Verifying Finitely-Presentable Infinite Structures:

A Game-Semantic Approach

(Lecture 1)

Luke Ong

University of Oxford

29 May - 2 June 2006

Motivation

• Verification and game semantics

• Overview 1

• Overview 2: From Trees to Graphs

• Outline

Higher-order Recursion Schemes

A Model-Checking Problem

Infinite Structures with Decidable MSO Theories

The Safe Lambda Calculus

Motivation

Verification and (Game) Semantics

What is the Model Checking approach to Verification?

Given a system (e.g. lift controller, operating system) and a desired property (e.g. deadlock freedom, liveness) of the system:

- 1. Construct an abstract model M of the system.
- 2. Describe the property as a formula φ in some logic \mathcal{L} .
- 3. Exhaustively check the model M for violation of φ .

Extremely successful in verifying relatively "flat, unstructured" finite-state processes (e.g. protocols, circuits); less effective when applied to software.

Key (interdependent) semantic and algorithmic questions:

- Does M model the system accurately?
- Is the problem "Does M satisfy φ ?" decidable?
- Is the violation check efficient (or better, optimal)?

Our approach is to analyse basic problems in Verification using (game-)semantic methods.

Overview 1: Trees generated by recursion schemes

A Basic Problem in Model Checking: Find classes of finitely-presentable infinite structures with decidable monadic second-order (MSO) theories.

We study the infinite hierarchy of (possibly infinite) term-trees generated by higher-order recursion schemes (= simply-typed lambda calculus + uninterpreted 1st-order function symbols + fixpoints). Why?

- Natural case study of the game-semantic approach.
- Rich and unifying tree hierarchy subsumes major classes.
- Robust framework admits several different characterizations.

Theorem. For each $n \ge 0$, the modal mu-calculus model checking-problem for **RecSchTree**_n (i.e. trees generated by order-*n* recursion schemes) is *n*-EXPTIME complete. Thus these trees have decidable MSO theories.

Overview 2: From Trees to Graphs

Characterising expressiveness of higher-order recursion schemes: Order-n Collapsible Pushdown Automata (CPDA)

- Each stack symbol in *n*-stack "remembers" the stack content at the point it was first created (i.e. pushed).
- collapse (= panic) collapses the *n*-stack up to the point as remembered by the top element of the stack.

Theorem. As tree-generating (resp. graph-generating) devices, order-n recursion schemes = order-n collapsible pushdown automata, for each $n \ge 0$.

The same game-semantic approach is just as effective a basis for **model-checking (new?) hierarchies of graphs**.

E.g. Solving parity games over order-n (collapsible) pushdown graphs.

Many further directions, and open problems.

Outline

Motivation

Higher-order Recursion Schemes

A Model-Checking Problem

Infinite Structures with Decidable MSO Theories

The Safe Lambda Calculus

Motivation

Higher-order Recursion Schemes

- Order of a Type
- Example recursion scheme
- Recursion schemes
- Examples
- Value tree
- Value tree
- An order-2 example

A Model-Checking Problem

Infinite Structures with Decidable MSO Theories

The Safe Lambda Calculus

Higher-order Recursion Schemes

Order of a Type

Types are ranged over by A, B, \cdots .

$$A \quad ::= \quad o \quad | \quad (A \to B)$$

Every type can be written uniquely as

$$A_1 \to (A_2 \dots \to (A_n \to o) \dots), \quad n \ge 0$$

which is abbreviated to $A_1 \rightarrow A_2 \cdots \rightarrow A_n \rightarrow o$. (Convention: arrows associate to the right.)

The **order** of a type measures how nested it is on the LHS of the arrow.

$$order(o) = 0$$

 $order(A \rightarrow B) = \max(order(A) + 1, order(B))$

Notation. e: A means "expression e has type A".

Example of an order-1 recursion scheme

Everything is typed!

