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Verification and (Game) Semantics

What is the Model Checking approach to Verification?
Given a system (e.qg. lift controller, operating system) and a desired property
(e.g. deadlock freedom, liveness) of the system:

1. Construct an abstract model M of the system.
2. Describe the property as a formula ¢ in some logic L.
3. Exhaustively check the model M for violation of .

Extremely successful in verifying relatively “flat, unstructured” finite-state
processes (e.g. protocols, circuits); less effective when applied to software.

Key (interdependent) semantic and algorithmic questions

e Does M model the system accurately?
e |s the problem “Does M satisfy ©?” decidable?
e Is the violation check efficient (or better, optimal)?

Our approach is to analyse basic problems in Verification using
(game-)semantic methods.

' Verifying Finitely-Presentable Infinite Structures Games in Semantics and Verification, 29 May - 2 June 06 — 3/ 32 '



Overview 1: Trees generated by recursion schemes

A Basic Problem in Model Checking : Find classes of finitely-presentable

Infinite structures with decidable monadic second-order (MSO) theories.

We study the infinite hierarchy of (possibly infinite) term-trees generated by
higher-order recursion schemes (= simply-typed lambda calculus +
uninterpreted 1st-order function symbols + fixpoints).

Why?

e Natural case study of the game-semantic approach.
e Rich and unifying tree hierarchy - subsumes major classes.
e Robust framework - admits several different characterizations.

Theorem . For each n > 0, the modal mu-calculus model checking-problem
for RecSchTree,, (i.e. trees generated by order-n recursion schemes) is n-
EXPTIME complete. Thus these trees have decidable MSO theories.
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Overview 2: From Trees to Graphs

Characterising expressiveness of higher-order recursion schemes:
Order-n Collapsible Pushdown Automata (CPDA)

e Each stack symbol in n-stack “remembers” the stack content at the point it
was first created (i.e. pushed).

e collapse (= panic) collapses the n-stack up to the point as remembered by
the top element of the stack.

Theorem . As tree-generating (resp. graph-generating) devices, order-n re-

cursion schemes = order-n collapsible pushdown automata, for each n > 0.

The same game-semantic approach is just as effective a basis for
model-checking (new?) hierarchies of graphs
E.g. Solving parity games over order-n (collapsible) pushdown graphs.

Many further directions, and open problems.
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Order of a Type

Types are ranged over by A, B, - - -
A == o | (4> B)
Every type can be written uniquely as

A1_>(A2_>(An_>0))’ n >0

which is abbreviated to A; — Ay --- — A,, — o. (Convention: arrows

associate to the right.)
The order of a type measures how nested it is on the LHS of the arrow.

order(o) = 0
order(A — B) = max(order(A)+ 1, order(B))

Notation. e: A means “expression e has type A”.
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Example of an order-1 recursion scheme

Everything is typed!

Ranked alphabet of terminals : ¥ = { f, g, a } with

f:o—o0, g:o0—o0, a:o

A finite system of well-typed rewrite rules :

S = Fa
G1 .
Fu = fz(F(g2))

Each rule is a recursive definition of a non-terminal (upper letters S and F).

Order-(n + 1) non-terminals are defined with the help of variables of order up
to order n.
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Order-n (deterministic) recursion scheme G = (N, X, R, S)

Fix a set of typed variables (written as ¢, x, y etc).

e N: Typed non-terminals of order at most n (written as upper-case letters),
including a distinguished start symbol S : o.

e X: Ranked alphabet of terminals: f € ¥ has arity ar(f) > 0 which
determines a first-order type f : 9 — -+ — 0 — 0

ar(f)

e R: An equation for each non-terminal D : A1 — --- — A,,, — o of shape

where the term e : o is constructed from

o terminals f, g, a, etc. from X
o variables 1 : Ay, -+, om @ Ay, from Var,
o non-terminals D, F, G, etc. from .

using the application rule: If s : A — B andt : Athen (st) : B.
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Examples

setX={f,f :0°—=0,g:0—0, a:0}.
1. An order-0 example: No variables!

