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We prove that the modal mu-calculus model-checking problem for (ranked and ordered) node-

labelled trees that are generated by order-n recursion schemes (whether safe or not, and whether
homogeneously typed or not) is n-EXPTIME complete, for every n ≥ 0. It follows that the

monadic second-order theories of these trees are decidable.

There are three major ingredients. The first is a certain transference principle from the tree
generated by the scheme – the value tree – to an auxiliary computation tree, which is itself a tree

generated by a related order-0 recursion scheme (equivalently, a regular tree). Using innocent

game semantics (in the sense of Hyland and Ong), we establish a strong correspondence between
paths in the value tree and traversals in the computation tree. This allows us to prove that a given

alternating parity tree automaton (APT) has an (accepting) run-tree over the value tree iff it has

an (accepting) traversal-tree over the computation tree. The second ingredient is the simulation
of an (accepting) traversal-tree by a certain set of annotated paths over the computation tree;

we introduce traversal-simulating APT as a recognising device for the latter. Finally, for the
complexity result, we prove that traversal-simulating APT enjoy a succinctness property: for

deciding acceptance, it is enough to consider run-trees that have a reduced branching factor.

The desired bound is then obtained by analysing the complexity of solving a associated (finite)
acceptance parity game (which is an appropriate product of the traversal-simulating APT and a

finite deterministic graph that unravels to the computation tree in question).
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1. INTRODUCTION

1.1 Background and related work

What classes of finitely-presentable infinite-state systems have decidable monadic
second-order (MSO) theories? This is a basic problem in Computer-Aided Verifi-
cation that is important to practice because standard temporal logics such as LTL,
CTL and CTL∗ are (embeddable in the modal mu-calculus, and hence) embeddable
in MSO logic. One of the best known examples of such a class are the regular trees
as studied by Rabin [Rabin 1969]. A notable advance occurred some fifteen years
later, when Muller and Shupp [Muller and Schupp 1985] proved that the configu-
ration graphs of pushdown systems have decidable MSO theories. In the 90’s, as
finite-state technologies matured, researchers embraced the challenges of software
verification. A highlight in this period was Caucal’s result [Caucal 1996] that prefix-
recognisable graphs have decidable MSO theories. Such graphs can be characterized
[Stirling 2000] as those that are obtained from the configuration graphs of pushdown
systems by factoring out ε-transitions. In 2002, a flurry of discoveries significantly
extended and unified earlier developments. In a FOSSACS’02 paper [Knapik et al.
2002], Knapik, Niwiński and Urzyczyn introduced the class SafeRecTreenΣ of
term-trees (more precisely, Σ-labelled trees, where Σ is a ranked alphabet) gen-
erated by order-n recursion schemes that are homogeneously typed and satisfy a
syntactic constraint called safety. They showed that for every n ≥ 0, Σ-labelled
trees generated by order-n safe recursion schemes are exactly those that are gen-
erated by order-n pushdown automata i.e. SafeRecTreenΣ = PushdownTreenΣ;
further they have decidable MSO theories. Thus SafeRecTree0Σ, the order-0
trees, are exactly the regular trees (i.e. trees generated by finite-state transducers),
and SafeRecTree1Σ, the order-1 trees, are exactly those generated by determin-
istic pushdown automata. Later in the year, Caucal [Caucal 2002] introduced a
tree hierarchy, the nth level of which, CaucalTreenΣ, consists of Σ-labelled trees
ACM Journal Name, Vol. V, No. N, 20YY.
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obtained from regular Σ-labelled -trees (i.e. trees from PushdownTree0Σ) by it-
erating n-times the operation of inverse deterministic rational mapping followed by
unravelling. A major result in Caucal’s work [Caucal 2002, Theorem 3.5] is that
SafeRecTreenΣ = CaucalTreenΣ. To summarize

Theorem 1 (Knapik et al. and Caucal 2002). For every ranked alphabet Σ,
and for every n ≥ 0, we have

SafeRecTreenΣ = PushdownTreenΣ = CaucalTreenΣ.

The starting point of our work is the following striking result [Knapik et al. 2002]:

Theorem 2 (Knapik, Niwinski and Urzyczyn 2002). For every n ≥ 0, trees
in SafeRecTreenΣ have decidable MSO theories.

Though a rather awkward syntactic constraint, safety2 plays an important algo-
rithmic rôle. Knapik et al. have asked if the safety assumption is really necessary
for their decidability result. A partial answer to their question has recently been
obtained by Aehlig, de Miranda and Ong at TLCA 2005 [Aehlig et al. 2005a];
they showed that all trees up to order 2, whether safe or not, and whether ho-
mogeneously typed or not, have decidable MSO theories. Independently, Knapik,
Niwiński, Urzyczyn and Walukiewicz obtained a somewhat sharper result (see their
ICALP 2005 paper [Knapik et al. 2005]); they proved that the modal mu-calculus
model checking problem for trees generated by order-2 homogeneously-typed re-
cursion schemes (whether safe or not) is 2-EXPTIME complete. In this paper we
extend their result in two ways: we remove their assumption that types are homo-
geneous, and we prove decidability for all finite orders. We state our main result
as follows:

Theorem 3. The modal mu-calculus model-checking problem for trees generated
by order-n recursion schemes, whether safe or not, and whether homogeneously
typed or not, is n-EXPTIME complete, for every n ≥ 0.

Since MSO logic and the modal mu-calculus are equi-expressive over trees (see
e.g. [Janin and Walukiewicz 1996]), it follows that these trees have decidable MSO
theories.

2The safety constraint (on lambda terms) may be regarded as a reformulation of the constraint

on lambda terms imposed by Damm’s derived types, first introduced in his major study on the
semantics of Algol-like languages [Damm 1982]. To define safety, we first need to introduce

homogeneous types: The base type o is homogeneous; a function type A1 → (A2 → · · · →
(An → o) · · ·) is homogeneous just if each Ai is homogeneous, and order(A1) ≥ order(A2) ≥
· · · ≥ order(An). We say that a term (or a rewrite rule or a recursion scheme) is homogeneously

typed just if all types that occur in it are homogeneous. Knapik et al. [Knapik et al. 2002] define
safety as follows: A homogeneously-typed term of order k > 0 is said to be unsafe if it contains an

occurrence of a parameter of order strictly less than k, otherwise the term is safe. An occurrence

of an unsafe term t, as a subexpression of a term t′, is safe if it occurs in an operand position
(i.e. it is in the context · · · (ts) · · ·), otherwise the occurrence is unsafe. A recursion scheme is safe
if no unsafe term has an unsafe occurrence in the righthand side of any rewrite rule. Note that it

follows from the definition that all recursion schemes of order at most 1 are safe. See Example 2.6
for an example of unsafe order-2 recursion scheme.

ACM Journal Name, Vol. V, No. N, 20YY.
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Our approach: Removing the safety assumption

It would be futile to analyse directly the tree generated by a recursion scheme
G, which we shall call value tree of G and denote by [[G ]], since it has no useful
structure for our purpose. By definition, the value tree is the extensional outcome
of a potentially infinite process of rewriting (see Section 1.2). It is the algorithmics
of this computational process that one should seek to understand. Given an order-
(n + 1) safe recursion scheme G, the approach taken in [Knapik et al. 2002] was
to consider an associated tree that is obtained by contracting only (and all) the
order-1 (i.e. lowest ordered) β-redexes in the rewrite rules of G. The tree thus
generated, written iG, coincides with the value tree of a related order-n recursion
scheme Gα (i.e. iG = [[Gα ]]); further the MSO theory of the order-(n+1) tree [[G ]]
is reducible to that of the order-n tree [[Gα ]] in the sense that there is a recursive
mapping of MSO sentences ϕ 7→ ϕ′ such that [[G ]] � ϕ iff [[Gα ]] � ϕ′ [Knapik et al.
2002, Theorem 3.3]. The safety assumption is crucial to their reduction argument.
Roughly speaking, the point is that β-redexes in a safe term can be contracted
using capture-permitting substitution (i.e. without renaming bound variables). It
follows that one can construct the tree iG using only the original variables of the
recursion schemes G. Without the safety assumption, the same construction would
require an unbounded supply of names!

Our approach to removing the safety assumption stems from an observation due
to Klaus Aehlig [Aehlig et al. 2005a]: by considering what we call the long transform
of a recursion scheme (which is obtained by expanding the RHS of each rewrite
rule to its η-long form, inserting explicit application operators, and then currying
the rule) one can tease out the two constituent actions of the rewriting process,
namely, unfolding and β-reduction, and hence analyse them separately. Thus, given
a recursion scheme G:

—We first build an auxiliary computation tree λ(G) which is the outcome of per-
forming all of the unfolding (i.e. rewriting the LHS of a rule to the RHS with no
parameter passing - since the transformed rules, being order-0, have no formal
parameters), but none of the β-reduction, in the rewrite rules of G, the long
transform of G. As no substitution is performed, no variable-renaming is needed.

—We then analyse the β-reductions locally (i.e. without the global operation of
substitution) with the help of innocent game semantics [Hyland and Ong 2000].

Note that we do not (need to) assume that the recursion scheme G is safe. Formally
the computation tree λ(G) is the value tree of the long transform G, which is itself
an order-0 recursion scheme i.e. λ(G) is a regular tree. Using game semantics, we
then establish a strong correspondence (Theorem 7) between paths in the value
tree and (what we call) traversals over the computation tree. In the language of
game semantics, paths in the value tree correspond exactly to plays in the strategy-
denotation of the recursion scheme; a traversal is then (a representation of) the
uncovering3 of such a play. The path-traversal correspondence allows us to prove
that a given alternating parity tree automaton (APT) has an accepting run-tree over

3In game semantics, plays in the composite strategy σ ; τ : A → C are constructed from those in

the component strategies σ : A → B and τ : B → C by “parallel composition plus hiding”, in the
sense of the process algebra CSP [Hoare 1985]. By construction, every play s in σ ; τ is obtained
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the value tree if and only if it has an accepting traversal-tree over the computation
tree (Corollary 8).

Our problem is then reduced to finding an effective method of recognising certain
sets of infinite traversals (over a given computation tree) that satisfy the parity
condition. This requires a new idea as a traversal is most unlike a path; it can
jump all over the tree and may even visit certain nodes infinitely often. Our solution
again exploits the game-semantic connexion. It is a property of traversals that their
P-views are paths (in the computation tree). This allows us to simulate a traversal
over a computation tree by (the P-views of its prefixes, which are) annotated paths
of a certain kind in the same tree. The simulation is made precise in the notion of
traversal-simulating APT. We establish the correctness of the simulation by proving
that a given property4 APT has an accepting traversal-tree over the computation
tree if and only if the associated traversal-simulating APT has an accepting run-tree
over the computation tree (Theorem 20). Note that decidability of the modal mu-
calculus model-checking problem for trees generated by recursion schemes follows
at once since computation trees are regular, and the APT acceptance problem for
regular trees is decidable [Rabin 1969; Emerson and Jutla 1991].

To prove n-EXPTIME decidability of the model-checking problem, we first estab-
lish a certain succinctness property (Proposition 19) for traversal-simulating APT:
If a traversal-simulating APT C has an accepting run-tree, then it has one with a
reduced branching factor. The desired time bound is then obtained by analysing
the complexity of solving an associated (finite) acceptance parity game, which is
an appropriate product of the traversal-simulating APT and a finite deterministic
graph that unravels to the computation tree in question.

Related work

For work on “unsafe trees”, in addition to our TLCA 2005 paper and the ICALP
2005 paper of Knapik et al., de Miranda’s forthcoming doctoral dissertation [de Mi-
randa 2006] will include, inter alia, a systematic account of the decidability of MSO
theories of order-2 trees, and a proof that there is no inherently unsafe word lan-
guage at order 2 (precisely, for every word language generated by an arbitrary order-
2 recursion scheme, there is an order-2 non-deterministic safe recursion scheme that
generates the same language). Using a novel finitary semantics of the simply-typed
lambda calculus, Aehlig [Aehlig 2006] has shown that model-checking trees gener-
ated by recursion schemes (whether safe or not) against all properties expressible
by a non-deterministic tree automaton with the trivial acceptance condition is de-
cidable (i.e. acceptance simply means that the automaton has a run-tree).

An extended abstract of the work reported here has appeared in the Proceedings
of LICS 2006 [Ong 2006b].

from some parallel composite s, which is a (justified) sequence of moves from arenas A, B and C,

by hiding (or erasing) all moves of the arena B. We call s the uncovering of s.
4Property APT because the APT corresponds to the property described by some modal mu-
calculus formula.
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1.2 Trees generated by higher-order recursion schemes

Types and applicative terms. Types are generated from the base type o using
the arrow constructor →. By convention → associates to the right. Thus every
type A can be written uniquely as A1 → · · · → An → o, for some n ≥ 0 which
is called its arity ; we shall often write A simply as (A1, · · · , An, o), identifying (o)
with o in case n = 0. The order (or level) of a type measures how deeply nested
it is on the left of the arrow constructor; we define order(o) = 0, and for n ≥ 1,
order(A1, · · · , An, o) = 1 + max{ order(A1), · · · , order(An) }. We write Types for
the set of types, and Typesn for the set of order-n types. Let Γ be a set of typed
symbols i.e. each symbol γ ∈ Γ is given a type A, written γ : A. The set of
applicative terms generated by Γ, T (Γ), is the least set X containing Γ that is
closed under the rule: if s : A → B and t : A are in X then (st) : B is in X.
By convention application associates to the left, so that s1 · · · sn is a shorthand for
(((s1s2)s3) · · ·)sn for n ≥ 2.

Σ-labelled ranked trees. Let Σ be a ranked alphabet i.e. each Σ-symbol f has an
arity ar(f) ≥ 0 which determines its type (o, · · · , o︸ ︷︷ ︸

ar(f)

, o) (which we sometimes write

as oar(f) → o). Further we shall assume that each symbol f ∈ Σ is assigned a finite
set Dir(f) of exactly ar(f) directions, and we define Dir(Σ) =

⋃
f∈Σ Dir(f). Let D

be a set of directions; a D-tree is just a prefix-closed subset of D∗, the free monoid
of D. For α, β ∈ D∗, we write α ≤ β to mean α is a prefix of β; and α � β to mean
β = αd for some d ∈ D. A path in a D-tree is a finite or infinite sequence of nodes
α0 �α1 �α2 · · · such that α0 = ε. A Σ-labelled tree is a function t : Dom(t) −→ Σ
such that Dom(t) is a Dir(Σ)-tree, and for every node α ∈ Dom(t), the Σ-symbol
t(α) has arity k if and only if α has exactly k children and the set of its children is
{α i : i ∈ Dir(t(α)) } i.e. t is a ranked5 and ordered tree. Henceforth we shall assume
that the ranked alphabet Σ contains a distinguished nullary symbol ⊥ which will
be used exclusively to label “undefined” nodes.

Notation. We write [m] as a shorthand for the set { 1, · · · ,m }, and [m]0 for
[m] ∪ { 0 }. Henceforth we fix a ranked alphabet Σ for the rest of the paper where
Dir(f) = [ar(f)] for each f ∈ Σ; hence we have Dir(Σ) = [ar(Σ)], writing ar(Σ) to
mean max{ ar(f) : f ∈ Σ }. Thus Σ-labelled trees t are ordered i.e. the children
of a node α ∈ Dom(t), namely, α 1, α 2, · · · , α ar(t(α)), are totally ordered in the
usual way. In the following, we shall use lower-case letters f, g, h, a, etc. to range
over Σ-symbols.

We introduce a notion of limit of a sequence of Σ-labelled trees. Let t be a Σ-
labelled tree and n ≥ 0, we write t � n to mean t truncated at level n i.e. it is the
function t restricted to {w ∈ Dom(t) : |w| ≤ n }. Suppose t0, t1, · · · is a sequence of
Σ-labelled trees such that for all l ≥ 0, there is an ml such that for all n, n′ ≥ ml

we have tn � l = tn′ � l. Then the limit of the sequence, written lim〈 tn : n ∈ ω 〉, is
defined to be

⋃
n∈ω tn � mn.

5In the sequel, we shall have occasions to consider unordered trees whose nodes are labelled

by symbols of an unranked alphabet Γ. To avoid confusion, we shall call these trees Γ-labelled
unranked trees.
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Higher-order recursion schemes. For each type A, we assume an infinite set VarA

of variables of type A, such that VarA and VarB are disjoint whenever A 6= B; and
we write Var =

⋃
A∈Types VarA. We use letters x, y, ϕ, ψ, χ, ξ etc. to range over

variables. A (deterministic) recursion scheme is a 4-tuple G = 〈Σ,N ,R, S 〉
where

—Σ is a ranked alphabet of terminals
—N is a finite set of typed non-terminals; we use upper-case letters F,H, etc. to

range over non-terminals
—S ∈ N is a distinguished start symbol of type o
—R is a finite set of rewrite rules, one for each non-terminal F : (A1, · · · , An, o), of

the form

F ξ1 · · · ξn → e

where each ξi is a variable of type Ai, and e is an applicative term of type o in
T (Σ ∪N ∪ { ξ1, · · · , ξn }).

The order of a recursion scheme is the highest order of its non-terminals.

