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Abstract

We consider a finitary procedural programming language (finite data-types, no re-
cursion) extended with parallel composition and binary semaphores. Having first
shown that may-equivalence of second-order open terms is undecidable we set out
to find a framework in which decidability can be regained with minimum loss of ex-
pressivity. To that end we define an annotated type system that controls the number
of concurrent threads created by terms and give a fully abstract game semantics for
the notion of equivalence induced by typable terms and contexts. Finally, we show
that the semantics of all typable terms, at any order and in the presence of iter-
ation, has a regular-language representation and thus the restricted observational
equivalence is decidable.

1 Introduction

Game semantics has emerged as a powerful paradigm for giving semantics
to a spectrum of programming languages ranging from purely functional lan-
guages to those with non-functional features such as control operators and
references [1–6]. Recently it has been developing in a new, algorithmic direc-
tion. Hankin and Malacaria have applied it to program analysis [7,8]. Ghica
and McCusker [9] found that the game semantics of a second-order fragment
of a procedural language can be captured by regular languages, demonstrat-
ing a new, semantics-directed, approach to software model-checking [10]. The
approach has subsequently been extended in various directions: to third or-
der [11], call-by-value [12,13], Hoare-style assertions [14] and specification [15].

In this paper we propose a game-based framework for compositional model
checking of concurrent programs. Although a fully abstract game model for a
concurrent programming language exists [16], it seems unsuitable as a model
of computation for model-checking applications. We can show that observa-
tional equivalence, even at second order in the absence of recursion, is not
decidable. The sources of non-finitary behaviour are the free identifiers of first

Preprint submitted to Elsevier Science 17 December 2004



or higher-order types, which correspond to procedures using an argument in
an unbounded number of concurrent threads of computation.

In the game model, active threads at any moment correspond to pending ques-
tions in a play. Hence, we constrain plays by placing bounds on the allowable
number of pending questions and enforce these restrictions syntactically using
a type system augmented with resource bounds. The key differences between
this type system and the standard type system, are the “linearization” of
application and parallel composition, i.e. requiring the environments of the
two sub-terms to be disjoint. We also revise the contraction rule to count
the number of contracted occurrences of a variable. We call this type sys-
tem Syntactic Control of Concurrency (SCC); it is a generalization of Serially
Reentrant Algol (SRA), a type system introduced by Abramsky to identify
higher-order terms of a sequential language denotable by “pointer-free” fini-
tary strategies [17].

The bounds imposed on the number of pending questions by SCC can be
seen as a kind of assume-guarantee reasoning (see e.g. [18]): bounds on the
behaviour of the Opponent represent assumptions on the behaviour of the
environment, while bounds on the behaviour of the Proponent represent guar-
antees on the behaviour of the system. Typability can be seen as composition,
made possible by the fact that the guarantees and the assumptions match. Un-
surprisingly, not all terms of the original language admit a resource-bounding
typing.

Resource-sensitive type systems are an area of research with numerous ap-
plications; the examples mentioned below are only entry points to a vast
literature. The nature of the controlled resource is usually duration [19] or
space [20]; applications of such systems are as diverse as execution in embed-
ded systems [21], memory management [22], compilation to hardware [23] or
proof-carrying code [24]. Type systems have also been used to control more
abstract resources, such as variable usage for improved compilation [25] or
interference effects for specification and verification [26].

The motivation behind SCC is to isolate (open) terms with finitary models for
the purpose of automated verification. The notion of resource in SCC, which
we may call active threads of computation, has a computational meaning, but
it is primarily motivated by the game-semantic analysis of the language [16].
The main thrust of the paper is thus semantic; we plan to investigate the
type-theoretic issues of SCC separately.
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Γ, x : θ ` x : θ Γ ` skip : com
m ∈ { 0, · · · , MAX }

Γ ` m : exp

Γ ` M : com Γ ` N : com, exp

Γ ` M ; N : com, exp
Γ ` M : com Γ ` N : com

Γ ` M ||N : com

Γ ` M : var Γ ` N : exp

Γ ` M := N : com
Γ ` M : var
Γ `!M : exp

Γ, x : θ ` M : θ′

Γ ` λx.M : θ → θ′
Γ ` M : θ → θ′ Γ ` N : θ

Γ ` MN : θ′
Γ ` M : θ → θ
Γ ` fix(M) : θ

Γ ` M : exp Γ ` N1, N2 : β

Γ ` if M thenN1 elseN2 : β

Γ ` M : exp Γ ` N : com

Γ ` whileM doN : com

Γ ` M : sem
Γ ` release(M) : com

Γ ` M : sem
Γ ` grab(M) : com

Γ, x : var ` M : com, exp m ∈ {0, · · · , MAX}
Γ ` newvar x := m in M : com, exp

Γ, x : sem ` M : com, exp m ∈ {0, · · · , MAX}
Γ ` newsem x := m in M : com, exp

Γ ` M : com Γ ` N : com
Γ ` mksemMN : sem

Γ ` M : exp → com Γ ` N : exp

Γ ` mkvarMN : var

Fig. 1. ICA typing rules

2 ICA and Its Game Model

Our object language, Idealized Concurrent Algol (ICA), is Idealized Algol over
the finite data-type { 0, . . . , MAX } (MAX > 0) extended with parallel com-
position ( || ) and binary semaphores. Its types are generated by the grammar
given below

β ::= com | exp | var | sem θ ::= β | θ → θ

and the typing judgements are displayed in Figure 1. Semaphores can be
manipulated using two (blocking) primitives, grab(S) and release(S), which
grab and respectively release the semaphore. We also use variable and semaphore
constructors mkvar and mksem (this is necessary for the full abstraction re-
sults: Theorems 5 and 19; mkvar was first introduced for this purpose in [3]).

The operational semantics is defined using a (small-step) transition relation
Σ ` M, s −→ M ′, s′. Σ is a set of names of variables denoting memory
cells and those of semaphores denoting locks ; s, s′ are states, i.e. functions
s, s′ : Σ → { 0, · · · , MAX }, and M, M ′ are terms. The basic reduction rules
are given in Figure 2, where c stands for any language constant (m or skip).
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Σ ` skip || skip, s −→ skip, s

Σ ` skip; c, s −→ c, s

Σ ` newvar x := m in c, s −→ c, s

Σ ` newsem x := m in c, s −→ c, s

Σ ` if 0 thenN1 elseN2, s −→ N2, s

Σ ` if m thenN1 elseN2, s −→ N1, s, m 6= 0

Σ ` !v, s⊗ (v 7→ m) −→ m, s⊗ (v 7→ m)

Σ ` v := m′, s⊗ (v 7→ m) −→ skip, s⊗ (v 7→ m′)

Σ ` grab(v), s⊗ (v 7→ 0) −→ skip, s⊗ (v 7→ 1)

Σ ` release(v), s⊗ (v 7→ m) −→ skip, s⊗ (v 7→ 0), m 6= 0

Σ ` (λx.M)N, s −→ M [N/x], s

Σ ` fixM, s −→ M(fixM), s

Σ ` (mkvarMN) := M ′, s −→ MM ′, s

Σ ` !(mkvarMN), s −→ N, s

Σ ` grab(mksemMN), s −→ M, s

Σ ` release(mksemMN), s −→ N, s

Fig. 2. Reduction rules for ICA

In-context reduction is given by the schemata:

Σ, v ` M [v/x], s⊗ (v 7→ m) −→ M ′, s′ ⊗ (v 7→ m′) M 6= c

Σ ` newvar x := m inM, s −→ newvar x := m′ inM ′[x/v], s′

Σ, v ` M [v/x], s⊗ (v 7→ m) −→ M ′, s′ ⊗ (v 7→ m′) M 6= c

Σ ` newsem x := m inM, s −→ newsem x := m′ inM ′[x/v], s′

Σ ` M, s −→ M ′, s′

Σ ` E [M ], s −→ E [M ′], s′

where reduction contexts E [−] are produced by the grammar:

E [−] ::= [−] | E ; N | (E ||N) | (M || E) | EN

| if E thenN1 elseN2 | !E | E := m | M := E | grab(E) | release(E).