2

S = fTT
Gir:§ T = flUU
U = fTT

2. An order-2 example.
B:(o—0)—(0—0)—0—0, F:(0—0) —o0

f S = Fyg
Gy : § Boyzr = p(yz)
. Fe = flpa)(F(Byy))
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Tree Generated by a Recursion Scheme

G

The value tree | G || of a recursion scheme G is a possibly infinite applicative
term constructed from the terminals, which is obtained by unfolding the
equations ad infinitum, replacing formal by actual parameters each time,

starting from S.

Example. ¥ = { f,g,a }. Take

Gq { 9= fa
Fz = fxz(F(gz))
Thus
S — Fa
— fa(F(ga))
— fa(f(ga)(F(g(ga))))

We have [G1 | = i@(i(gg) (i(g(g@))(“

)))- |

' Verifying Finitely-Presentable Infinite Structures

Games in Semantics and Verification, 29 May - 2 June 06 — 12/ 32 '



Tree Generated by a Recursion Scheme G

The value tree | G || of a recursion scheme G is a possibly infinite applicative
term constructed from the terminals, which is obtained by unfolding the
equations ad infinitum, replacing formal by actual parameters each time,
starting from S.

Example. ¥ = { f,g,a }. Take

G1:{ 5 = Fa
Fz = fz(F(gz))

We have [G1] = fa(f(ga)(f(g(ga))(---)))

We view the infinite term | G || as a Y-labelled (ranked and ordered) tree
(generated by ().

Formally a >-labelled tree is a function ¢ : dom(t) — 3 such that
dom(t) C {1,---,m }" is prefix-closed, and for all nodes o € T, the
Y.-symbol t(«) € X has arity k iff « has k children, namely o 1,---, ak € T.
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An order-2 example

Y=1{f,9,a}.B:(0—0)—(0—0)—0—0, F:(0o—0)—o0

S = Fg
Gy : { Boyr = ¢Wx)
Fo = fl(pa)(F(Beyp))
e +— f 11 — a
The value tree, [Go ] : {1,2 }* — X, is: % : ?B g% : ?B
g/f\f
| RN
a g f
| RN
g g f
| |
a g
|
g
g
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MSO model-checking problem for trees

For n > 0 write RecSchTree,, for the class of >.-labelled trees generated by
order-n recursion schemes.

Fact:
RecSchTreep = {regular trees (i.e. generated by finite automata) }
RecSchTree; = { algebraic trees (i.e. generated by DPDA) }

MSO MoODEL-CHECKING PROBLEM FOR RecSchTree,,

e INSTANCE: An order-n recursion scheme (G, and an MSO formula ¢
e QUESTION: Does the Y-labelled tree | G | satisfy ¢?

Two problems about the tree hierarchy  ( RecSchTree,, )ne.

1. Decidability . For which n > 2 is the problem decidable?
2. Find automata-theoretic characterization  of ( RecSchTree,, >n€w-

We use game semantics to solve the problems.
] ]
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Representing .-labelled trees as logical structures

Take a Y-labelled tree t : dom(t) — 3.
Represent ¢ by the tuple

(dom(t), (d;:1<:<m), (pr:feX))

where

e dom(t) C{1,---,m}*withm =max{ar(f): feX}

e Parent-child relationship: d; = { (c, i) : @« € dom(t) A «ai € dom(t) }
e Node labelling: pr = { a € dom(?) : t(ar) = f }.

Hence given a ranked alphabet >, fix a vocabulary with binary predicate
symbols d; where 1 < 7 < maximum arity of >-symbols, and unary predicate
symbols p ¢, one for each f € ..
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Monadic Second-Order Logic (for  >.-labelled trees)

First-order variables: x, y, z, etc. (ranging over nodes, which are finite words
over{1,---,m}, for afixed m)

Second-order variables: XY, Z, etc. (ranging over sets of nodes
l.e. monadic relations)

MSO formulas are built up from atomic formulas

1. Parent-child relationship between nodes: d;(z,y) = “y is i-child of x”
2. Node labelling: p¢(x) = “z has label f” where f is a ¥-symbol
3. Set-membership: z € X

and closed under

e Dboolean connectives: —, V etc.
e first-order quantifications: Vo.—, dx.—
e second-order quantifications: V.X.—, 3X.—.
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Why MSO Logic?

