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Verification and (Game) Semantics
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What is the Model Checking approach to Verification?
Given a system (e.g. lift controller, operating system) and a desired property

(e.g. deadlock freedom, liveness) of the system:

1. Construct an abstract model M of the system.

2. Describe the property as a formula ϕ in some logic L.

3. Exhaustively check the model M for violation of ϕ.

Extremely successful in verifying relatively “flat, unstructured” finite-state

processes (e.g. protocols, circuits); less effective when applied to software.

Key (interdependent) semantic and algorithmic questions :

• Does M model the system accurately?

• Is the problem “Does M satisfy ϕ?” decidable?

• Is the violation check efficient (or better, optimal)?

Our approach is to analyse basic problems in Verification using
(game-)semantic methods.



Overview 1: Trees generated by recursion schemes
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A Basic Problem in Model Checking : Find classes of finitely-presentable

infinite structures with decidable monadic second-order (MSO) theories.

We study the infinite hierarchy of (possibly infinite) term-trees generated by

higher-order recursion schemes (= simply-typed lambda calculus +

uninterpreted 1st-order function symbols + fixpoints).

Why?

• Natural case study of the game-semantic approach.

• Rich and unifying tree hierarchy - subsumes major classes.

• Robust framework - admits several different characterizations.

Theorem . For each n ≥ 0, the modal mu-calculus model checking-problem

for RecSchTreen (i.e. trees generated by order-n recursion schemes) is n-
EXPTIME complete. Thus these trees have decidable MSO theories.



Overview 2: From Trees to Graphs
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Characterising expressiveness of higher-order recursion schemes:
Order-n Collapsible Pushdown Automata (CPDA)

• Each stack symbol in n-stack “remembers” the stack content at the point it

was first created (i.e. pushed).

• collapse (= panic) collapses the n-stack up to the point as remembered by
the top element of the stack.

Theorem . As tree-generating (resp. graph-generating) devices, order-n re-

cursion schemes = order-n collapsible pushdown automata, for each n ≥ 0.

The same game-semantic approach is just as effective a basis for
model-checking (new?) hierarchies of graphs .

E.g. Solving parity games over order-n (collapsible) pushdown graphs.

Many further directions, and open problems.
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Order of a Type
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Types are ranged over by A,B, · · ·.

A ::= o | (A→ B)

Every type can be written uniquely as

A1 → (A2 · · · → (An → o) · · ·), n ≥ 0

which is abbreviated to A1 → A2 · · · → An → o. (Convention: arrows

associate to the right.)

The order of a type measures how nested it is on the LHS of the arrow.

order(o) = 0

order(A→ B) = max(order(A) + 1, order(B))

Notation. e : A means “expression e has type A”.



Example of an order-1 recursion scheme
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Everything is typed!

Ranked alphabet of terminals : Σ = { f, g, a } with

f : o→ o, g : o→ o, a : o

A finite system of well-typed rewrite rules :

G1 :

{

S = F a

F x = f x (F (g x))

Each rule is a recursive definition of a non-terminal (upper letters S and F ).

Order-(n+ 1) non-terminals are defined with the help of variables of order up

to order n.



Order- n (deterministic) recursion scheme G = (N ,Σ,R, S)
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Fix a set of typed variables (written as ϕ, x, y etc).

• N : Typed non-terminals of order at most n (written as upper-case letters),
including a distinguished start symbol S : o.

• Σ: Ranked alphabet of terminals: f ∈ Σ has arity ar(f) ≥ 0 which

determines a first-order type f : o→ · · · → o
︸ ︷︷ ︸

ar(f)

→ o

• R: An equation for each non-terminal D : A1 → · · · → Am → o of shape

Dϕ1 · · · ϕm = e

where the term e : o is constructed from

◦ terminals f, g, a, etc. from Σ
◦ variables ϕ1 : A1, · · · , ϕm : Am from Var ,

◦ non-terminals D,F,G, etc. from N .

using the application rule: If s : A→ B and t : A then (st) : B.