We consider an angelic notion of termination: we say that a term M termi-
nates in state s, written M, s ⇓, if there exists a terminating evaluation at
start state s: ∃s′, M, s −→∗ c, s′, with c ∈ { 0, · · · , MAX } or c = skip. If M
is closed and M, ∅ ⇓ we write M ⇓. We define the observational approximation
relation contextually: Γ ` M1

@∼ M2 holds if and only if ∀C[−] : com, C[M1] ⇓
implies C[M2] ⇓, where C[Mi] are closed terms of type com. Observational
may-equivalence (Γ ` M1

∼= M2) is then defined as Γ ` M1
@∼ M2 and Γ `

M2
@∼ M1.
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In [16] we have given a game model which is fully abstract for @∼ and ∼=. We
give a sketch of the model.

Definition 1 An arena A is a triple 〈MA, λA,`A〉 where:

• MA is a set of moves;
• λA : MA → {O, P } × {Q, A } is a function determining for each m ∈ MA

whether it is an Opponent or a Proponent move, and a question or an
answer; we write λOP

A , λQA
A for the composite of λA with respectively the first

and second projections;
• `A is a binary relation on MA, called enabling, satisfying: if m `A n for no

m then λA(n) = (O,Q), if m `A n then λOP
A (m) 6= λOP

A (n), and if m `A n
then λQA

A (m) = Q.

If m `A n we say that m enables n. We shall write IA for the set of all moves
of A which have no enabler; such moves are called initial. Note that an initial
move must be an Opponent question.

The product (A×B) and arrow (A ⇒ B) arenas are defined by:

MA×B = MA + MB

λA×B = [λA, λB]

`A×B = `A + `B

MA⇒B = MA + MB

λA⇒B = [〈λPO
A , λQA

A 〉, λB]

`A⇒B = `A + `B +{ (b, a) | b ∈ IB and a ∈ IA }

where λPO
A (m) = O iff λOP

A (m) = P .

In arenas used to interpret base types all questions are initial and P-moves
answer them as detailed in the table below, where m ∈ { 0, · · · , MAX }.

Arena O-question P-answers Arena O-question P-answers

JcomK run ok JexpK q m

JvarK read m JsemK grab ok

write(m) ok release ok

A justified sequence in arena A is a finite sequence of moves of A equipped
with pointers. The first move is initial and has no pointer, but each subsequent
move n must have a unique pointer to an earlier occurrence of a move m
such that m `A n. We say that n is (explicitly) justified by m or, when n
is an answer, that n answers m. Note that interleavings of several justified
sequences may not be justified sequences; instead we shall call them shuffled
sequences. If a question does not have an answer in a justified sequence, we
say that it is pending (or open) in that sequence. In what follows we use the
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letters q and a to refer to question- and answer-moves respectively, m denotes
arbitrary moves. Not all justified sequences are valid. In order to constitute a
legal play, a justified sequence must satisfy a well-formedness condition which
reflects the “static” style of concurrency of our programming language: any
process starting sub-processes must wait for the children to terminate in order
to continue. In game terms, if a question is answered then that question and
all questions justified by it must have been answered (exactly once). This is
spelled out as follows:

Definition 2 The set PA of positions (or plays) over A consists of the jus-
tified sequences s over A which satisfy the two conditions below.

FORK : In any prefix s′ = · · · q · · · m
||

of s, the question q must be pend-
ing before m is played.

WAIT : In any prefix s′ = · · · q · · · a
||

of s, all questions justified by q
must be answered.

For two shuffled sequences s1 and s2, s1 q s2 denotes the set of all interleav-
ings of s1 and s2. For two sets of shuffled sequences S1 and S2, S1 q S2 =⋃

s1∈S1,s2∈S2
s1 q s2. Given a set X of shuffled sequences, we define X0 = X,

X i+1 = X iqX. Then X~, called iterated shuffle of X, is defined to be
⋃

i∈NX i.

We say that a subset σ of PA is O-complete if s ∈ σ and so ∈ PA, where o is
an occurrence of an O-move, entail so ∈ σ.

Definition 3 A strategy σ on A (written σ : A) is a prefix-closed subset of
PA, which is O-complete.

Strategies σ : A ⇒ B and τ : B ⇒ C are composed in the standard way, by
considering all possible interactions of positions from τ with shuffled sequences
of σ~ in the shared arena B, then hiding the B moves.

The model consists of saturated strategies only: the saturation condition stip-
ulates that all possible (sequential) observations of (parallel) interactions must
be present in a strategy: actions of the environment can always be observed
earlier if possible, actions of the program can always be observed later. To for-
malize this, for any arena A a preorder � on PA is defined, as the least transi-
tive relation � satisfying s0 ·o·s1 ·s2 � s0 ·s1 ·o·s2 and s0 ·s1 ·p ·s2 � s0 ·p ·s1 ·s2

for all s0, s1, s2 where o is an O-move and p is a P-move. In the above pairs of
positions moves on the left-hand-side of � have the same justifiers as on the
right-hand-side.

Definition 4 A strategy σ is saturated iff s ∈ σ and s′ � s imply s′ ∈ σ.

The two saturation conditions, in various formulations, have a long pedigree
in the semantics of concurrency. For example, they have been used by Udding
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to describe propagation of signals across wires in delay-insensitive circuits [27]
and by Josephs et al to specify the relationship between input and output in
asynchronous systems with channels [28]. Laird has been the first to adopt
them in game semantics, in his model of Idealized CSP [29].

Arenas and saturated strategies form a Cartesian closed category Gsat in which
Gsat(A, B) consists of saturated strategies on A ⇒ B. The identity strategy
is defined by “saturating” the alternating positions s ∈ PA1⇒A2 such that
∀ t veven s, t � A1 = t � A2, which gives rise to the behaviour of an unbounded
buffer (we use A1 and A2 to distinguish the two copies of A in the arena
A ⇒ A).

