
Verifying Higher-Order Functional Programs
with Pattern-Matching Algebraic Data Types

C.-H. Luke Ong
Oxford University Computing Laboratory

lo@comlab.ox.ac.uk

Steven J. Ramsay
Oxford University Computing Laboratory

ster@comlab.ox.ac.uk

Abstract
Type-based model checking algorithms for higher-order recursion
schemes have recently emerged as a promising approach to the veri-
fication of functional programs. We introduce pattern-matching re-
cursion schemes (PMRS) as an accurate model of computation for
functional programs that manipulate algebraic data-types. PMRS
are a natural extension of higher-order recursion schemes that in-
corporate pattern-matching in the defining rules.

This paper is concerned with the following (undecidable) veri-
fication problem: given a correctness property ϕ, a functional pro-
gram P (qua PMRS) and a regular input set I, does every term
that is reachable from I under rewriting by P satisfy ϕ? To solve
the PMRS verification problem, we present a sound semi-algorithm
which is based on model-checking and counterexample guided ab-
straction refinement. Given a no-instance of the verification prob-
lem, the method is guaranteed to terminate.

From an order-n PMRS and an input set generated by a regular
tree grammar, our method constructs an order-n weak PMRS which
over-approximates only the first-order pattern-matching behaviour,
whilst remaining completely faithful to the higher-order control
flow. Using a variation of Kobayashi’s type-based approach, we
show that the (trivial automaton) model-checking problem for weak
PMRS is decidable. When a violation of the property is detected
in the abstraction which does not correspond to a violation in the
model, the abstraction is automatically refined by ‘unfolding’ the
pattern-matching rules in the program to give successively more
and more accurate weak PMRS models.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Languages, Verification

1. Introduction
In the past decade, huge strides have been made in the development
of finite-state and pushdown model checking for software verifica-
tion. Though highly effective when applied to first-order, imper-
ative programs such as C, these techniques are much less useful
for higher-order, functional programs. In contrast, the two standard

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’11, January 26–28, 2011, Austin, Texas, USA.
Copyright c© 2011 ACM 978-1-4503-0490-0/11/01. . . $10.00

approaches to the verification of higher-order programs are type-
based program analysis on the one hand, and theorem-proving and
dependent types on the other. The former is sound, but often impre-
cise; the latter typically requires human intervention.

Recently, a model-checking approach, based on higher-order
recursion schemes (HORS), has emerged as a verification method-
ology that promises to combine accurate analysis and push-button
automation. HORS are a form of simply-typed lambda-calculus
with recursion and uninterpreted function symbols that is presented
as a grammar and used as a generator of (possibly infinite) trees.
Ong showed that the trees generated by HORS have a decidable
modal mu-calculus theory [14] and Kobayashi introduced a novel
approach to the verification of higher-order functional programs by
reduction to their model-checking problems [6].

This method has been applied successfully to the Resource Us-
age Verification Problem [3] (and, through it, to such problems as
reachability and control-flow analysis) for a simply typed func-
tional language with finite data-types and dynamic resource cre-
ation and resource access primitives. The method relies on the exis-
tence of certain transformations which, given a functional program
and a resource usage specification, reduce the corresponding ver-
ification problem to the question of whether the computation tree
of the program, generated by a HORS, satisfies a resource-wise
specification encoded by an automaton on infinite trees. Despite the
high worst-case time complexity of the modal mu-calculus model-
checking problem for recursion schemes, which is n-EXPTIME
complete for order-n schemes, an implementation of this approach,
TRecS, performs remarkably well on realistic inputs [7].

From a verification perspective, a serious weakness of the
HORS approach is its inability to naturally model functional pro-
grams with infinite data structures, such as integers and algebraic
data-types. This severely limits the potential impact of this pro-
gramme as functions defined by cases on algebraic data types are
ubiquitous in functional programming.

A model of functional programs. Our first contribution is the
introduction of pattern-matching recursion schemes, which are
HORS extended with a notion of pattern matching. A PMRS is
a kind of restricted term-rewriting system. We believe that PMRS
have a very natural syntax into which large classes of functional
programs can readily be translated. A typical rule, which is re-
quired to be well typed, has the shape:

F x1 · · ·xm p(y1, · · · , yk) −→ t

where the variables x1, · · · , xm are (possibly higher-order) formal
parameters of the non-terminal (or defined operator) F . The ex-
pression p(y1, · · · , yk), which takes the place of the final parame-
ter, is a pattern constructed from terminal (or constructor) symbols
and variables y1, · · · , yk.

587

Example 1. The following PMRS defines a function
Merge : ablist → ablist → ablist that merges two lists of a
and b by recursively destructing them.

Merge x nil −→ x
Merge x (cons a y) −→ cons a (Merge y x)
Merge x (cons b y) −→ cons b (Merge y x)

The patterns in the second argument position are used both to
decompose compound data structures (so as to select the required
components), and to determine control flow. Selected components
are communicated to the right-hand side of the chosen rule by
means of binding to the variables in the pattern.

Remark 1. Our work is not the first to propose a pattern-matching
extension to HORS. A recent paper by Kobayashi, Tabuchi and
Unno [9] introduces an extension of HORS called higher-order
multi-parameter tree transducers (HMTT). HMTT model func-
tions that may employ pattern matching but, in return, must satisfy
a rigid type constraint. An HMTT function takes tree arguments of
input sort i (which are trees that can only be destructed) and re-
turns a tree of sort o (which are trees that can only be constructed).
Pattern matching is only allowed on trees of sort i. Consequently
HMTT functions are not compositional in the natural way. We be-
lieve our PMRS model to be both simpler and more natural.

A verification problem. This paper is concerned with the follow-
ing verification problem. Given a correctness property ϕ, a func-
tional program P (qua deterministic PMRS) and a regular set I of
input (constructor) terms, does every term that is reachable from I
under rewriting by P satisfy ϕ? It is straightforward to see that the
problem is undecidable.

Example 2. Consider the PMRS P which, when started from
Main takes as input a list of natural numbers and returns the same
list with all occurrences of the number zero removed. The defining
rules of P are given by:

Main m −→ Filter Nz m

If a b true −→ a
If a b false −→ b

Nz z −→ false
Nz (s n) −→ true

Filter p nil −→ nil
Filter p (cons x xs) −→

If (cons x (Filter p xs)) (Filter p xs) (p x)

The input set I is given by a regular tree grammar G (equivalently
order-0 recursion scheme). The defining rules of G are:

S −→ ListN

N −→ z
N −→ s N

ListN −→ nil
ListN −→ cons N ListN

As usual, the start symbol of G is taken to be S. The correctness
property ϕ is: “any outcome of the program is a list containing no
zeros”. This is easily expressible as a trivial automaton A, whose
definition is omitted.

An algorithmic solution. Our second contribution is a sound but
incomplete semi-algorithm for solving the problem, which is based
on a counterexample-guided abstraction refinement loop [2, 11].
The input to the algorithm consists of a PMRS P representing
the program, a regular tree grammar G (equivalently an order-
0 recursion scheme) representing the set I of possible inputs to

Build
approximating

wPMRS

1

Model check
wPMRS

2

Violation?

Check
feasibility

of violation

3

Feasible?

Build
unfolded
PMRS

4

YesNo

Input

yes

no

no

yes

Figure 1. Counterexample-guided abstraction-refinement loop.

the program and a trivial tree automaton A (which is to say, an
automaton on infinite trees with a trivial acceptance condition)
representing a specification ϕ of good behaviour. The algorithm
proceeds according to the diagram in Figure 1.

In step (1) we compute a sound abstraction of the behaviour of
P when started from terms in I. From an order-n PMRS P and
an order-0 recursion scheme G, we build an order-n weak pattern-
matching recursion scheme (wPMRS) which over-approximates
the set of terms that are reachable from I under rewriting by P .
A wPMRS is similar to a PMRS, except that its pattern matching
mechanism is only able to determine control flow; it is unable to
decompose data structure.

Our method is a kind of flow analysis. The first – and key – stage
of the algorithm is a binding analysis which is inspired by Jones
and Andersen [5]. It performs a fixpoint construction of a finite set
Ξ of variable-term bindings such that, for every variable x (formal
parameter of rewrite rule), every term that is ever bound to x during
the computation is derivable from Ξ. In the second stage, we use the
fixpoint set Ξ to build rules of the over-approximating wPMRS.
These rules model the bindings of all non-pattern-matching (in-
cluding all higher-order) variables precisely; they only approximate
the binding behaviours of the pattern-matching variables. This is in
contrast to Jones and Andersen’s algorithm, which builds a regu-
lar tree grammar that over-approximates the binding set of every
variable. For an order-n PMRS, our algorithm produces an order-
n wPMRS fPG as an abstraction, which is a tighter approximation
of the order-n PMRS being analysed than regular tree grammars
(which are equivalent to order-0 wPMRS). To our knowledge, our
algorithm gives the most accurate reachability / flow analysis of its
kind.