Value tree [[G ]] of a recursion scheme G. In this paper we use recursion schemes
as generators of Σ-labelled trees. Informally the value tree6 of (or the tree generated
by) a recursion scheme G is a possibly infinite applicative term constructed from the
terminals in Σ, which is obtained by unfolding the rewrite rules of G ad infinitum,
replacing formal by actual parameters each time, starting from the start symbol S.

To define [[G ]], we first introduce a map (·)⊥ : T (Σ∪N ) −→ T (Σ) that takes an
applicative term and replaces each non-terminal, together with its arguments, by
⊥. We define (·)⊥ by structural recursion as follows: we let f range over Σ-symbols,
and F over non-terminals in N

f⊥ = f

F⊥ = ⊥

(st)⊥ =

 ⊥ if s⊥ = ⊥
(s⊥t⊥) otherwise.

Clearly if s ∈ T (Σ ∪ N ) is of ground type then s⊥ ∈ T (Σ) is of ground type.
Henceforth we shall identify ground-type terms in T (Σ) with finite trees in T ∞(Σ).

Next we define a one-step reduction relation →G which is a binary relation over
terms in T (Σ∪N ). Informally s→G s′ just if s′ is obtained from s by replacing some
occurrence of a non-terminal F by the righthand side of its rewrite rule in which
all formal parameters are in turn replaced by their respective actual parameters,
subject to the proviso that the F must occur at the head of a subterm of ground
type. Formally →G is defined by induction over the following rules:

6We would like to refer to the Σ-labelled tree generated by a recursion scheme as its value tree,
because the name is a good counterpoint to computation tree which we will introduce in Section 2.
We have in mind here the distinction between value and computation emphasized by Moggi [Moggi

1989]. The idea is that the value tree is obtained from the computation tree by a (possibly infinite)
process of evaluation.
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—Ft1 · · · tn →G e[t1/ξ1, · · · , tn/ξn] where Fξ1 · · · ξn → e is a rewrite rule of G.
—If t→G t′ then (st) →G (st′) and (ts) →G (t′s).

The relation ↓G between terms and trees is then defined as follows: We say that
s ↓G t where s ∈ T (Σ ∪N ) and t ∈ T ∞(Σ) just if

—there is a finite reduction sequence s = t0 →G · · · →G tn = t, and t is a finite
tree, none of whose node is labelled ⊥; or

—there is an infinite reduction sequence s = t0 →G t1 →G t2 · · · such that t =
lim〈 t⊥i : i ∈ ω 〉, and t may be a finite tree (in which case, some of t’s nodes are
labelled ⊥) or an infinite tree.

Recall that T ∞(Σ) is a complete partial order with respect to the approximation
ordering v as defined by: t v t′ just if Dom(t) ⊆ Dom(t′) and for all w ∈ Dom(t),
we have t(w) = ⊥ or t(w) = t′(w) (i.e. t′ is obtained from t by replacing some
⊥-labelled nodes by Σ-labelled trees). We can finally define the Σ-labelled ranked
tree [[G ]], called the value tree of (or the tree generated by) G, as follows:

[[G ]] = sup{ t ∈ T ∞(Σ) : S ↓G t }.

The supremum is well-defined because the set in question is directed, which is a
consequence of the Church-Rosser property of G viewed as a rewrite system. We
write RecTreenΣ for the class of value trees [[G ]] where G ranges over order-n
recursion schemes.

1.3 Monadic second-order logic, modal mu-calculus and alternating parity tree au-
tomata

This paper is concerned with the decision problem:

Given a modal mu-calculus formula ϕ and an order-n recursion scheme
G, does (the root node of) [[G ]] satisfy ϕ?

Thanks to Emerson and Jutla [Emerson and Jutla 1991], the problem is equivalent
to deciding whether a given alternating parity tree automaton B has an accepting
run-tree over [[G ]]. Introduced by Muller and Schupp [Muller and Schupp 1987],
alternating automata on trees are a generalization of non-deterministic tree au-
tomata. For a finite set X, let B+(X) be the set of positive Boolean formulas over
X i.e. for x ranging over X, we have

B+(X) 3 θ ::= true | false | x | θ ∧ θ | θ ∨ θ

For a set Y ⊆ X and a formula θ ∈ B+(X), we say that Y satisfies θ just in case
assigning true to elements in Y and false to elements in X \ Y makes θ true. It
follows that true is satisfied by all subsets of X, and false by none. Since θ ∈ B+(X)
is positive, if a set Y satisfies θ, so does every superset of Y . An alternating parity
automaton over Σ-labelled trees (or APT for short) is a tuple

A = 〈Σ, Q, δ, q0, Ω 〉

where

—Σ is the input alphabet which is assumed to be ranked
ACM Journal Name, Vol. V, No. N, 20YY.
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—Q is a finite set of states, and q0 ∈ Q is the initial state
—δ : Q × Σ −→ B+(Dir(Σ) × Q) is the transition function where, for each f ∈ Σ

and q ∈ Q, we have δ(q, f) ∈ B+(Dir(f)×Q)
—Ω : Q −→ N is the priority function.

A run-tree of an alternating parity automaton over a Σ-labelled ranked tree t is
a just a (Dom(t) × Q)-labelled unranked tree7 r. A node in r, labelled by (α, q),
describes a copy of the automaton that is in state q and reading the node α of the
tree t. Note that many nodes of r can correspond to the same node of t; there is
no one-to-one correspondence between the nodes of the run-tree r and the nodes
of t. Formally a run-tree of an alternating parity automaton A over a Σ-labelled
ranked tree t is a (Dom(t)×Q)-labelled unranked tree r satisfying:

(i) ε ∈ Dom(r) and r(ε) = (ε, q0)
(ii) For every β ∈ Dom(r) with r(β) = (α, q) and δ(q, t(α)) = θ, there is a set
S ⊆ Dir(Σ) × Q that satisfies θ; and for each (a, q′) ∈ S, there is some b such
that β b ∈ Dom(r) and r(β b) = (αa, q′).

A run-tree r is accepting if all its infinite paths β0 β1 β2 · · · through Dom(r) satisfy
the parity acceptance condition: lim sup 〈Ω′(βi) : i ≥ 0 〉 is even, where Ω′ : β 7→
Ω(π2(r(β))) and π2 is the second-projection map i.e. the largest number that occurs
infinitely often in the numeric sequence Ω′(β0) · Ω′(β1) · Ω′(β2) · · · · is even. (For
ease of reading, we use · as item separator in the sequence.)

Remark 1.1. Let Γ be an alphabet (which is not assumed to be ranked) and let
t be a Γ-labelled tree (which is not assumed to be ranked or ordered) (e.g. take t
to be a run-tree of an APT). The trace language of t, written Traces(t), is the set
of non-null sequences a1 · · · an ∈ Γ∗ where n ≥ 1 such that there is a path α1 · · ·αn

in the tree Dom(t) with t(αi) = ai for each 1 ≤ i ≤ n. In other words, the trace of
a Γ-labelled tree is the “language of its node labels”. We shall refer to elements of
Traces(t) as traces of t.

We can equivalently define a run-tree of an alternating parity automaton over a
Σ-labelled tree t to be a set R of non-null sequences of elements of Dom(t) × Q,
closed under non-null prefix, such that

(i) the least element of R is the singleton sequence (ε, q0)
(ii) for every sequence (ε, q0) (α1, qi1) · · · (αn, qin

) inR, its element-wise first-projection,
namely ε α1 · · ·αn, is a path in the tree Dom(t)

(iii) for every sequence p (α, q) in R, there is a set S ⊆ Dir(Σ) × Q such that S
satisfies δ(q, t(α)), and for each (i, q′) ∈ S, we have p (α, q) (α i, q′) ∈ R.

It follows from the definition that a run-tree is a certain (nonnull-prefix closed) set
of Q-annotated paths in the tree t i.e. every node of each path is annotated with
an element of Q.

7Let Γ be a finite unranked alphabet. A Γ-labelled unranked tree r is a function r : Dom(r) −→ Γ

such that Dom(r) is a D-tree, where D a finite set of directions. The unranked trees that we shall

consider in the paper are also unordered ; note that the out-degrees of the nodes of Dom(r) are
bounded above by |D|.
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Let ∂R be the set of infinite sequences w = (ε, q0) (α1, qi1) (α2, qi2) · · · over the
alphabet Dom(t)×Q such that every non-null finite prefix of w is in R. We say that
the run-treeR is accepting just if for every w ∈ ∂R, we have lim sup 〈Ω(qij ) : j ≥ 0 〉
is even. We shall refer to elements of ∂R as infinite traces of R.

Outline of the paper. We fix an order-n recursion scheme G and an alternating
parity tree automaton (APT) B over Σ-labelled trees. We introduce the computa-
tion tree λ(G) of the recursion scheme G, which is a ΛG-labelled tree, in Section 2.
We then define traversal over a computation tree λ(G), and the related notion of
(accepting) traversal-tree of B over λ(G), and show that B has an accepting run-tree
over [[G ]] if and only if B has an accepting traversal-tree over λ(G) (Corollary 8). In
Section 3 we present, for a given B, the associated traversal-simulating alternating
parity automaton over ΛG-labelled trees, which we call C throughout the paper.
To avoid confusion, we shall refer to B as the property APT (as it corresponds
to a property described by some modal mu-calculus formula). In Section 4, we
prove that every accepting run-tree of the traversal-simulating APT C determines
an accepting traversal-tree of the property APT B. In Section 5, we prove the
opposite direction: Every accepting traversal-tree of a property APT B determines
an accepting run-tree of the associated traversal-simulating APT C. To summarise,
we have:

Property APT B accepts the value tree [[G ]]

⇐⇒ { Definition of APT acceptance }
B has an accepting run-tree over [[G ]]

⇐⇒ { Corollary 8 }
B has an accepting traversal-tree over the computation tree λ(G)

⇐⇒ { Theorem 20 }
Traversal-simulating APT C has an accepting run-tree over λ(G)

By definition λ(G) is the value tree of an order-0 recursion scheme i.e. it is a regu-
lar tree. Since the APT Acceptance Problem for regular trees is decidable, we can
conclude that the modal mu-calculus model checking problem for trees generated
by order-n recursion schemes is decidable. In Section 6 we analyse the complexity
of the modal mu-calculus model checking problem. We first establish a certain suc-
cinctness property (Proposition 19) for accepting run-trees of a traversal-simulating
APT. The desired time bound is then obtained by analysing the complexity of solv-
ing a (finite) acceptance parity game.
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2. COMPUTATION TREES AND TRAVERSALS

In this section we introduce the computation tree λ(G) of a recursion scheme G,
and define traversals over the computation tree. A highlight is the correspondence
result between maximal paths in the value tree [[G ]] and maximal traversals over the
computation tree λ(G). Finally, given a property APT B over Σ-labelled trees, we
define traversal-tree, and explain what it means for a traversal-tree to be accepted
by B.

2.1 Long transform G and computation tree λ(G)

As the value tree [[G ]] is the “extensional” outcome of a potentially infinite compu-
tational process, it has little useful structure for our purpose. Our approach is to
consider an auxiliary tree, λ(G), which we call the computation tree of G. Roughly
speaking, evaluating the computation tree (by a potentially infinite process of β-
reduction) returns the value tree. Here we give a concrete view of how computation
trees are constructed. (The more abstract, game-semantic account, is given in an
accompanying paper [Ong 2006a]).

The long transform: from G to G. Fix a recursion scheme G. Rules of the new
recursion scheme G (which, we shall see, can be regarded as order 0) are obtained
from those of G by applying the following four operations in turn, which we call
long transform. For each G-rule:

1. Expand the RHS to its η-long form. I.e. we hereditarily η-expand every subterm
– even if it is of ground type – provided it occurs in an operand position (i.e. it
is the second argument of some occurrence of the application operator). Note
that each applicative term s ∈ T (Σ∪N ∪{ ξ1, · · · , ξl }) can be written uniquely
as † s1 · · · sm where † is either a variable (i.e. some ξj) or a non-terminal or a
terminal. Suppose † s1 · · · sm : (A1, · · · , An, o). First we define

d† s1 · · · sme = λϕ.† ds1e · · · dsme dϕ1e · · · dϕne

where ϕ is a list ϕ1 · · ·ϕn of (fresh) pairwise-distinct variables (which is a null
list iff n = 0) of types A1, · · · , An respectively, none of which occurs free in
† ds1e · · · dsme. Take any e = † s1 · · · sm of ground type. The η-long form of e
is defined to be † ds1e · · · dsme.
For example the η-long form of g a : o is g (λ.a); we shall see that the “dummy
lambda-abstraction”8 λ.a (that binds a null list of variable) plays a useful rôle
in the syntactic representation of the game semantics of a recursion scheme.

8To my knowledge, Colin Stirling was the first to use a tree representation of lambda terms in

which “dummy lambdas” are employed; see his CSL 2005 paper [Stirling 2005]. Motivated by

property-checking games in Verification, he has introduced a game that is played over such trees
as a characterization of higher-order matching [Stirling 2006].
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2. Insert long-apply symbols @A: Replace each ground-type subterm of the shape
De1 · · · en, where D : (A1, · · · , An, o) is a non-terminal and n ≥ 1 (i.e. D has
order at least 1), by @ADe1 · · · en where

A = ((A1, · · · , An, o), A1, · · · , An, o).

In the following, we shall often omit the type tag A from @A.
3. Curry the rewrite rule. I.e. we transform the rule F ϕ1 · · · ϕn → e′ to

F → λϕ1 · · · ϕn.e
′.

In case n = 0, note that the curried rule has the form F → λ.e′.
4. Rename bound variables afresh, so that any two variables that are bound by

different lambdas have different names.

The computation tree λ(G) is the infinite term-tree that is obtained by unfolding
the rewrite rules in the long transform G ad infinitum (note that no β-redex is
contracted in the process). Before presenting the definition, we consider an example.

Example 2.1 (Construction of an order-2 computation tree). We first
transform G to its long form G by performing the four operations in turn:

G :


S → F H

F ϕ → ϕ (F ϕ)

H x → fx x

7→ G :


S → λ.@F (λx.@H λ.x)

F → λϕ.ϕ(λ.@F (λy.ϕ(λ.y))))

H → λz.f(λ.z)(λ.z)

The computation tree λ(G), as presented in Figure 1, is the term-tree that is
obtained by infinitely unfolding the G-rules from S. For another example of the long
transform and computation tree of an order-2 recursion scheme, see Example 2.6. �

Definition 2.2. For any recursion scheme G, the system of transformed rules
in G defines an order-0 recursion scheme – called the long transform of G –
with respect to an enlarged ranked alphabet ΛG, which is Σ augmented by certain
variables and lambdas (of the form λξ which is a short hand for λξ1 · · · ξn where
n ≥ 0) but regarded as terminals. The alphabet ΛG is a finite subset of the set

Σ ∪ Var ∪ {@A : A ∈ ATypes }︸ ︷︷ ︸
Non-lambdas

∪ {λξ : ξ ⊆ Var }︸ ︷︷ ︸
Lambdas

where ATypes is the set of types of the shape ((A1, · · · , An, o), A1, · · · , An, o) with
n ≥ 1. We rank the symbols in ΛG as follows:

—variable symbol ϕ : (A1, · · · , An, o) in Var has arity n
—long-apply symbol @A where A = ((A1, · · · , An, o), A1, · · · , An, o) has arity n+ 1
—lambda symbol λξ has arity 1, for every list of variables ξ ⊆ Var .

Further, for f ∈ ΛG, we define

Dir(f) =

 [ar(@A)− 1]0 if f = @A

[ar(f)] otherwise

ACM Journal Name, Vol. V, No. N, 20YY.
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Fig. 1. An example of an order-2 computation tree.

For technical reasons (to be clarified shortly), the leftmost child of an @-labelled
node α is in direction 0 (i.e. it is α’s 0-child); for all other nodes, the leftmost child
is in direction 1. The non-terminals of G are exactly those of G, except that each
is assigned a new type, namely, o. We can now define the computation tree λ(G)
to be the value tree [[G ]] of the order-0 recursion scheme G. It follows that λ(G) is
a regular tree.

Notation. Sometimes, for convenience, we shall refer to a node α of a labelled
tree t by its label t(α).

We emphasize that there is no renaming of bound variables (indeed there is no
need as no β-redex is ever contracted and hence no substitution is ever performed)
in the construction of the computation tree λ(G). We shall call a node of λ(G) a
lambda node (respectively non-lambda node) if it is labelled by a lambda (respec-
tively non-lambda) symbol; similarly, a variable node (respectively @-node) is a
node that is labelled by a variable (respectively long-apply symbol). Note that by
construction even-level nodes (we say that the root is at level 0) of a computation
tree are non-lambda nodes, odd-level nodes are lambda nodes. Suppose the node α
is labelled by a variable ξ; we say that α is bound by the the node β (equivalently
β is the binder of α) just in case β is the largest prefix of α that is labelled by a
lambda symbol λξ, for some list ξ that contains ξ. The dotted arrows in Figure 1
indicate the binding relationship.

Remark 2.3. (i) Even though variables ϕ and long-apply symbols @A (and, as
we shall see shortly, lambda symbols λϕ) are intrinsically typed, we stress that
when viewed as elements of the order-0 recursion scheme G, they are just terminals
of the ranked alphabet ΛG; hence – when considered in this rôle – they are defined to
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14 · C.-H. L. Ong

have an arity, which in turn determines a type, of order at most one. To distinguish
the two types, we shall refer to the former as intrinsic type and the later as arity
type.
(ii) Another way to present the computation tree λ(G) is to define it as the un-
ravelling of a ΛG-labelled (finite) deterministic digraph which is an abstract repre-
sentation of the associated order-0 recursion scheme G (Proposition 22). We shall
make use of this characterization in the complexity analysis of the model checking
problem.