Other elements of the syntax are interpreted by the least saturated strategies
generated by the plays from the table below:

; q1 run ok q0 a0 a1 || run2 run0 run1 ok 0 ok 1 ok 2

:= run2 q1 m1 write(m)0 ok 0 ok 2 ! q read mm

grab run1 grab0 ok 0 ok 1 release run1 release0 ok 0 ok 1

newvar x := m q q (read m)∗ (
∑MAX

i=0 (write(i) ok (read i)∗))∗ a a

newsem x := 0 q q (grab ok release ok)∗ (grab ok + ε) a a

newsem x := 1 q q (release ok grab ok)∗ (release ok + ε) a a.

Here we follow a convention (see e.g. [9]) that uses subscripts to distinguish
copies of the same move.

As shown in [16], Gsat is fully abstract for ∼= in the sense mentioned below.
comp(σ) denotes the set of non-empty complete plays of a strategy σ, i.e. those
in which all questions have been answered.

Theorem 5 Γ ` M1
@∼ M2 ⇐⇒ comp(JΓ ` M1K) ⊆ comp(JΓ ` M2K). Hence,

Γ ` M1
∼= M2 ⇐⇒ comp(JΓ ` M1K) = comp(JΓ ` M2K).

3 Undecidability of ICA May-Equivalence

A Minsky machine [30] is a state machine with two unbounded counters c1, c2.
Formally, it can be viewed as a tuple 〈Q, q0, F, δ〉, where Q is the set of states
partitioned into disjoint subsets QINC

1 , QINC
2 , QDEC

1 , QDEC
2 with a designated

set of final states F (q0 6∈ F ) and where δ denotes the two groups of functions:
δ1 : QINC

1 → Q , δ2 : QINC
2 → Q and δ0

1 : QDEC
1 → Q, δ0

2 : QDEC
2 → Q,
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δ+
1 : QDEC

1 → Q, δ+
2 : QDEC

1 → Q. The machine starts from an initial state
q0. The initial values of both counters are 0. When the machine is in state
q ∈ QINC

i , the counter ci is incremented by 1 and the machine moves to δi(q).
When in state q ∈ QDEC

i , the next step depends on whether the value of ci

is zero. If so, the machine enters δ0
i (q). Otherwise ci is decremented by 1 and

the machine moves to δ+
i (q). We say that a Minsky machine machine halts if

a final state is entered and the values of both counters are then 0. It is well-
known [30] that the halting problem for Minsky machines is not decidable and
we use this to show that neither is observational equivalence.

Theorem 6 ICA may-equivalence is undecidable.

PROOF. Let Ωcom stand for fix(λx.x) : com, i.e. Ωcom is the divergent
command. We show how, given a Minsky machine, one can define a term
g : com → com ` M : com such that g : com → com ` M ∼= Ωcom if and
only if the associated machine does not halt. By Theorem 5 it suffices to show
that comp(Jg : com → com ` M : comK) is not empty iff the machine halts.

The construction of M takes advantage of the fact that the free identifier
g : com → com represents an indeterminate procedure which can use its ar-
gument in a variety of ways (possibly in parallel; the uses may be interleaved
or overlapping). This intuition is captured by the use of iterated shuffle in
the game model. Using semaphores we are going to restrict the shape of the
interleavings (possibly) generated by g in such a way that terminating compu-
tations (complete positions) can only arise from a halting run of the Minsky
machine.

Let us write [B] for if B then skip elseΩcom. For i = 1, 2 we define the fol-
lowing terms

Ii ≡ grab(S); [!ST ∈ QINC
i ]; ST := δi(!ST ); release(S)

D+
i ≡ grab(S); [!ST ∈ QDEC

i ]; ST := δ+
i (!ST ); release(S)

D0
i ≡ grab(S); [!ST ∈ QDEC

i ]; ST := δ0
i (!ST ); release(S),

which will correspond to the three kinds of actions on the counter ci. Note that
each of the above terms is protected with the same semaphore, so terminating
computations can only emerge from interleavings of the six kinds of terms
where they are processed in a sequence. Hence, to complete the argument, it
suffices to impose additional restrictions guaranteeing that only the sequence
simulating actions of the Minsky machine leads to convergence.

We first focus on ensuring that zero tests (modelled by D+
i or D0

i ) are handled
correctly. By a simple history of a counter we mean a (possibly empty) series
of increments and decrements starting at value 0 resulting in value 0, possibly
followed by a zero test. Observe that the full history of a counter in a halting
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Minsky machine is a sequence of simple histories. Then the term

Ci ≡ grab(Si); g(Ii; D
+
i ); (D0

i or skip); release(Si)

corresponds to all simple histories of ci: because copies of Ii and D+
i will never

overlap in terminating computations, g(Ii; D
+
i ) corresponds to all potential

sequences of increments and decrements of ci leading from value 0 to 0. Note
also the use of semaphores Si which will guarantee that different copies of C1

(C2 respectively), i.e. simple histories of each counter, can be interleaved only
sequentially, while the sequence of C1’s and the sequence of C2’s can interact
freely. This ensures that g(C1 orC2), where

C1 orC2 ≡ newvar x in (x := 0 ||x := 1); if !x thenC1 elseC2,

will represent all sequences of I1, I2, D
+
1 , D0

1, D
+
2 , D0

2 in which before each D+
i

the number of Ii’s always exceeds that of D+
i ’s and before each D0

i we have
an equal number of Ii’s and D+

i ’s.

Finally, in order to capture a halting run of the given Minsky machine, we
have to make sure that the sequences above are consistent with state changes
of the machine. This is however already guaranteed by assertions of the form
[!ST ∈ · · · ] in Ii, D

+
i , D0

i whose presence we have ignored in our argument so
far. M can thus be taken to be:

g : com → com ` newvar ST := q0 in

newsem S, S1, S2 := 0, 0, 0 in g(C1 orC2); [!ST ∈ F ].

2

4 SCC: a Resource-Bounding Type System

The simulation above is possible because free identifiers com → com corre-
spond to functions that investigate the argument an arbitrary number of times
(possibly in parallel). Therefore the key to regaining decidability is to restrict
the number of times an argument is used concurrently. However, we need not
restrict the number of sequential uses, to allow for iteration and all sorts of
interesting procedural programs.

The type system is for the recursion-free fragment with while. Divergence,
Ωcom, can then be defined by while 1do skip. Types are generated by the
following grammar:

β ::= com | exp | var | sem θ ::= β | γ → θ γ ::= θn.
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The numbers that label the left-hand side of a function type will be called
resource bounds. An occurrence m of a resource bound in a type θ is an as-
sume (respectively guarantee) if it occurs in the left-hand scope of an even
(respectively odd) number of →’s in θ. Formally, m is an assume (a guarantee)
in θ iff θ = A[m] (θ = G[m]):

G[ ] ::= θ
[ ]
1 → θ2 | θn → G[ ] | A[ ]n → θ,

A[ ] ::= θn → A[ ] | G[ ]n → θ.

For instance, 3 in (com3 → com)4 → com is an assume and 4 is a guarantee.
Assumes and guarantees will turn out to correspond to the Opponent/Player
polarity in game semantics.

Assumes characterize the behaviour of the program context and guarantees
characterize that of the program. The assumes of a typing judgement θn1

1 , . . . , θnk
k `

M : θ are the assumes in θ along with the guarantees in θ1, . . . , θk. The guar-
antees of a typing judgement are the guarantees of θ, the assumes in θ1, . . . , θk

and n1, . . . , nk.