The weakened pattern-matching mechanism of wPMRS makes
it possible to decide a model checking problem for it, which is the
content of step (2). Given a wPMRS W , a closed term t and a Büchi
automaton with a trivial acceptance condition A, we decide if every
(possibly infinite) tree generated by W on input t is accepted by A.
The proof uses a variation of Kobayashi’s type-based approach.

If the model-checker fails to find any violation of the property
then, since the approximating wPMRS fPG defines a superset of the
terms reachable under P from I, the loop in Figure 1 will terminate
because P satisfies A on I. However, if the model-checker reports
a counterexample, then it may be that P also violates the property

588

(for some term in I), but it may also be that the counterexample is
an artifact of an inaccuracy in the abstraction. To determine which
of these possibilities is the case, in step (3) we analyse the non-
determinism introduced in the abstraction to see whether, in this
particular counterexample, it behaves well or behaves badly.

In step (4) the abstraction process is refined. Due to the fact
that the abstractions only ever approximate the (first-order) pat-
tern matching variables, whilst remaining faithful to all the oth-
ers, there is a simple notion of automatic abstraction-refinement,
whereby patterns are “unfolded” to a certain depth in the PMRS P ,
forming a new PMRS P ′. In the abstraction fP ′

G of P ′, the rules
that define the approximation will be more accurate and, in partic-
ular, the spurious counterexample will no longer be present. Since
any rule in a wPMRS abstraction fP ′

G is perfectly accurate when-
ever the pattern parameter contains no free variables, this method
of unfolding gives rise to a semi-completeness property. Given any
no-instance of the PMRS verification problem, the loop in Figure 1
will eventually terminate with the answer “No”.

Returning to Example 2, whilst performing step (1) we obtain
an over-approximation of the binding behaviour of the variables
in the program Ξ. This fixpoint set contains, amongst others, the
bindings: x �→ N and xs �→ ListN . From this set, we construct an
approximating wPMRS fPG , whose rule-set contains the following:

Filter p nil −→ Nil

Filter p (cons x xs) −→
If (Cons X (Filter p XS)) (Filter p XS) (p X)

X −→ N

XS −→ ListN

together with, amongst others, all the P and G rules in Example 2
except those for Filter . Unfortunately the wPMRS is too coarse
to be useful: there are trees (representing lists) that are obtained
by rewriting from ‘Main S’ that are not accepted by the trivial
automaton A. However, these are spurious counterexamples. For
an illustration, consider the error trace in the wPMRS:

Main S

→∗ Main (cons (s z) nil)

→∗ Filter Nz (cons (s z) nil)

→ If (Cons X (Filter Nz XS)) (Filter Nz XS) (Nz X)

→∗ If (cons z (Filter Nz nil)) (Filter Nz XS) (Nz (s z))

→∗ cons z (Filter Nz nil)

→∗ cons z nil

The problem can be traced to the second clause of Filter in the
wPMRS: when replacing the variable x by the non-terminal X ,
the connection between the two occurrences of x in the RHS is
lost, as the reduction of one occurrence of X is independent of that
of the other.

The refinement algorithm produces a new, unfolded PMRS P ′

that replaces the two defining rules of Filter by five new rules. The
two rules that cover the case when the list is a singleton are shown
below:

Filter p (cons z nil) −→
If (cons z (Filter p nil)) (Filter p nil) (p z)

Filter p (cons (s v2) nil) −→
If (cons (s v2) (Filter p nil)) (Filter p nil) (p (s v2))

Applying the approximation algorithm to PMRS P ′ (and input
grammar G), we obtain a wPMRS fP ′

G that does accurately capture
the set of reachable terms.

(VAR)
Γ, x : σ � x : σ

ξ : σ ∈ Σ ∪N
(CONST)

Γ � ξ : σ

Γ � t0 : σ → τ Γ � t1 : σ
(APP)

Γ � t0 t1 : τ

Figure 2. A simple type system for applicative terms.

Outline. The rest of the paper is organised as follows. Sec-
tion 2 introduces PMRS, wPMRS and other technical preliminar-
ies. In Section 3, the abstraction algorithm, which takes a program
(PMRS) and an input set (order-0 recursion scheme) and returns a
wPMRS, is presented; termination and soundness of the approxi-
mation are proved. Section 4 presents a type-inference algorithm
for deciding if every tree generated by a given wPMRS is accepted
by a trivial automaton. The abstraction refinement algorithm is the
topic of Section 5. Finally Section 6 presents related work. Note:
a long version of the paper is available [15], which contains the
proofs and additional material.

2. Preliminaries
We introduce PMRS, a model for functional programs manipulat-
ing algebraic data types; wPMRS, a restriction of PMRS with good
algorithmic properties and the PMRS Verification Problem, whose
solution is the subject of the remainder of this work.

2.1 Types, terms and substitutions

Fix a finite set (b, o ∈) B of base types. The simple types
(σ, τ ∈) S are those expressions that can be constructed from the
base types using the arrow:

σ, τ ::= b | σ → τ.

We adopt the usual convention that arrows associate to the right
and omit parenthesis accordingly. The order of a type τ , denoted
ord(τ), is a measure of the nestedness of the arrow constructor
on the left; it is defined by ord(b) = 0 and ord(σ → τ) =
max{ord(σ) + 1, ord(τ)}.

Applicative terms. Fix a finite, simply-typed alphabet (f, g, a ∈)
Σ of first-order terminal symbols (or constructors), a finite, simply-
typed alphabet (F, G, H ∈) N of (arbitrary-order) non-terminal
symbols (or defined operators) and a denumerable set (x, y, z ∈)
V of variables.

• The constructor terms T (Σ) are those expressions that can be
built from terminals using application.

• The closed terms T (Σ, N) are those expressions that can be
built from terminals and non-terminals using application.

• The patterns are those expressions p, q of base type that can be
built from variables of base type and terminals.

• The applicative terms T (Σ, N , V) are those expressions that
can be built from terminals, non-terminals and variables using
application.

We denote the free variables of a term t by FV(t).
Standardly, applicative terms may be assigned simple types via

a formal system of typing judgements, Γ � s : τ (where Γ
is a finite set of type bindings) defined by the rules in Figure 2.
When an applicative term t can be assigned a simple type τ1 →
· · · → τm → b we say that it has arity m and write ar(t) = m.
Henceforth, by term we shall mean well-typed, applicative term.

Labelled trees. Given a ranked alphabet Ω, an Ω-labelled tree t
is a map from { 1, · · · , m }∗ to Ω, where m is the largest arity of

589

symbols in Ω, such that dom(t) is prefix-closed, and if t(x) = f
then { i | x i ∈ dom(t) } = { 1, · · · , ar(f) }. Standardly we
identify T (Σ) with finite Σ-labelled trees, and write T∞(Σ) for
the collection of (possibly infinite) Σ-labelled trees.

Let Σ⊥ be Σ ∪ {⊥} with ar(⊥) = 0. Given a closed term t,
we write t⊥ for the finite, Σ⊥-labelled tree defined by recursion as
follows: for m ≥ 0

(ξ s1 · · · sm)⊥ :=

(
⊥ if ξ = F ∈ N
f s⊥1 · · · s⊥m otherwise ξ = f ∈ Σ

E.g. (f(g(G a))b)⊥ = f(g ⊥)b. Σ⊥-labelled trees can be en-
dowed with a natural complete partial order 	 in which, for all
trees t, ⊥ 	 t and f s1 · · · sm 	 f t1 · · · tm iff for all i,
si 	 ti.

Substitutions. A substitution is just a partial function θ in V →
T (Σ, N , V). By convention, we do not distinguish between a
substitution and its homomorphic extension to the free algebra
T (Σ, N , V) and we will write the application of both using prefix
juxtaposition. A term t is said to match a term u precisely when
there exists a substitution θ such that t = θu. We shall say that a
substitution θ is closed whenever every term in its image is closed.

2.2 Pattern-matching recursion scheme (PMRS)

A pattern-matching recursion scheme (PMRS) is a quadruple P =
〈Σ, N , R, Main〉 with Σ and N as above. R is a finite set of
rewrite rules, each of which is one of the following shapes (m ≥ 0):

(pure) F x1 · · · xm −→ t

(pattern-matching) F x1 · · · xm p −→ t

where p is a pattern (which may be trivial). Main : b → o
is a distinguished non-terminal symbol whose defining rules are
always pattern-matching rules. In this paper we will assume that
the variables appearing as formal parameters to defining rules in a
PMRS will always be distinct.

A pure rule F x1 · · · xm −→ t is well-typed when F : τ1 →
· · · → τm → o ∈ N and the judgement:

x1 : τ1, . . . , xm : τm � t : o

is provable. A pattern-matching rule F x1 · · · xm p −→ t is
well-typed when F : τ1 → · · · → τm → b → o ∈ N and there
exist base-types b1, . . . , bk such that the judgements:

y1 : b1, . . . , yk : bk � p : b and
x1 : τ1, . . . , xm : τm, y1 : b1, . . . , yk : bk � t : o

are provable. We say that a PMRS is well-typed just when each of
its rules is well-typed. We will only consider well-typed PMRS in
the following.