It is a kind of gold standard !

e MSO is very expressive. Over graphs, MSO is strictly more expressive than
the modal mu-calculus, into which all standard temporal logics (e.g. LTL,
CTL, CTLx*, etc.) can embed.

Over trees, modal mu-calculus is as expressive as (but algorithmically more
tractable than) MSO: For every MSO ¢, there is a modal mu-calculus
formula p,, s.t. for every X.-labelled tree ¢, we have t & o <= {,e F p,,.

e Any obvious extension of MSO would break decidability. Either of the
following would permit an encoding of a Turing machine:

o Second-order quantification over binary relations.
o Freely interpretable binary relations in the vocabulary.

E.g. T,(i,t) = “i-th cell of the semi-infinite tape contains a € 3 at time ¢”.
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Examples of MSO-definable properties

Several useful relations are definable:

1. Setinclusion (and hence equality): X CY = Ver.z € X —-x €Y.
2. ‘“Is-an-ancestor-of” or prefix ordering x < y (and hence x = y):

PrefCl(X) Vey.ye X AN VL, di(z,y) — z€X

VX .PrefC(X)ANye X — € X

r <y
Reachability property: “X is a path”

Path(X) = Vaye X . z2<yVy<uz
N Veyz.zeX NzeX Naex<y<z — yelX

MaxPath(X) = Path(X) AVY .Path(Y ) A X CY — Y C X.
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MSO is expressive: more examples

Recurrence Property
A set of nodes is a cut if no two nodes in it are <-compatible, and it has a
non-empty intersection with every maximal path.

Cut(X) = Vaye X . ~(z<yVy<uzx)
AN VZ .MaxPath(Z) — dz€ Z.2€ X

Fact. A set X of nodes in a finitely-branching tree is finite iff there is a cut C
such that every X -node is a prefix of some C-node.

Finite(X) = dY .Cut(Y) A Ve e X . JyeY .z <y

Hence “there are finitely many nodes labelled by f” is expressible in MSO by

3X . Finite(X) A Vz .ps(z) 2z € X

But “MSO cannot count”: E.g. “.X has twice as many elements as Y.
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Structures with decidable MSO theories: some milestones

[In timeline below, each item subsumes developments in preceding items.]

1. Rabin 1969: Regular trees. “Mother of all decidability results”
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Structures with decidable MSO theories: some milestones

[In timeline below, each item subsumes developments in preceding items.]

1. Rabin 1969: Regular trees. “Mother of all decidability results”
2. Muller and Schupp 1985: Configuration graphs of pushdown automata.
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Structures with decidable MSO theories: some milestones

[In timeline below, each item subsumes developments in preceding items.]

1. Rabin 1969: Regular trees. “Mother of all decidability results”

2. Muller and Schupp 1985: Configuration graphs of pushdown automata.

3. Caucal (ICALP 1996): Prefix-recognizable graphs ( = e-closures of
configuration graphs of pushdown automata, Stirling 2000).

| |
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Structures with decidable MSO theories: some milestones

[In timeline below, each item subsumes developments in preceding items.]

1. Rabin 1969: Regular trees. “Mother of all decidability results”

2. Muller and Schupp 1985: Configuration graphs of pushdown automata.

3. Caucal (ICALP 1996): Prefix-recognizable graphs ( = e-closures of
configuration graphs of pushdown automata, Stirling 2000).

4. Knapik, Niwinski and Urzyczyn (TLCA 2001, FOSSACS 2002):
PushdownTree,, 2. = Trees generated by order-n pushdown automata.
SafeRecSchTree,, >, = Trees generated by order-n safe recursion
schemes.
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Structures with decidable MSO theories: some milestones

[In timeline below, each item subsumes developments in preceding items.]

1. Rabin 1969: Regular trees. “Mother of all decidability results”

2. Muller and Schupp 1985: Configuration graphs of pushdown automata.

3. Caucal (ICALP 1996): Prefix-recognizable graphs ( = e-closures of
configuration graphs of pushdown automata, Stirling 2000).