Ranked alphabet of terminals: $\Sigma = \{ \underline{f}, \underline{g}, \underline{a} \}$ with

$$\underline{f}: o \to o, \quad \underline{g}: o \to o, \quad \underline{a}: o$$

A finite system of well-typed rewrite rules:

$$G_1 : \begin{cases} S = F \underline{a} \\ F x = \underline{f} x \left(F \left(\underline{g} x \right) \right) \end{cases}$$

Each rule is a recursive definition of a **non-terminal** (upper letters S and F).

Order-(n + 1) non-terminals are defined with the help of **variables** of order up to order n.

Order-*n* (deterministic) recursion scheme $G = (\mathcal{N}, \Sigma, \mathcal{R}, S)$

Fix a set of typed variables (written as φ, x, y etc).

- \mathcal{N} : Typed non-terminals of order at most n (written as upper-case letters), including a distinguished start symbol S: o.
- Σ : Ranked alphabet of terminals: $\underline{f} \in \Sigma$ has arity $ar(\underline{f}) \ge 0$ which determines a first-order type $\underline{f} : \underbrace{o \to \cdots \to o}_{ar(f)} \to o$
- \mathcal{R} : An equation for each non-terminal $D: A_1 \to \cdots \to A_m \to o$ of shape

$$D \varphi_1 \cdots \varphi_m = e$$

where the term e: o is constructed from

- \circ terminals f, g, \underline{a} , etc. from Σ
- \circ variables $\varphi_1: A_1, \cdots, \varphi_m: A_m$ from Var,
- non-terminals D, F, G, etc. from \mathcal{N} .

using the application rule: If $s : A \to B$ and t : A then (st) : B.

Examples

Set $\Sigma = \{ \underline{f}, \underline{f'} : o^2 \to o, \underline{g} : o \to o, \underline{a} : o \}.$ **1.** An order-0 example: No variables!

$$G_1 : \begin{cases} S = \underline{f} T T \\ T = \underline{f'} U U \\ U = \underline{f} T T \end{cases}$$

2. An order-2 example.

 $B: (o \to o) \to (o \to o) \to o \to o, \quad F: (o \to o) \to o$

$$G_{2} : \begin{cases} S = F \underline{g} \\ B \varphi \psi x = \varphi (\psi x) \\ F \varphi = \underline{f} (\varphi \underline{a}) (F (B \varphi \varphi)) \end{cases}$$

Tree Generated by a Recursion Scheme G

The *value tree* $\llbracket G \rrbracket$ of a recursion scheme *G* is a possibly infinite applicative term *constructed from the terminals*, which is obtained by unfolding the equations *ad infinitum*, replacing formal by actual parameters each time, starting from *S*.

Example. $\Sigma = \{ \underline{f}, \underline{g}, \underline{a} \}$. Take

$$G_1 : \begin{cases} S = F \underline{a} \\ F x = \underline{f} x \left(F \left(\underline{g} x \right) \right) \end{cases}$$

Thus

$$S \rightarrow F \underline{a}$$

$$\rightarrow \underline{f} \underline{a} \left(F \left(\underline{g} \underline{a} \right) \right)$$

$$\rightarrow \underline{f} \underline{a} \left(\underline{f} \left(\underline{g} \underline{a} \right) \left(F \left(\underline{g} \left(\underline{g} \underline{a} \right) \right) \right) \right)$$

We have $\llbracket G_1 \rrbracket = \underline{f} \underline{a} (\underline{f} (\underline{g} \underline{a}) (\underline{f} (\underline{g} \underline{a})) (\cdots))).$

Tree Generated by a Recursion Scheme G

The *value tree* $\llbracket G \rrbracket$ of a recursion scheme *G* is a possibly infinite applicative term *constructed from the terminals*, which is obtained by unfolding the equations *ad infinitum*, replacing formal by actual parameters each time, starting from *S*.