We define the order of a PMRS to be the maximum order of (the
type of) any of the non-terminal symbols in N . Since a pure rule
can be simulated by a pattern-matching rule with a trivial pattern
(e.g. a nullary terminal of a distinguished base type), we shall
sometimes find it convenient to treat all PMRS rules as pattern-
matching rules.

Reduction. We associate with each PMRS a notion of reduction
as follows. A redex is a term of the form F θx1 · · · θxm θp
whenever θ is a closed substitution and F x1 · · · xm p −→ t is a
rule in P . The contractum of the redex is θ t. We define the one-step
reduction relation, ⇒ ⊆ T (Σ, N) × T (Σ, N), by C[s] ⇒ C[t]
whenever s is a redex, t is its contractum and C is a one-hole
context.

We say that a PMRS is deterministic just if, given some redex
F s1 · · · sn there is exactly one rule l −→ r ∈ R such that
F s1 · · · sn = θl for some θ.

Given a PMRS P = 〈Σ,N ,R,Main〉, let s ∈ T (Σ,N)
be a closed term of base type. We write L(P, s) to mean the
language of Σ⊥-labelled trees obtained by infinitary rewriting of
the term s. More precisely, define L(P, s) as the collection of Σ⊥-
labelled trees t such that there are 〈ti〉i∈ω with s ⇒ t1 ⇒ t2 ⇒
t3 · · · a fair reduction sequence (in the sense that for each i, every
outermost redex in ti is eventually contracted) and t =

F{ t⊥i |
i ∈ ω }. In case P is a deterministic PMRS, L(P, s) is a singleton
set; we write the unique Σ⊥-labelled tree as [[s]]P .

Example 3. Let Σ = {zero : nat, succ : nat → nat, nil :
natlist, cons : nat → natlist → natlist} and N = {Rev :
natlist → natlist, RevA : natlist → natlist → natlist}.
The following deterministic, order-1 PMRS contains rewrite rules
that implement list reversal with an accumulating parameter:

Main zs −→ RevA nil zs

RevA xs nil −→ xs

RevA xs (cons y ys) −→ RevA (cons y xs) ys

When started from the term t = cons z nil, the only possible
reduction sequence is:

Main t ⇒ RevA nil t ⇒ RevA t nil ⇒ t

and hence [[Main t]]P = t, as expected.

2.3 Weak pattern matching recursion schemes (wPMRS)

A weak pattern-matching recursion scheme (wPMRS) is a quadru-
ple W = 〈Σ, N , R, Main〉 with Σ, N and Main as for PMRS.
The (finite) set R consists of rewrite rules of the shape (m ≥ 0):

(pure) F x1 · · · xm −→ t

(weak-matching) F x1 · · · xm p −→ t

in which FV(p) ∩ FV(t) = ∅. A pure rule is well typed according
to the same criteria as for pure PMRS rules. A weak-matching rule
F x1 · · · xm p −→ t is well-typed just when F : τ1 → · · · →
τm → b → o ∈ N and there exist base-types b1, . . . , bk such that
the judgements:

y1 : b1, . . . , yk : bk � p : b

and x1 : τ1, . . . , xm : τm � t : o

are provable (note that none of the pattern-matching variables yj

occurs in t). Henceforth we will only consider wPMRS with well-
typed rules.

wPMRS have exactly the same notion of reduction as PMRS:
a redex is a term of the form F θx1 · · · θxm θp whenever θ
is a substitution and F x1 · · · xm p −→ t is a rule in P .
The contractum of the redex is θ t = t[θ x1/x1] · · · [θ xm/xm]
(as the pattern-matching variables do not occur in t). The one-step
reduction relation, →, is defined as for PMRS.

We define the order, determinism and language of a wPMRS
analogously with PMRS.

2.4 A verification problem

We are interested in solving the following verification problem.
Given a program in the form of a PMRS P , a regular set I of “in-
put” terms, and a correctness property ϕ, does the output [[Main t]]
of the program ‘Main t’ satisfy ϕ, for every input t ∈ I? To pro-
pose a solution, we require two further stipulations, both of which
concern the representation of the entities involved.

Higher-order recursion schemes. A higher-order recursion
scheme (HORS) is a quadruple G = 〈Σ,N ,R, S〉 with Σ and N
as before and R is a finite set of well-typed, pure wPMRS rewrite
rules. The component S is a distinguished non-terminal called the

590

“start symbol”. The reduction relation for HORS, →, is just that
of wPMRS, noting that all redexes will necessarily be of the form
F θx1 · · · θxm since there are no pattern-matching arguments.
We can associate with a recursion scheme G its language L(G)
of terms in T (Σ) that can be derived from the start symbol S by
rewriting away all occurrences of non-terminals. More precisely,
we make the following definition:

L(G) := { t | S →∗ t, t ∈ T (Σ) }
We define the order of a recursion scheme analogously with PMRS
and wPMRS. Note that (as generators of finite ranked trees) order-0
recursion schemes are equivalent to regular tree grammars.

Trivial automata. Let Σ be as before. A Büchi tree automaton
with a trivial acceptance condition (or simply, trivial automaton)
is a quadruple A = 〈Σ, Q, Δ, q0〉 where Σ is as before, Q is a
finite set of states, q0 ∈ Q is the initial state, and Δ, the transition
relation, is a subset of Q×Σ×Q∗ such that if (q, f, q1 · · · qn) ∈ Δ
then n = ar(f). A Σ-labelled tree t is accepted by A if there is a
Q-labelled tree r such that

(i) dom(t) = dom(r),

(ii) for every x ∈ dom(r), (r(x), t(x), r(x 1) · · · r(x m)) ∈ Δ
where m = ar(t(x)).

The tree r is called a run-tree of A over t. We write L(A) for the
set of Σ-labelled trees accepted by A.

The PMRS Verification Problem. Given a deterministic PMRS
P = 〈Σ, NP , RP , Main〉, a (non-deterministic) order-0 recur-
sion scheme G = 〈Σ, NG , RG , S〉, and a Büchi tree automaton
with a trivial acceptance condition A = 〈Σ, Q, Δ, q0〉, we write:

� (P,G,A) iff ∀t ∈ L(G) · [[Main t]]P ∈ L(A)

The PMRS Verification Problem is to decide the truth of �(P,G,A).

3. Constructing an abstraction
In this section we will present an algorithm which, given an order-
n deterministic PMRS P and an order-0 recursion scheme G, con-
structs an order-n wPMRS fPG whose language of Σ-labelled trees
is an over-approximation of the set of Σ-labelled trees reachable
from L(G) under rewriting by P .

At the heart of the algorithm is an analysis of the composite
PMRS PG := 〈Σ, NG ∪NP ,RG ∪RP ,Main〉. Since every term
s reachable from L(G) under rewriting by P (i.e. Main t ⇒∗

P s,
for some t ∈ L(G)) is certainly reachable from S under rewriting
by PG (i.e. Main S ⇒∗

PG Main t ⇒∗
PG s), it suffices to look only

at the behaviours of PG in order to construct a safe abstraction of
those of P . We detail the nature of this analysis and its properties
separately before showing how it underlies the construction of the
approximating wPMRS fPG .

Some nomenclature. A simple term is a subterm of the RHS of
a PG-rule or is the “starting term” Main S . A compound term has
the shape ξ t1 · · · tm with m ≥ 0, where the head symbol ξ is either
a variable, or a terminal, or a non-terminal, and each ti is simple. It
follows from the definition that a simple term is compound, but the
converse is not true.

3.1 Binding analysis

In a PMRS, the pattern matching rules use pattern matching both to
determine control flow (by selecting which of a number of defining
rules is used to reduce a redex) as well as to decompose compound
data structure (by binding components to variables in the pattern
that then occur on the RHS of the rule). However, the weak pattern
matching mechanism in a wPMRS exhibits only the former capa-
bility: although patterns are matched, since there are no pattern-

matching variables on the RHS of defining rules, data structures
cannot be decomposed. Therefore, to build an effective abstraction
of a PMRS requires some knowledge of the substitutions that can
occur in redex/contractum pairs during PMRS reduction.

To this end, we define a binding analysis, which determines a
(finitary) over-approximation Ξ to the set of variable-term bindingsS{ θ | Main S ⇒∗ C[F θx1 · · · θxm θp] ⇒ C[θt] } which
occur in redex/contractum substitutions θ arising in PG-reductions
from ‘Main S’. The analysis is based on the observation that every
such redex is either ‘Main S’, or arises as an instance of a simple
term. It proceeds by an iterative process in which bindings, by
which instances of simple terms can be derived, give rise to redexes
which in turn give rise, via contraction, to more bindings, until the
desired set Ξ is reached in the limit.

Before we give the details of the analysis, let us make precise
what it means for a set of bindings S to give rise to an instance of a
term. Given such a set S, we define the relation s �S t, which is a
subset of T (Σ, N , V)×T (Σ, N), inductively, by the system RS:

(R) t �S t

(S) If x �→ s ∈ S and C[s] �S t, then C[x] �S t

where C ranges over one-hole contexts. We say that an instance of
rule (S) is a head-instance just if the hole in C[] occurs in head
position.