Local structure of a computation tree. The local structure of a computation tree
λ(G) is determined by the node-labels:

—A node labelled by a long-apply symbol @A : A where

A = ((A1, · · · , An, o), A1, · · · , An, o)

has n+ 1 children:

@
0iiiiiiiii

iiiii 1
vvv

vvv
n

HHH

HHH

λξ1 · · · ξn λη1 · · · ληn

where for each i, we have ξi : Ai = (Ci1, · · · , Ciri
, o) and ηij : Cij . By abuse of

language, we say that the symbol λξ1 · · · ξn has type (A1, · · · , An, o) (hence the
“dummy lambda” λ is of ground type o). Thus it follows that ξi and ληi have
the same type, namely, Ai.

—A node labelled by a variable ϕ : (A1, · · · , An, o) has n children:

ϕ

1
yyy

yy
n

EEE

EE

λη1 · · · ληn

where for each i, we have ληi : Ai. In case n = 0, ϕ labels a terminal node.
—A node labelled by a Σ-symbol f : (o, · · · , o︸ ︷︷ ︸

r

, o), where r = ar(f), has r children:

f

1
~~~

~~
r

@@@

@@@

λ · · · λ

In case r = 0, f labels a terminal node.

In the above diagrams, the edges are labelled by their respective directions. Note
the anomaly: The leftmost child of a variable or Σ-symbol node is (in direction 1,
and is thus referred to as) its 1-child, but that of an @-node is (in direction 0 and
referred to as) its 0-child. (This has the desirable consequence that for 1 ≤ i ≤ n,
the type of the label – ληi in the figure above – of the i-child of @ coincides with
the type of the i-th variable ξi bound by the lambda that labels the 0-child of @.)
Thus if the node α is labelled by @, its leftmost child is the node α 0. Every node
α labelled by a lambda symbol has precisely one child, namely, α1.
ACM Journal Name, Vol. V, No. N, 20YY.
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We define a binary relation over the node-set of a computation tree λ(G), called
enabling, as follows (we read m `i m

′ as “m i-enables m′”, or “m′ is i-enabled by
m”, or “m is the enabler of m′”)

—Every lambda node, except the root, is i-enabled by its parent node in λ(G),
where the former is the i-child of the latter.

—Every variable node (labelled by ξi, say) is i-enabled by its binder (labelled by
λξ, say), where ξi is the i-th element of the list ξ.

We say that a node α is enabled by β, written β ` α, if for some (necessarily unique)
i, we have β `i α. We say that a node of λ(G) is initial if it is not enabled by any
node. If follows from the definition that the initial nodes of a computation tree are
the root-node (necessarily labelled by the lambda symbol λ), and all nodes labelled
by a long-apply or Σ-symbol.

Remark 2.4. We can think of a computation tree as a tree that is constructed
by assembling (possibly infinitely many copies of) finite basic parts called extents,
which are given by the respective RHSs (but less the non-terminals) of the G-
rules. A node in a computation tree is said to be prime just if it is the leftmost
child (i.e. 0-child) of an @-node. Formally an extent of λ(G) is a subtree that is
identified by its root α, which must be prime; nodes of the extent are exactly those
descendants β of α (in λ(G)) such that α is the only prime node in the path from α
to β. Thus a leaf of an extent is labelled by either a nullary Σ-symbol or an order-0
variable. We state the following observations:

(1) Every node in a computation tree, except those from a finite initial subtree, is
in a unique extent.

(2) In any given computation tree, there are only finitely many non-isomorphic
(with reference to labelled digraphs) extents, as given by the RHSs of the G-
rules but less the non-terminals. (Thus computation trees are regular.) Hence
the extents are bounded in size.

(3) Every node in a computation tree is enabled by some node in the same extent.
In particular, every variable node is in the same extent as its binder.

(4) Suppose the node γ is a descendant of both an @-node α and its 0-child α0
(i.e. α0 ≤ γ), and suppose γ is hereditarily enabled by the @-node γ0. Then
α ≤ γ0. (This is a straightforward corollary of (3)).

2.2 Justified sequences and P-views

A justified sequence over λ(G) is a possibly infinite, lambda / non-lambda alter-
nating sequence of nodes that satisfies the pointer condition: Each non-initial node
n that occurs in it has a pointer to some earlier node-occurrence n0 in the sequence
such that n0 `j n, for some j. We say that the node-occurrence n is justified by
the node-occurrence n0 in the sequence.

Notation. · · · n0 · · · n

j{{
· · · means that n points to n0, and n0 `j n holds in

λ(G). We say that n is j-justified by n0, or n has a j-pointer to n0, in the justified
sequence.
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The notion of view (of a justified sequence) and the condition of Visibility were
first introduced in game semantics [Hyland and Ong 2000]. Intuitively the P-view
(respectively O-view) of a justified sequence is a certain subsequence consisting of
moves which P (respectively O) considers relevant for determining his next move
in the play. In the setting here, the lambda nodes are the O-moves, and the non-
lambda moves are the P-moves.

Definition 2.5. The P-view, ptq, of a justified sequence t is a subsequence
defined by recursion as follows: we let n range over non-lambda nodes

pλq = λ

pt n · · · λξ

i||
q = ptq n λξ

i��

ptλξ nq = ptλξq n

In the second clause above, if in t n · · · λξ

i||
the non-lambda node n has a

pointer to some node-occurrence l (say) in t, and if l appears in ptq, then in

ptq n λξ

i��
the node n is defined to point to l; otherwise n has no pointer. Sim-

ilarly, in the third clause above, if in tλξ n the non-lambda node n has a pointer
to some node-occurrence l (say) in tλξ, and if l appears in ptλξq, then in ptλξqn
the node n is defined to point to l; otherwise n has no pointer. It is easy to see that
the P-view of a justified sequence is always alternating, but it does not necessarily
satisfy the pointer condition.

Dually the O-view, xty, of a justified sequence t is a subsequence defined by
recursion as follows:

xεy = ε

xtλξy = xty λξ

xt λξ · · · ξ
iyy

y = xty λξ ξ
i��

xt ny = n where n is labelled by a long-apply or Σ-symbol

In the second clause above, if in tλξ the lambda node λξ has a pointer to some
node-occurrence n′ in t, and if n′ appears in xty, then in xty λξ the node λξ is
defined to point to n′; otherwise it has no pointer. Similarly for the third clause.

We say that a justified sequence t satisfies P-visibility just in case every non-
initial non-lambda node that occurs in the sequence is justified by some (necessarily
lambda) node that appears in the P-view at that point: Formally, for each prefix
um ≤ t, if m is a non-initial non-lambda node that points to some node-occurrence
l in u, then l appears in puq. Dually a justified sequence t satisfies O-visibility
just in case every non-initial lambda node that occurs in the sequence is justified
by some (necessarily non-lambda) node that appears in the O-view at that point.
We say that a justified sequence satisfies Visibility if it satisfies both P- and O-
visibility.

We say that a node-occurrence m is hereditarily justified by a node-occurrence
ACM Journal Name, Vol. V, No. N, 20YY.
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n in (the justified sequence) t if there are node-occurrences n1 = n, · · · , nl+1 = m
in t such that ni+1 points to ni, for each 1 ≤ i ≤ l.

Example 2.6 (Views and Visibility). LetG be the following (unsafe9) order-
2 recursion scheme:

G :


S → H a

H z → F (g z)

F ϕ → ϕ (ϕ (F h))

7→ G :


S → λ.@H (λ.a)

H → λz.@F (λy.g (λ.z) (λ.y))

F → λϕ.ϕ (λ.ϕ (λ.@F (λx.h (λ.x))))

where the arities of the terminals g, h, a are 2, 1, 0 respectively. We present its value
tree [[G ]] and computation tree λ(G) in Figure 2. The value tree [[G ]] is the Σ-
labelled tree defined by the infinite term g a (g a (h (h (h · · ·)))). The only infinite
path in the tree is the node-sequence ε · 2 · 22 · 221 · 2211 · · · (with the corresponding
trace g g h hh · · · ∈ Σω).

[[ G ]] λ(G)

g

rrrrr
LLLLL λ

a g

rrrrr
HHHH @

ppppp
MMMMM

a h λz λ

h @

vvv
vv

JJJ
JJJ

a

...
λϕ λy

ϕ g

oooooo
NNN

NNN

λ λ λ

ϕ z y

λ

@
ppp

pp LLL
LL

λϕ λx

...
h

λ

x

Fig. 2. An order-2 value tree and its auxiliary computation tree.

9The second rule is unsafe because the order-1 subterm g z, which is at an operand position, has
an occurrence of an order-0 parameter z.
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Consider the following justified sequence t over the computation tree in Figure 2:

λ @ λz

0��
@ λϕ

0��
ϕ

1��
λy

1

��
g λ

2��
y

1

��
λ

1

��
ϕ

1

}}
λy

1

||
g λ

1��
z

1

yy
λ

1

yy
a

We write t6m to mean the prefix of t truncated at (and including) the node m.
Let α be the node ε 1 0 1 1 1 1 in λ(G) (which has label λ). We have:

(i) pt6αq = λ @ λz

0��
@ λy

1��
g λ

1~~
.

The justified sequence t satisfies P-Visibility: Take the node-occurrence z in t;
we have z is justified by λz, which appears in the P-view at that point, namely,
pt6αq (see above).

(ii) pt6yq = λ @ λz

0��
@ λy

1��
g λ

2��
y

1

||
.

(iii) xt6yy = λ @ λϕ
0��

ϕ
1��

λy

1

{{
y

1��
.

Lemma 4. If a justified sequence satisfies Visibility, then its P-view and O-view
are well-defined justified sequences that satisfy Visibility.

Proof. This is a standard result in (innocent) game semantics. See e.g. [Hyland
and Ong 2000] for a proof.

We shall call a justified sequence s (that satisfies Visibility) a P-view if it is a
fixpoint of the P-view operation i.e. psq = s. Equivalently a justified sequence is a
P-view if (and only if) every occurrence of a non-initial lambda-node points to the
node that immediately precedes it.

Lemma 5. For every recursion scheme G, each path in the computation tree
λ(G) is a justified sequence that satisfies P-visibility and O-visibility, and it is a
P-view.

Proof. An easy exercise.

2.3 Traversals over a computation tree

Definition 2.7. Traversals over a computation tree λ(G) are justified se-
quences of nodes defined by induction over the following rules: we let f range
over Σ-symbols, and n range over non-lambda symbols
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(Root). The singleton sequence, comprising the root node ε, is a traversal.

(App). If t@ is a traversal, so is t @ λξ

0��
.

(Sig). If t f is a traversal, so is t f λ

i��
for each 1 ≤ i ≤ arity(f).

(Var). If t n λξ · · · ξ
iyy

is a traversal, so is t n λξ · · · ξ
iyy

λη

i

{{
.

(Lam). If tλξ is a traversal and ptλξ nq is a path in λ(G), then tλξ n is
a traversal.

In the above rules, for ease of reading, we refer to nodes of a computation tree by

their labels. For example, the rule (Var) says that if t α β · · · βi
i{{

is a traversal

such that the node βi is labelled by a variable ξ (say), then t α β · · · βi
i{{

αi

i

{{

is also a traversal. (Of course we need to show that the node α in the computation
tree has an i-child, which is a lambda node. We shall do this in Proposition 6.)
We say that an infinite justified sequence (over a computation tree) is a traversal
if every finite prefix of it is a traversal.

It follows from the definition that the way that a traversal can grow is determin-
istic (and determined by λ(G)), except when the last node is an order-1 Σ-symbol
f : ok → o, in which case, the traversal can grow in one of k possible directions in
the next step.

Proposition 6. (Traversals are assumed to be finite in this Proposition.)

(i) Traversals are well-defined justified sequences that satisfy Visibility.
(ii) The P-view of a traversal is a path in the computation tree.
(iii) An odd-length traversal has the shape

ε α1 · · ·β1︸ ︷︷ ︸
u1

· · · αn · · ·βn︸ ︷︷ ︸
un

where n ≥ 0, and in each ui (which we shall call a basic segment), the last
node βi, which is labelled by a lambda, is hereditarily justified by the first node
αi, which is labelled by an initial non-lambda symbol. The first node αi of a basic
segment ui is labelled by either a Σ-symbol (in which case, the segment ui has
length 2), or by a long-apply symbol, in which case, ui has the following shape:

@ λϕ

0

		
· · · ϕ

i1~~
λη

i1

}}
· · · η

i2��
λψ

i2

}}
· · · χ λξ · · · ξ

il~~
λγ

il

~~
(1)

where l ≥ 0, and the pair ϕ and λη have the same type, and similarly for the
pairs η and λψ, · · ·, and ξ and λγ (so that exactly one of the last node λγ and
the penultimate node ξ is hereditarily justified by λϕ, though both are hereditarily
justified by the first node @). We call segments of the form (1) (even-length)
@-blocks.
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An even-length traversal is either of the shape

ε α1 · · ·β1︸ ︷︷ ︸
u1

· · · αn · · ·βn︸ ︷︷ ︸
un

α

where n ≥ 0, each ui is a basic segment and α is an initial non-lambda node; or
it is of the shape

ε α1 · · ·β1︸ ︷︷ ︸
u1

· · · αn · · ·βn︸ ︷︷ ︸
un

· · ·︸︷︷︸
u

where n ≥ 0, each ui is a basic segment and u has the shape

@ λϕ

0

		
· · · ϕ

i1~~
λη

i1

}}
· · · η

i2��
λψ

i2

}}
· · · χ λξ · · · ξ

il~~
(2)

where l ≥ 1, and the pair ϕ and λη have the same type, and similarly for the
pairs η and λψ, · · ·, and χ and λξ (so that exactly one of the last node ξ and χ
is hereditarily justified by the node λϕ, though both are hereditarily justified by
the first node @). We call segments of the form (2) (odd-length) @-blocks.

Proof. We prove the Proposition by simultaneous rule induction. For each
rule, we show that if the sequence in the premise, and all its prefixes, are justified
sequences that satisfy (i), (ii) and (iii), then the same is true of the justified sequence
in the conclusion. We consider the last two rules.

(Var): Suppose s = t n λξ · · · ξ
iyy

is a traversal. By the induction hypothesis
of (iii), s has the shape ε u1 · · · ur u where each ui is a basic segment and u is an
odd-length @-block as follows

@ λϕ

0

		
· · · ϕ

i1~~
λη

i1

}}
· · · η

i2��
λψ

i2

}}
· · · χ λξ · · · ξ

il~~

for some l ≥ 1 and i = il (so that n is the node χ). Since χ and λξ have
the same type, there is a lambda-node (λγ say) that is il-enabled by the node
χ. By the induction hypothesis of (i), s and all its prefixes satisfy Visibility.

Hence t χ λξ · · · ξ
iyy

λγ

i

{{
is a well-defined odd-length traversal that satisfies

O-visibility (and hence Visibility), and has the shape ε u1 · · · ur uλγ where

uλγ = @ λϕ

0

		
· · · ϕ

i1~~
λη

i1

}}
· · · η

i2��
λψ

i2

}}
· · · χ λξ · · · ξ

il~~
λγ

il

~~

is an even-length @-block as required. Thus we have shown (i) and (iii).
By the induction hypothesis of (ii), the P-view of every prefix of s is a path in the

computation tree. In particular we have ps6χq is a path in the computation tree.

Since pt χ λξ · · · ξ
iyy

λγ

i

{{
q = ps6χq λγ, it is also a path in the computation

tree.
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(Lam): Take a traversal of the form s = tλξ . By the induction hypotheses of
(i) and (ii), tλξ satisfies P-visibility, and ptλξq is a path in the computation tree.
By definition of the computation tree, there is a well-defined node n such that
ptλξqn is a path in the tree. Since ptλξ nq = ptλξqn, it is a path in the tree.
It follows from Lemma 5 that ptλξ nq satisfies P-visibility. Thus tλξ n satisfies
P-visibility (and hence Visibility). For (iii), by the induction hypothesis, the odd-
length traversal s has the shape ε u1 · · · ur where each ui is a basic segment and
ur is an even-length @-block. Suppose the non-lambda node n is justified by a
lambda node γ in ui (say). The case where n is labelled by a long-apply or a Σ-