Example. $\Sigma = \{ \underline{f}, \underline{g}, \underline{a} \}$. Take

$$G_1 : \begin{cases} S = F \underline{a} \\ F x = \underline{f} x \left(F \left(\underline{g} x \right) \right) \end{cases}$$

We have $\llbracket G_1 \rrbracket = \underline{f} \underline{a} (\underline{f} (\underline{g} \underline{a}) (\underline{f} (\underline{g} \underline{a})) (\cdots))).$

We view the infinite term $\llbracket G \rrbracket$ as a Σ -labelled (ranked and ordered) tree (generated by G).

Formally a Σ -labelled tree is a function $t : \operatorname{dom}(t) \longrightarrow \Sigma$ such that $\operatorname{dom}(t) \subseteq \{1, \dots, m\}^*$ is prefix-closed, and for all nodes $\alpha \in T$, the Σ -symbol $t(\alpha) \in \Sigma$ has arity k iff α has k children, namely $\alpha 1, \dots, \alpha k \in T$.

An order-2 example

$$\Sigma = \{ \underline{f}, \underline{g}, \underline{a} \}. B : (o \to o) \to (o \to o) \to o \to o, \quad F : (o \to o) \to o$$

$$G_2 : \begin{cases} S = F \underline{g} \\ B \varphi \psi x = \varphi (\psi x) \\ F \varphi = \underline{f} (\varphi \underline{a}) (F (B \varphi \varphi)) \end{cases}$$

Verifying Finitely-Presentable Infinite Structures

Ganoes in Semantics and Verification, 29 May - 2 June 06 - 14 / 32

Motivation

Higher-order Recursion Schemes

A Model-Checking Problem

• MSO model-checking problem for trees

- Node-labelled trees
- MSO Logic
- Why MSO Logic?
- MSO properties
- MSO is expressive

Infinite Structures with Decidable MSO Theories

The Safe Lambda Calculus

A Model-Checking Problem

MSO model-checking problem for trees

For $n \ge 0$ write **RecSchTree**_n for the class of Σ -labelled trees generated by order-*n* recursion schemes. Fact:

 $RecSchTree_0 = \{ regular trees (i.e. generated by finite automata) \}$ $RecSchTree_1 = \{ algebraic trees (i.e. generated by DPDA) \}$

MSO MODEL-CHECKING PROBLEM FOR RecSchTreen

- INSTANCE: An order-n recursion scheme G, and an MSO formula φ
- QUESTION: Does the Σ -labelled tree [[G]] satisfy φ ?

Two problems about the tree hierarchy $\langle RecSchTree_n \rangle_{n \in \omega}$

- 1. **Decidability**. For which $n \ge 2$ is the problem decidable?
- 2. Find automata-theoretic characterization of $\langle \text{RecSchTree}_n \rangle_{n \in \omega}$.

We use game semantics to solve the problems.

Representing Σ **-labelled** trees as logical structures

Take a Σ -labelled tree $t : \operatorname{dom}(t) \longrightarrow \Sigma$. Represent t by the tuple

$$\langle \operatorname{dom}(t), \langle \mathbf{d}_i : 1 \le i \le m \rangle, \langle \mathbf{p}_f : f \in \Sigma \rangle \rangle$$

where

- $\operatorname{dom}(t) \subseteq \{1, \cdots, m\}^*$ with $m = \max\{ar(f) : f \in \Sigma\}$
- Parent-child relationship: $\mathbf{d}_i = \{ (\alpha, \alpha i) : \alpha \in \operatorname{dom}(t) \land \alpha i \in \operatorname{dom}(t) \}$
- Node labelling: $\mathbf{p}_f = \{ \alpha \in \operatorname{dom}(t) : t(\alpha) = f \}.$

Hence given a ranked alphabet Σ , fix a vocabulary with binary predicate symbols \mathbf{d}_i where $1 \leq i \leq$ maximum arity of Σ -symbols, and unary predicate symbols \mathbf{p}_f , one for each $f \in \Sigma$.