Example 4. Let S1 = {x �→ y b, x �→ N , y �→ f z, z �→ a}.
Then, using the system RS, it is possible to derive:

F x z �S1 F (f a b) a and F x z �S1 F N a

Note that the form of rule (S) does not constrain bindings to be used
consistently within non-linear terms. Let S2 = {x �→ f y z, y �→
z, y �→ a, z �→ b}. Then we have, for example:

F x (G x) �S2 F (f a b) (G (f b b))

in which the binding y �→ a has been used in the derivation of the
first argument of F whereas y �→ z has been used in the derivation
of the second argument.

To ensure that the analysis is computable, we cannot afford
to work with instances of simple terms directly. We instead work
with terms in which bindings have been applied only where strictly
necessary in order to uncover new redexes. The construction of
such terms is the purpose of the function head.

The head function. Given a set S of bindings, we define the head
function, headS : T (Σ,N ,V) −→ 2T (Σ,N ,V) given by:

headS(ξ t1 · · · tm) = { δ t1 · · · tm | δ ∈ hsS(ξ, ∅) }
where hsS is an auxiliary function defined by the following:

hsS(k, X) = {k} (whenever k ∈ Σ ∪N)

hsS(x, X) = if x ∈ X then ∅ else

{ δ t1 · · · tm | x �→ ζ t1 · · · tm ∈ S, δ ∈ hsS(ζ, X ∪ {x}) }
Thus headS(u) is the set of terms that are obtainable from u by
iteratively replacing the head symbol—provided it is a variable—
by a term bound to it in S. The second argument of hsS disre-
gards any cyclic chain of bindings. For example, let S = {x �→
y, y �→ x }, then: headS(x) = hsS(x, ∅) = hsS(y, {x }) =
hsS(x, {x, y }) = ∅
Example 5. Let S1 and S2 be as in Example 4. Then:

headS1(x c) = {N c, f z b c }
headS2(x c) = {f y z c} headS2(F x (G x)) = {F x (G x)}

Notice that since head performs variable-substitutions accord-
ing to bindings from S, its behaviour is consistent with a strategy

591

for constructing initial prefixes of derivations in the system RS.
Each use of the recursive clause of hsS corresponds to a head-
instance of rule (S). A consequence of this relationship is made
precise by the following lemma.

Lemma 1. If u �S ξ v1 · · · vm then there is a compound term
ξ u1 · · · um ∈ headS(u) and, for all 1 ≤ i ≤ m, ui �S vi.

One final property to note about head is that, whenever its
argument is compound and all the variables in S are bound to
simple terms, the terms in (sets in) its image are all compound. This
is due to the fact that, in this case, the action of the head function is
to construct new, compound terms by prepending old, simple terms
into head position. This limited behaviour of the head-function will
contribute towards guaranteeing the termination of the analysis.

Lemma 2. We say that a set of bindings S is image-simple just if
every term in the image of S is simple. Suppose S is image-simple.
If u is compound, then every term in headS(u) is compound.

The goal of the analysis is to discover the possible redexes
Fθx1 · · · θxm θp that occur during reduction sequences of PG
starting from Main S . The head function headS(u) is able to
determine, in a way that is computable, when an F -redex is an
instance (according to S) of a simple term u. In this case, according
to Lemma 1, a term of the shape F t1 · · · tm s is an element of
headS(u). However, to know which defining rule of F is triggered,
it is necessary to find out which patterns are matched by residuals
of instances of s.

The approximate reduction. To this end, we introduce a new no-
tion of reduction
S ⊆ T (Σ,N ,V) × T (Σ,N ,V) parametrised
by a set of bindings S . This reduction approximates the usual
PMRS reduction by performing redex/contractum substitutions
only where absolutely necessary and only when the relevant
bindings are contained in S . A
S -redex is a term of the form
F θx1 · · · θxm θp whenever there is a PG0 -rule of the form
F x1 · · · xm p −→ t and θ is a substitution (not necessarily
closed). The contractum of the redex is t, no substitution is per-
formed upon contraction.

We define the one step reduction
S by the following rules. Let
C range over one-hole contexts.

(s, t) a
-redex/contractum pair
C[s]
S C[t]

t ∈ headS(x t1 · · · tm)

C[x t1 · · · tm]
S C[t]

As is standard, we write
∗
S to mean the reflexive, transitive closure

of
S , and
n
S to mean a n-long chain of
S .

Example 6. Consider the composite PMRS PG constructed from
the PMRS and grammar given in Example 2 and let S contain the
bindings p �→ Nz and x �→ N . Then the following:

p x
S Nz x
S Nz N
S Nz (s N)
S true

is a
S -reduction. Observe how, as demonstrated by the third step,
approximate reduction is accurate for order-0 G-rules.

Given a substitution θ and a pattern p, we say that a
S -
reduction s
i

S θp is minimal just if it is not the case that there
exist j < i and substitution θ′ such that s
j

S θ′ p. Consider the
two rules defining
S -reduction. In the RHS of the conclusion of
each rule is the term t. In both cases, assuming S is image sim-
ple, t is a compound term. Since there are only finitely many such
terms t and since there are only finitely many patterns (drawn from
the PMRS) p, the problem of finding such minimal reductions is
computable.

Lemma 3. Assume S is image-simple. Given a compound term s
and a pattern p drawn from the defining rules of PG , the problem
of finding a substitution θ and a minimal reduction s
∗

S θp is
computable.

The fixpoint construction. Let S be a set of bindings. We define
F(S) as the least set X of bindings that contains S and is closed
under Rule C: if

(i) u is simple term of base type,

(ii) F t1 · · · tm s ∈ headS(u),

(iii) F x1 · · · xm p −→ t is a PG0 -rule,

(iv) there is a minimal reduction s
∗
S θ p

then θ ∪ {xi �→ ti | 1 ≤ i ≤ m } ⊆ X .

Thus F : 2V×T (Σ,N ,V) −→ 2V×T (Σ,N ,V) is, by construction,
a monotone (endo)function on the complete lattice 2V×T (Σ,N ,V)

ordered by subset-inclusion. By the Tarski-Knaster Fixpoint Theo-
rem, the least fixpoint of F , which we shall denote Ξ, exists, and is
constructable as the supremum of the chain

∅ ⊆ F ∅ ⊆ F(F ∅) ⊆ F(F(F ∅)) ⊆ · · ·
Example 7. Consider again the composite PMRS PG composed
from the PMRS P and tree grammar G given in Example 2. We
shall apply the fixpoint construction to this structure.

Initially, the only fruitful choice of simple term is the “starting
term” Main S which otherwise trivially satisfies the premises of
Rule C and yields the single binding m �→ S. Subsequently, taking
u = Filter Nz m matches both the defining rules for Filter after
approximate-reductions of:

m
∗
{m�→S} nil and m
∗

{m�→S} cons N ListN

respectively. This choice adds the bindings p �→ Nz , x �→ N
and xs �→ ListN . Examining the term p x in the RHS of the
second defining rule for Filter then gives n �→ N . Finally, taking
u as the entire RHS of the second defining rule for Filter and
approximate-reducing p x as in Example 6 gives bindings a �→
cons x (Filter p xs) and b �→ Filter p xs. In this case, no other
choices of simple term yield any new bindings, so the fixpoint Ξ is
obtained as:

m �→ S, p �→ Nz , x �→ N , xs �→ ListN

n �→ N , a �→ cons x (Filter p xs), b �→ Filter p xs

Though the complete lattice 2V×T (Σ,N ,V) is infinite, the least
fixpoint Ξ is finitely constructable (i.e. the closure ordinal of F is
finite); it is in fact a finite set. Observe that, in Example 7, the form
of every binding in the fixpoint is v �→ t in which t is a simple term.
This is the key to showing the convergence of the analysis. Since
every term F t1 · · · tm s ∈ headS(u) is compound (whenever S
is image-simple and u is compound) so every binding xi → ti

is image-simple. Since, whenever S is image-simple, every
S -
contractum is compound, so the bindings due to θp are image-
simple. Since there are only finitely many simple terms, termination
follows.

Theorem 1 (Termination). The least fixpoint of F , Ξ, is a finite set.

To see that this finite set of bindings Ξ is sufficient to describe
all the all the substitutions that occur during redex contractions in
reduction sequences of PG starting from Main S , one should first
notice that the approximate reduction, when instantiated with the
fixpoint, acts on simple terms in a way which is consistent with the
way PMRS reduction acts on their instances in a trivial context.

Lemma 4. Assume θt is a contractum
and u is a simple term. If s ⇒+ θt and
u �Ξ s, then u
∗

Ξ t and t �Ξ θt.

s θt

u t

�Ξ

⇒+

�∗
Ξ

�Ξ

592

To lift this fact to the level of arbitrary reduction sequences
starting from Main S , it is enough to observe that any redex in
such a sequence (apart from the first), can be seen either to be
itself a simple term or to arise as a subterm of some previous
contractum, regardless of the context in which the redex occurs. As
a consequence of Lemma 4, the variable-term bindings necessary
to derive the redex as an instance of the corresponding simple term
will already be contained in the fixpoint. Hence, if the reduction
sequence reaches any contractum, the fixpoint will contain the
bindings necessary to reconstruct the substitution associated with
the contraction.