Examples
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Set Σ = { f, f ′ : o2 → o, g : o→ o, a : o }.

1. An order-0 example: No variables!

G1 :







S = f T T

T = f ′ U U

U = f T T

2. An order-2 example.

B : (o→ o) → (o→ o) → o→ o, F : (o→ o) → o

G2 :







S = F g

B ϕψ x = ϕ (ψ x)

F ϕ = f (ϕa) (F (B ϕϕ))



Tree Generated by a Recursion Scheme G
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The value tree [[G ]] of a recursion scheme G is a possibly infinite applicative

term constructed from the terminals, which is obtained by unfolding the

equations ad infinitum, replacing formal by actual parameters each time,
starting from S.

Example . Σ = { f, g, a }. Take

G1 :

{

S = F a

F x = f x (F (g x))

Thus
S → F a

→ f a (F (g a))

→ f a (f (g a) (F (g (g a))))

→ · · ·

We have [[G1 ]] = f a (f (g a) (f (g (g a))(· · ·))).
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The value tree [[G ]] of a recursion scheme G is a possibly infinite applicative

term constructed from the terminals, which is obtained by unfolding the

equations ad infinitum, replacing formal by actual parameters each time,
starting from S.

Example . Σ = { f, g, a }. Take

G1 :

{

S = F a

F x = f x (F (g x))

We have [[G1 ]] = f a (f (g a) (f (g (g a))(· · ·))).

We view the infinite term [[G ]] as a Σ-labelled (ranked and ordered) tree
(generated by G).

Formally a Σ-labelled tree is a function t : dom(t) −→ Σ such that
dom(t) ⊆ { 1, · · · ,m }∗ is prefix-closed, and for all nodes α ∈ T , the

Σ-symbol t(α) ∈ Σ has arity k iff α has k children, namely α 1, · · · , α k ∈ T .



An order-2 example
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Σ = { f, g, a }. B : (o→ o) → (o→ o) → o→ o, F : (o→ o) → o

G2 :

{
S = F g

B ϕψ x = ϕ (ψ x)
F ϕ = f (ϕa) (F (Bϕϕ))

The value tree, [[G2 ]] : { 1, 2 }∗ −→ Σ, is:







ε 7→ f 11 7→ a
1 7→ g 21 7→ g
2 7→ f 22 7→ f

· · · · · ·

f
yy
y FF

F

g f
xx

x FF
F

a g f
xx
x FF

F

g g f

a g ...
g

g

a



A Model-Checking Problem

Motivation

Higher-order Recursion
Schemes

A Model-Checking
Problem
• MSO model-checking
problem for trees

• Node-labelled trees

• MSO Logic

• Why MSO Logic?

• MSO properties

• MSO is expressive

Infinite Structures with
Decidable MSO
Theories

The Safe Lambda
Calculus

Verifying Finitely-Presentable Infinite Structures Games in Semantics and Verification, 29 May - 2 June 06 – 15 / 32



MSO model-checking problem for trees
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For n ≥ 0 write RecSchTreen for the class of Σ-labelled trees generated by

order-n recursion schemes.
Fact :

RecSchTree0 = { regular trees (i.e. generated by finite automata) }

RecSchTree1 = { algebraic trees (i.e. generated by DPDA) }

MSO MODEL-CHECKING PROBLEM FOR RecSchTreen

• INSTANCE: An order-n recursion scheme G, and an MSO formula ϕ
• QUESTION: Does the Σ-labelled tree [[G ]] satisfy ϕ?

Two problems about the tree hierarchy 〈RecSchTreen 〉n∈ω

1. Decidability . For which n ≥ 2 is the problem decidable?

2. Find automata-theoretic characterization of 〈RecSchTreen 〉n∈ω.

We use game semantics to solve the problems.



Representing Σ-labelled trees as logical structures

Verifying Finitely-Presentable Infinite Structures Games in Semantics and Verification, 29 May - 2 June 06 – 17 / 32

Take a Σ-labelled tree t : dom(t) −→ Σ.