We use types of this form to approximate the maximum number of concurrent
sub-threads of computation at any moment. This estimate is subject to as-
sumes on the environment. Intuitively, if a program has a type θ, then provided
the environment behaves according to the assumes, the program’s behaviour
satisfies the guarantees. In this spirit we introduce a sub-typing relation which
can be taken to correspond to weakening the constraints imposed by SCC.

β ≤ β
n1 ≤ n2

θn2 ≤ θn1

γ2 ≤ γ1 θ1 ≤ θ2

γ1 → θ1 ≤ γ2 → θ2

.

Intuitively, a subtype gives a less precise approximation: higher on the be-
haviour of the program and lower for the environment. In the latter case, the
bound is considered inferior because it applies to a weaker behaviour of the
environment.

The SCC typing rules are given in Figure 3. Typing judgements are of the form
Γ `r M : θ, where Γ = x1:θ

n1
1 , . . . , xk:θ

nk
k ; we write nΓ = x1:θ

n·n1
1 , . . . , xk:θ

n·nk
k .

Note that the typing rules make a distinction between parallel and sequential
composition. Parallel composition and application have multiplicative rules,
in which the contexts are required to be disjoint, as opposed to the rules
for sequential operators (� can stand for ; , := , ! ,grab, release) including
branching and iteration. In order to be able to use identifiers (e.g. semaphores)
in concurrent threads, a contraction rule is necessary; we modify it so that the
guaranteed bounds on the contracted variables are accumulated into the new
variable.

Remark 7 The rule for application is also multiplicative. The reason is that
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Axioms:

x : θ1 `r x : θ `r skip : com
m ∈ { 0, · · · , MAX }

`r m : exp

Additive rules:

Γ `r M : θ
Γ, x : γ `r M : θ

Γ `r M : θ θ ≤ θ′

Γ `r M : θ′

{Γ `r M : θ1} Γ `r N : θ2

Γ `r {M}� N : θ3

Γ, x : γ `r M : θ

Γ `r λx.M : γ → θ

Γ `r M : exp Γ `r N1, N2 : β

Γ `r if M thenN1 elseN2 : β

Γ `r M : exp Γ `r N : com

Γ `r whileM doN : com

Γ, x : varn `r M : com, exp

Γ `r newvar x := m in M : com, exp

Γ, x : semn `r M : com, exp

Γ `r newsemx := m in M : com, exp

Γ `r M : com Γ `r N : com
Γ `r mksemMN : sem

Γ `r M : expn → com Γ `r N : exp

Γ `r mkvarMN : var

Multiplicative rules:

Γ, x : θn1 , y : θn2 `r M : θ′

Γ, x : θn1+n2 `r M [x/y] : θ′
Γ `r M : com ∆ `r N : com

Γ, ∆ `r M ||N : com

Γ `r M : θn → θ′ ∆ `r N : θ

Γ, n∆ `r MN : θ′

Fig. 3. SCC typing rules

call-by-name application is a peculiar form of concurrency in which the com-
putation carried out by the function is interleaved with that of its argument,
albeit in a highly constrained fashioned. For instance, if F is a first-order
function, any computation arising in an application F (M) also arises in the
parallel composition · · ·F (· · · ) · · · || · · ·M · · · || · · · || · · ·M · · · , where the el-
lipses stand for code manipulating semaphores so that the right interleaving
of effects is enforced [16]. A multiplicative application rule is also used in
SRA [17].

Example 8 For any n ∈ N we have

(1) `r λfx.f(f(x)) : (comn → com)n+1 → (comn2 → com)

11



(2) `r λfx.f(x); f(x) : (comn → com)1 → (comn → com)
(3) `r λfx.f(x) || f(x) : (comn → com)2 → (com2n → com)
(4) `r λf.f(fskip) : (comn → com)n+1 → com
(5) `r λg.g(λx.g(λy.x)) : ((comn → com)n → com)n+1 → com

SCC enjoys the standard syntactic properties of a typed lambda calculus (ba-
sis, generation, sub-term, substitution and subject reduction lemmas) [31]. We
also have the easily derivable dual of the subsumption law:

Γ, x : θ′ `r M : θ′′ θ ≤ θ′

Γ, x : θ `r M : θ′′
.

Not all ICA terms are typable in SCC. However, if one attempts to prove
typability by induction on the structure of ICA derivations, it turns out that
only the application rule does not preserve it. This is because the correspond-
ing SCC rule requires that the bounds of the argument match those of the
function term. For example, the application of the term 5 to term 4 above is
untypable.

Given the bounds for environment, SCC can be used to certify bounds for the
program.

Definition 9 An ICA term Γ ` M : θ is r-typable if for any assignment of
assumes there exists an assignment of guarantees such that when we adorn
Γ, θ with these bounds we get Γ′, θ′ such that Γ′ `r M : θ′. We shall write ηa,
ηg respectively for the two assignments.

Since not all terms are typable, not all terms are r-typable. However, there is a
wide class of r-typable (and so typable) terms. The key to regaining typability
lies in restricting the shape of possible applications. The lemma below exhibits
two instances where typability is preserved (a combination of the two is also
possible).

Lemma 10 (1) Any β-normal ICA term is r-typable.
(2) Any ICA term in which function arguments are of first order or base type

is r-typable.

PROOF. We reason by induction on the ICA typing rules. All cases except
the application rule are routine appeals to the induction hypothesis. For rules
with more than one premise it is necessary to apply the dual law given above to
find a common typing (by using the higher of the guarantees provided by the
several appeals to the induction hypothesis). Additionally, for || , contraction
has to be used. Finally, we consider the restricted forms of application.

(1) If a term is β-normal then all applications have the form Γ ` fM1 · · ·Mk.

12



For simplicity, we will assume that k = 1 (the argument for k > 1 follows
the same pattern).

Suppose Γ ` fM1 : θ2 and ηa is an assignment of assumes to the typing
judgement. Let ηa

r = ηa � θ2. Note that f : θ1 → θ2, for some θ1, must be
present in Γ, so ηa also defines bounds for the associated occurrence of
θ1 → θ2. Let ηa

f = ηa � (θ1 → θ2).
Consider Γ ` M1 : θ1 and the assignment of assumes in which the

bounds for Γ are the same as in ηa and those for θ1 are determined
by ηa

f . By IH we get Γ′ `r M1 : θ′1. Define the resource type θ′2 by
decorating θ2 with assumes given by ηa

r and guarantees which are assumes
in ηa

f . Then we have f : (θ′1 → θ′2)
1 `r f : (θ′1 → θ′2) and, consequently,

f : (θ′1 → θ′2), Γ
′ `r fM1 : θ′2. Recall that Γ′ will contain an occurrence

of f where the associated assumes are the same as those for f . Using the
dual subsumption law we can make the guarantees match and finish by
contracting f .