Lemma 5. Assume θt is a contractum. If Main S ⇒+ C[θt] is a
PG-reduction sequence then t �Ξ θt.

3.2 Construction of the over-approximating wPMRS

We are now ready to define the wPMRS which is an abstraction
of the composite PMRS PG = 〈Σ,N ,R,Main〉. Let Ξ be the
fixpoint set of bindings and let NV = {Vx | x ∈ V } and NΣ =
{Ka | a ∈ Σ } be two sets of fresh non-terminal symbols which
we call pattern-symbols and accounting-symbols respectively. We
define the approximating wPMRS:fPG := 〈Σ, N ∪NV ∪NΣ, R′, Main〉
where R′ consists of the following three kinds of rules:

I. Weak pattern-matching rules. For each (pure or pattern-
matching) PG-rule F x1 · · ·xm p −→ t, R′ contains the
following rule:

F x1 · · ·xm p −→ t†

II. Instantiation rules. For each binding x �→ t in Ξ where
FV(t†) = {x1, · · · , xl }, R′ contains the following rule:

Vx z1 · · · zar(x) −→ (t†[Vx1/x1] · · · [Vxl/xl]) z1 · · · zar(x)

where each zi is a fresh variable of the appropriate types.

III. Accounting rules. For each terminal symbol
a : b1 → · · · → bn → o in Σ, R′ contains the following rule:

Ka z1 · · · zn −→ a z1 · · · zn

where each zi is a fresh variable of type bi.

where we have written t† to denote the term t in which every oc-
currence of a pattern matching variable y ∈ FV(p) has been re-
placed by the corresponding pattern-symbol Vy and every occur-
rence of a terminal symbol a has been replaced by the correspond-
ing accounting-symbol Ka.

Example 8. Consider the following order-2 PMRS, whose defin-
ing rules are given by:

Main m −→ Map2 KZero KOne m

Map2 ϕ ψ nil −→ nil

Map2 ϕ ψ (cons x xs) −→ cons (ϕ x) (Map2 ψ ϕ xs)

KZero x1 −→ 0

KOne x2 −→ 1

and input grammar G consisting of two rules:

S −→ nil | cons 0 S

The function Map2 behaves like the standard Map function,
except that it swaps the first two function arguments as it fil-
ters through the successive elements of the list argument. The
reachable constructor terms are finite lists that are prefixes of
[0 1 0 1 0 1 · · ·].

After applying the fixpoint construction to this example, the set
of bindings Ξ consists of the following:

m �→ S ϕ �→ KZero ϕ �→ ψ

x �→ 0 ψ �→ KOne ψ �→ ϕ

x1 �→ x x2 �→ x xs �→ S

and hence the approximating wPMRS fPG is as follows.

Main m −→ Map2 KZero KOne M

Map2 ϕ ψ nil −→ Nil

Map2 ϕ ψ (cons x xs) −→ Cons (ϕ X) (Map2 ψ ϕ XS)

KZero x1 −→ Zero

KOne x2 −→ One

M −→ S

X −→ Zero

XS −→ S

S −→ Nil | Cons Zero S

Zero −→ 0

One −→ 1

Nil −→ nil

Cons v1 v2 −→ cons v1 v2

Since ϕ, ψ, x1 and x2 are not pattern-matched variables, the rules
for Vϕ, Vψ , Vx1 and Vx2 are, in this case, never used and so play no
part in the approximation process: they have been omitted. It is easy
to see that the constructor terms in L(fPG ,Main S) are exactly the
finite prefixes of [0 1 0 1 · · ·] i.e. the approximation is exact in
this case.

Given any PG-reduction Main S ⇒+ t, the reduction can
be faithfully simulated in the abstraction fPG using the weak
pattern-matching rules and the instantiation rules. Whenever the
PG-reduction contracts a P-rule which binds data θy to a pattern
matching variable y, the simulation can contract the corresponding
redex using a weak pattern-matching rule and, by Lemma 5, can
then reconstruct the bound data θy from Vy using the instantiation
rules.

Theorem 2 (Soundness). Let the composite PMRS PG and the
approximating wPMRS fPG be as before. Then L(PG ,Main S) ⊆
L(fPG ,Main S).

The third class of rules is not essential to the achieving soundness.
The purpose of the accounting rules is to enforce a strict corre-
spondence between the length of a fPG reduction sequence and the
maximum size of any constructor term created within it. This eases
the justification of the semi-completeness property of refinement in
Section 5.

4. Model checking by type inference
In this section, we exhibit an algorithm to decide the wPMRS
Model Checking Problem: given a non-deterministic wPMRS W =
〈Σ,N ,R, Main〉 in which Main : b → o, a closed term t : b and
a trivial automaton A, is L(W,Main t) ⊆ L(A)? Following work
by Kobayashi [6] and Kobayashi and Ong [8], we characterise the
model checking problem as a type inference problem in a particular,
finitary intersection type system induced by the automaton.

593

Eliminating non-determinism. The first step we take is to sim-
plify the problem at hand by eliminating the non-determinism in
W . To this end we construct a new wPMRS W# in which multiple
defining rules for a given non-terminal are collapsed using a fam-
ily B := { brb | b ∈ B } of “non-deterministic choice” terminal
symbols brb of type b → b → b. We define:

W# := 〈Σ ∪ B, N , { l −→ BR(l) | ∃r · l −→ r ∈ R}, Main〉
in which, by way of a short-hand, we define:

BR(F t1 · · · tn) := brb r1 (brb r2 (· · · (brb rm−1 rm) · · ·))
where {r1, . . . , rm} = { r | F t1 · · · tn −→ r ∈ R} and the
type of F is of the form τ1 → · · · → τn → b. We must modify
the automaton A accordingly, so we define:

A# := 〈Σ ∪ B, Q, Δ ∪ { (q, brb, q q | q ∈ Q, b ∈ B }, q0〉
Lemma 6. For all terms t of base-type:

L(W,Main t) ⊆ L(A) iff [[Main t]]W# ∈ L(A#)

Model checking as type inference. We first introduce recursion
schemes with weak definition-by-cases, which is a term rewriting
system similar to (in fact, equi-expressive with) wPMRS; the dif-
ference is that (weak) matching is explicitly provided by a case
construct. Assume for each base type b, an exhaustive and non-
overlapping family of patterns Pb = { p1, · · · , pk }. A recur-
sion scheme with weak definition-by-cases (wRSC) is a quadruple
G = 〈Σ,N ,R, S〉 where Σ,N , and S are as usual, and R is a set
of (pure) rules of the form

F x1 · · ·xm −→ t

We write rhs(F) = λx1 · · ·xm.t. The set of applicative terms is
defined as before, except that it is augmented by a definition-by-
cases construct caseb(t; t1, · · · , tk) with typing rule:

Γ � t : b Γ � ti, o (for 1 ≤ i ≤ k)

Γ � caseb(t; t1, · · · , tk) : o

We say that G is deterministic just if there is one rule for each
F ∈ N . There are two kinds of redexes:

(i) F s1 · · · sm which contracts to t[s1/x1] · · · [sm/xm] for each
rule F x1 · · ·xm −→ t in R

(ii) caseb(t; t1, · · · , tk) which contracts to ti, provided t of base
type b matches pattern pi ∈ Pb = { p1, · · · , pk }.

We define evaluation contexts E as follows

E ::= [] | f t1 · · · ti−1 E ti+1 · · · tar(f)

and write → for the one-step reduction relation E[Δ] → E[·Δ]
where (Δ, ·Δ) ranges over redex/contractum pairs and E over eval-
uation contexts. Assuming G is deterministic, we define the Σ⊥-
labelled tree generated by G by infinitary rewriting from S as
[[G]] := { t⊥ | S →∗ t }.

Lemma 7. Deterministic wPMRS and deterministic wRSC are
equi-expressive as generators of Σ-labelled trees.

We present an intersection type system for characterising the
model checking problem. The intersection types of the system are
given by the grammar:

σ, τ ::= q | p |
m̂

i=1

τi → τ

where q ∈ Q and p is one of the finitely many patterns associated
with a definition by cases in the scheme G. Judgements of the type

system are sequents of the form Γ � t : τ , in which Γ is simply a
set of type bindings ξ : σ where ξ ∈ N ∪ V . The defining rules of
the system are as follows:

Γ, x : τ � x : τ
(VAR)

(q, f, q1 · · · qn) ∈ ΔA#

Γ � f : q1 → · · · → qn → q
(TERM)

∃θ · s p1 · · · pn = θ p

Γ � s : p1 → · · · → pn → p
(MATCH)

Γ � t : pi Γ � ti : τ

Γ � caseb(t; t1, · · · , ti, · · · , tn) : τ
(CASE)

Γ � s :
Vn

i=1 τi → τ

Γ � t : τi (for each 1 ≤ i ≤ n)

Γ � s t : τ
(APP)

Γ, x : τ1, · · · , x : τn � t : τ

Γ � λx.t :
Vn

i=1 τi → τ
(ABS)

Note that we have the following derived rule from (Match): if
a term s (of the appropriate type) matches the pattern p, then
Γ � s : p.