symbol is trivial. We assume that n is labelled by a variable. Then it follows that
tλξ n has the shape ε u1 · · · ui−1 ui · · · ur n︸ ︷︷ ︸

u

where u is an odd-length @-block, as

required.

A corollary of the Proposition is that every finite traversal t can be extended (in
the sense that t α is a traversal, for some node α), except when the last node of t
is labelled by a nullary Σ-symbol. Thus a maximal traversal is either infinite or it
ends in a node labelled by a nullary Σ-symbol.

Example 2.8 (Traversals). The justified sequence in Example 2.6 is a traver-
sal over an order-2 computation tree. For an order-3 example, consider the compu-
tation tree in Figure 3. For ease of reference, we give nodes of the computation tree
λ(G) numeric names, which are indicated (within square-brackets) as superscripts.
See Figure 4 for a traversal over the computation tree. The P-view of the traversal
in Figure 4 truncated at node 17, p0 · · · 17q, is the following path from the root to
node 17:

0 1 10
1��

11 12
1��

13

1
zz

14
1��

15

1

{{
16

1��
17

2

{{

�

Remark 2.9. The pointers in a traversal over any computation tree λ(G) are
uniquely reconstructible from the underlying sequence of nodes and their respective
labels; thus pointers are not an additional structure imposed on the underlying
sequence. However it is convenient (e.g. in the definition of view) to define traversals
as sequences equipped with pointers. Another advantage of pointers is that they
help to clarify the correspondence between traversals and interaction sequences
(that arise in the construction of the game semantics of the recursion scheme in
question) - on which, more anon.

2.4 Traversal-trees of a property alternating parity automaton B
We first state an important theorem that underpins our approach.

Theorem 7 (Path-Traversal Correspondence). Let G be a recursion scheme.

(i) There is a 1-1 correspondence, p 7→ tp, between maximal paths p in the Σ-labelled
(value) tree [[G ]] and maximal traversals tp in the ΛG-labelled (computation) tree
λ(G).
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Fig. 3. An example of an order-3 computation tree.
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xx
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Fig. 4. Order-3 traversals can be quite complex!

(ii) Further for every maximal path p in [[G ]], we have

tp � Σ− = p � Σ−

where tp � Σ− denotes the subsequence of tp consisting of only Σ−-symbols where
Σ− = Σ \ {⊥}. Note that ⊥ ∈ Σ, but ⊥ 6∈ ΛG.

Using the language of game semantics, we are claiming, in (ii), that the traversal
tp is the uncovering of p.

Proof. The proof, which is by (innocent) game semantics, is in an accompa-
nying paper [Ong 2006a].

We illustrate the Theorem by the following example.

Example 2.10. Consider the order-2 recursion scheme G as defined in Exam-
ple 2.1. The value tree [[G ]] and the auxiliary computation tree λ(G) are displayed
in Figure 5. For ease of reference, we give nodes of the computation tree λ(G)
numeric names, which are indicated (within square-brackets) as superscripts. With
reference to Figure 5, take the path ε · 1 · 12 · · · in the value tree [[G ]] (the first few
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[[ G ]] λ(G)
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z[20]

hh

λ[8] λ[11]

...
y[12]

XX

Fig. 5. Correspondence between paths in the value tree and traversals over a computation tree.

nodes in the path are underlined in the figure). The traversal (over the computation
tree λ(G)) that corresponds to it is

0·1·2·3·13·14·15·16·17·18·21·22·4·5·6·7·9·10·13·14·15·16·19·20·21·22·11·12·8 · · ·

Further there is a correspondence between prefixes of the path on the one hand,
and prefixes of the traversal that end in a Σ-symbol, on the other:

—ε corresponds to 0 · 1 · 2 · 3 · 13 · 14 · 15 · 16
—ε 1 corresponds to 0 ·1 ·2 ·3 ·13 ·14 ·15 ·16 ·17 ·18 ·21 ·22 ·4 ·5 ·6 ·7 ·9 ·10 ·13 ·14 ·15 ·16
—ε · 1 · 12 corresponds to

0·1·2·3·13·14·15·16·17·18·21·22·4·5·6·7·9·10·13·14·15·16·19·20·21·22·11·12·8 · · · 16

—etc. �

Let G be a recursion scheme. Take a property APT B = 〈Σ, Q, δ, q0,Ω 〉 over
Σ-labelled trees. An (accepting) traversal-tree of B over λ(G) plays the same rôle
as an (accepting) run-tree of B over [[G ]]. A path in a traversal-tree is a traversal
in which each node is annotated by an element of Q. Formally, we have:

Definition 2.11. A traversal-tree of a property APT B over a ΛG-labelled
tree λ(G) is a (unranked) (Dom(λ(G))×Q)-labelled [m]-tree t, where m = ar(Σ)×
|Q|, satisfying t(ε) = (ε, q0), and for every β ∈ Dom(t) with t(β) = (α, q):

—If λ(G)(α) is an @, then t(β 1) = (α 0, q).
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—If λ(G)(α) is a Σ-symbol f , then there is some S ⊆ [ar(f)]×Q such that S
satisfies δ(q, f) – and we pick the smallest such S; and for each (i, q′) ∈ S, there
is some 1 ≤ j ≤ m such that t(β j) = (α i, q′).

—If λ(G)(α) is a variable, and α is i-justified by α1 with t(β1 1) = (α1, q1) for some
β1 and q1, then t(β 1) = (γ i, q) where t(β1) = (γ, q1).

· · · ψ or @ λξ · · · ξ

i||
λϕ

i

yy
λ(G)(α) ∈ ΛG

(γ, q1) (α1, q1) (α, q) (γ i, q) t(β) = (α, q) ∈ Dom(λ(G))×Q

β1 β1 1 β β 1 β ∈ Dom(t)

Note that γ i is a lambda node that is i-justified by γ which is labelled by either
a long-apply symbol or a variable.

—If λ(G)(α) is a lambda, then t(β 1) = (α 1, q).

A traversal-tree t is accepting if all infinite paths (α0, q0) (α1, qi1) (α2, qi2) · · · through
it satisfy the parity acceptance condition, namely, lim sup 〈Ω(qij

) : j ≥ 0 〉 is even.

It follows from the definition that (the element-wise first-projection of) every
trace of a traversal-tree is a traversal over the computation tree.

Example 2.12 (Running). Let the input ranked alphabet Σ be { a, h, g } (with
arities 0, 1 and 2 respectively), and let G be the order-2 recursion scheme of Ex-
ample 2.6. For ease of reading, we reproduce the G-rules as follows:

G :


S → H a

H z → F (g z)

F ϕ → ϕ (ϕ (F h))

7→ G :


S → λ.@H (λ.a)

H → λz.@F (λy.g (λ.z) (λ.y))

F → λϕ.ϕ (λ.ϕ (λ.@F (λx.h (λ.x))))

Consider an APT B over Σ-labelled trees with state-set Q = { 1, 2 } where 1 is the
initial state, and states 1 and 2 have priorities 1 and 2 respectively. The transition
map δ : Q× Σ −→ B+([ar(Σ)]×Q) is defined as follows:

δ :


(1, g) 7→ ((1, 1) ∧ (2, 1)) ∨ ((1, 2) ∧ (2, 1))

(1, a) 7→ true

(2, a) 7→ true

In Figure 6, we present the computation tree λ(G) on the left, and a traversal-
tree of B over λ(G) on the right. (The recursion scheme and the property APT
introduced in this example will be used to illustrate various concepts throughout
the paper.)

We state a straightforward consequence of Theorem 7 as follows.

Corollary 8. Let G be a recursion scheme. For every APT B over Σ-labelled
trees, there is a one-one correspondence between

(1) accepting run-trees of B over the value tree [[G ]]
(2) accepting traversal-trees of B over the computation tree λ(G). �
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Fig. 6. A computation tree and a traversal-tree of an APT over it.

Our task is therefore reduced to that of recognising accepting traversal-trees.

3. THE TRAVERSAL-SIMULATING ALTERNATING PARITY AUTOMATON C
In this section, we show how traversals over a computation tree can be simulated
by paths in the tree. We first give an informal explanation of the simulation and
then present the definition of the traversal-simulating APT.
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3.1 How to simulate accepting traversal-trees? An informal explanation

Our task is to find a device that can recognise accepting traversal-trees of a property
APT B over a computation tree. This is far from trivial since traversals can jump
all over the computation tree and visit some nodes infinitely often. As we have seen,
in Example 2.8, traversals can be very complex indeed. Our idea is to exploit the
fact that the P-view of a traversal is a path in the computation tree (Proposition 6).
Thus a maximal traversal can be simulated by the set of P-views of all its finite
prefixes. The challenge is then to define an alternating parity automaton (which
we shall call traversal-simulating in order to distinguish it from the property APT)
that recognises precisely the set of paths of the computation tree that simulate an
accepting traversal-tree of B.

An order-2 illustration. Fix a property APT B = 〈Σ, Q, δ, q0,Ω 〉 with p priorities.
Suppose a traversal jumps from a node labelled ϕ with simulating state q ∈ Q to
a subtree (denoting the actual parameter of that formal parameter ϕ) rooted at
a node labelled λy1y2; suppose it subsequently exits the subtree through y1 with
simulating state q1, and rejoins the original subtree through the first λ-child of
the ϕ-labelled node, as Figure 7 illustrates: We simulate the traversal by paths in

...

@

hhhhhhhhh RRRR
YYYYYYYYYYYYYYY

λϕx λy1y2, q λ

...
...

...

ϕ, q
llll

33

OOOO y1, q1

ooλ, q1 λ

...
...

Fig. 7. An order-2 illustration.

the computation tree, making appropriate guesses, which will need to be verified
subsequently:

—When reading the node labelled ϕ with simulating state q, we guess that the
detour to λy1y2 will return to the 1-child of the ϕ-labelled node with simulating
state q1; the automaton proceeds by descending in the direction of 1.

—In order to verify the guess, we spawn an automaton at the root of the subtree
that denotes the actual parameter of ϕ (i.e. the node labelled by λy1y2). The
automaton then proceeds by descending the subtree.

At a node α that is labelled by an @, in addition to the main simulating au-
tomaton that descends in the direction of the leftmost child labelled by λξ1 · · · ξn
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(say), we guess, for each variable ξi : Ai in the list of formal parameters ξ1, · · · , ξn,
a number of quadruples of the shape

(ξi, q,m, c)

which we call profiles for ξi, where

(i) q ∈ Q is the state that is being simulated when a ξi-labelled node (a descendent
of the node α0 labelled λξ1 · · · ξn) is met by the descending automaton, simulating
the traversal

(ii) m ∈ [p] is the maximal priority that will have been seen at that point, since
reading the node labelled by λξ1 · · · ξn

(iii) the interface, c, which is a subset of
⋃n

i=1 VPB
G(Ai), where VPB

G(A) is the set
of profiles of variables of type A with respect to the property APT B, describes
the manner (i.e. with what simulating state, and at which child of ξi) in which
the traversal, which now jumps to a neighbouring subtree denoting the actual
parameter of ξi, will eventually return to (the original subtree) through some
children of the ξi-labelled node.

Take, for example, the situation in Figure 7 and consider the profile (ϕ, q,m, c):
The formal parameter is ϕ : (o, o, o) and its actual parameter is denoted by a subtree
whose root is labelled by λy1 y2, and

c = { (y1, q1,m1,∅), (y1, q2,m2,∅) }.

The interface c in the profile (ϕ, q,m, c) for ϕ says, among other things, that the
traversal that enters the subtree denoting the actual parameter of ϕ with simulating
state q will evolve in such a way that one extension – corresponding to (y1, q1,m1,∅)
– will exit the subtree through the variable y1 with simulating state q1 such that
m1 is the maximal priority seen since reading λy1y2, and another – corresponding
to (y1, q2,m2,∅) – will exit through y1 with simulating state q2 such that m2 is the
maximal priority seen.

3.2 Variable profiles and environment

Fix a recursion scheme G and its associated computation tree λ(G), and fix a
property APT

B = 〈Q, Σ, δ : Q× Σ −→ B+([ar(Σ)]×Q), q0 ∈ Q, Ω : Q −→ N 〉

with p distinct priorities, over the Σ-labelled tree [[G ]]. Let VarA
G be the (finite)

set of variables of type A that occur as labels in the computation tree λ(G).

Definition 3.1. (i) The set VPB
G(A) of variable profiles (or profiles for short)

of type A for λ(G) relative to B are defined inductively as follows: VPB
G(o) = Varo

G ×Q× [p]× P(∅)

n ≥ 1, VPB
G(A1, · · · , An, o) = VarA

G ×Q× [p]× P(
⋃n

i=1 VPB
G(Ai))

We say that (ξ, q,m, c) ∈ VPB
G(A) is a profile for ξ, and we refer to m as the

priority and c the interface of the profile respectively. We write VPB
G(ξ : A)

for the set of profiles for ξ.
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We let θ and τ range over variable profiles, and define a binary relation l over
profiles of variables that occur in λ(G): we define τlθ just in case τ is an element
of the interface of θ.

(ii) An active profile is just a profile θ = (ϕ, q,m, c) (say) equipped with a 1-bit
memory b. The boolean value b is intended to be the answer to the question: “Is
the highest priority seen thus far (since the creation of the active profile) equal
to m?” Formally an active profile is a pair θb where θ is a profile and b ∈ { t, f }
is a Boolean value. An environment is a set of active profiles (for variables that
occur as labels in λ(G)).

Notations. Take an active profile (ξ, q,m, c)b. For any priority l ≤ p, we define
an update function of the 1-bit memory as follows:

(ξ, q,m, c)b ↑ l =

 (ξ, q,m, c)b∨[l=m] if l ≤ m

undefined otherwise

where [l=m] denotes the Boolean value of the equality test “l = m”. For any profile
θ, we define θ ↑ l (by abuse of notation) to be θf ↑ l. Let ρ be an environment. We
define ρ ↑ l by point-wise extension i.e. we say that ρ ↑ l is defined just if θb ↑ l is
defined for all active profiles θb ∈ ρ, and is equal to { θb ↑ l : θb ∈ ρ }.

3.3 Traversal-simulating alternating parity automaton C
Definition 3.2. Given a recursion schemeG and a property APT B = 〈Σ, Q, δ, q0,Ω 〉

over the Σ-labelled value tree [[G ]], we can now define the auxiliary traversal-
simulating alternating parity automaton over the ΛG-labelled computation
tree λ(G):

C = 〈ΛG, QC , δC : QC × ΛG −→ B+([ar(ΛG)]0 ×QC), q0 ∅, ΩC : QC −→ N 〉

where:

—The input alphabet is ΛG.
—A C-state (i.e. an element of QC) is either a pair q ρ or a triple q ρ θ, where
q ∈ Q is the B-state that is being simulated, called the simulating state, ρ is an
environment, and θ is a variable profile; the pair q0 ∅ is the initial state.

—The priority of a C-state is defined by cases:

ΩC :

 q ρ 7→ Ω(q)

q ρ θ 7→ m, where m is the priority of the profile θ.

Given a C-state d = q ρ or q ρ θ, we shall refer to Ω(q) as its B-priority, and ΩC(d)
as its C-priority.

Definition of the transition function δC. The automaton starts by reading the
root node ε of λ(G) with the initial state q0 ∅. Rather than giving the positive
Boolean formula δC(d, l) for each d ∈ QC and l ∈ ΛG, we describe the action of the
automaton with state d = q ρ or q ρ θ reading a node α of the computation tree, by
a case analysis of l = λ(G)(α).

Cases of the label l:

ACM Journal Name, Vol. V, No. N, 20YY.



On model-checking trees generated by higher-order recursion schemes · 29

Case 1: l is a Σ-symbol f of arity r ≥ 0, and d = q ρ.

If δ(q, f) ∈ B+([ar(f)] × Q) is not satisfiable, the automaton aborts; otherwise,
guess a satisfying set, say

S = { (i1, qj1), · · · , (ik, qjk
) }

where k ≥ 0 (with k = 0 iff S = ∅), and guess environments ρ1, · · · , ρk, such that
k⋃

i=1

ρi = ρ. (3)

Spawn k automata with states

qj1 ρ1 ↑ Ω(qj1), · · · , qjk
ρk ↑ Ω(qjk

)

in directions i1, · · · , ik respectively provided ρi ↑ Ω(qji
) is defined for all i, otherwise

the automaton aborts.

Note. In case the arity r = 0, since δ(q, f) ∈ B+([0] × Q) and [0] = ∅, we have