4. Knapik, Niwinski and Urzyczyn (TLCA 2001, FOSSACS 2002):
PushdownTree,, 2. = Trees generated by order-n pushdown automata.
SafeRecSchTree,, >, = Trees generated by order-n safe recursion
schemes.

5. Caucal (MFCS 2002). CaucalTree, 2. and CaucalGraph,,>..

Theorem (KNU-C). For every n > 0,
PushdownTree,, >. = SafeRecSchTree,,>. = CaucalTree,,>..
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Structures with decidable MSO theories: some milestones

[In timeline below, each item subsumes developments in preceding items.]

1.
2.
3.

Rabin 1969: Regular trees. “Mother of all decidability results”

Muller and Schupp 1985: Configuration graphs of pushdown automata.
Caucal (ICALP 1996): Prefix-recognizable graphs ( = e-closures of
configuration graphs of pushdown automata, Stirling 2000).

Knapik, Niwinski and Urzyczyn (TLCA 2001, FOSSACS 2002):
PushdownTree,, 2. = Trees generated by order-n pushdown automata.
SafeRecSchTree,, >, = Trees generated by order-n safe recursion
schemes.

Caucal (MFCS 2002). CaucalTree,, 2. and CaucalGraph,, ..

Theorem (KNU-C). For every n > 0,

PushdownTree,, >. = SafeRecSchTree,,>. = CaucalTree,,>..

Question . Do X.-labelled trees generated by unsafe recursion schemes have

decidable MSO theories? If so, at which orders?
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Hierarchies of Finitely-Presentable Infinite Structures

Safe recursion schemes are a robust definition: several char acterisations

Equivalent Higher-Order Classes of Structures
Generating Devices Word Languages | Trees Graphs
Pushdown Automata Maslov 74, 76 KNU 02 | Cachat, Caucal, etc.
Safe Recursion Schemes Damm 82 KNU 02 ?
Indexed Grammars Maslov 76 ? ?
Word Languages Trees
Order O Regular languages Regular trees (Rabin, etc.)

Order 1 | Context-free languages; e.g. a” b" | Algebraic trees (Bourcelle, etc.)
Order 2 | Indexed languages; e.g. a™ 0™ ¢ | Hyperalgebraic trees (KNU 01)
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Open Problems about the Maslov (= Damm) Hierarchy

Not much is known about order-3 and above.

1.

Pumping Lemma (or Myhill-Nerode-type results)

There are “pumping lemmas” for orders 0, 1 and 2 ([Hay73,Gil96]).

Pace [Blumensath04] for whole Maslov Hierarchy — runs are pumpable,
conditions given as lengths of runs and configuration size.

Logical Characterization.

Regular languages are exactly those that are MSO definable (Bichi '60).
There is a characterization of context-free languages using quantification
over matchings [LST94].

Complexity-Theoretic Characterization.

Engelfriet '83, '91: characterizations of languages accepted by alternating /
two-way / multi-head / space-auxiliary order-n PDA in terms of
time-complexity classes (but no result for Maslov Hierarchy itself).
Relationship with Chomsky Hierachy

E.g. Is order 3 context-sensitive?
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What is the safety constraint?

W. Damm: Derived types in “IO and Ol Hierarchies”, TCS 1982.

Definition [KNUOZ2]. An order-2 equation is unsafe if the RHS has a subterm
P such that

1. Pisorder1

2. P occurs in an operand position (i.e. as 2nd argument of the application
operator)

3. P contains an order-0 parameter.

Examples of unsafe equations
o AN AN \ . . ° 2
F:(0o—0) —0—0—0, G:0—0, H:(0—0)—o0, f:0°—o.

Gr = H(fx)
fIFEFeyylpr))a

Foxy

Safety (as presented above) seems syntactically awkward and semantically
unnatural but (we shall see shortly) it has important algorithmic value.
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In what sense is a safe \-term safe?

A basic idea in lambda calculus / logic
When performing (-reduction, one must use capture-avoiding substitution,

which is standardly implemented by renaming bound variables afresh upon
each substitution.