Monadic Second-Order Logic (for Σ -labelled trees)

First-order variables: x, y, z, etc. (ranging over *nodes*, which are finite words over $\{1, \dots, m\}$, for a fixed m)

Second-order variables: X, Y, Z, etc. (ranging over *sets* of nodes i.e. *monadic* relations)

MSO formulas are built up from atomic formulas:

- 1. Parent-child relationship between nodes: $\mathbf{d}_i(x, y) \equiv "y$ is *i*-child of x"
- 2. Node labelling: $\mathbf{p}_f(x) \equiv "x$ has label f" where f is a Σ -symbol
- 3. Set-membership: $x \in X$

and closed under

- boolean connectives: \neg, \lor etc.
- first-order quantifications: $\forall x.-, \exists x.-$
- second-order quantifications: $\forall X.-, \exists X.-$.

Why MSO Logic?

It is a kind of gold standard!

- MSO is *very* expressive. Over graphs, MSO is strictly more expressive than the modal mu-calculus, into which all standard temporal logics (e.g. LTL, CTL, CTL*, etc.) can embed.
 Over trees, modal mu-calculus is as expressive as (but algorithmically more tractable than) MSO: For every MSO φ, there is a modal mu-calculus formula p_φ s.t. for every Σ-labelled tree t, we have t ⊨ φ ⇐⇒ t, ε ⊨ p_φ.
- Any obvious extension of MSO would break decidability. Either of the following would permit an encoding of a Turing machine:
 - Second-order quantification over binary relations.
 - Freely interpretable binary relations in the vocabulary.

E.g. $T_a(i, t) =$ "*i*-th cell of the semi-infinite tape contains $a \in \Sigma$ at time *t*".

Examples of MSO-definable properties

Several useful relations are definable:

- 1. Set inclusion (and hence equality): $X \subseteq Y \equiv \forall x . x \in X \rightarrow x \in Y$.
- 2. "Is-an-ancestor-of" or prefix ordering $x \leq y$ (and hence x = y):

$$\begin{aligned} \mathsf{PrefCl}(X) &\equiv \forall xy \, . \, y \in X \land \bigvee_{i=1}^{m} \mathbf{d}_{i}(x, y) \to x \in X \\ x \leq y &\equiv \forall X \, . \, \mathsf{PrefCl}(X) \land y \in X \to x \in X \end{aligned}$$

Reachability property: "X is a path"

$$\begin{aligned} \mathsf{Path}(X) &\equiv & \forall xy \in X \ . \ x \leq y \ \lor \ y \leq x \\ & \land \quad \forall xyz \ . \ x \in X \ \land \ z \in X \ \land \ x \leq y \leq z \ \to \ y \in X \end{aligned}$$

 $\mathsf{MaxPath}(X) \equiv \mathsf{Path}(X) \land \forall Y \text{ . } \mathsf{Path}(Y) \land X \subseteq Y \ \rightarrow \ Y \subseteq X.$

MSO is expressive: more examples

Recurrence Property

A set of nodes is a **cut** if no two nodes in it are \leq -compatible, and it has a non-empty intersection with every maximal path.

$$\begin{array}{rcl} \mathsf{Cut}(X) &\equiv & \forall xy \in X \ . \ \neg (x \leq y \lor y \leq x) \\ & \land & \forall Z \ . \ \mathsf{MaxPath}(Z) \ \rightarrow \ \exists z \in Z \ . \ z \in X \end{array}$$

Fact. A set X of nodes in a finitely-branching tree is finite iff there is a cut C such that every X-node is a prefix of some C-node.

Finite
$$(X) \equiv \exists Y . Cut(Y) \land \forall x \in X . \exists y \in Y . x \leq y$$

Hence "there are finitely many nodes labelled by f" is expressible in MSO by

$$\exists X \text{ . Finite}(X) \land \forall x \text{ . } \mathbf{p}_f(x) \to x \in X$$

But "MSO cannot count": E.g. "X has twice as many elements as Y".