Represent t by the tuple

〈dom(t), 〈di : 1 ≤ i ≤ m 〉, 〈pf : f ∈ Σ 〉 〉

where

• dom(t) ⊆ { 1, · · · ,m }∗ with m = max{ ar(f) : f ∈ Σ }
• Parent-child relationship: di = { (α, αi) : α ∈ dom(t) ∧ αi ∈ dom(t) }

• Node labelling: pf = {α ∈ dom(t) : t(α) = f }.

Hence given a ranked alphabet Σ, fix a vocabulary with binary predicate

symbols di where 1 ≤ i ≤ maximum arity of Σ-symbols, and unary predicate
symbols pf , one for each f ∈ Σ.



Monadic Second-Order Logic (for Σ-labelled trees)
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First-order variables: x, y, z, etc. (ranging over nodes, which are finite words

over { 1, · · · ,m }, for a fixed m)

Second-order variables: X,Y, Z, etc. (ranging over sets of nodes

i.e. monadic relations)

MSO formulas are built up from atomic formulas :

1. Parent-child relationship between nodes: di(x, y) ≡ “y is i-child of x”

2. Node labelling: pf (x) ≡ “x has label f ” where f is a Σ-symbol

3. Set-membership: x ∈ X

and closed under

• boolean connectives: ¬,∨ etc.

• first-order quantifications: ∀x.−, ∃x.−
• second-order quantifications: ∀X.−, ∃X.−.



Why MSO Logic?
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It is a kind of gold standard !

• MSO is very expressive. Over graphs, MSO is strictly more expressive than

the modal mu-calculus, into which all standard temporal logics (e.g. LTL,

CTL, CTL∗, etc.) can embed.

Over trees, modal mu-calculus is as expressive as (but algorithmically more

tractable than) MSO: For every MSO ϕ, there is a modal mu-calculus

formula pϕ s.t. for every Σ-labelled tree t, we have t � ϕ ⇐⇒ t, ε � pϕ.

• Any obvious extension of MSO would break decidability. Either of the

following would permit an encoding of a Turing machine:

◦ Second-order quantification over binary relations.
◦ Freely interpretable binary relations in the vocabulary.

E.g. Ta(i, t) = “i-th cell of the semi-infinite tape contains a ∈ Σ at time t”.



Examples of MSO-definable properties
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Several useful relations are definable:

1. Set inclusion (and hence equality): X ⊆ Y ≡ ∀x . x ∈ X → x ∈ Y .
2. “Is-an-ancestor-of” or prefix ordering x ≤ y (and hence x = y):

PrefCl(X) ≡ ∀xy . y ∈ X ∧
∨m

i=1 di(x, y) → x ∈ X

x ≤ y ≡ ∀X .PrefCl(X) ∧ y ∈ X → x ∈ X

Reachability property: “X is a path”

Path(X) ≡ ∀xy ∈ X . x ≤ y ∨ y ≤ x

∧ ∀xyz . x ∈ X ∧ z ∈ X ∧ x ≤ y ≤ z → y ∈ X

MaxPath(X) ≡ Path(X) ∧ ∀Y . Path(Y ) ∧X ⊆ Y → Y ⊆ X .



MSO is expressive: more examples
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Recurrence Property
A set of nodes is a cut if no two nodes in it are ≤-compatible, and it has a

non-empty intersection with every maximal path.

Cut(X) ≡ ∀xy ∈ X . ¬(x ≤ y ∨ y ≤ x)

∧ ∀Z . MaxPath(Z) → ∃z ∈ Z . z ∈ X

Fact . A set X of nodes in a finitely-branching tree is finite iff there is a cut C
such that every X-node is a prefix of some C-node.