δ(q, f) is either true or false. If the former, since true is satisfied by every subset of
[0]×Q = ∅, it follows that equation (3) can only be satisfied provided ρ = ∅.

Case 2: l is a variable ϕ : (A1, · · · , An, o) where n ≥ 0, and d = q ρ θ.
We check that θ is of the form (ϕ, q,m, c) for some interface c and m ≤ p, and

(ϕ, q,m, c)t ∈ ρ; otherwise the automaton aborts. Suppose

c = { (ξij
, qlj ,mj , cj)︸ ︷︷ ︸

θj

| 1 ≤ j ≤ r }

for some r ≥ 0 (with c = ∅ iff r = 0). In case ϕ is order 2 or higher, we may
assume that ξj : Aj so that we have 1 ≤ ij ≤ n.

Guess ρ′ to be either ρ or ρ \ { (ϕ, q,m, c)t }.
For each 1 ≤ j ≤ r, guess distinct environments ρj1, · · · , ρjrj

with rj ≥ 1, such
that

r⋃
j=1

rj⋃
k=1

ρjk = ρ′. (4)

For each 1 ≤ j ≤ r and each 1 ≤ k ≤ rj , spawn an automaton with C-state

qlj (ρjk ↑ mj) ∪ (cj ↑ Ω(qlj )) θj

in direction ij , provided (ρjk ↑ mj)∪(cj ↑ Ω(qlj )) is defined for all j and k, otherwise
the automaton aborts.

Note. If ϕ is order 0, the interface c in θ is necessarily empty (i.e. r = 0). Thus,
for equation (4) to hold, we must have ρ′ = ∅; it follows that ρ = { (ϕ, q,m,∅) }.
Case 3: l is @ of type ((A1, · · · , An, o), A1, · · · , An, o) where n ≥ 1, and
d = q ρ.

Guess a set of profiles c ⊆
⋃n

i=1 VPB
G(ξi : Ai) and spawn an automaton with

state q c ↑ Ω(q) in direction 0, with

c = { (ξij , qlj ,mj , cj)︸ ︷︷ ︸
θj

: 1 ≤ j ≤ r }
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(say) where r ≥ 0 (with r = 0 iff c = ∅). Note that 1 ≤ ij ≤ n. For each 1 ≤ j ≤ r,
guess distinct environments ρj1, · · · , ρjrj

with rk ≥ 1 such that

r⋃
j=1

rj⋃
k=1

ρjk = ρ. (5)

For each 1 ≤ j ≤ r and 1 ≤ k ≤ rj , spawn an automaton with C-state

qlj (ρjk ↑ mj) ∪ (cj ↑ Ω(qlj )) θj

in direction ij , provided (ρjk ↑ mj)∪(cj ↑ Ω(qlj )) is defined for all j and k, otherwise
the automaton aborts.

Case 4: l is a lambda, with state d = q ρ or q ρ θ.
Spawn an automaton in direction 1 with C-state e where e = q ρ τ for some τ b ∈ ρ

if the guess is that the label of the child node is a variable, otherwise e = q ρ.

We tabulate the shape of the C-state of an automaton at a node according to its
label:

Node labels C-states

Apply, @ q ρ

Non-Lambda Variable, ϕ q ρ θ

Σ-symbol, f q ρ

Leftmost child of an @ q ρ

Lambda Nonleftmost child of an @ q ρ θ

Child of a Σ-symbol q ρ

Child of a Variable q ρ θ

Remark 3.3. Note the similarity between cases 2 (variable label) and 3 (@ la-
bel): the interface c of the profile θ for ϕ : (A1, · · · , An, o) in the former, corresponds
to the (guessed) profile-set c in the latter – they are “denotations” of syntactic ob-
jects of the same type (A1, · · · , An, o).

Example 3.4. Take the computation tree λ(G) and the property APT B for
Σ-labelled trees as defined in Example 2.12. In Figure 8 we give an initial part
of an (accepting) run-tree of the corresponding traversal-simulating APT C. We
shall see in the sequel that the run-tree is a simulation of the traversal-tree in
Figure 6. At the node @[3], two copies of the automaton are spawn in direction
1 (with respect to the computation tree λ(G)), one with C-state 1{ θt

0, θ
t
1 } θ and

the other with C-state 1{ θt
0, θ

f
2 } θ. This is not a consequence of the fact that there

are two occurrences of ϕ (namely ϕ[5] and ϕ[7]) in the extent rooted at λϕ[4] –
just consider, for example, another (accepting) run-tree as shown in Figure 9. This
run-tree simulates a traversal-tree in which, at all times, it is the second disjunct of
δ(1, g) (where δ is the transition function of the property APT B in Example 2.12)
that is chosen.
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λ[0] 1∅

@[1] 1∅

fffffffffffffffff

OOOOOO

WWWWWWWWWWWWWWWW

λz[2] 1{ θt
1, θf

2 } λ[19] 1∅θ1 λ[19] 2∅θ2

@[3] 1{ θt
1, θf

2 }

oooooo
QQQQQQQ

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[ a[20] 1∅ a[20] 2∅

λϕ[4] 1{ θt } λy[13] 1{ θt
0, θt

1 }θ λy[13] 1{ θt
0, θf

2 }θ

ϕ[5] 1{ θt }θ g[14] 1{ θt
0, θt

1 }

mmmmmmm
PPPPPPP

g[14] 1{ θt
0, θf

2 }

nnnnnnn
PPPPPPP

λ[6] 1{ θt }θ0 λ[15] 1{ θt
1 } λ[17] 1{ θt

0 } λ[15] 2{ θt
2 } λ[17] 1{ θt

0 }

ϕ[7] 1{ θt }θ z[16] 1{ θt
1 }θ1 y[18] 1{ θt

0 }θ0 z[16] 2{ θt
2 }θ2 y[18] 1{ θt

0 }θ0

λ[8] 1∅θ0

@[9] 1∅

...

To save writing, we name the following variable profiles:

θ = (ϕ, 1, 1, { θ0 }) θ0 = (y, 1, 1, ∅) θ1 = (z, 1, 1, ∅) θ2 = (z, 2, 2, ∅)

Fig. 8. A run-tree of the traversal-simulating APT associated with the property APT in Exam-
ple 2.12.

A run-tree r of the APT C is a certain set of QC-annotated paths of the com-
putation tree λ(G). When technically convenient to do so, we shall present r in
terms of its trace language (see Remark 1.1), which is a (nonnull-prefix closed) set
of sequences of pairs of the form α〈e〉 where α ∈ Dom(λ(G)) and e ∈ QC . Take a
node ω ∈ Dom(r) with r(ω) = α〈d〉. We shall call ω a variable node (respectively
lambda, @- and prime node) just if α is a variable node (respectively lambda, @-
and prime node). We say that ω is in the scope of a lambda node γ ∈ Dom(r)
just if γ ≤ ω, such that every node ω′ such that γ < ω′ ≤ ω is non-prime. The
following Proposition characterises the environment part of the C-states that label
an accepting run-tree.

Proposition 9 (Environment). Take a node ω of an accepting run-tree r,
with r(ω) = α〈d〉 and d = q ρ or q ρ θ. For any variable profile τ = (ϕ, q2,m, c), we
have τ b ∈ ρ if and only if

(1) ω is in the scope of some (necessarily unique) lambda node γ ∈ Dom(r) that is
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λ[0] 1∅

@[1] 1∅

jjjjjjjjj
TTTTTTTTT

λz[2] 1{ θf
2 } λ[19] 2∅θ2

@[3] 1{ θf
2 }

lllllll
SSSSSSSS a[20] 2∅

λϕ[4] 1{ θt } λy[13] 1{ θt
0, θf

2 }θ

ϕ[5] 1{ θt }θ g[14] 1{ θt
0, θf

2 }

kkkkkkkk
SSSSSSSS

λ[6] 1{ θt }θ0 λ[15] 2{ θt
2 } λ[17] 1{ θt

0 }

ϕ[7] 1{ θt }θ z[16] 2{ θt
2 }θ2 y[18] 1{ θt

0 }θ0

λ[8] 1∅θ0

@[9] 1∅

...

Fig. 9. Another run-tree of the traversal-simulating APT associated with the property APT in

Example 2.12.

labelled λϕ such that ϕ is in the list ϕ, with C-state q1 ρ1 θ1 and τ[Ω(q1)=m] ∈ ρ1;
and

(2) in the subtree of r rooted at ω, there is an occurrence of a ϕ-labelled node which
is bound by γ with C-state q2 ρ2 τ (where necessarily τ t ∈ ρ2);

further b = [l = m] where l is the maximal C-priority in the path from γ to ω
(inclusive).

Proof. By a straightforward induction on the length of paths in an accepting
run-tree.

Finally we collect a number of useful observations:

Proposition 10. Let r be an accepting run-tree of a traversal simulating APT
C. Let ω ∈ Dom(r) with r(ω) = α〈d〉 where d = q ρ or q ρ θ.

(i) Suppose λ(G)(α) = λξ (so that d = q ρ θ). For any profile τ of a variable ξ in
the list ξ, we have τ l θ iff τ ↑ Ω(q) ∈ ρ.

(ii) For any profile τ = (ξ, q2,m, c) such that τ b ∈ ρ, we have Ω(q) ≤ m; it follows
that for every node of r, its B-priority is less than or equal to its C-priority.
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Proof. Straightforward consequences of Definition 3.2.

4. FROM RUN-TREES OF C TO TRAVERSAL-TREES OF B
For the rest of the paper, we shall fix a recursion scheme G, and an associated
computation tree λ(G), which is a ΛG-labelled tree. We shall also fix a property
APT B over Σ-labelled trees, and write C as the associated traversal-simulating
APT over ΛG-labelled trees.

Take an accepting run-tree r of C over the computation tree λ(G). We shall
construct an annotated traversal-tree – call it t – in which each node is annotated
with a C-state i.e. t is a (Dom(λ(G)) × QC)-labelled tree. We shall assume that
r and t are presented in terms of their respective trace languages i.e. each is a
(certain nonnull-prefix closed) set of sequences of pairs of the form α〈e〉 where
α ∈ Dom(λ(G)) and e ∈ QC . The difference between the two is that the element-
wise first-projection of a trace of r gives a path in λ(G), whereas that of a trace of
t gives a traversal over λ(G).

First we introduce a partial order 4 on prefixes of a traversal, called view order.

(i) We define (informally) a binary relation 4 over prefixes of a traversal w as
follows. Let u, v ≤ w. We say that u 4 v just in case u is a prefix of v, and
l(u) – the last node of u, and hence every node in the P-view of u, appear in the
P-view of v. Note that the last clause implies, but is not implied by, puq ≤ pvq.

(ii) Suppose u 4 v (which we assume has the force that u is a prefix of v). We shall
refer to the segment s such that puq s = pvq as the view difference of u and v.

Example 4.1. Consider the following justified sequence t (over the computation
tree in Figure 2): wherein nodes are referred to by their respective labels

λ @ λz

0��
@ λϕ

0��
ϕ

1��
λy

1

~~
g λ

2��
y

1

��
λ

1

~~
ϕ

1

{{
λy

1

zz
g λ

1��

a b c

We have pt6aq = pt6bq ≤ pt6cq; but t6a 64 t6b, t6a 64 t6c and t6b 4 t6c.

We state some properties of the binary relation 4.

Lemma 11 (View Order). Let u, ui, v range over prefixes of a traversal w.

(i) The binary relation 4 is a partial order.
(ii) If u1 4 v and u2 4 v then either u1 4 u2 or u2 4 u1.
(iii) If l(v) is hereditarily justified by l(u) in w, then (by Visibility) u 4 v; the

converse is of course false.

Proof. A straightforward exercise.

4.1 The traversal-tree t: construction and some properties

Given an accepting run-tree r of C, we shall construct the set t = t[r] ⊆ (Dom(λ(G))×
QC)∗ by induction on the length of sequences in t. We shall define t and simultane-
ously construct the proof of Proposition 12, which collects a number of properties
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about sequences in t. Note that we take r to be the corresponding trace language
i.e. r ⊆ (Dom(λ(G))×QC)∗.

Proposition 12. Let w be a sequence in t that ends in α〈d〉 with d = q ρ or
q ρ θ. Then we have:

(i) pwq ∈ r.
(ii) Take a profile τ = (ϕ, q′,m, c) such that τ b ∈ ρ. Then w has a prefix wτ that

ends in γ〈d0〉 i.e.

w = · · · γ〈d0〉︸ ︷︷ ︸
wτ

· · · α〈d〉

with d0 = q′′ ρ′′ or q′′ ρ′′ θ′′, satisfying the following:
(1) wτ 4 w

(2) λ(G)(γ) = λϕ (say) such that ϕ is in the list ϕ, and τ[Ω(q′′)=m] ∈ ρ′′
(3) Every node that occurs in the view difference of wτ and w is non-prime.
(4) Let l be the highest priority simulated by some annotated node in w that

occurs at or after γ〈d0〉. Then l ≤ m, and b = [l =m].
(iii) If the penultimate element of w is labelled by a variable and annotated with
C-state q1 ρ1 θ1, then α is labelled by a lambda and d has the form q1 ρ

′
1 θ1 for

some ρ′1.

Proof of Proposition 12 and Definition of t = t[r]. Since ε〈q0 ∅〉 ∈ r, the
singleton sequence ε〈q0 ∅〉 is in t. Now suppose all sequences u in t of length up
to l have been constructed. We analyse the cases of the label (i.e. λ(G)(α)) of the
last element α〈d〉 of u, and construct all pairs β〈e〉 such that uβ〈e〉︸ ︷︷ ︸

w

∈ t; at the same

time, we prove by induction that statements (i), (ii) and (iii) of the Proposition are
valid.

Cases of the label of α

Case 1: α is labelled by an @ with C-state d = q ρ.
The node β is α 0 and e = q ρ′, for some ρ′ such that puqβ〈q ρ′〉 ∈ r. Since puq ∈ r

(by the induction hypothesis of (i)) and the run-tree r is assumed to be accepting,
it follows from Definition 3.2 that there is such a ρ′, and β is labelled by a lambda,
say, λξ. Since puβ〈q ρ′〉q = puqβ〈q ρ′〉, we have pwq ∈ r.

To show (ii), take an active profile τ b ∈ ρ′ where τ = (ξ, q′,m, c). Since r is an
accepting run-tree, ξ is in the list ξ, wτ = w, l = Ω(q) and b = [m = Ω(q)] as
required.

Case 2: α is labelled by a Σ-symbol f , with C-state d = q ρ.
If the arity of f is 0, because r is accepting, we have u is terminal. Suppose f

has arity greater than 0. Since puq ∈ r by the induction hypothesis (i), and r is an
accepting run-tree, there is a set S = { (ij , qlj ) : 1 ≤ j ≤ r } that satisfies δ(q, f);
further for each j, we have puq (α ij)〈qlj

σj〉 ∈ r such that each σj = ρj ↑ Ω(qlj )
and

r⋃
j=1

ρj = ρ (6)
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We define u (α ij)〈qlj
σj〉 ∈ t, for each 1 ≤ j ≤ r. Note that (i) follows trivially

from puβ〈qlj
σj〉q = puqβ〈qlj

σj〉.
As for (ii), take any j and set w = u (α ij)〈qlj

σj〉, and take an active profile

τ b = (ξ, q′,m, c)b ∈ σj . By Proposition 10(ii), we have Ω(qlj ) ≤ m. From (6),
we have τ b1 = (ξ, q′,m, c)b1 ∈ ρ such that τ b = τ b1 ↑ Ω(qlj ). By the induction
hypothesis of (ii) applied to u, there is a prefix uτ of u such that uτ 4 u (and
hence, uτ 4 w); also, let l be the highest priority seen in u since l(uτ ), we have
b1 = [l =m]. Take wτ = uτ . Since τ b = τ b1 ↑ Ω(qlj ) we have

b = b1 ∨ [Ω(qlj ) =m]

= [l =m] ∨ [Ω(qlj ) =m]

= [l′ =m]

where l′ is the highest priority seen in w since l(wτ ), as desired.

Case 3: α is labelled by a variable ξ : (A1, · · · , An, o) where n ≥ 0, with d = q ρ θ.
Suppose we have

u = u0 γ1〈d1〉 γ2〈d2〉 · · · α〈q ρ θ〉

i
��

λξ ξ

where γ1 is (necessarily) labelled by a non-lambda. By the induction hypothesis
we have puq ∈ r. The C-state annotation of the new node β, labelled by λϕ and
i-justified by γ1, depends on γ1’s label. There are two cases:

—Case 3.1: Suppose γ1 is labelled by an @ and d1 = q1ρ1.
It follows from Definition 3.2 that d2 = q1 ρ

′
1, for some ρ′1. We define w to be the

following sequence:

w = u0 γ1〈q1 ρ1〉 γ2〈q1 ρ′1〉 · · · α〈q ρ θ〉

i
||

β〈q ρ′ θ〉

i

zz

@ λξ · · · ξ λϕ

where β = γ1 i, for some ρ′ yet to be determined; note that (iii) is satisfied at
once. Since r is an accepting run-tree, we have θt ∈ ρ with θ = (ξ, q,m1, c1) say.
By the induction hypothesis of (ii), we have θ[m1=Ω(q1)] ∈ ρ′1, and m1 is the
highest priority seen in u since γ2〈q1 ρ′1〉.
As for ρ′, we can take it to be any ρ′ such that

pu0q γ1〈q1ρ1〉 β〈q ρ′ θ〉

i
��

∈ r

@ λϕ

(7)

with β set to γ1 i. But we need to show that there is a P-view of the shape (7) in r.
By the induction hypothesis of (i), we have puq ∈ r; since pu0 γ1〈d1〉 γ2〈d2〉q ≤ puq
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and r is nonnull-prefix closed, we have pu0q γ1〈d1〉 γ2〈d2〉 ∈ r. Since r is an

accepting run-tree, and θ[m1=Ω(q1)] ∈ ρ′1, we have a P-view in r of shape (7). To
show (i), note that puβ〈q ρ′ θ〉q is exactly the annotated P-view in (7), and so, is
in r.
To show (ii), take an active profile τ b = (χ, q′,m, c)b ∈ ρ′. There are two cases:
either χ is in the list ϕ, or for some b1 the profile τ b1 appears in ρ1. Suppose the
former. Then we have wτ = w and b = [Ω(q) =m] as desired. Now, suppose the
latter. Set v = u0 γ1〈q1 ρ1〉. By the induction hypothesis of (ii), there is a prefix
vτ of v such that vτ 4 v (and so vτ 4 w) and the environment at l(vτ ) contains
the active profile (χ, q′,m, c)[m=Ω(q′′)] where q′′ is the simulated state; further
we have b1 = [l =m] where l is the highest priority seen in v since l(vτ ). Now
take wτ = vτ . Because ρ′ is determined by (7), we have

b = b1 ∨ [m1 =m]

= [l =m] ∨ [m1 =m]

= [l′ =m]

where l′ is the highest priority seen in w since vτ = wτ , as desired.
—Case 3.2: Suppose γ1 is labelled by a variable ψ and d1 = q1 ρ1 θ1.

Then w is the following sequence:

u0 γ1〈q1 ρ1 θ1〉 γ2〈q1 ρ′1 θ1〉 · · · α〈q ρ θ〉

i
{{

β〈q ρ′ θ〉

i

yy

ψ λξ · · · ξ λϕ

where β = γ1 i. It follows from the definition of r that θt ∈ ρ where θ =
(ξ, q,m1, c1) say. By the induction hypothesis of (ii), θ[m1=Ω(q1)] ∈ ρ′1, and m1 is
the highest priority seen in u since γ2. Note that we have statement (iii) at once.
Also, by Proposition 10(i), θ l θ1. Since pu0q γ1〈q1 ρ1 θ1〉 ≤ puq, and puq ∈ r (by
the induction hypothesis), and r is nonnull-prefix closed, we have pu0q γ1〈q1 ρ1 θ1〉 ∈