(2) Suppose Γ ` MN : θ and Γ ` N : β → β. Let ηa be an assignment of
assumes to the first judgement. By IH, using assumes from ηa for Γ, we
have Γ′ `r N : βn′ → β. Now consider Γ ` M : (β → β) → θ. By IH,
using assumes from ηa for Γ and n′ for the leftmost occurrence of β, we
get Γ′′ `r M : (βn′ → β)n → θ′. Hence, Γ′′, nΓ′ `r MN : θ′. Because
Γ′′ and Γ′ share the same assumes, we can unify the guarantees inside Γ′

and Γ′′ using the dual subsumption law and follow with contraction to
get Γ′′′ `r fM : θ′, where the assumes in Γ′′′ coincide with ηa. 2

Using SCC we can define a new observational approximation relation @∼ r using
typable terms and contexts along with their bounds. Suppose Γ `r M1,M2 : θ.
In what follows we write `r C[Mi] to mean that C[Mi] is typable and its
derivation is constructed using (possibly several copies of) the given derivation
of the typing judgement Γ `r Mi, up to appropriate renaming of variables. We
define Γ `r M1

@∼ rM2 to hold iff for all contexts C[−] such that `r C[Mi] : com
we have: C[M1] ⇓ implies C[M2] ⇓. Similarly, we write Γ `r M1

∼=r M2 iff
Γ `r M1

@∼ rM2 and Γ `r M2
@∼ rM1. In particular, the definition applies to

the terms for which the above lemma holds. Note that no bound needs to
be placed on the way Mi is used in C[Mi], the bounds concern only the way
its free identifiers are trapped in context. In the definition of @∼ r we require
Γ `r Mi : θ to have the same annotations. If two terms are typable with
the same assumed bounds, it is always possible to type them with the same
guaranteed bounds by sub-typing.

Example 11 ([32]) Consider the terms

M1 ≡ newvar x := 0 in (p(x := !x + 1; x := !x + 1); if even(!x) thenΩcom)

M2 ≡ newvar x := 0 in (p(x := !x + 2); if even(!x) thenΩcom)

13



with p : com → com. Brookes has shown that in sequential Algol they are
observationally equivalent, whereas in concurrent Algol they are not. In SCC
we have p : (com1 → com)1 `r M1

∼=r M2; but for any (assumed) bound
n > 1, p : (comn → com)1 `r M1 6∼=r M2. The reason is that the assumed
bound of 1 only allows identifier p to be bound to a procedure which uses its
argument sequentially. For example, context C[−] = (λp.[−])(λc.c || c) cannot
trap p : com1 → com. On the other hand, context C[−] = (λp.[−])(λc.c; c)
can trap p : comn → com for any n.

A formal proof of this example is immediate once the connection with game
semantics is established in the following section.

5 The Game Model Revisited

We use the game model to interpret the annotations from the type system
and to show how the model can be used to reason about @∼ r,∼=r. In order to
analyze the positions induced by terms in more detail we define a more refined
games framework where plays can form a subset of PA as opposed to the full
PA. In particular we are going to dissect the possibilities for the function space
game A ⇒ B. To do that we introduce an auxiliary notion of games in which
shuffled sequences are allowed (cf. [33]).

Definition 12 A bounded game A is a pair 〈A,RA 〉 where A is an arena
and RA is a prefix-closed subset of P~A .

We also refer to the elements of RA as plays and write comp(RA) for the set of
complete plays in RA (those in which all questions are answered). The games
of Gsat can be viewed as bounded games where RA = PA.

Using bounded games we can define a more refined type hierarchy:

A×B = (A×B,RA + RB)

A⊗B = (A×B,RA qRB)

!A = (A,R~A)

A ( B = (A ⇒ B, { s ∈ P~A⇒B | s � A ∈ RA, s � B ∈ RB }).

We can then construct an arrow type as

A ⇒ B = !A ( B.

We also have

!A⊗ !B = !(A×B).

14



Note that where RA = PA, RB = PB the × and ⇒ constructions coincide with
the previous ones.

Let us now define

!◦A = (A, (comp(RA))∗ ·RA),

i.e. !◦ is an impoverished, sequential, version of ! where a new “thread” of RA

can be started only when the previous one is completed. Obviously, R!◦A ⊆ R!A.

An important case of !◦A, which we use in the following, is when A is well-
opened, i.e. each play in RA can contain only one occurrence of an initial
move, namely, the first move of the play (all games interpreting ICA types
are of that kind). Then !◦A contains plays which might have many occurrences
of initial moves, but only one occurrence of an initial question can be open
(pending) at any time. Similarly,

⊗
1≤i≤n !◦A contains plays with at most n

pending questions; we shall write An for it. We use this construction to specify
restricted function spaces: instead of A ⇒ B = !A ( B we consider An ( B.
These restrictions turn out to give the correct interpretation of the bounds
inferred by the type system for SCC.

Regardless of whether we deal with standard ICA type or typing judgements
(annotated with bounds or not) J· · ·K stands for the usual interpretation in
Gsat (i.e. the information about bounds is completely ignored by J· · ·K). We
introduce the notation J· · ·Kη for bound-sensitive semantic interpretation.

Let Γ `r M : θ, where Γ = θn1
1 , . . . , θnk

k . In Gsat it is standardly interpreted by a
strategy for the game JΓ ` θK = Jθ1K× . . .×JθkK ⇒ JθK or, equivalently, !Jθ1K⊗
. . .⊗ !JθkK ( JθK. Suppose η represents a vector of resource bounds consistent
with Γ `r M : θ. It is not necessary that η includes all the bounds used in
the resource-sensitive type judgement. Then the corresponding bounded game,
denoted by JΓ ` θKη, is defined inductively in the same way as JΓ ` θK except
that whenever a bound n is specified by η (for an occurrence of → or θi), we
use An ( B and An instead of respectively A ⇒ B = !A ( B and !A.

Example 13 Suppose we have x1 : (com9 → sem)5, x2 : (exp3 → com)7 `
M : exp7 → var. The complete vector of resource bounds is (9, 5, 3, 7, 7). Let
η stand for the distinguished bounds (−, 5, 3,−, 7). Then

Jcom → sem, exp → com ` exp → varKη

= (!JcomK ( JsemK)5 ⊗ !(JexpK3 ( JcomK) ( (JexpK7 ( JvarK)

This notation is flexible enough to handle assumes, guarantees or combined
assume-guarantee resource bounds in a uniform way.
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Now we are ready to interpret the bounds given by the type system using
the game model. We denote the interpretation by JΓ ` M : θKηa . It is simply
JΓ ` M : θK in which O-moves are restricted to those allowed by the An ( B
games consistent with the bounds in ηa:

JΓ ` M : θKηa = JΓ ` M : θK ∩RJΓ`θKηa .

More precisely, for each occurrence m of an initial move from such B Opponent
will not be allowed to play an initial move from A justified by m if the current
position already contains n pending questions justified by m. The guaranteed
bounds given by SCC are then sound in that they are correct approximations
of the shape of positions explored by P when O behaves according to ηa, i.e.
the positions are not only in RJΓ`θKηa but also in RJΓ`θKηaηg , where by ηη′ we
mean the two combined constraint vectors.

Theorem 14 JΓ ` M : θKηa ⊆ RJΓ`θKηaηg .

