixt consists
of only question nodes, and the answer-suffixw, which
is of length at most 2, consists of only answer nodes.
Then the set of question-prefixes of elements ofP is
an accepting run-tree of the ADTAA(ΣΞ, (v0, ∅)) over
the ΣΞ-binding treeλΞ(P ).

Theorem 15: LetΞ : A be a singleton variable assign-
ment withA = (A1, · · · , An, o), v ∈ Val , andM a closed
fPCF⋆-term in β-NF. The following are equivalent.

(i) M ∈ v-REACH [fPCF⋆, fPCF].
(ii) There exist closedfPCF-termsN1 : A1, · · · , Nn : An

(in β-NF) such that there is av-complete traversal over
the full computation treeλf

Ξ(MN),
(iii) There exist closedfPCF-termsN1 : A1, · · · , Nn : An

(in β-NF) such that there is an accepting run-tree
of the ADTAA(ΣΞ, (v, ∅)) over the computation tree
λΞ(MN).

(iv) There existsρ =
⋃n

i=1 ρi whereρi = {(ξAi , vij , ρij) :
1 ≤ j ≤ ri} ⊆ VPΞi

with ri ≥ 0 and Ξi : Ai being
the obvious restriction ofΞ to Ai, such that:
(1) A(ΣΞ, (v, ρ)) acceptsλΞ(M), and
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Figure 3. An accepting run-tree ofA(ΣΞ, (⋆, ∅)) over λ(MN)
as defined in Example 3.4. (The superscripts attached to the node
labels refer to the corresponding⋆-complete traversal.)

(2) for each 1 ≤ i ≤ n the language ofΣi-binding
trees recognised by the intersection automaton∏ri

j=1 A(Σi, (vij , ρij)) — which is an ADTA by
Lemma 12 — is non-empty, whereΣi =ΣΞi

\{⋆}.

Proof: That (i) and (ii) are equivalent is an imme-
diate consequence of the definition of the decision prob-
lem, computational adequacy of innocent game semantics
for fPCF⋆ (by a proof similar to that of [8, Proposition
7.5, p. 373]), and Theorem 11. That (ii) and (iii) are
equivalent follows from Proposition 14. Unpacking the
definition of run-tree over theΣΞ-binding treeλΞ(MN),
statement (iii) is equivalent to: there exist closed fPCF-
terms N1 : A1, · · · , Nn : An, and ρ =

⋃n

i=1 ρi where
ρi =

⋃ri

j=1{(ξ
Ai , vij , ρij)} ⊆ VPΞi

and ri ≥ 0 such
that: (a) there is an accepting run-tree ofA(ΣΞ, (v, ρ)) over
λΞ(M), and (b) for each1 ≤ i ≤ n and1 ≤ j ≤ ri, there
is an accepting run-tree ofA(Σi, (vij , ρij)) over λΞi

(Ni).
Thanks to Lemma 13 it is straightforward to see that the
preceding statement is equivalent to (iv).

Stirling has asked [22,§5]: “There are significant open
questions for the alternating [dependency tree] automata:are



they more expressive than the non-deterministic automata
(NDTA), and is their non-emptiness problem decidable?”.
We can now answer both questions.

Corollary 16: The ADTA non-emptiness problem is un-
decidable. Since the non-emptiness problem is decidable for
NDTA [22], ADTA are more expressive than NDTA.

Proof: Suppose the ADTA non-emptiness problem is
decidable. It then follows from the equivalence of (iv) and
(i) of Theorem 15 that the problemt-REACH [fPCF⋆, fPCF]
is decidable, which contradicts Corollary 7 (i).

A relativised version of reachability

An alternating Σ-tree automaton(or ATA for short) is a
quadruple〈Q,Σ, q0,∆ 〉 whereQ is a finite set of states,Σ
is a finite ranked alphabet,q0 ∈ Q is the initial state, and∆
is a finite set of transition rules of the form:

q s ⇒ (Q1, · · · , Qk)

wheres ∈ Σ with ar(s) = k, q ∈ Q andQ1, · · · , Qk ⊆ Q.
A run-tree of an ATA 〈Q,Σ, q0,∆ 〉 on a Σ-tree t is a

(Σ ×Q)-labelled (unranked) tree whose nodes are pairs of
the form (n, α) wheren is a node oft andα ∈ Q+ is a
non-empty sequence of states, labelled(s, q) if n is labelled
s in t andq is the last element of the sequenceα, which is
defined top-down with root node(ε, q0) whereε is the root
node oft. Consider a node(n, α) of a partial run-tree which
does not have successors. Ifq s⇒ (Q1, · · · , Qk) ∈ ∆ then
the successors of(n, α) are (ni, αq′), for each1 ≤ i ≤ k
andq′ ∈ Qi. A run-tree ofA on t is acceptingif whenever
(s, q) is a label of a leaf of the run-tree then eithers has
arity 0 or q s⇒ (∅, · · · , ∅) is a ∆-rule. The ATAA accepts
a Σ-tree t if there is an accepting run-tree ofA on t.