We write �A G : Γ if Γ � rhs(F) : τ is provable for
every F : τ ∈ Γ. A wRSC is well-typed, written �A G, just if
there exists Γ such that (i) �A G : Γ, (ii) S : q0 ∈ Γ, (iii) for
each F : τ ∈ Γ, τ :: κ, where F : κ ∈ N , meaning that τ is an
intersection type compatible with type κ (as assigned to F by the
wRSC), which is defined by: (i) q :: o, (ii) p :: b for each p ∈ Pb,
(iii)

Vk
i=1 τi → τ ::κ′ → κ if τ ::κ and for each 1 ≤ i ≤ k, τi ::κ

′.

Theorem 3. Let A be a trivial automaton, and G be wRSC. Then
�A G if and only if [[G]] ∈ L(A).

The proof is omitted as it is very similar to the proof of the
soundness and completeness theorems in [6].

Corollary 1. The wPMRS model checking problem is decidable.

Proof. This follows from Lemma 6, Lemma 7 and Theorem 3, and
the decidability of typability �A G. The latter follows from the fact
that for each non-terminal, there are only finitely many candidate
intersection types compatible with a given type.

5. Abstraction refinement
When the model checking stage reports a counterexample in the
form of an error trace, the trace may be “feasible”, that is, it corre-
sponds to a concrete reduction sequence in the original PMRS P ,
or it may be “spurious”: an artifact of the abstraction process. In
the case the counterexample is spurious, we will want to ignore it
and perform the process again, but in a new setting in which we
are guaranteed never again to encounter this unwanted trace. To
achieve this we restart the cycle from a modified PMRS P ′, which
has had some of its defining rules unfolded, so as to reduce the
amount of non-determinism in the corresponding wPMRS abstrac-
tion.

594

5.1 Counterexamples and feasibility.

When the model-checker reports a violation of the property, a coun-
terexample error trace is returned. This error trace is a reduction
sequence in the abstract wPMRS fPG . Since fPG is not completely
faithful to the PMRS P , it is necessary to determine whether such
a counterexample trace corresponds to a reduction sequence in P
which itself witnesses the violation or whether it is an artifact of
the abstraction.

Anatomy of a counterexample. It is useful to highlight two im-
portant features of any given counterexample trace, namely, (i) the
shape of the last term in the reduction sequence and (ii) the “type”
of each constituent reduction .

Any counterexample trace must end in a term t which witnesses
the violation of the property ϕ. Since the property is a collection of
(possibly infinite) Σ-labelled trees, the witnessing term can be seen
to be of the form θq where q is a pattern which does not match any
prefix of a tree t ∈ ϕ. We say that the pattern q which witnesses
the violation of the property is the error witness.

In any fPG reduction sequence, each reduction u → v can be
classified into one of two kinds based on the head symbol occurring
in the redex. In case we want to emphasise that the head symbol
is a non-terminal belonging to P we say the contraction of this
redex is an abstract P-reduction and write u →P v. Otherwise the
head symbol is either a pattern-symbol, an accounting-symbol or it
belongs to G. In this case we say that the head symbol in question
is a live-symbol and that the contraction of this redex is an abstractfPG-reduction; we write u →

gPG v.

Example 9. Consider the following abstract error trace which is
derived from the abstraction fPG of the PMRS P and grammar G
given in Example 2:

Main S

→ Filter Nz M

→∗ Filter Nz (cons N ListN)

→ If (Cons X (Filter Nz XS)) (Filter Nz XS) (Nz X)

→∗ If (Cons X (Filter Nz XS)) (Filter Nz XS) (Nz (s N))

→ If (Cons X (Filter Nz XS)) (Filter Nz XS) True

→∗ Cons X (Filter Nz XS)

→ cons X (Filter Nz XS)

→∗
cons z (Filter Nz XS)

which violates the property since it is the start of a list that contains
a zero. The error-witness for this trace is cons z v (for some
variable v). The first reduction is an abstract P-reduction, as is the
reduction written over lines 3 and 4 and that of lines 5 and 6. All
the other reductions in the sequence are abstract fPG-reductions.

The trace in the above example is spurious since there are no
reduction sequences of the PMRS P (starting from terms in L(G))
from Example 2 which result in a list headed by a zero. Intuitively,
we can see that this trace is infeasible because the non-determinism
introduced by the abstraction has been resolved in an inconsistent
way during the sequence. The data bound by the pattern match for
Filter , which is given as N (i.e. some number) has been resolved
on the one hand (line 5) to a non-zero number and on the other hand
(line 9) to zero.

In the following, we define a process of labelling of the coun-
terexample trace that will reveal information about the resolution
of non-determinism that has been introduced as a consequence of
the abstraction. The information that is exposed will allow us to see
whether or not this abstract trace in fPG has any corresponding trace
in P starting form I, that is, whether the trace is feasible.

Labelling. The labelling procedure, labelSeq, keeps track of how
non-determinism is resolved in an abstract reduction sequence by
annotating each live-symbol X with a set of (possibly open) terms,
which represent all the closed terms to which it reduces. When the
terms are given by the set l, we write the annotated term Xl and
we identify an unlabelled live-symbol X with X∅. Given a term t
which may include labelled subterms, we define the resolution of
t, which is a set of terms t̄, defined as follows:

t =

8>>><>>>:
{a} when t = a ∈ Σ

{F} when t = F is not a live-symbol
l̂ when t = F l is a live-symbol
{u v | u ∈ t0, v ∈ t1 } when t = t0 t1

where l̂ denotes the set l when l is non-empty and {z} for some
fresh variable z otherwise. If any pattern-symbol reduces to two
incompatible terms or to a term which is inconsistent with the term
that it represents in the matching, then the procedure will detect a
conflict and record it in the set Failures.

labelSeq(Main S)

If S is labelled by l and there is a term t ∈ L(G) which is an
instance of mgci(l) then do nothing else add (Main, l) to
Failures.

labelSeq(Main S →∗ u → v)

1. Analyse the reduction u → v:

C[F θx1 · · · θxm] →
gPG C[t θx1 · · · θxm]:

Label the head symbol F by t.

C[F θx1 · · · θxm θp] →P C[θt†]:
For each y ∈ FV(p), let {V l1

y , . . . , V lk
y } be the la-

belled pattern-symbols in v created by the contraction.
Perform labelTm(θy)(

S{l1, . . . , lk}) on the corre-
sponding occurrence of θy in θp. If labelTm fails, then
add (F,

S{l1, . . . , lk}) to Failures.

2. For each occurrence of an unlabelled live-symbol N in u,
let {N l1

1 , . . . , N
lk
k } be the set of labelled descendants in v.

Label this occurrence of N with
S{l1, . . . , lk}.

3. Perform labelSeq(Main S →∗ u).

where the procedure labelTm, which is designed to resolve the data
bound in a pattern match and the data created by the abstraction, is
given by:

labelTm(t)({s1, . . . , sk})
Analyse the form of t:

t = a: If ∀i a matches si then do nothing else fail.

t = F : If F is not a live-symbol and ∀i F matches si then do
nothing else, if F is a live-symbol and w = mgci({s1, . . . , sk})
exists then label F by {w} else fail.

t = t0 t1: If ∀i either si is a variable or si = si0 si1 then (let
sj0 = z0 and sj1 = z1 for fresh z1, z2 whenever sj is
a variable) and perform labelTm(t0)({s10 , . . . , sk0}) and
perform labelTm(t1)({s11 , . . . , sk1}) else fail.

where mgci(l) denotes the most general common instance (MGCI)
of the set of terms l (regarding a single fresh variable as the MGCI
of the empty set)1. We call a counterexample trace that has been
labelled by labelSeq a labelled trace.

1 For the purposes of calculating MGCIs, terms are considered as first order
entities constructed from atomic constants and a single (silent) application
operator.

595

Example 10. Consider again the abstract reduction sequence in
Example 9, after performing labelSeq the following labelled trace
is produced (the set bracket notation has been elided since all labels
are singleton sets):

Main Scons v1 v2

→ Filter Nz M cons v1 v2

→∗ Filter Nz (cons N ListN v2)

→ If (Cons
cons

X z (Filter Nz XS)) (Filter Nz XS) (Nz X s v0)

→∗ If (Cons
cons

X z (Filter Nz XS)) (Filter Nz XS) (Nz (s N v0))

→ If (Cons
cons

X z (Filter Nz XS)) (Filter Nz XS) Truetrue

→∗ Cons
cons

X z (Filter Nz XS)

→ cons X z (Filter Nz XS)

→∗ cons z (Filter Nz XS)

After labelling, we have Failures = {(Filter , {z, s v0})}. Ob-
serve that there are no labels on N in line 2, due to the fact that
labelTm failed.