PROOF. The theorem can be proved by induction on the derivation of Γ `r

M : θ. As before, application is, technically, the most difficult. In all other
cases it is easy to see that the definition of JΓ ` M : θKηa is compositional:
JΓ ` M : θKηa can be defined directly by induction on the structure of `r

derivations. Consequently, a simple appeal to the induction hypothesis does
the job.

For application, let ηa
1, η

a
2, η

a
3 represent the assumed bounds of the respective

three judgements:

Γ `r M : θn → θ′ ∆ `r N : θ
Γ, n∆ `r MN : θ′

.

Let us make the following definitions:

σ1 = JΓ ` M : θ → θ′Kηa
1

σ′1 = JΓ ` M : θ → θ′Kηa
3�Γ,θ′

σ2 = J∆ ` N : θKηa
2

σ′2 = J∆ ` N : θKηa
3�∆

,

where we write η � Θ for η restricted to a list of types Θ. The only difference
between σi and σ′i (i = 1, 2) is that in σ′i there are no bounds on O-moves in
θ. Otherwise, they are subject to the same restrictions, because ηa

1 � Γ, θ′ =
ηa

3 � Γ, θ′ and ηa
2 � ∆ = ηa

3 � ∆.

Consider JΓ, n∆ ` MN : θ′Kηa
3
, which is defined by interactions of σ′1 with σ′2.

Note that up to the first move in θ , σ′1 behaves in the same way as σ1. Then,
as σ′1 and σ′2 interact, the induction hypotheses imply that the guarantees
provided by each of the strategies match the assumed bounds of the other
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(ηg
1 � θ = ηa

2 � θ, ηg
2 � θ = ηa

1 � θ). Thus, the interaction of σ′1 and σ′2 is actually
constrained to positions of σ1 and σ2. Consequently, JΓ, n∆ ` MN : θ′Kηa

3
can

also be defined compositionally by interactions of σ1 and σ2 and the rest easily
follow. 2

The sets of complete plays induced by the restricted denotations comp(JΓ `r

M : θKηa) turn out to provide a fully abstract model of @∼ r.

Lemma 15 Suppose Γ `r M1,M2 : θ and let ηa be the final assignment of
assumed bounds. Then comp(JΓ `r M1 : θKηa) ⊆ comp(JΓ `r M2 : θKηa)
implies Γ ` M1

@∼ rM2 : θ.

PROOF. Suppose `r C[Mi] : com (i=1,2) and C[M1] ⇓. Then, by the
soundness of Gsat[16], comp(JC[M1]K) 6= ∅. As noted in the proof of Theo-
rem 14, JC[M1]K can be defined inductively through JΓ ` M1Kηa so, because
comp(JΓ `r M1Kηa) ⊆ comp(JΓ `r M2Kηa), we also have comp(JC[M2]K) 6= ∅.
Thus, again by the adequacy of Gsat, C[M2] ⇓ and indeed M1

@∼ rM2. 2

To prove the converse we need to strengthen the definability result from [34] to
ensure that terms corresponding to positions are also typable. This means that
we cannot simply regard justification pointers as indicating parallel threads of
computation and have to sequentialize threads where possible. The details of
the adaptation are presented in Appendix A. The example below illustrates
this new definability algorithm.

Example 16 Let us consider a position in the game for com2 → com:

run · run1· run1· ok1· run1· ok1· run1· ok1· ok1· ok.

The algorithm from [16,34] would return

λx.newvar x0, x3, x5, x7, x8 := 0 in x0 := 1; M ;WAIT 9,

where M ≡ (P1 ||P2 ||P4 ||P6) and

P1 ≡ WAIT 1; x; x3 := 1 P2 ≡ WAIT 2; x; x5 := 1,
P4 ≡ WAIT 4; x; x8 := 1, P6 ≡ WAIT 6; x; x7 := 1,

but the term does not have the required type com2 → com. The refined version
produces M ≡ (P1; P4) || (P2; P6) instead. The term WAIT i tests whether all
variables xj with indices less than i are set to 1 and diverges if they are not.

Consequently, the following properties can be proved as in [16].

17



Lemma 17 Suppose θ is a type with constraints η and s ∈ RJθKη . Then there
exists a term `r M : θ such that JMK is the least saturated strategy contain-
ing s.

Lemma 18 Suppose Γ `r M1,M2 : θ and let ηa be the final assignment of as-
sumed bounds. Γ ` M1

@∼ rM2 : θ implies comp(JΓ `r M1 : θKηa) ⊆ comp(JΓ `r

M2 : θKηa).

Lemmas 15 and 18 imply full abstraction.

Theorem 19 Suppose Γ `r M1,M2 : θ and let ηa be the final assignment of
assumed bounds.

• Γ ` M1
@∼ rM2 : θ ⇐⇒ comp(JΓ `r M1 : θKηa) ⊆ comp(JΓ `r M2 : θKηa).

• Γ ` M1
∼=r M2 : θ ⇐⇒ comp(JΓ `r M1 : θKηa) = comp(JΓ `r M2 : θKηa).

6 Regular Representation

In this section we show sets of complete plays comp(JΓ `r M : θKηa) can
be represented faithfully as regular languages and compared by checking lan-
guage equivalence. The main difficulty to be addressed is the need to represent
pointers.

For any bounded game θ, we represent the positions of RJθKηaηg using the
alphabet A(θ) defined as follows:

A(β) = MJβK,

A(γ → θ) = A(γ) +A(θ),

A(θn) = {mi | m ∈ A(θ), 1 ≤ i ≤ n }.

Thus, elements of A(θ) can be seen as moves of JθK decorated with a vector
~i = (i1, . . . , ik) of labels produced by the last clause. The letters m

~i will be
used to encode occurrences of m in positions from RJθKηaηg subject to two
invariants.

• If a question q has several open occurrences then each of them will be
represented by a different vector.

• Suppose an occurrence of a question q is represented by q
~i. If an occurrence

of another question m is justified by the above occurrence of q, then m is
represented as mj~i for some j ∈ N.

We explain below how each position from the game under question will be
represented so that the invariants are satisfied and only letters from A(θ) are
used. Note that the initial moves of θ occur without labels in A(θ). They will
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also be represented as such in positions (this never leads to ambiguities since
positions have unique initial moves). Given a representation of s a represen-
tation of sm is calculated as follows.

• If m is an answer to an occurrence of q in s represented by q
~i then m is

represented by m
~i.

• If m is a question justified by an occurrence of q in s represented by q
~i,

then there exists a sub-game Gn
m ( Gq of JθKηaηg such that q, m are initial

moves of respectively Gq, Gm. Since sm is a position of JθKηaηg there can be
at most n− 1 open questions in s that are justified by the same occurrence
of q and, hence, represented by qj~i. Thus one of the labels from { 1, . . . , n },
say k, has not been used. Then we represent m as mk~i (any such k will do).

Note that, thanks to the labels, justification pointers can be uniquely recon-
structed from the representation, so it is faithful. However, it is not unique
because of the arbitrary choice of k. We will say that a representation is canon-
ical if k is always chosen to be the least k available. The notion of canonicity
is crucial to comparing representations of positions as they will provide the
link between language equivalence and program equivalence.