r. Since r is accepting and the interface of θ is non-empty, we have

pu0q γ1〈q1 ρ1 θ1〉 (γ1 i)〈q ρ′ θ〉

i
��

∈ r

ψ λϕ

(8)

for some ρ′. Statement (i) then follows from pwq = pu0q γ1〈q1 ρ1 θ1〉 (γ1 i)〈q ρ′ θ〉.
Finally we note that the argument for (ii) is identical to that for (ii) in case (3.1).

Case 4: α is labelled by a lambda.

Since puq ∈ r by the induction hypothesis, and since r is assumed to be an
accepting run-tree, we have puq (α 1)〈e〉 ∈ r, for some unique C-state e. We set the
new node β to α 1 and annotate it with the C-state e. Note that e simulates the
same B-state as the C-state that annotates α. Statements (i) and (ii) are easily
seen to be valid. �
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Remark 4.2. In the proof of Cases 3.1 and 3.2, the choice of ρ′ in (7) and (8)
respectively is immaterial.

Let t− be the (Dom(λ(G))×Q)-labelled tree that is obtained from t by replacing
the C-state that annotates each node by the B-state that is simulated. I.e. we
transform each label, which has the form α〈q ρ〉 or α〈q ρ θ〉 ∈ Dom(λ(G)) × QC , to
the label α〈q〉 ∈ Dom(λ(G))×Q.

Lemma 13. The (Dom(λ(G)) ×Q)-labelled tree t− is a traversal-tree of B over
the computation tree λ(G).

Proof. Straightforward – we check that the rules in Definition 2.11 are followed
in all four cases.

4.2 Spine of a traversal

Our aim is to prove that the traversal tree t− satisfies the accepting condition,
assuming that the run-tree r is accepting. Take any infinite path w in t. Since
the P-view of every finite prefix of w is in r (Proposition 12), we first construct an
appropriate infinite strictly-increasing sequence of prefixes of w (which we shall call
a spinal decomposition of w)

u1 < u2 < u3 < · · ·

such that the corresponding sequence of their respective P-views forms a strictly-
increasing sequence under prefix ordering i.e.

pu1q < pu2q < pu3q < · · · .

The infinite sequence of P-views defines an infinite path in r. Hence the path sat-
isfies the parity condition i.e. the highest priority of the states that occur infinitely
often is even. It then remains to reflect this property back to the infinite traversal
w. In this subsection, we first define the notion of spinal decomposition, then we
show that every infinite traversal w has a spinal decomposition (Lemma 14); and
finally we show that the parity condition can be transferred back to w (Lemma 16).

Definition 4.3. Fix an infinite justified sequence w. An infinite (strictly in-
creasing) sequence of prefixes of w, namely u1 < u2 < u3 < · · ·, is called a spinal
decomposition of w just if

(i) u1 4 u2 4 u3 4 · · ·, and
(ii) |pu1q| < |pu2q| < |pu3q| < · · ·

The infinite justified subsequence of w as given by the infinite (strictly increasing)
sequence pu1q < pu2q < pu3q < · · · is called the (associated) spine. Note that
neither (i) nor (ii) above is a consequence of the other.

Remark 4.4. The P-view operation p−q is a transformation on finite justified
sequences. Because the definition of P-view of a justified sequence is by a case
analysis of the last node of the sequence (and by recursion on certain prefixes),
there is no obvious extension of the definition to infinite sequences. However recall
that a finite P-view can be characterised as a justified sequence that is a fixpoint of
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the P-view operation. It follows from property (i) of Definition 4.3 that the spine
(of an infinite traversal) is an infinite justified subsequence such that each finite
prefix of it is a fixpoint of the P-view operation. For this reason, we argue that the
spine of an infinite justified sequence may be thought of as its P-view.

Lemma 14. Every infinite traversal over a given computation tree has a spinal
decomposition.

Proof. Take an infinite traversal w represented as an infinite justified sequence
of nodes of the computation tree λ(G). We shall construct an infinite sequence of
prefixes of w of one of the following shapes:

(a) u0 4 u1 4 u2 4 · · · 4 un 4 un+1 4 · · ·
(b) u0 4 u1 4 · · · 4 ui 4 v1

@ 4 v2
@ 4 v3

@ 4 · · ·, for some i ≥ 0.

such that for every j ≥ 0, we have |pujq| = 2j + 1; and each vj

@ ends in a node
labelled by a long-apply symbol. It follows that each uj ends in a node labelled by
a lambda, and u0 is the root node ε.

We begin with some terminology. Let u be a prefix of w.

—We say that u is hereditarily finite just if there are only finitely many prefixes v
of w such that l(v) is hereditarily justified by l(u); we say that u is hereditarily
infinite otherwise.

—We say that u is finitely visible just if there are only finitely many prefixes v of
w such that u 4 v; we say that u is infinitely visible otherwise.
Clearly if u ends in a node labelled by a nullary Σ-symbol or order-0 variable,
then u is finitely visible.

—We say that u satisfies property (HF) just if every prefix s of u such that s 4 u
is hereditarily finite.

If l(v) is hereditarily justified by l(u), then u 4 v. Hence, if u is hereditarily infinite,
it is infinitely visible; the converse, however, is not true.

First observe that u0 = ε is hereditarily finite, infinitely visible, and satisfies
(HF). Suppose for some i ≥ 0 we have constructed u0, · · · , ui, and all of them are
hereditarily finite, infinitely visible, and satisfies (HF). Set βi ∈ Dom(λ(G)) to be
the (necessarily non-lambda) node following ui in w (so that ui βi ≤ w). It follows
that ui βi also satisfies the same three properties. Consider now the cases of the
label of βi:
Case 1: βi is labelled by a Σ-symbol f of arity at least one.

Because ui is infinitely visible, the symbol f has arity greater than 0. Set ui+1 =
ui βi β where β is the node following βi in w. Observe that ui+1 remains hereditarily
finite, infinitely visible, and satisfies (HF).

Case 2: βi is labelled by a variable ϕ of order at least one.
Because ui satisfies (HF), and βi is justified by some node in ui that appears in

puiq, we have βi is hereditarily finite. Because ui is infinitely visible and satisfies
(HF), there exists some prefix v of w such that l(v) (necessarily a lambda node)
points to βi and v is infinitely visible. Because of (HF), there is a largest (with
respect to prefix ordering) such v, and we set ui+1 to be it.
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(In general it is possible for a prefix that ends in a variable node to be hereditarily
infinite, but only if the variable has order at least 2; see e.g. Example 2.8.)

Case 3: βi is labelled by an @.
The case of βi being hereditarily finite is exactly the same as the preceding.

Now suppose βi is hereditarily infinite. I.e. for some γ, δ ∈ Dom(λ(G)) that are
hereditarily justified by βi, there are infinitely many occurrences of δ in w such that
each points to γ, as depicted in the following:

w = ui βi · · · γ
x�

· · · δ

j��
· · · δ

j

}}
· · · δ

j

}}
· · ·

@ λξ ξ ξ ξ

Notation. In the above diagram (and those that follow) we use:

—double-shaft arrows · · ·α1 · · · α2

w�
to mean “the node α2 is hereditarily justified

by the node α1”
—dotted-shaft arrows uα1 · · · α2

}}︸ ︷︷ ︸
v

to mean “the node α1 appears in the P-view

of v”; or equivalently “uα1 4 v”.

Further we can pick a γ that is labelled by a lambda λξ (say), so that δ is labelled
by a variable ξ (which is in the list ξ). (For if γ is labelled by a variable χ (say)
and δ by a lambda λη (say) which j-points to γ, as shown in the following:

· · · γ γ′ · · · δ′
j||

δ

j

||
· · · δ′

j

||
δ

j

||
· · ·

χ λη λη

Since w is a traversal, the node δ′, which immediately precedes δ, necessarily j-
points to the node γ′, which immediately follows γ, and γ′ is labelled by a lambda.
For the same reason, the node that immediately proceeds every subsequent occur-
rence of δ (as shown above) is δ′ which j-points to the same occurrence of γ′. We
can then take γ′ and δ′ to be our γ and δ respectively.)

Now, writing v1
@ = ui βi, let v1

0 be the least prefix of w such that

(I1) l(v1
0) is hereditarily justified by l(v0

@), and l(v1
0) is such a γ (labelled by the

lambda λξ, say); and
(I2) set v1

1 ≤ v1
2 ≤ v1

3 ≤ · · · such that for each i ≥ 1, we have l(v1
i ) = δ (labelled by

the variable ξ) points to l(v1
0).

Note that we have v1
0 4 v1

i for each i; and pv1
1q = pv1

2q = pv1
3q = · · · because the

P-view of a traversal is a path in the computation tree (Proposition 6(ii)).
Next we show that we can in fact construct another infinite sequence of prefixes

v2 = v2
0 ≤ v2

1 ≤ v2
2 ≤ · · ·
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that has the same properties – namely (I1) and (I2) – as v1. (Indeed, we shall see
that we can construct an infinite sequence of such sequences v1, v2, v3, · · ·.)

Let v′ be the largest prefix of w such that

(i) v1
0 4 v′, and

(ii) for each i ≥ 1, we have v′ 4 v1
i .

Plainly l(v′) is labelled by a variable ϕ (say), and it follows that there are infinitely
many occurrences of the node β, labelled by a lambda λψ (say), that points to l(v′).
Set v2

0 to be the one-node extension of v′ (i.e. v2
0 = v′ α′ for some α′ ∈ Dom(λ(G))),

which must be labelled by a lambda, say, λχ. It follows from Proposition 6(iii)
that for any two occurrences of β, the respective nodes that precede them must be
labelled by the same variable χ (say) that occurs in the list χ (though they need
not be the same node). Now there are only finitely many χ-labelled nodes that are
bound by v2

0 in the computation tree. It follows that there is an infinite sequence
of prefixes of w, namely v2

1 ≤ v2
2 ≤ v2

3 ≤ · · ·, such that for each i ≥ 1, we have l(v2
i )

is labelled by the variable χ and points to l(v2
0) (which is labelled by λχ); further

l(v2
1) = l(v2

2) = l(v2
3) = · · ·; as depicted in the following diagram. (In the diagram,

even though β1 points to l(v2
0) and is labelled χ, it is not the same node as v2

1 .)

w = ui l(v1
@) · · · l(v1

0)
v~

· · · l(v′)
{{

l(v2
0) · · · β1

||
β

zz
· · · l(v1

1)
}}ww

· · · l(v2
1)

xx
β

xx
β1 l(v1

2)
~~ww

· · ·

ϕ λψ λψ

v1 @ λξ ξ ξ

v2 λχ χ χ

...

We observe that l(v2
1) (labelled by χ) and β (labelled by λψ) are hereditarily

justified by l(v2
@) which is labelled by @, for some prefix v2

@; further the 2-element
block, l(v2

i ) followed by β, occurs infinitely often in w, as i ranges over positive
integers.

Clearly we have v2
@ 4 v′. Since ui βi = v1

@ 4 v′ as well, we have either v2
@ 4 v1

@

or v1
@ 4 v2

@. But the former would contradict the assumption that ui satisfies (HF),
thus we have v1

@ 4 v2
@.

Now we note that l(v1
1) is hereditarily justified by l(v1

@); further

· · · l(v1
@) 4 v2

@ 4 · · ·β 4 · · · l(v1
1)

px

Thus it follows from Remark 2.4(4) that the node β is a descendant – in the compu-
tation tree – of some i-child of l(v2

@) where i > 0. Hence, by Proposition 6, we have
l(v2

1) (labelled by χ) is a descendant – in the computation tree – of the 0-child of
l(v2

@). We can repeat the same argument as before and construct v3
1 ≤ v3

2 ≤ · · ·, and
we must therefore have v2

@ 4 v3
@; since v3

@ 4 v2
@ would contradict Remark 2.4(4).
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By repeating the same argument as before, we obtain the following spinal decom-
position of w:

u1 4 · · · 4 ui 4 v1
@ 4 v2

@ 4 v3
@ 4 · · ·

and we are done.

Remark 4.5. The proof relies on the the computation tree λ(G) satisfying the
property as given by Remark 2.4(4).

Question 15. Does w always have a unique spine?

Lemma 16. Let w be an infinite path in t and let p be a spine of w. The highest
B-priority that occurs infinitely often in w coincides with the highest C-priority that
occurs infinitely often in the infinite sequence p.

Proof. Since w has a spinal decomposition, we can write w as u1 u2 u3 · · · such
that each ui is a segment of the shape

ui = α〈d〉 vi β〈e〉

ji��

where α is labelled by a non-lambda, and β by a lambda, and β is ji-justified by
α. It suffices to prove:

Claim. The highest C-priority that occurs in the two-element segment
α〈d〉 β〈e〉, which is max(ΩC(d),ΩC(e)), coincides with the highest B-
priority that is simulated by some annotated node in ui.

We analyse the cases of the non-lambda label of α:

Case 1: α’s label is a Σ-symbol. The C-state e is a pair of the shape q ρ, and vi is
the null sequence.

Case 2: α’s label is an @. There are two subcases.

—Case 2.1. If ji is 0, then e is a pair of the shape q ρ and vi is the null sequence.
—Case 2.2. If ji > 0, then we have

vi = α′〈d0〉 · · · β′〈q ρ θ〉

jizz

λϕ ϕji

where β′ is labelled by the variable ϕji
, θ = (ϕji

, q,m, c), and α′ is labelled by
λϕ (such that ϕji

occurs as the ji-th element of the list ϕ); and it follows from
Proposition 12 that e is the triple q ρ1 θ for some ρ1, where m is the highest
priority simulated by the annotated nodes in vi. Since the annotated nodes α〈d〉
and α′〈d0〉 simulate the same B-state, it follows that m is also the highest priority
simulated by the annotated nodes in ui, as required.

Case 3: α’s label is a variable η. Omitted as it is similar to Case 2.2 in the
preceding.

Thus we can conclude:
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Proposition 17. Every infinite path in the traversal-tree t determines an in-
finite path in the accepting run-tree r such that the highest B-priority that occurs
infinitely often in the former path coincides with the highest C-priority that occurs
infinitely often in the latter path. Hence t− — the underlying traversal-tree of t —
is an accepting traversal-tree of B over the computation tree λ(G). �

5. FROM TRAVERSAL-TREES OF B TO RUN-TREES OF C
Suppose there is an accepting traversal-tree t of the property APT B = 〈Σ, Q, δ, q0,Ω 〉
over the computation tree λ(G). Recall that t is an unranked (Dom(λ(G)) × Q)-
labelled tree. We shall perform a succession of annotation operations on the
traversal-tree t, transforming it eventually to a (Dom(λ(G)) × QC)-labelled tree
t̂. Note that t̂ has the same underlying tree as t (i.e. Dom(t̂) = Dom(t)) but its
nodes are labelled by pairs of the form α〈d〉 where α ∈ Dom(λ(G)) and d ∈ QC . We
shall show that the set of P-views of traces of t̂ gives an accepting run-tree of the
traversal-simulating APT C.

5.1 Annotating traversal-trees with C-states

First some terminology. Let t be a Γ-labelled tree in which children of the same
node are not ordered (e.g. t). Take any ω ∈ Dom(t). We define ω’s history to be
the trace t(α1) · · · t(αn) ∈ Γ∗ where ε = α1, · · · , αn = ω is the unique path to ω in
Dom(t).

Definition 5.1 (Transforming t to t̂). We begin with some preprocessing
of the traversal-tree t. For each node ω ∈ Dom(t) that is labelled α〈q〉 such that
λ(G)(α) is a variable ξ (say), we transform the label to α〈q (ξ,q,m,∅)〉 where m is
the highest priority seen in ω’s history, starting from its justifier node (i.e. binder
of ξ). Call t0 the traversal-tree thus annotated.

Stage A: Annotating variable profiles.

Starting from t0, we shall perform N successive operations (where N + 1 is the
order of the recursion scheme G), each transforming tl to tl+1, yielding tN in the
end.

The invariant for each l is:

For every node in tl that is labelled α〈d〉 such that λ(G)(α) is a variable
ξ : A of order up to l, we have d = q θ where θ is a profile for ξ.

The tree tl+1 is defined as follows: For each node ω ∈ Dom(tl) that is labelled
α〈q (ξ,q,m,∅)〉 where the variable ξ : A = (A1, · · · , An, o) is of order l+ 1, replace the