Definition 4.5: Let Ξ be a variable assignment of type
A = (A1, · · · , An, o) and Σ be ΣΞ or ΣΞ \ {⋆}. The
traversal-simulating ATAB(Σ, q0) := 〈Q,Σ, q0,∆ 〉 where
Q = Val × P(VPΞ) × P(VPΞ), and the transition relation
∆ is defined as follows (letB = (B1, · · · , Bm, o) < A).
1. (v, ∅, ∅)@A�A ⇒ ({(v, ρ, ∅)}, Q1, · · ·, Qn) where ρ ⊆⋃n

i=1VPΞ(Ai) andQi = {(u, ρ′, ∅) : (ξAi, u, ρ′) ∈ ρ}
2. (v, ρ, π) ξB ⇒ (Q1, · · ·, Qm) where π = {(ξB , v, ρ)}

∪
⋃m,ri

i,j=1,1 πij , ρ =
⋃m,ri

i,j=1,1{(ξ
Bi

i , vij , ρij)} and
Qi =

⋃ri

j=1{(vij , ρij , πij)}

3. (v, ρ, π)λξ ⇒ (v, ρ1, ρ ∪ π)ϕ where(ϕ, v, ρ1) ∈ ρ ∪ π
4. (v, ρ, π)λξ ⇒ (v, ∅, ρ ∪ π) $ where$ ∈ {if, v}
5. (v, ∅, π1 ∪ π2) if ⇒ ({(t, ∅, π1)}, {(v, ∅, π2)}, ∅)
6. (v, ∅, π1 ∪ π2) if ⇒ ({(f, ∅, π1)}, ∅, {(v, ∅, π2)})
7. (⋆, ∅, π) if ⇒ ({(⋆, ∅, π)}, ∅, ∅)

The ATA B(Σ, (v, ρ, π)) simulates traversals in the same
way as ADTA A(Σ, (v, ρ)). Since ATA is defined overΣ-
trees (as opposed toΣ-binding trees), it relies on the symbols
in Σλ and Σvar to work out the binding relation. Conse-
quently an ATA state has a third component ofenvironment

π, consisting of profiles of variables that are currently within
the scope of an enclosing binder.

Remark 4.6:The ATA in Definition 4.5 has much in
common with the traversal-simulating alternating parity tree
automaton of Ong [19] (even though the latter is an accept-
ing devise ofinfinite ranked trees generated by higher-order
recursion schemes). The state of the former, which has the
form (v, ρ, π), is a more compact representation of the state
of the latter, which has the formv π (ϕ, v, ρ).

Let Ξ : A be a variable assignment. A closed fPCF⋆-term
M : B ≤ A in βη-long normal form (βη-LNF) is consistent
with Ξ if λ(M) is aΣΞ-tree.13 Let fPCF⋆

Ξ be the set of such
termsM , and fPCFΞ be its⋆-free restriction. The following
theorem is proved using the same argument as in the proof
of Theorem 15, via the ATA analogue of Proposition 14.

Theorem 17: LetΞ : A be a variable assignment with
A = (A1, · · · , An, o), Ξi = Ξ ↾ Ai, v ∈ Val , and M a
closedfPCF⋆

Ξ-term inβη-LNF. The following are equivalent.
(i) M ∈ v-REACH [fPCF⋆

Ξ, fPCFΞ].
(ii) There exist closedfPCFΞ-termsN1 : A1, · · · , Nn : An

(in βη-LNF) such that there is av-complete traversal
over the full computation treeλf(MN).

(iii) There exist closedfPCFΞi
-termsN1 : A1, · · · , Nn :

An (in βη-LNF) such that there is an accepting run-
tree of the ATAB(ΣΞ, (v, ∅, ∅)) over the computation
tree λ(MN).

(iv) There existsρ =
⋃n

i=1 ρi whereρi = {(ξAi , vij , ρij) :
1 ≤ j ≤ ri} ⊆ VPΞi

and ri ≥ 0, such that:
(1) B(ΣΞ, (v, ρ, ∅)) acceptsλ(M), and
(2) for each1 ≤ i ≤ n, settingΣi = ΣΞi

\ {⋆}, the
language ofΣi-trees recognised by the intersection
automaton

∏ri

j=1 B(Σi, (vij , ρij , ∅)) is non-empty.