Finite(X) ≡ ∃Y .Cut(Y ) ∧ ∀x ∈ X . ∃y ∈ Y . x ≤ y

Hence “there are finitely many nodes labelled by f ” is expressible in MSO by

∃X . Finite(X) ∧ ∀x . pf (x) → x ∈ X

But “MSO cannot count”: E.g. “X has twice as many elements as Y ”.
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Structures with decidable MSO theories: some milestones

Verifying Finitely-Presentable Infinite Structures Games in Semantics and Verification, 29 May - 2 June 06 – 23 / 32

[In timeline below, each item subsumes developments in preceding items.]

1. Rabin 1969: Regular trees. “Mother of all decidability results”
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[In timeline below, each item subsumes developments in preceding items.]

1. Rabin 1969: Regular trees. “Mother of all decidability results”

2. Muller and Schupp 1985: Configuration graphs of pushdown automata.

3. Caucal (ICALP 1996): Prefix-recognizable graphs ( = ε-closures of

configuration graphs of pushdown automata, Stirling 2000).
4. Knapik, Niwiński and Urzyczyn (TLCA 2001, FOSSACS 2002):

PushdownTreenΣ = Trees generated by order-n pushdown automata.

SafeRecSchTreenΣ = Trees generated by order-n safe recursion

schemes.

5. Caucal (MFCS 2002). CaucalTreenΣ and CaucalGraphnΣ.

Theorem (KNU-C). For every n ≥ 0,
PushdownTreenΣ = SafeRecSchTreenΣ = CaucalTreenΣ.

Question . Do Σ-labelled trees generated by unsafe recursion schemes have
decidable MSO theories? If so, at which orders?



Hierarchies of Finitely-Presentable Infinite Structures
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Safe recursion schemes are a robust definition: several char acterisations

Equivalent Higher-Order Classes of Structures

Generating Devices Word Languages Trees Graphs

Pushdown Automata Maslov 74, 76 KNU 02 Cachat, Caucal, etc.

Safe Recursion Schemes Damm 82 KNU 02 ?

Indexed Grammars Maslov 76 ? ?

Word Languages Trees

Order 0 Regular languages Regular trees (Rabin, etc.)

Order 1 Context-free languages; e.g. an bn Algebraic trees (Bourcelle, etc.)

Order 2 Indexed languages; e.g. an bn cn Hyperalgebraic trees (KNU 01)

· · · · · · · · ·



Open Problems about the Maslov (= Damm) Hierarchy
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Not much is known about order-3 and above.

1. Pumping Lemma (or Myhill-Nerode-type results)

There are “pumping lemmas” for orders 0, 1 and 2 ([Hay73,Gil96]).

Pace [Blumensath04] for whole Maslov Hierarchy – runs are pumpable,

conditions given as lengths of runs and configuration size.
2. Logical Characterization.

Regular languages are exactly those that are MSO definable (Büchi ’60).

There is a characterization of context-free languages using quantification

over matchings [LST94].

3. Complexity-Theoretic Characterization.
Engelfriet ’83, ’91: characterizations of languages accepted by alternating /
two-way / multi-head / space-auxiliary order-n PDA in terms of

time-complexity classes (but no result for Maslov Hierarchy itself).

4. Relationship with Chomsky Hierachy .

E.g. Is order 3 context-sensitive?



What is the safety constraint?
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W. Damm: Derived types in “IO and OI Hierarchies”, TCS 1982.

Definition [KNU02]. An order-2 equation is unsafe if the RHS has a subterm

P such that

1. P is order 1

2. P occurs in an operand position (i.e. as 2nd argument of the application

operator)
3. P contains an order-0 parameter.

Examples of unsafe equations :

F : (o→ o) → o→ o→ o, G : o→ o, H : (o→ o) → o, f : o2 → o.

Gx = H (f x)

F ϕx y = f (F (F ϕy) y (ϕx)) a

Safety (as presented above) seems syntactically awkward and semantically

unnatural but (we shall see shortly) it has important algorithmic value.
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In what sense is a safe λ-term safe?
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A basic idea in lambda calculus / logic :

When performing β-reduction, one must use capture-avoiding substitution,

which is standardly implemented by renaming bound variables afresh upon

each substitution.