quadruple (ξ, q,m,∅) in the label by the variable profile (ξ, q,m, c) ∈ VPB

G(ξ : A),
where c is defined to be the set consisting of profiles θ ∈

⋃n
j=1 VPB

G(ϕj : Aj) such
that for some segment v and some 1 ≤ j ≤ m, we have

· · · α〈q (ξ,q,m,∅)〉 γ〈q〉 v β〈q1 θ〉

j
��

ξ λϕ ϕj

∈ Traces(tl)

where · · ·α〈q (ξ,q,m,∅)〉 is the history of ω. Note that (it follows from the definition of
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traversal that) the order of ϕj is at most l. We perform the replacement operation
for all such variable nodes in tl by induction on the length of its history.

Set tvp = tN where N + 1 is the order of G.

Stage B: Annotating environments.

For each node ω ∈ Dom(tvp), we add an environment to its label as follows.
Suppose u is ω’s history in Traces(tvp) and tvp(ω) = α〈q θ〉 or α〈q〉, depending
on whether λ(G)(α) is a variable or not. We transform the label to α〈q ρ θ〉 or
α〈q ρ〉 respectively, where ρ is defined to be the set of active profiles τ b where
τ = (ξ, q′,m, c) such that there is a sequence w = u v β〈q′ τ〉 in Traces(tvp) – note
that λ(G)(β) = ξ satisfying

(i) u 4 w, and
(ii) the last element β〈q′ τ〉 of w is bound by (i.e. points to) a lambda node β0 (say)

that appears in puq, and
(iii) b = [l =m] where l is the highest priority seen in u since β0.

Note that it follows from Remark 2.4(4) that there is no occurrence of any 2-node

segment of the shape @ λψ

0
��

in the view difference of u and w. We add the
environment annotation to all nodes in tvp by induction on the length of u.

Let tenv be the annotated tree obtained at the end of the transformation. Note
that at this stage, every non-variable node in tenv is annotated by a pair q ρ, and
every variable node by a triple q ρ θ.

Stage C: Annotating C-states.
For each node ω ∈ Dom(tenv) with label of the shape α〈q ρ θ〉 such that λ(G)(α)

is a variable, we transform the label of the node ω 1 from (say) β〈q ρ1〉 to β〈q ρ1 θ〉
(note that λ(G)(β) is necessarily a lambda). We perform the annotation of all
lambda-nodes in tenv by induction on the length of u.

Let t̂ be the annotated traversal-tree obtained at the end of the three-stage
transformation. We have t̂ is a (Dom(λ(G)) × QC)-labelled [m]-tree where m =
ar(Σ)× |Q|.

Example 5.2. Take the order-2 computation tree λ(G) over the input alphabet
Σ = { g, a } as defined in Example 2.12. Let t be the traversal-tree in the Example.
We present the C-state annotated traversal-tree (as defined in Definition 5.1), t̂, in
Figure 10.

5.2 P-views of annotated traversal-trees

We define P = P [̂t] to be the set of P-views puq as u ranges over Traces(t̂). Thus P is
a (nonnull-prefix closed) set of words over the alphabet Dom(λ(G))×QC . It follows
from Proposition 6(ii) that P is a set of QC-annotated paths in the computation
tree λ(G).

Example 5.3. As a preparation for the following Proposition, the reader may
wish to check that the set of P-views of traces of t̂ in Example 5.2 are paths in the
run-tree which is given in Figure 8.
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λ[0] 1 ∅

@[1] 1 ∅

λz[2] 1 { θt
1, θf

2 }

@[3] 1 { θt
1, θf

2 }

λϕ[4] 1 { θt }

ϕ[5] 1 { θt } θ

λy[13] 1 { θt
0, θt

1 } θ

g[14]

lllllll
SSSSSSSS 1 { θt

0, θt
1 }

1 { θt
1 } λ[15] λ[17] 1 { θt

0 }

1 { θt
1 } θ1 z[16] y[18] 1 { θt

0 } θ0

1 ∅ θ1 λ[19] λ[6] 1 { θt } θ0

1 ∅ a[20] ϕ[7] 1 { θt } θ

λy[13] 1 { θt
0, θf

2 } θ

g[14]

kkkkkkkk
TTTTTTTTTT 1 { θt

0, θf
2 }

2 { θt
2 } λ[15] λ[17] 1 { θt

0 }

2 { θt
2 } θ2 z[16] y[18] 1 { θt

0 } θ0

2 ∅ θ2 λ[19] λ[8] 1 ∅ θ0

2 ∅ a[20] @[9] 1 ∅

λϕ[10]

..

.

We use the following shorthand for variable profiles:

θ = (ϕ, 1, 1, { θ0 }) θ0 = (y, 1, 1, ∅) θ1 = (z, 1, 1, ∅) θ2 = (z, 2, 2, ∅)

Fig. 10. A C-state annotated traversal-tree t̂ (transformed from the traversal-tree in Figure 6).
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Proposition 18. Suppose t is an accepting traversal-tree of the property APT
B. The set P is an accepting run-tree of the traversal-simulating APT C over the
computation tree λ(G).

Proof. We shall show that for each sequence p ∈ P with α〈d〉 as the last element
(where α ∈ Dom(λ(G)) and d is a C-state), the set

{ (i, e) ∈ Dir(λ(G)(α))×QC : p (α i)〈e〉 ∈ P }

satisfies the formula δC(d, λ(G)(α)), where δC is the transition function of the
traversal-simulating automaton C. That ε〈q0∅〉 is in P is obvious. Take a sequence
p ∈ P, and take a trace u of t̂ such that puq = p. We analyse the cases of the label
λ(G)(α) of the last node α〈d〉 of p where d = q ρ or q ρ θ.

Cases of the label of α:

Case 1: α’s label is a Σ-symbol f with arity r ≥ 0, and d = q ρ.
Since t is accepting (by assumption), there is a minimal set S = { (i1, qj1), · · · , (ik, qjk

) }
that satisfies δ(q, f), where each 1 ≤ il ≤ ar(f). If S = ∅, then p is terminal. Other-
wise for each 1 ≤ l ≤ k, we have u (α il)〈qjl

σl〉 is a trace of t̂. We observe that for any

trace w of t̂ such that u ≤ w, we have u 4 w iff u (α il)〈qjl
σl〉 4 w for some 1 ≤ l ≤ k.

Thus, a profile θb ∈ ρ iff for some 1 ≤ l ≤ k, we have θb ↑ Ω(qjl
) ∈ σl. It follows that

we can construct environments ρ1, · · · , ρk such that
⋃k

l=1 ρl = ρ and σl = ρl ↑ Ω(qjl
)

for each l. Now, for each l, we have pu (α il)〈qjl
σl〉q = p (α il)〈qjl

σl〉 ∈ P; and the
set { (i1, qj1 σ1), · · · , (ik, qjk

σk) } satisfies δC(q ρ, f) as required.
Case 2: α’s label is a variable ϕ : (A1, · · · , An, o) with n ≥ 0, and d = q ρ θ. By
construction, the profile θ is of the form (ϕ, q,m, c), where m is, by construction,
the largest priority seen in u since the node that is the binder of α. By definition
of t̂ we have θt ∈ ρ. Now suppose

c = { (ξij , qlj ,mj , cj)︸ ︷︷ ︸
θj

| 1 ≤ j ≤ r }

for some r ≥ 0.
Take a j. In the annotated tree t̂, consider extensions of u = u0 α〈q ρ θ〉 ending in

a lambda node that points to α as follows:

ujk = u0 α〈q ρ θ〉 β〈q ρ′ θ〉 vjk β1〈qlj
? θj〉

ijzz
α1〈qlj

σjk θj〉

ij

zz

ϕ λξ ξij
ληij

∈ Traces(t̂)

It is possible that there are infinitely many such segments vjk for a given j, but there
can only be finitely many distinct σjk, as k varies. W.l.og. suppose σj1, · · · , σjrj is
a pairwise distinct list, such that for any k > rj , we have σjk coincides with one
in the list. We analyse σjk in relation to cj and ρ. By the Stage B annotation,
we have an active profile τ b ∈ σjk where τ = (ψ, q′,m′, c′) iff (ψ is in the list
ηij

, and so) τ ∈ cj and b = [m′ = Ω(qlj )], or τ b1 ∈ ρ (because ληij
points to ϕ)
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where b1 = [l =m′] with l is the highest priority seen in u since the binder node
of ψ. In the latter, we have b = b1 ∨ [m′ =mj] where mj is the highest priority
seen in the segment between β and β1, which is precisely the priority of the profile
θj by Stage B of the annotation. Thus we can construct environments ρjk such
that σjk = cj ↑ Ω(qlj ) ∪ ρjk ↑ mj and

⋃r
j=1

⋃rj

k=1 ρjk ⊆ ρ; inclusion in the other
direction follows from the observation that for any trace w of t̂ such that u ≤ w,
we have u 4 w implies that ujk 4 w for some k (possibly greater than rj). Hence
we have

⋃r
j=1

⋃rj

k=1 ρjk = ρ.
By taking the respective P-views of the sequences ujk, we note that p (αx)〈dx〉 ∈

P, for each pair (x, dx) taken from the following set

{ (ij , qlj σjk θj) : 1 ≤ j ≤ r, 1 ≤ k ≤ rj }

which, it is easy to see, satisfies δC(q ρ θ, ϕ) as required.

Case 3: α’s label is @, and d = q ρ.
We consider traces v (of t̂) that extend u and end in a lambda node which points

to α. There are two types of such extensions. First u has a (unique) one-node
extension, uλξ〈q ρ′〉, for some ρ′. Because of Remark 2.4, all profiles in ρ′ are of
variables in ξ (to be bound by λξ); say we have

ρ′ = { θ[mj=Ω(q)]
j : 1 ≤ j ≤ r }

where θj = (ξij , qlj ,mj , cj).
Next we consider the second type of lambda nodes that point to α. Fix a j;

writing u = u0 α〈q ρ〉, consider traversals of the following shape

u0 α〈q ρ〉 β〈q ρ′〉 · · · β1〈qlj
? θj〉

ijzz
α1〈qlj

σjk θj〉

ij

{{

@ λξ ξj λη

∈ Traces(t̂)

where 1 ≤ k ≤ rj (note that there are only finitely many such distinct σjk). Since
the node α1〈qlj

σjk θj〉 points to α〈q ρ〉, the profiles in σjk are either of variables from
η, or of variables that have profiles also in ρ. Thus, by the same reasoning as Case
2, we can construct environments ρjk such that

σjk = cj ↑ Ω(qlj ) ∪ ρjk ↑ mj

where mj is the third component of θj and
⋃rj

k=1 ρjk = ρ. By taking the respective
P-views of the traversals of both kinds, we note that p (α j)〈dj〉 ∈ P, for each pair
(j, dj) taken from the following set

{ (0, q ρ′) } ∪ { (ij , qlj σjk θj) : 1 ≤ j ≤ r, 1 ≤ k ≤ rj }

which, it is easy to see, satisfies δC(q ρ,@) as required.
Case 4: α’s label is a lambda, and d = q ρ or q ρ θ.

By definition of t̂, the trace u has a unique one-node extension to u (α 1)〈e〉
where e = q ρ θ′ for some θ′ ∈ ρ if the label at α 1 is a variable, and e = q ρ
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otherwise. We have pu (α 1)〈e〉q = p (α 1)〈e〉 ∈ P; and we check that { (1, e) }
satisfies δC(d, λ(G)(α)) as required.

Finally it remains to show that every infinite trace of P satisfies the parity con-
dition. Take an infinite increasing (with respect to prefix ordering) sequence of
traces in P, say, p0 < p1 < p2 < · · ·. For each i ≥ 0, we define Pi to be the set of
infinite traces w in the annotated traversal-tree t̂ such that w has a finite prefix v
with pvq = pi. It follows from the definition that Pi is non-empty for every i ≥ 0;
further we have P0 ⊇ P1 ⊇ P2 ⊇ · · ·. Thus

⋂
i≥0 Pi is non-empty. It follows that

that the spine of every infinite trace w ∈
⋂

i≥0 Pi is the infinite justified sequence
defined by the sequence of P-views p0 < p1 < p2 < · · ·.

5.3 Narrow run-trees of the traversal-simulating alternating parity automaton C
Run-trees of a traversal-simulating APT can have a rather large (though necessarily
bounded) branching factor. Take a run-tree r and consider a node γ ∈ Dom(r)
labelled α〈q ρ0〉 such that λ(G)(α) is an @-symbol. Take an environment of the
form ρ = { θ1, · · · , θr } ↑ Ω(q) where each θj = (ξij , qlj ,mj , cj). Then the set of γ’s
children has the following form: (we only give the C-state part of their labels)

{ q ρ } ∪ { ql1 τ11 θ1, · · · , ql1 τ1r1 θ1 }︸ ︷︷ ︸
Sθ1

∪ · · · ∪ { qlr τr1 θr, · · · , qlr τrrr
θr }︸ ︷︷ ︸

Sθr

Observe that for each j, all triples in Sθj
have the same B-state qlj and profile θj .

In this subsection we prove a certain succinctness property for traversal-simulating
APT: if a traversal-simulating APT C has an accepting run-tree, then it has one
with a reduced branching factor in the sense that each Sθj above is a singleton
set (similarly for children of nodes γ such that λ(G)(α) is a variable of order at
least 1). The result will prove useful when analysing the complexity of the modal
mu-calculus model checking problem in the sequel.

Definition 5.4. A narrow run-tree of a traversal-simulating APT C is a run-
tree with a transition map whose definition is obtained from Definition 3.2 except
that in (4) of Case 2, for each 1 ≤ j ≤ r, we guess exactly one environment ρj = ρj1

(so that rj = 1) such that
⋃r

j=1 ρj = ρ; similarly in (5) of Case 3. (Note that a
narrow run-tree of C is a fortiori a run-tree of C in the sense of Definition 3.2.)

The last result of this section is the following:

Proposition 19 (Succinctness). If the traversal-simulating APT C has an
accepting run-tree then it has an accepting run-tree that is narrow. The branching
factor of a narrow run-tree is bounded above by the number of variable profiles.

Narrowing transform. We devote the rest of this section to a description of the
narrowing transform and a proof of the Proposition.

Let r be an accepting run-tree of C. We shall construct a narrow accepting run-
tree, written r∗. Recall that r is an unranked (Dom(λ(G))×QC)-labelled tree. We
define a binary relation y between nodes of Dom(r) as follows: we say that γ1 y γ2

(read “γ1 calls γ2”) just if

(i) r(γi) = αi〈q ρi θ〉 i.e. γ1 and γ2 have the same B-state q and profile θ in their
labels.
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(ii) λ(G)(α1) is a variable ϕ (say, and so, θ = (ϕ, q,m, c) for some m and c) and
λ(G)(α2) is a lambda symbol λξ (say).

(iii) α1 and α2 are hereditarily justified by the same @-node.

It follows that ϕ and λξ have the same type. In general y is a many-to-many
relation; further for any ω ∈ Dom(r), its image-set y(ω) = { γ : ω y γ } and
preimage-set y−1(ω) = { γ : γ y ω } are both non-empty.

We illustrate the two cases of γ1 calls γ2 in the figure below:

...
...

@〈···〉

yyrrr
r NNNN

λϕ〈···〉

λϕ〈···〉 λξ〈q ρ2 θ〉
...

...

... ψ〈···〉

qqqq

calls

JJ

ϕ〈q ρ1 θ〉

callsmmϕ〈q ρ θ〉

calls

DD

· · · λξ〈q ρ2 θ〉 · · ·

(a) (b)

A. Pruning r.

(1) Take each node ω ∈ Dom(r) with r(ω) = α〈d〉 such that λ(G)(α) is either an
@-symbol or a variable of order at least 1. For each profile θ, consider the set
Sθ of ω’s children (in r) such that the C-state part of whose labels are of the
shape q ? θ i.e. they have the same profile θ. If Sθ is non-empty, we remove
from the tree all nodes in Sθ and their respective descendants, except a single
(the choice of which is immaterial) element (and its descendants) in Sθ whose
label q ρ θ has the least ρ.

(2) Next we remove all (if any) nodes γ with label of the shape α〈q ρ θ〉 such that
λ(G)(α) is a lambda and the set y−1(γ) = {ω : ω y γ } is empty.

(3) For any node with label of the shape α〈q ρ θ〉, we replace it by α〈q m〉 where m
is the priority of θ.

The resultant tree – call it r0 – has the following property: Let ω be a node in
Dom(r0) with r0(ω) = α〈q m〉.

(i) If λ(G)(α) is a variable, then y (ω) = { γ ∈ Dom(r0) : ω y γ } is a singleton
set.

(ii) If λ(G)(α) is a lambda and α is justified by either a variable or an @-symbol,
we have y−1(ω) = { γ ∈ Dom(r0) : γ y ω } is non-empty.

B. Reconstituting variable profiles.
Starting from r0, we shall perform N successive operations (where N + 1 is the

order of the recursion scheme G), each transforming rl to rl+1, yielding rN in the
end. The invariant for each l is:
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For every node in rl that is labelled α〈d〉 such that λ(G)(α) is a variable
ξ : A of order up to l, we have d = q θ where θ is a profile for ξ.

First some preprocessing for r0: For each node ω ∈ Dom(r0) that is labelled α〈q m〉
such that λ(G)(α) is an order-0 variable x (say), we transform the label to α〈q θ〉
where θ = (x, q,m,∅). The tree rl+1 is defined as follows: For each node ω ∈
Dom(rl) that is labelled α〈q m〉 where λ(G)(α) is a variable ξ : A = (A1, · · · , An, o)
of order l+1, and suppose y (ω) = ω′ has label β〈q m〉 and λ(G)(β) = λϕ (say); we
transform ω’s label to α〈q τ〉 where τ = (ξ, q,m, c) ∈ VPB

G(ξ : A), and c is defined
to be the set of profiles θ ∈

⋃n
j=1 VPB

G(ϕj : Aj) such that there is some node in
rl with label β′〈q′ θ〉 such that β′ is bound by β. We also replace the label of ω′ by
β〈q τ〉.

C. Reconstituting environments.
Finally for each node ω ∈ Dom(rN ) with label of the shape α〈q〉 or α〈q θ〉, we

transform it to α〈q ρ〉 or α〈q ρ θ〉 respectively, where ρ consists of all profiles τ such
that there is some descendent ω′ of ω (in rN ) with label β〈q τ〉 whereby λ(G)(β)
is a variable that is bound by ω or some ancestor node of ω. We perform the
replacement operation simultaneously on all nodes in rN .

Call the resultant tree r∗.

We claim that r∗ is an accepting narrow run-tree of C. That every infinite path in