Feasibility. For a trace α in fPG to be feasible two properties are
required. First, the non-determinism introduced by the abstraction
should be well behaved and second, there should be a term in the
input that is able to trigger the trace, i.e. when given as an argument
to Main , the rest of the trace follows. The first of these conditions
is the subject of the step case in labelSeq, the second is the subject
of the base case. Hence, if after performing labelSeq(α) it is the
case that Failures = ∅, then we say α is feasible. The justification
is the following lemma.

Lemma 8. Let α be a feasible reduction sequence in fPG with
error-witness q. Then there exists a term t ∈ L(G) and a finite
reduction sequence Main t ⇒ · · · in P with error witness q.

The witness to soundness, which appears in the proof of Theorem
2, will always be feasible. We say that any trace that is not feasible
is spurious.

5.2 Refinement

When a reduction sequence in fPG is shown to be spurious, the
problem can always be traced back to an occurrence of pattern-
matching (notice that, by definition, the single parameter of the
defining rule for Main is always a pattern). Since the only loss of
accuracy in the abstraction is in the way that data bound in pattern
matches is handled during reduction, our remedy for infeasibility is
to increase precision in the pattern matching rules of fPG .

Our strategy is based on the observation that, due to the par-
ticular way in which the abstract wPMRS is constructed from the
composite PMRS, the terminal symbol-labelled parts of each pat-
tern are accurately preserved in the RHS of the defining rules of
the abstraction. Based on the depth of pattern matches in the coun-
terexample trace, we unfold patterns in the defining rules of P in a
way that preserves the the set of possible reduction sequences.

Pattern-matching depth. To determine how much to unfold we
define a measure depth : T (Σ, N , V) → N, which quantifies the
extent to which a term can be matched, as follows:

depth(x) = 0

depth(F t1 · · · tm) = 1

depth(a t1 · · · tm) = 1 +
G
N

{ depth(ti) | 1 ≤ i ≤ m }

Given a set of non-terminals N , a depth profile for N is a map
N → N. We assign a depth profile to a set of rules to quantify, for
each non-terminal F , how accurately the defining rules for F model
pattern-matching. Given a set of rules R defining non-terminals

from N , let the depth profile of R, denoted dp(R), be the function:

dp(R)(F) =
G
N

{ depth(p) | F x1 · · · xm p −→ t ∈ R}

Depth profiles can be naturally ordered pointwise, so that if d and
d′ are depth profiles over the same domain N , then d ≤ d′ iff
d(F) ≤ d′(F) for all F ∈ N .

Unfolding. To capture the result of unfolding we first introduce
two auxiliary definitions. To aid readability, in each of them we
will annotate fresh variables with their implied types by a su-
perscript. The set of atomic patterns of type b, Ab is the set

{ a zb1
1 · · · z

bar(a)
ar(a) | a : b1 → · · · → bar(a) → b ∈ Σ }.

For each n ∈ N we define the non-overlapping, exhaustive set of
patterns of type b and depth n, patsb(n):

patsb(0) = {zb}
patsb(n + 1) = { p[q1, . . . , qm/xb1

1 , · · · , xbm
m] | ϕ }

where ϕ stands for the conjunction:

p ∈ patsb(n) & FV(p) = {xb1
1 , . . . , xbm

m } & ∀i qi ∈ Abi

Hence, the depth 2 family of patterns of type natlist are given by
(n, x and xs arbitrary variables):

nil, cons z nil, cons z (cons x xs),

cons (s n) nil, cons (s n) (cons x xs)

To unfold the rules of a PMRS P according to a depth profile d,
one constructs a new PMRS P ′ whose rule-set is enlarged so that,
for a given non-terminal F of type τ1 → · · · → τm → b → o,
there is a number of defining rules which is equal to the number
of patterns of type b and depth d(F). For each of these rules the
corresponding right-hand side is constructed by using the existing
P rules as a template.

Let P = 〈Σ, N , R, Main〉 be a PMRS and let d be a depth
profile with domain N such that dp(R) ≤ d. The d-unfolding of
P is the PMRS 〈Σ, N , R′, Main〉, where R′ is the set such that,
for all substitutions σ, F x1 · · · xm σp −→ σt ∈ R′ iff:

(i) F x1 · · · xm p −→ t ∈ R
(ii) and p is of type b

(iii) and q ∈ patsb(d(F))

(iv) and q = σp

Example 11. Let P be as in Example 2 and let d be the depth
profile given by the following rule:

d(F) =

(
2 when F = Filter

dp(R)(F) otherwise

Then the d-unfolding of P is the PMRS P ′, whose rules are the
same as P except that the two rules for Filter have been replaced
by the five rules in Figure 3.

Consider an abstraction fP ′
G of the PMRS P ′ in Example 11

(with G as given in Example 2). The only non-determinism that
is introduced in constructing the abstraction is in replacing the
pattern-matching variables in the right-hand sides of the defining
rules by pattern-symbols. Due to the unfolding of the Filter rules
in P ′ (and hence in fP ′

G), there is no longer a possibility to make
the problematic reduction:

Filter (Nz (cons N ListN)

→ If (Cons X (Filter Nz XS)) (Filter Nz XS) (Nz X)

since the unfolded rules require more of the non-determinism (in
the non-terminal symbols N and ListN) to be resolved earlier.

596

Filter p nil −→ nil

Filter p (cons z nil) −→ If (cons z (Filter p nil)) (Filter p nil) (p z)

Filter p (cons z (cons v0 v1)) −→ If (cons z (Filter p (cons v0 v1))) (Filter p (cons v0 v1)) (p z)

Filter p (cons (s v2) nil) −→ If (cons (s v2) (Filter p nil)) (Filter p nil) (p (s v2))

Filter p (cons (s v3) (cons v4 v5)) −→ If (cons (s v3) (Filter p (cons v4 v5))) (Filter p (cons v4 v5)) (p (s v3))

Figure 3. Depth-2 unfolding of the defining rules for Filter .

Refinement. Given a PMRS P and an infeasible error trace α
in the abstraction of P , we can obtain refined abstractions by
unfolding the rules of P according to the depths of terms in the
Failures set, then using the unfolded PMRS as the input to the next
cycle of the abstraction-refinement loop.

Lemma 9. Let P = 〈Σ, N , R, Main〉 be a PMRS and fPG be
the abstraction of P (starting from terms in L(G)). Let α be a
counterexample trace of fPG which is spurious with Failures set S.
Let d be the depth profile with domain N defined by:

d(F) = dp(R)(F) +
G
N

{ depth(t) | (F, P) ∈ S, t ∈ P }

and let P ′ be the d-unfolding of P . Then α is not a reduction
sequence in the abstraction fP ′

G of P ′.

Although it is clear that, given any spurious trace in some ab-
straction fPG , it is possible to construct a refinement that eliminates
it from any future abstraction fP ′

G , the set of traces of fPG and the

set of traces of fP ′
G are incomparable since, in general, there are

new pattern-variables introduced in the refinement and hence new
pattern-symbols into fP ′

G . However, there is a very close relation-
ship between the depth of a PMRS and the feasibility of reduction
sequences in its abstraction.

Lemma 10. Fix n ∈ N. Then given any PMRS P and input gram-
mar G, there is a depth-profile d such that, if fP ′

G is the abstraction
of the d-unfolding of P , then all length-m ≤ n reduction sequences
in fP ′

G are feasible.

A consequence of this close relationship between depth and
feasibility is that, under the assumption that the model-checker
always reports the shortest counterexample trace, if the PMRS
P (when run from a term in I) does violate the property then
eventually the abstraction-refinement cycle will produce a feasible
counterexample trace demonstrating the fact.

Theorem 4 (Semi-completeness). Let (P, I, A) be a no-instance
of the verification problem. Then the algorithm terminates with a
feasible counterexample trace.

6. Related work
We compare and contrast our work with a number of topics in
the literature broadly related to flow analysis and verification of
functional programs.

Higher-order multi-parameter tree transducer. As discussed in
the Introduction, Kobayashi [6] introduced a type-based verifica-
tion method for temporal properties of higher-order functional pro-
grams generated from finite base types. In a follow-up paper [9],
Kobayashi et al. introduced a kind of tree transducer, called HMTT,
that uses pattern-matching, taking trees as input and returning an
output tree. They studied the problem of whether the tree gener-
ated by a given HMTT meets the output specification, assuming

that the input trees meet the input specification, where both input
and output specifications are regular tree languages. A sound but
incomplete algorithm has been proposed for the HMTT verifica-
tion problem by reduction to a model checking problem for recur-
sion schemes with finite data domain (which can then be solved
by a variation of Kobayashi’s type-based algorithm). Though our
algorithm in the present paper solves a similar kind of verification
problem, it is not straightforward to compare it with the HMTT
work [9]. It would appear that PMRS is a more general (and nat-
ural) formalism than HMTT. What is clear is that our approach to
the over-approximation is very different: we use binding analysis
to obtain a wPMRS which generates an over-approximation of the
reachable term-trees, whereas Kobayashi et al. use automaton states
to approximate input trees.