There is a price to pay for renaming :
Any machine that correctly computes:

{

INPUT: A simply-typed λ-term M

OUTPUT: A β-reduction sequence from M

needs an unbounded supply of names, and hence unbounded memory.

Safety lets us get away with no renaming of bound variables!



Safety reformulated as a simply-typed theory
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We reexpress (and generalize) the safety constraint as a simply-typed theory.

Sequents have the form

x1 : A1, · · · , xi : Ai
︸ ︷︷ ︸

order l1

| · · · | xl : Al, · · · , xn : An
︸ ︷︷ ︸

order lm

`M : B

• Each Ai and B are homogeneous1.

• Typing context partitioned according to orders with l1 ≥ · · · ≥ lm.

Formation rules must respect the partition:

• When forming abstraction, all variables of the lowest type-partition must be

abstracted in an atomic step.

• When forming application, the operator-term must be applied to all

operand-terms (one for each type) of the highest type-partition, in one

atomic step.
1
o is homogeneous; and (A1 → · · · → An → o) is homogeneous just if order(A1) ≥

order(A2) ≥ · · · ≥ order(An), and each Ai is homogeneous.



Safe λ-Calculus: System S Typing Rules
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(A1 | · · · |An | o) homogeneous b is a type-B constant

x1 : A1 | · · · |xn : An ` b : B

(A1 | · · · |An | o) homogeneous

x1 : A1 | · · · |xn : An ` xij : Aij

x1 : A1 | · · · |xn+1 : An+1 `M : B (An+1 |B) homogeneous

x1 : A1 | · · · |xn : An ` λxn+1.M : (An+1 |B)

Γ `M : (B1 | · · · |Bm | o) Γ ` N1 : B11 · · · Γ ` Nl1 : B1l1

Γ `MN1 · · ·Nl1 : (B2 | · · · |Bm | o)

When forming abstraction, all variables of the lowest-order type-partition must be

abstracted. When forming application, the operator-term must be applied to all

operand-terms (one for each type) of the highest-order type-partition.



Safe λ-calculus makes algorithmic sense
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Example . Suppose f : o2 → o. Contracting the β-redex without renmaing

(λϕ(o,o).(λx.ϕx)) (f x)

leads to variable capture. The term is not safe.

Theorem . “Safe λ-calculus = (a) α-conversion-free λ-calculus”

In the safe lambda calculus, there is no need to rename bound variables when
performing substitution M [N1/ϕ1, · · · , Nn/ϕn] provided the substitution is

performed simultaneously on all free variables of the same order in M .

Proof idea . Suppose ϕ free in M , and x free in N , and x captured in (capture

permitting) M [N/ϕ]. Then M looks like · · · (λx.· · ·ϕ · · ·) · · ·.
Case analysis by comparing order(x) with order(ϕ).

Lemma . A free variable in a safe term has order as least that of the term. �

Thus when reducing a safe λ-term, we do not need any supply of fresh name.



What is the right way to think of the Safe Lambda Calculus?

Verifying Finitely-Presentable Infinite Structures Games in Semantics and Verification, 29 May - 2 June 06 – 32 / 32

Safe λ-calculus seems of independent interest, and we don’t understand it.

Design issues : Is the homogeneity assumption really necessary?

Proof theory : What kind of reasoning principles does it support (via

Curry-Howard)? Is it useful to automated deduction / theorem proving?

What is a model of safe λ-calculus? Does it have interesting models?

Game semantics : What kind of pointer economy does safety determine?

Ans: Pointers are redundant in safe view-functions!

E.g. Kierstead terms: λf.f(λx.f(λy.y)) is safe, but λf.f(λx.f(λy.x)) is

unsafe.

Implicit complexity . Simply-typed λ-calculus characterize

polytime-computable numeric functions (Leivant-Marion 93). What about the

safe terms?

Nevertheless, we shall prove that safety is not necessary for MSO decidability.
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