There is a price to pay for renaming
Any machine that correctly computes:

INPUT: A simply-typed A-term M
OUTPUT: A (-reduction sequence from M

needs an unbounded supply of names, and hence unbounded memaory.

Safety lets us get away with no renaming of bound variables!
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Safety reformulated as a simply-typed theory

We reexpress (and generalize) the safety constraint as a simply-typed theory.
Sequents have the form

331:A1,---,:ci:AE\ ]\xl:Al,---,xn:Agl—M:B

order [ order [,

e Each A; and B are homogeneous®.
e Typing context partitioned according to orders with [; > - - - > [,,,.

Formation rules must respect the partition:

e When forming abstraction, all variables of the lowest type-partition must be
abstracted in an atomic step.
e When forming application, the operator-term must be applied to all

operand-terms (one for each type) of the highest type-partition, in one
atomic step.

‘0 is homogeneous; and (A1 — --- — A, — o) is homogeneous just if order(A;) >
order(Az) > --- > order(A,), and each A; is homogeneous.
| |
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Safe A-Calculus: System S Typing Rules

(A1 ] -+ | A, | o) homogeneous b is a type-B constant
Zi: A |Th: Ay b: B
(A1 | --- | A, | 0) homogeneous
:c_lA_l\ ’CC_nA_n'_CCZJAZ]

Z1: Ay |- |1 Ayt F M B (A,41 | B) homogeneous
T1: Ay | @y Ay AT, M (Apg | B)
'EM:(Bi| -+ |Bnlo) TEN;:Byy---T'FN,: By,
TFMN; Ny, : (Ba| - | Bu| o)

When forming abstraction, all variables of the lowest-order type-partition must be
abstracted. When forming application, the operator-term must be applied to all
operand-terms (one for each type) of the highest-order type-partition.
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Safe A-calculus makes algorithmic sense

Example . Suppose f : 0° — o. Contracting the (3-redex without renmaing

(A . (Az.02)) (f z)

leads to variable capture. The term is not safe.

Theorem . “Safe \-calculus = (a) a-conversion-free \-calculus”

In the safe lambda calculus, there is no need to rename bound variables when
performing substitution M [Ny /@1, - -+, N, /] provided the substitution is
performed simultaneously on all free variables of the same order in M .

Proof idea . Suppose ¢ free in M, and x free in [NV, and x captured in (capture
permitting) M [N /p]. Then M looks like - - - (Az.-- - --)---.
Case analysis by comparing order(x) with order(¢p).

Lemma. A free variable in a safe term has order as least that of the term. (]

Thus when reducing a safe A-term, we do not need any supply of fresh name.
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What is the right way to think of the Safe Lambda Calculus?

Safe A-calculus seems of independent interest, and we don’t understand it.
Design issues : Is the homogeneity assumption really necessary?

Proof theory : What kind of reasoning principles does it support (via
Curry-Howard)? Is it useful to automated deduction / theorem proving?

What is a model of safe A-calculus? Does it have interesting models?

Game semantics : What kind of pointer economy does safety determine?
Ans: Pointers are redundant in safe view-functions!
E.g. Kierstead terms: Af. f(Ax.f(Ay.y)) is safe, but Af. f(Ax. f(Ay.z)) is

unsafe.

Implicit complexity . Simply-typed A-calculus characterize
polytime-computable numeric functions (Leivant-Marion 93). What about the
safe terms?

Nevertheless, we shall prove that safety is not necessary for MSO decidability.

' Verifying Finitely-Presentable Infinite Structures

Games in Semantics and Verification, 29 May - 2 June 06 — 32/ 32 '



	Motivation
	Verification and (Game) Semantics
	Overview 1: Trees generated by recursion schemes
	Overview 2: From Trees to Graphs
	Outline

	Higher-order Recursion Schemes
	Order of a Type
	Examples
	An order-2 example

	A Model-Checking Problem
	MSO model-checking problem for trees
	Why MSO Logic?

	Infinite Structures with Decidable MSO Theories
	Structures with decidable MSO theories: some milestones
	What is the safety constraint?

	The Safe Lambda Calculus