Given a set S of strings over A(θ) representing a set of plays (e.g. a strategy)
on RJθKηaηg we write can(S) for the canonization of that representation.

Lemma 20 If S is regular so is can(S).

PROOF. Given an automaton accepting S one construct one for can(S). The
number of open questions in any position of RJθKηaηg is uniformly bounded.
Hence, with the help of finite memory we can keep track of all labels of open
questions during the runtime of the automaton and relabel the accepted letters
as required in a canonical representation. Since only finite store is needed, all
this can be done by a finite automaton, so can(S) is also regular. The formal
construction proceeds by annotating the states of the original automaton with
all possible configurations of the finite memory. A possible version is shown
below.

Let 〈Q, z0, δ, F 〉 be the automaton accepting S. Then we define 〈Q′, z′0, δ
′, F ′ 〉

as follows. Let M = { (m,~i,~j) | m
~i, m

~j ∈ A(θ), m is a question } and Q′ =
Q× ℘B(M) where ℘B(M) stands for the set of subsets of M of size at most
B and B is the uniform bound on the number of open questions in RJθKηaηg .
Let z′0 = (z0, ∅) and F ′ = F × {∅ }.

• If δ(z, q) = z′ then define δ′((z, ∅), q) = (z′, {(q, (), ())})
• If δ(z, a

~i) = z′ then for all q,~h, X ∈ ℘B(M) such that (q,~i,~h) ∈ X and

q ` a include (z′, X \ { (q,~i,~h) }) in δ′((z, X), a
~h).
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• If δ(z, qj~i) = z′ then for all q1,~h, X ∈ ℘B(M) such that (q1,~i,~h) ∈ X and

q1 ` q include (z′, X ′) in δ′((z, X), qk~h) provided { 1, . . . , k−1 } ⊆ U , k 6∈ U ,

where U = {u | ∃~g,q2((q2, ~g, u~h) ∈ X and q1 ` q2) }, X ′ = X ∪ { (q, j~i, k~h) }
and |X ′| ≤ B. 2

Theorem 21 The canonical representation of comp(JΓ `r M : θKηa), denoted
simply by JΓ `r M : θK below, is a regular language over

A = A(θn1
1 ) + . . . +A(θnk

k ) +A(θ).

PROOF. Many of the definitions for the imperative part of the language have
the same flavour as those for Idealized Algol [9]. Sometimes the operation
on regular languages will have to be followed by an explicit conversion to
canonical form.

We define the LΓ ` MM notations by the following decompositions:

JΓ `r M : comK = run · LΓ `r MM · ok

JΓ `r M : expK =
MAX∑
i=0

q · LΓ `r MMi · i

JΓ `r M : varK =
MAX∑
i=0

write(i) · LΓ `r MMw
i · ok +

MAX∑
i=0

read · LΓ `r MMr
i · i

JΓ `r M : semK = grab · LΓ `r MMg · ok + release · LΓ `r MMr · ok

It is convenient to define JΓ `r MK via LΓ `r MM:

LΓ `r M ; NM = LΓ `r MM · LΓ `r NM

LΓ `r if M then N1 else N2M = LΓ `r MM0 · LΓ `r N2M + (
MAX∑
i=1

LΓ `r MMi) · LΓ `r N1M

LΓ `r while M do NM = ((
MAX∑
i=1

LΓ `r MMi) · LNM)∗ · LΓ `r MM0

LΓ `r!MMi = LΓ `r MMr
i

LΓ `r M := NM =
MAX∑
i=0

(LΓ `r NMi · LΓ `r MMw
i )

LΓ `r grab(M)M = LΓ `r MMg

LΓ `r release(M)M = LΓ `r MMr

The above cases do not require explicit canonization. Neither does that of
λ-abstraction which is interpreted using the appropriate associativity isomor-
phism of the disjoint sum.

For semaphore or variable binding it suffices to consider the histories in which
the moves occur completely sequentially (in a canonical representation they
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are labelled with 1) [16]. We define

cellm = (read1 ·m1)∗ · (
MAX∑
i=0

(write(i)1 · ok 1 · (read1 · i1)∗))∗

and

JΓ `r newvar x := m in M : βK = (JΓ, x : varn ` MK ∩ cellm) \ A(varn),

where E = E q (A(Γ) +A(β))∗ and L \ A is obtained by erasing the symbols
from A in strings from L. Similarly, let us define G = grab1 · ok 1 and R =
release1 · ok 1. Then

JΓ `r newsem x := 0 in M : βK =

(JΓ, x : semm ` MK ∩ (G ·R)∗ · (G + ε)) \ A(semm)

JΓ `r newsem x := 1 in M : βK =

(JΓ, x : semm `r MK ∩ (R ·G)∗ · (R + ε)) \ A(semm).

We can take LΓ, ∆ `r M ||NM to be LΓ `r MM q L∆ `r NM, which preserves
canonicity.

Contraction is defined through renaming of labels associated with y. The labels
1, . . . , n are replaced with m + 1, . . . ,m + n. This induces a homomorphism
on the language so the result is still regular but needs canonization.

We write idθ for Jx : θ `r x : θK. idcom is defined by { run · run1 · ok 1 · ok }.
For other base types the definition is analogous [9]. We extend it to function
types θn → θ′ as follows. Let idθ′ =

∑
q,a(q · q1 · idq,a

θ′ · a1 · a). Then

idθn→θ′ = can(
∑
q,a

(q · q1 · (qn
i=1(id

i1
θ )∗ q idq,a

θ′ ) · a1 · a)),

where idj1
θ is idθ in which each move m

~i is replaced with m
~ij1 if it comes from

the right copy of θ and with m
~ij if it comes from the left one.

For application it is crucial that canonical representations interact as the in-
teraction has to be represented in the same way both by the function and by
the argument. Let ∆ = θn1

1 , . . . , θnk
k . For i = 1, . . . , n let Ñi be the same as

J∆ `r N : θK except that the moves from the θ-component are additionally
decorated with the label i while the original labels of moves from θj (1 ≤ j ≤ k)
(i.e. 1, . . . , nj) are replaced respectively with (i − 1)nj + 1, . . . , inj. Clearly,
these operations preserve regularity. Then we can define JΓ, ∆ ` MN : θ′K to
be can((M̃ ∩ Ñ) \ A(θn)) where

M̃ = JΓ ` M : θn → θ′K q A(θn·n1
1 )∗ q · · · q A(θn·nk

k )∗

21



Ñ = A(Γ)∗ q can(qn
i=1(Ñi)

∗) q A(θ′)
∗
.

Finally, no changes are needed to interpret subsumption. 2

Theorem 22 @∼ r and ∼=r are decidable.