r∗ satisfies the parity condition follows from the assumption that r is an accepting
run-tree (because each infinite sequence of parities in r∗ is a sequence of parities
in r by construction). For this reason, there is no harm in regarding environments
in r∗ as a set of profiles, as opposed to active profiles. Finally, using exactly the
same arguments in the proof of Proposition 18, it is straightforward to verify that
r∗ satisfies the transition rules of C.

Example 5.5. The run-tree in Figure 9 is obtained from the run-tree in Figure 8
by an application of the narrowing transform.

6. DECIDABILITY AND COMPLEXITY OF MODEL CHECKING

6.1 Correctness of the simulation

We can now prove that our notion of traversal-simulating APT is correct, in the
following sense:

Theorem 20 (Simulation). Let G be a recursion scheme. Take any property
APT B over Σ-labelled trees, and let C be the associated traversal-simulating APT
over ΛG-labelled trees. The following are equivalent:

(i) There is an accepting run-tree of C over the computation tree λ(G).
(ii) There is an accepting traversal-tree of B over the computation tree λ(G).

Proof. See Section 4 for (i) implies (ii), and Section 5 for the other direction.

Note that decidability of the modal mu-calculus model-checking problem for trees
generated by recursion schemes follows at once since computation trees are regular,
and the APT acceptance problem for regular trees is decidable.
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6.2 Λ-labelled deterministic digraph and parity acceptance game

Let Λ be a ranked alphabet. A Λ-labelled deterministic digraph (or DDG, for
short) is a quadruple

K = 〈V, → ⊆ V × V, l : V −→ Λ, v0 ∈ V 〉

wherein the underlying digraph 〈V,→〉 is vertex-labelled by the function l : V −→
Λ, and edge-labelled by Dir(Γ) in that → =

⋃
i∈Dir(Λ)→i, such that

(i) for each i ∈ Dir(Λ), we have →i ⊆ V × V is a partial function
(ii) for each v ∈ V , and each i ∈ Dir(l(v)), we have →i(v) is well-defined i.e. the

set { v′ : (v, v′) ∈ →i } is singleton.

In the following we shall assume that V is finite. We observe that that every
finite (ranked and ordered) Λ-labelled tree can be presented as a DDG, and the
unravelling of a Λ-labelled DDG is a (ranked and ordered) Λ-labelled tree.

Let C = 〈Λ, QC , δC , qini,ΩC 〉 be an APT (see Section 1.3 for a definition). We can
now define the acceptance parity game with respect to C over a Λ-labelled DDG K,
G(K, C). First, a notation: For each v ∈ V and P ⊆ Dir(l(v))×QC , we write

[P ]v = { (u, q) : (i, q) ∈ P ∧ →i(v) = u }.

Definition 6.1. The acceptance parity game G(K, C) is a digraph. There
are two kinds of vertices.

—A-Vertices (A for Abelard) are sets of the form [P ]v, with v ∈ V and P ⊆
Dir(l(v))×QC

—E-Vertices (E for Eloise) are pairs of the form (v, q) with v ∈ V and q ∈ QC .

The source vertex is the E-vertex (v0, qini). The edges are defined as follows.

—For each A-vertex [P ]v, and for each (u, q) ∈ [P ]v, there is an edge from [P ]v to
(u, q).

—For each E-vertex (v, q), and for each P ⊆ Dir(l(v)) × QC such that P satisfies
δC(q, l(v)), there is an edge from (v, q) to [P ]v.

The priority map ΩG is defined by cases as follows:

ΩG =

 (v, q) 7→ ΩC(q)

[P ]v 7→ min{ΩG(u, q) : (u, q) ∈ [P ]v }.

A play is a (possibly infinite) path in G(K, C) of the form

(v0, qini) · [P0]v0 · (v1, q1) · [P1]v1 · · · ·

By convention Eloise resolves the E-vertices, and Abelard the A-vertices. The
winning conditions are defined as follows:

—If the play is finite and the last vertex is an A-vertex (respectively E-vertex)
which is terminal, Eloise (respectively Abelard) is said to win the play.
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—If the play is infinite, Eloise wins just if the maximum priority that occurs in-
finitely often in the following numeric sequence

ΩG(v0, qini) · ΩG([P0]v0) · ΩG(v1, q1) · ΩG([P1]v1) · · · ·

is even.

Proposition 21. The following are equivalent:

(i) Eloise has a (history-free) winning strategy in the acceptance parity game G(K, C).
(ii) The APT C accepts the Λ-labelled DDG K.
(iii) The APT C accepts the Γ-labelled tree given by the unravelling of K.

Proof. Equivalence of (i) and (ii) is standard; (ii) and (iii) are equivalent be-
cause K is bisimilar to its unravelling.

ΛG-labelled deterministic digraph determined by a recursion scheme G. Given
a recursion scheme G, we shall construct a ΛG-labelled DDG that unravels to the
computation tree λ(G). The DGG is constructed by first forming the disjoint union
of the DDGs that are determined by the respective RHSs of the rewrite rules of
G, and then identifying all nodes labelled by the same non-terminal F (say) with
the root of the component DDG corresponding to F . Formally we define the ΛG-
labelled DDG determined by G, Gr(G), as follows:

Gr(G) = 〈V, → ⊆ V × V, λG : V −→ ΛG, v0 ∈ V 〉

by the following procedure:

(1) First we define the ranked alphabet Λ+
G = ΛG ∪ NG where NG is the set of

non-terminals of G; each symbol in NG is defined to have arity 0.
(2) For each G-rule (say) F → λϕ1 · · ·ϕn.e, we define the corresponding Λ+

G-
labelled DDG

DF = 〈VF , →F ⊆ VF × VF , lF : VF −→ Λ+
G, rtF 〉

to be the appropriate representation of the Λ+
G-labelled tree that is determined

by λϕ1 · · ·ϕn.e, the RHS of the rule. Note that lF (rtF ) = λϕ1 · · ·ϕn with
reference to the rule F given above.

(3) Set the digraph D to be the disjoint union of the underlying digraph of DF ,
as F ranges over NG. We then define the underlying digraph of Gr(G) to be
D quotiented by an equivalence relation between D-vertices such that for each
F ∈ NG, the equivalence class [rtF ] consists of rtF and all nodes (from D) that
are labelled by F i.e.

[rtF ] =

 ⋃
H∈NG

l−1
H (F )

 ∪ { rtF }

and the equivalence classes for all other nodes are singleton sets. The edge-
labels of Gr(G) are inherited from the edge-labels of the component DDGs DF :
we define →i[rtF ] = [→F

i (rtF )] for each F ∈ NG). We define the vertex-labels
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by

λG([v]) =

 lF (rtF ) if [v] = [rtF ] for some F ∈ NG

lH(v) else if v is a vertex in VH

The root of Gr(G) is [rtS ], where S is the start symbol of G.

It is straightforward to check that

Proposition 22. Unravelling Gr(G) gives the computation tree λ(G).

Indeed we have:

Proposition 23. Using the preceding notations, the following are equivalent:

(i) The property APT B has an accepting run-tree over the Σ-labelled (value) tree
[[G ]].

(ii) The traversal-simulating APT C has an accepting run-tree over the ΛG-labelled
(computation) tree λ(G), which is (isomorphic to) the unravelling of Gr(G).

(iii) Eloise has a (history-free) winning strategy in the acceptance parity game
G(Gr(G), C). �

Proof. The equivalence of (i) and (ii) is just Theorem 20, and the equivalence
of (ii) and (iii) follows from Propositions 21 and 22.

6.3 Complexity of modal mu-calculus model checking

Knapik et al. [Knapik et al. 2005] have shown that the modal mu-calculus model
checking problem for order-2 trees is 2-EXPTIME-complete. Our result extends
theirs to all finite orders. First we note that n-EXPTIME hardness for order-
n instances of the problem follows from Cachat’s result [Cachat 2003] that the
modal mu-calculus model checking problem for trees generated by order-n safe
recursion scheme is n-EXPTIME complete. Thus it remains to prove that the
modal mu-calculus model checking problem for trees generated by order-n recursion
scheme, whether safe or not, is n-EXPTIME decidable. We shall do so (thanks to
Proposition 23) by analysing the complexity of solving the associated acceptance
parity game.

Complexity of solving the acceptance parity game G(Gr(G), C). Let G be an
order-n recursion scheme. Fix a property APT B = 〈Σ, Q, δ, q0,Ω 〉 with p pri-
orities, and let C = 〈ΛG, QC , δC , q0∅,ΩC 〉 be the associated traversal-simulating
APT. Our aim is to show that the acceptance parity game G(Gr(G), C) is solvable
in n-EXPTIME. A recent advance in the complexity of solving parity games (in
general) is the following result due to Jurdziński:

Theorem 24 [Jurdziński 2000]. The winning region of Eloise and her win-
ning strategy in a parity game with |V | vertices and |E| edges and p ≥ 2 priorities
can be computed in time

O

(
p · |E| ·

(
|V |
bp/2c

)bp/2c
)

and space O(p · |V | · log |V |). �
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For i < n we define VPB
G(i) to be the union of sets of the form VPB

G(A), as
A ranges over order-i types that occur in G. Hence VPB

G, the set of profiles for
variables that occur in G with respect to the property APT B, is

⋃n−1
i=0 VPB

G(i). It
follows from the definition of variable profiles that

|VPB
G(i)| = expiO(|G| · |Q| · p)

|VPB
G| = expn−1O(|G| · |Q| · p)

where |G| is the size of the long transform G, |Q| is the number of elements of Q,
and expnm is the tower-of-exponentials function defined by exp0m = m

expn+1m = 2expnm

Recall that an environment is a set of active profiles. So the set of environments is
EnvBG = P(VPB

G × { t, f }), and we have |EnvBG| = expnO(|G| · |Q| · p). Finally, as
QC = (Q× EnvBG ×VPB

G) ∪ (Q× EnvBG), we have

|QC | = expnO(|G| · |Q| · p).

Suppose the parity acceptance game G(Gr(G), C) has vertex-set V and edge-set
E. The A-vertices of the game are sets of the form [P ]v, where P ⊆ Dir(l(v))×QC
and v ranges over nodes of the DDG Gr(G). Thanks to the narrowing transform
(see Proposition 19), it is enough to restrict P to subsets of Dir(l(v)) × QC that
have size at most |VPB

G|. This gives a tighter upper bound on the number of A-
vertices of the game G(Gr(G), C): (|Dir(ΛG)| × |QC |)|VPB

G| = expnO(|G| · |Q| · p).
It follows that

|V | = expnO(|G| · |Q| · p).
Since |E| is at most |V |2, the time complexity for solving G(Gr(G), C) is

O
(
p · (|V |)bp/2c+2

)
= O

(
p · (expnO(|G| · |Q| · p))bp/2c+2

)
= expnO(|G| · |Q| · p)

Thus10 we have:

Theorem 25. The acceptance parity game G(Gr(G), C) can be solved in time
expnO(|G| · |Q| · p). �

Thus, and by Proposition 21, we obtain the main result of the paper (Theorem 3(i)):
The modal mu-calculus model checking problem for trees generated by order-n
recursion schemes is n-EXPTIME complete. Part (ii) of the Theorem – decidability
of MSO model checking – follows immediately from the well-known result that
modal mu-calculus and MSO logic are equi-expressive over trees.

10Though (as far as we know) Jurdziński’s bound is the sharpest to date, a relatively coarse time
complexity of |V |O(p) (based on an early result by Emerson and Lei [Emerson and Lei 1986])
is all that we need to prove Theorem 25. In op. cit. Emerson and Lei showed that the modal

mu-calculus model checking problem for a formula of size m and alternation depth d on a system
of size n is O(m · nd+1).
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7. FURTHER DIRECTIONS

There are many further directions.

Does safety constrain expressiveness?

This is the most pressing open problem. In a FOSSACS 2005 paper [Aehlig et al.
2005b], we have shown that there is no inherently unsafe word language at order
2. More precisely, for every word language that is generated by an order-2 unsafe
recursion scheme, there is a safe (but in general non-deterministic) recursion scheme
that generates the same language. However it is conjectured that the result does not
hold at order 3. Further, for trees, we conjecture that there are already inherently
unsafe trees at order 2 i.e.

Conjecture 26. There is an unsafe order-2 recursion scheme whose value tree
is not the value tree of any safe recursion scheme.

The Conjecture is closely related to a word language, which we call Urzyczyn’s
language [Aehlig et al. 2005b]. The language can be generated by a deterministic,
unsafe order-2 recursion scheme (and hence, by a non-deterministic, safe order-
2 recursion scheme). The Conjecture is equivalent to the statement: Urzyczyn’s
language cannot be generated by any deterministic, safe order-2 recursion scheme
(or equivalently any order-2 deterministic pushdown automaton).

Collapsible pushdown automata and recursion schemes

Knapik et al. [Knapik et al. 2002] have shown that for every n ≥ 0, the Σ-labelled
trees generated by order-n safe recursion scheme are exactly those generated by
order-n pushdown automata. A variant class of higher-order pushdown automata
called collapsible pushdown automata characterise Σ-labelled trees generated by
recursion schemes without the safety constraint, extending the result for panic
automata (due to Knapik et. al [Knapik et al. 2005]) to all finite orders. The result
will be presented elsewhere.

What is the corresponding hierarchy of graphs generated by high-order recursion
schemes? Are their MSO theories decidable?

Mixing semantic and verification games

We would like to develop further the pleasing mix of Semantics (games) and Ver-
ification (games) in the paper. A specific project, pace [Aehlig 2006], is to give
a denotational semantics of the lambda calculus “relative to an APT”. More gen-
erally, it would be interesting to construct a cartesian closed category, suitably
parameterized by APTs, whose maps are witnessed by variable profiles.

REFERENCES

Aehlig, K. 2006. A finite semantics for simply-typed lambda terms for infinite runs of automata.

preprint.

Aehlig, K., de Miranda, J. G., and Ong, C.-H. L. 2005a. The monadic second order theory
of trees given by arbitrary level two recursion schemes is decidable. In Proceedings of the 7th

International Conference on Typed Lambda Calculi and Applications (TLCA’05). 39–54. LNCS
3461.

ACM Journal Name, Vol. V, No. N, 20YY.



On model-checking trees generated by higher-order recursion schemes · 55

Aehlig, K., de Miranda, J. G., and Ong, C.-H. L. 2005b. Safety is not a restriction at level

2 for string languages. In Proceedings of the 8th International Conference on Foundations of

Software Science and Computational Structures (FOSSACS’05). 490–501. LNCS 3411.

Cachat, T. 2003. Higher order pushdown automata, the Caucal hierarchy of graphs and parity

games. In Proceedings of ICALP 2003. 556–569. LNCS 2719.

Caucal, D. 1996. On infinite transition graphs having a decidable monadic theory. In Proceedings

23rd ICALP. Springer, 194–205. LNCS Vol. 1099.

Caucal, D. 2002. On infinite terms having a decidable monadic theory. In Proc. MFCS’02.
Lecture Notes in Computer Science, vol. 2420. 165–176.

Damm, W. 1982. The IO- and OI-hierarchy. Theoretical Computer Science 20, 95–207.

de Miranda, J. 2006. Structures generated by higher-order grammars and the safety constraint.

Ph.D. thesis, University of Oxford. Forthcoming.

Emerson, E. A. and Jutla, C. S. 1991. Tree automata, mu-calculus and determinacy. In
Proceedings of FOCS’91. 368–377.

Emerson, E. A. and Lei, C. 1986. Efficient model checking in fragments of propositional mu-

calculus. In First IEEE Symp. on Logic in Computer Science. 267–278.

Hoare, C. A. R. 1985. Communicating Sequential Processes. Prentice-Hall.

Hyland, J. M. E. and Ong, C.-H. L. 2000. On Full Abstraction for PCF: I. Models, observ-
ables and the full abstraction problem, II. Dialogue games and innocent strategies, III. A fully

abstract and universal game model. Information and Computation 163, 285–408.

Janin, D. and Walukiewicz, I. 1996. On the expressive completeness of the propositional mu-
calculus with respect to msol. In Proceedings of CONCUR’96. 263–277. LNCS 1119.
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