Approximating collecting semantics and flow analysis. In a sem-
inal paper [5], Jones and Andersen studied the (data) flow analysis
of functional programs by safely approximating the behaviour of
a certain class of untyped, first-order, term rewriting systems with
pattern matching. Their algorithm takes a regular set I of input
terms, a program P and returns a regular tree grammar which is
a “safe” description of the set of all reachable (constructor) terms
of the computation of P with inputs form I. Precisely, the algo-
rithm computes a safe approximation of the collecting semantics of
P relative to I, which assigns to each rewrite rule a set of pairs
(θ, gθ) such that θ is a substitution (realisable in the course of
such a computation) of actual parameters to the formal parame-
ters of the rule, and gθ is a term reachable from the RHS of the rule
with the substitution θ. The collecting semantics is undecidable in
general. Jones and Andersen was able to obtain, for each rewrite
rule, a regular over-approximation of the set of realisable bindings
{x �→ θ x | realisable θ } for each formal parameter x of the rule,
and the set of reachable terms { gθ | realisable θ }, by decoupling
the pair (θ, gθ).

There are two directions in which Jones and Andersen’s algo-
rithm may be refined. Consider the setting of simply-typed func-
tional programs with pattern-matching algebraic data types. Recent
advances in the model checking of higher-order recursion schemes
(notably the decidability of MSO theories of trees generated by
higher-order recursion schemes [14]) indicate that the bindings of
non pattern-matching variables, whether higher-order or not, can
be precisely analysed algorithmically (though with extremely high
asymptotic complexity). Jones and Andersen’s algorithm builds a
regular approximation of the binding set of every variable. A nat-
ural question is whether one can improve it by approximating only
the bindings of pattern-matching variables, while analysing other
variables (including all higher-order variables) precisely using the
method in [14]. The work presented here offers a positive answer
to the question. Another direction worth investigating is to seek to
preserve, for each rewrite rule, as much of the connection between
realisable substitutions θ and reachable terms gθ as one can get
away with. In an recent dissertation [10], Kochems has presented
just such an algorithm using a kind of linear indexed tree grammars

597

(which are equivalent to context-free tree grammars) whereby the
indices are the realisable substitutions.

To compare our algorithm with Jones and Andersen’s, it is
instructive to apply their algorithm to our Example 8. Their
framework can be extended to simply-typed and higher-order
programs. It is an old idea in functional programming that an
higher-order expression, such as an “incompletely applied” func-
tion (· · · (f e1) · · ·)em where the type of f has arity greater than
m, may be viewed as a closure. (Indeed, closures are a standard
implementation technique.) From this viewpoint, a higher-order
non-terminal is regarded, not as a defined operator, but as a con-
structor, and closures are formed using a binary closure-forming
operator @. Thus, the second clause of Map2 is written in their
system as

@ (@ (@ Map2 ϕ) ψ) (cons x xs) −→
cons (@ ϕ x) (@ (@ (@ Map2 ψ) ϕ) xs)

Observe that in this setting, Map2 is a constructor (i.e. terminal)
symbol, and the expression (@ (@ Map2 ϕ) ψ) a pattern. Call
the binding set of a variable the set of terms that may be bound
to it at some point in the course of a computation. The approxi-
mating grammar produced by Jones and Andersen’s algorithm is
always regular (equivalently an order-0 recursion scheme). This is
achieved by over-approximating the binding set of every variable
(including higher-order ones, such as ϕ). The resultant grammar
generates all finite lists of 0’s and 1’s, which is less precise than our
algorithm.

Control flow analysis. Established in the 80’s by Jones [4], Shiv-
ers [17] and others, Control Flow Analysis (CFA) of functional
programs has remained an active research topic ever since (see
e.g. Midtgaard’s survey [12] and the book by Nielson et al. [13]).
The aim of CFA is to approximate the flow of control within a pro-
gram phrase in the course of a computation.

In a functional computation, control flow is determined by a se-
quence of function calls (possibly unknown at compile time); thus
CFA amounts to approximating the values that may be substituted
for bound variables during the computation. Since these values are
(denoted by) pieces of syntax, CFA reduces to an algorithm that
assigns closures (subterms of the examined term paired with sub-
stitutions for free variables) to bound variables. Reachability anal-
ysis and CFA are clearly related: for example, the former can aid
the latter because unreachable parts of the term can be safely ex-
cluded from the range of closure assignment. There are however
important differences: on one hand, CFA algorithms are approx-
imation algorithms designed to address a more general problem;
on the other, because CFA considers terms in isolation of its pos-
sible (program) contexts, the corresponding notion of reachability
essentially amounts to reachability in the reduction graph.

Functional reachability. Based on the fully abstract game se-
mantics, traversals [1, 14] are a (particularly accurate) model of
the flow of control within a term; they can therefore be viewed as
a CFA method. Using traversals, a new notion of reachability of
higher-order functional computation (in the setting of PCF) is stud-
ied in [16], called Contextual Reachability: given a PCF term M
of type A and a subterm Nα with occurrence α, is there a program
context C[−] such that C[M] is a closed term of ground type and
the evaluation of C[M] causes control to flow to Nα?

7. Conclusion
Recursion schemes with pattern matching (PMRS) are an accurate
and natural model of computation for functional programs have
pattern-matching algebraic data types. We have given an algorithm
that, given a PMRS P and a regular set I of input terms, con-
structs a recursion scheme with weak pattern-matching (wPMRS)

that (i) over-approximates the set of terms reachable from under
rewriting from P (ii) has a decidable model checking problem (rel-
ative to trivial automata). Finally, because of the precise analysis at
higher-orders, we show that there is a simple notion of automatic
abstraction-refinement, which gives rise to a semi-completeness
property.

For future work, we plan to build an implementation of the
verification algorithm for a real functional programming language.
We shall be especially interested in investigating the scalability of
our approach.

Acknowledgements. We would like to thank the anonymous re-
viewers for many useful comments.

References
[1] W. Blum and C.-H. L. Ong. Path-correspondence theorems and their

applications. Preprint, 2009.

[2] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In CAV ’00: Proceed-
ings of the 12th International Conference on Computer Aided Verifi-
cation, pages 154–169, London, UK, 2000. Springer-Verlag.

[3] A. Igarashi and N. Kobayashi. Resource usage analysis. ACM Trans.
Program. Lang. Syst., 27(2):264–313, 2005.

[4] N. D. Jones. Flow analysis of lambda expressions (preliminary ver-
sion). In Proceedings of the 8th Colloquium on Automata, Languages
and Programming, pages 114–128. Springer-Verlag, 1981. ISBN 3-
540-10843-2.

[5] N. D. Jones and N. Andersen. Flow analysis of lazy higher-order
functional programs. Theoretical Computer Science, 375:120–136,
2007.

[6] N. Kobayashi. Types and higher-order recursion schemes for verifica-
tion of higher-order programs. In Proceedings of POPL 2009, pages
416–428. ACM Press, 2009.

[7] N. Kobayashi. Model-checking higher-order functions. In PPDP,
pages 25–36, 2009.

[8] N. Kobayashi and C.-H. L. Ong. A type theory equivalent to the modal
mu-calculus model checking ofhigher-order recursion schemes. In
Proceedings of LICS 2009. IEEE Computer Society, 2009.

[9] N. Kobayashi, N. Tabuchi, and H. Unno. Higher-order multi-
parameter tree transducers and recursion schemes for program veri-
fication. In POPL, pages 495–508, 2010.

[10] J. Kochems. Approximating reachable terms of functional programs.
University of Oxford MMathsCompSc thesis, 2010.

[11] R. P. Kurshan. Computer Aided Verification of Coordinating Pro-
cesses. Princeton University Press, 1994.

[12] J. Midtgaard. Control-flow analysis of functional programs. Tech-
nical Report BRICS RS-07-18, DAIMI, Department of Computer
Science, University of Aarhus, Aarhus, Denmark, Dec 2007. URL
http://www.brics.dk/RS/07/18/BRICS-RS-07-18.pdf.

[13] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program
Analysis. Springer-Verlag New York, 1999.

[14] C.-H. L. Ong. On model-checking trees generated by higher-
order recursion schemes. In Proceedings 21st Annual IEEE Sym-
posium on Logic in Computer Science, Seattle, pages 81–90. Com-
puter Society Press, 2006. Long version (55 pp.) downloadable at
users.comlab.ox.ac.uk/luke.ong/.

[15] C.-H. L. Ong and S. J. Ramsay. Verifying higher-
order functional programs with pattern-matching al-
gebraic data types. Long version, available from:
https://mjolnir.comlab.ox.ac.uk/papers/pmrs.pdf.

[16] C.-H. L. Ong and N. Tzevelekos. Functional reachability. In LICS,
pages 286–295, 2009.

[17] O. Shivers. Control-flow analysis of higher-order languages. PhD
thesis, Carnegie-Mellon University, 1991.

598

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