7 Further Work

We have already stated that we plan to study the syntactic properties of the
system separately. The previous section establishes that there is a finite-state
representation of terms of SCC, and that it can be used, in principle, for model
checking using a method similar to [10]. Lemma 10 and the various examples
we give suggest that the restrictions imposed by the tighter typing discipline
are not onerous. However, to claim a fully automated verification (and certifi-
cation) procedure the issue of automated type inference must be investigated.
Finally, only by incorporating these theoretical results in a model-checking
tool can we evaluate the practicality of the method.
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A Resource-Sensitive Definability

We define a recursive algorithm, called PROC+, which takes a position s in
RJθKηaηg and returns a term `r Ps : θ such that JPsK is the least saturated

strategy containing s. PROC+ relies on a recursive procedure PROC which
takes the original position as the initial argument. In the recursive invocations
of PROC , the argument is a subsequence of the form s � m, where t � m is
the subsequence of t consisting of m and all moves hereditarily justified by m,
always an O-question. Note that consequently a move in t is answered in t iff
it is answered in s.

Throughout the execution of PROC it is convenient to use indices relative
to the original s; we write si for the ith move of s, assuming s0 initial. In
order to generate the desired position we need to control the way in which
both P and O move. We control P-moves using guards that wait for special
side-effects (time-stamps) caused by O-moves. The effects take place only if
a correct O-move is played and we make sure that they occur only once by
using a fresh semaphore for each O-move. This allows us to enforce arbitrary
synchronization policies, restricting the order of moves present in the original
sequence up to the reorderings dictated by the saturation conditions. To that
effect, a global variable xj, i.e. a variable which is bound by new at the top
level and initialized to 0, is associated which each index of an O move in s.
The time-stamp consists of assigning 1 to the variable, xj := 1.

For 1 ≤ j ≤ |s| − 1, let us define:

Oj = { i ∈ N | 0 ≤ i < j, si is an O-move }.

We define WAIT j as the term which checks for time-stamps originating from
all the O-moves with indices smaller than j:

WAIT j ≡ [
∧

g∈Oj

(!xg = 1)].

PROC (t : θ) where θ = θn1
1 → . . . → θnh

h → β is defined as follows in two
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stages which manage O-questions and P-answers, and respectively P-questions
and O-answers.

If t is empty, λp1 · · · ph.Ωθ0 is returned. Otherwise, let o = si be the initial
move of t (which is always an O-question).

(1) For a = 1, . . . , h let ia1 < · · · < iama
be the s-indices of all occur-

rences of questions from θa explicitly justified by si. We define a function
φ : { ia1, . . . , iama

} → { 1, . . . , na } (which will assign moves to threads)
inductively using the ordering ia1 < · · · < iama

. Consider iac . Then at most
na − 1 out of sia1

, . . . , siac−1
are open in s≤iac . Let Qop

c be the set contain-
ing them (i.e. |Qop

c | < na). Define φ(iac) to be the least number from
{ 1, . . . , na } different from each φ(m) (m ∈ Qop

c ). Assume we have terms
Pia

d
: com (d = 1, . . . , ma) to be defined later. For k = 1, . . . , na let Rk

a

be the sequential composition of all Pia
d

such that φ(iad) = k (ordered in
the same way as iad’s). Then let Ra = R1

a || · · · ||Rna
a . PROC returns the

following results, depending on β.
• β = com:

λp1 · · · ph.(xi := 1); (R1 || · · · ||Rh);PANS com
i

where

PANS com
i ≡

{
Ωcom si is unanswered in t

WAIT i′ si′ answers si in t

By convention, (R1 || · · · ||Rh) degenerates to skip for m = 0.
• β = exp: Same as for com except that PANS com

i is replaced with
PANS exp

i defined below.

PANS exp
i ≡

{
Ωexp si is unanswered in t

WAIT i′ ; si′ si′ answers si in t

• β = var:
· If si = read :

mkvar( λx.Ωcom, (xi := 1); (R1 || · · · ||Rh);PANS exp
i ).

· If si = write(v):

mkvar(λx.if (x = v) thenxi := 1; (R1 || · · · ||Rh);PANS com
i ,

Ωexp) .

The presence of the x = v test serves to ensure that the only
acceptable move by O is only that which writes v, and no other
value.

• β = sem is analogous to var:
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si · · · si1
tt · · · sij
uu · · · sjk,1

tt · · · sim
vv · · · sjk,mk

uu · · ·
o p− px ok p− ok

Fig. A.1. Questions and justification pointers

· If si = grab:

mksem((xi := 1); (R1 || · · · ||Rh);PANS com
i , Ωcom).

· If si = release:

mksem(Ωcom, (xi := 1); (R1 || · · · ||Rh);PANS com
i ).

(2) Let i1 < · · · < im be the s-indices of all occurrences of questions justified
by si. Here we show how to define the terms Pij for 1 ≤ j ≤ m. Let us fix
j and suppose that sij = px (1 ≤ x ≤ h) and θx = θ′1

m1 → . . . → θ′n
mn →

β′. Let o1, . . . , on be all the O-questions enabled by px (corresponding to
θ′1, . . . , θ′n respectively).

For each k (1 ≤ k ≤ n) let jk,1 < · · · < jk,mk
be the s-indices of all

occurrences of ok in t which are explicitly justified by sij (see Figure A.1).
If mk = 0, then P k

j ≡ Ωθ′
k
. Otherwise, for all l = 1, . . . , mk we make

the following definitions: P k,l
j ≡ PROC (t � sjk,l

: θ′k) and

P k
j ≡ ONCEwjk,1

[P k,1
j ] or · · · or ONCEwjk,mk

[P k,mk
j ],

where wjk,1
, . . . , wjk,mk

are fresh semaphore names and ONCEw(M) =
grab(w); M . Finally, we define the terms Pij , depending on β′. The fresh
variables zc are used to “store” O-answers for future tests.

First, it is useful to define the following macros:

OANS com
c ≡

{
skip sc is unanswered in t
xc′ := 1 sc′ answers sc in t

OANS exp
c ≡

{
skip sc is unanswered in t
if (!zc = sc′) then xc′ := 1 else skip sc′ answers sc in t

• For β′ = com, Pij ≡ WAIT ij ; (pxP
1
j · · ·P n

j );OANS com
ij

• For β′ = exp, Pij ≡ WAIT ij ; zij := (pxP
1
j · · ·P n

j );OANS exp
ij .

• For β′ = var there are two sub-cases:
· If sij = read , Pij ≡ WAIT ij ; zij := !(pxP

1
j · · ·P n

j );OANS exp
ij .

· If sij = write(v), Pij ≡ WAIT ij ; (pxP
1
j · · ·P n

j ) := v;OANS com
ij

.
• For β′ = sem, Pij there are two sub-cases:

· If sij is grab, Pij ≡ WAIT ij ;grab(pxP
1
j · · ·P n

j );OANS com
ij

· If sij is release, Pij ≡ WAIT ij ; release(pxP
1
j · · ·P n

j );OANS com
ij
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After PROC (s : θ) returns λp1 · · · pk.M , all variables and semaphores used in
the construction of M (i.e. x−, z−, w−) must be bound at the topmost level
(the variables x− must be initialized to 0, the semaphores w− to 0, the initial
values of z− are irrelevant). For β = com, exp this is done by taking

λp1 · · · pk.newvar ~x, ~z :=~0 in (newsem ~w :=~0 inM).

For β = var, com the binders have to be pushed inside mkvar or mksem.
We denote the final term by PROC+(s : θ).
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