AlternatingΣ-tree automata are closed under intersection,
and their acceptance problem is decidable. Further, their
non-emptiness problem is also decidable; and if an alter-
nating Σ-tree automaton has a non-empty language, aΣ-
tree accepted by it can be effectively constructed (see for
example the draft book [6]). Thus we can conclude:

Corollary 18 (Decidability): For every variable assign-
mentΞ : A, v ∈ Val , and closedfPCF⋆

Ξ-termM : A in βη-
LNF, the set{N ∈ (fPCFΞ)n : Ni in βη-LNF,MN ։ v}
is regular. Hence, the relativised decision problem
v-REACH [fPCF⋆

Ξ, fPCFΞ] is decidable.

Corollary 19: The problems⋆-REACH [fPCF⋆, fPCF] and
⋆-REACH [fPCF⋆

⊥
, fPCF] are decidable at order 3.

Proof: We consider only⋆-REACH [fPCF⋆, fPCF]. For
⋆-REACH [fPCF⋆

⊥
, fPCF], the same analysis as above can

lead to an analogue of Theorem 17 where principal terms
are taken from PCF⋆

⊥Ξ, and thus an argument simi-
lar to the following applies. It suffices to show that,

13Not all closedβη-LNFs M : B ≤ A are consistent with (singleton)
Ξ : A. For example, each termMn in Remark 3.2 is inconsistent with
every assignmentΞ such thatΞ(o,o) contains less thann names.



given a closed fPCF⋆-term M in βη-LNF of order-3
type A = (A1, · · · , An, o), we can find an assignment
Ξ : A such thatM ∈ ⋆-REACH [fPCF⋆, fPCF] iff M ∈
⋆-REACH [fPCF⋆

Ξ, fPCFΞ]. For this, it suffices to find an
assignmentΞ : A such that every (up toα-equivalence)
closed βη-LNF Ni : Ai is consistent withΞi = Ξ ↾

Ai. In fact, it suffices to show that every suchNi is
consistent with some singleton assignmentΞi : Ai. Take
Ni : Ai = (B1, · · · , Bm, o) of order at most 2. Then
Ni = λxB1

1 · · ·xBm
m .N ′ for somex1, . . . , xm and open term

N ′ : o whose free variables are contained in thexj ’s. We
show thatN ′ cannot containλ-abstractions and therefore all
its variables (be they free or bound) are within thexj ’s; thus
Ni is consistent with any singletonΞi : Ai. Indeed, since
Ni is closed and inβη-LNF, N ′ must be of the formαL,
whereα is either a constant or somexj (and thus of order
at most 1). Ifα : o then we are done; otherwise, we repeat
the same argument for eachLk : o.

Connections to observational equivalence

Consider the following generalisation of our reachability
template, wherēθ is a sequenceθ1, · · · , θm of L1-values.

θ̄-REACH [L1,L2]: Given closedL1-termsM1, · · ·,Mm

of type (A1, · · · , An, o), are there closedL2-terms
N1, · · · , Nn s.t.MiN ։ θi for each1 ≤ i ≤ m?

The generalised decision problem can be characterised
by use of ADTA’s and ATA’s (in its relativised version) in
exactly the same fashion as its one-dimensional counterpart
(via analogues of Theorems 15 and 17). On the other hand,
given fPCF⊥-terms M,M ′ : A, M 6. M ′ iff (M,M ′)
belongs to(θ1, θ2)-REACH [fPCF⊥, fPCF⊥] where (θ1, θ2)
is one of (t,⊥), (t, f), (f,⊥) and (f, t). This gives us a
means to relate these classes of automata with observational
approximation and equivalence of fPCF⊥ (and of other ex-
tensions of fPCF). For example, observational approximation
of third-order fPCF⊥ can be decided by use of ATA’s.

V. FURTHER DIRECTIONS

(i) Variable profiles are a useful construct for an automata-
theoretic simulation of traversals, which are an accurate
model of control flow. It would be interesting to investigate
possible applications of variable profiles to CFA. (ii) The
MSO theory of higher-order recursion schemes (HORS) is
decidable. An alternative approach to functional reachability
is to cast the problem in the setting of HORS extended
with booleans. As the extension can be CPS-transformed
out, one can then use Ong’s model-checking algorithm [19]
or Kobayashi and Ong’s method based on intersection types
[10], [12], [11]. (iii) Finally, an obvious open problem is the
following.

Conjecture 20:⋆-REACH [fPCF⋆, fPCF] is decidable.
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