Motivation

Higher-order Recursion Schemes

A Model-Checking Problem

Infinite Structures with Decidable MSO

Theories

- Some milestones
- Hierarchies
- Open problems
- What is the safety

constraint?

The Safe Lambda Calculus

Infinite Structures with Decidable MSO Theories

[In timeline below, each item subsumes developments in preceding items.]

1. Rabin 1969: Regular trees. "Mother of all decidability results"

- 1. Rabin 1969: Regular trees. "Mother of all decidability results"
- 2. Muller and Schupp 1985: Configuration graphs of pushdown automata.

- 1. Rabin 1969: Regular trees. "Mother of all decidability results"
- 2. Muller and Schupp 1985: Configuration graphs of pushdown automata.
- 3. Caucal (ICALP 1996): Prefix-recognizable graphs (= ϵ -closures of configuration graphs of pushdown automata, Stirling 2000).

- 1. Rabin 1969: Regular trees. "Mother of all decidability results"
- 2. Muller and Schupp 1985: Configuration graphs of pushdown automata.
- 3. Caucal (ICALP 1996): Prefix-recognizable graphs (= ϵ -closures of configuration graphs of pushdown automata, Stirling 2000).
- 4. Knapik, Niwiński and Urzyczyn (TLCA 2001, FOSSACS 2002): **PushdownTree**_n Σ = Trees generated by order-*n* pushdown automata. **SafeRecSchTree**_n Σ = Trees generated by order-*n* safe recursion schemes.

- 1. Rabin 1969: Regular trees. "Mother of all decidability results"
- 2. Muller and Schupp 1985: Configuration graphs of pushdown automata.
- 3. Caucal (ICALP 1996): Prefix-recognizable graphs (= ϵ -closures of configuration graphs of pushdown automata, Stirling 2000).
- 4. Knapik, Niwiński and Urzyczyn (TLCA 2001, FOSSACS 2002): **PushdownTree**_n Σ = Trees generated by order-*n* pushdown automata. **SafeRecSchTree**_n Σ = Trees generated by order-*n* safe recursion schemes.
- 5. Caucal (MFCS 2002). CaucalTree_n Σ and CaucalGraph_n Σ . Theorem (KNU-C). For every $n \ge 0$, PushdownTree_n $\Sigma = SafeRecSchTree_n\Sigma = CaucalTree_n\Sigma$.

[In timeline below, each item subsumes developments in preceding items.]

- 1. Rabin 1969: Regular trees. "Mother of all decidability results"
- 2. Muller and Schupp 1985: Configuration graphs of pushdown automata.
- 3. Caucal (ICALP 1996): Prefix-recognizable graphs (= ϵ -closures of configuration graphs of pushdown automata, Stirling 2000).
- 4. Knapik, Niwiński and Urzyczyn (TLCA 2001, FOSSACS 2002): **PushdownTree**_n Σ = Trees generated by order-*n* pushdown automata. **SafeRecSchTree**_n Σ = Trees generated by order-*n* safe recursion schemes.
- 5. Caucal (MFCS 2002). CaucalTree_n Σ and CaucalGraph_n Σ . Theorem (KNU-C). For every $n \ge 0$, PushdownTree_n $\Sigma = SafeRecSchTree_n\Sigma = CaucalTree_n\Sigma$.

Question. Do Σ -labelled trees generated by unsafe recursion schemes have decidable MSO theories? If so, at which orders?

Hierarchies of Finitely-Presentable Infinite Structures

Safe recursion schemes are a robust definition: several characterisations

Equivalent Higher-Order	Classes of Structures		
Generating Devices	Word Languages	Trees	Graphs
Pushdown Automata	Maslov 74, 76	KNU 02	Cachat, Caucal, etc.
Safe Recursion Schemes	Damm 82	KNU 02	?
Indexed Grammars	Maslov 76	?	?

	Word Languages	Trees	
Order 0	Regular languages	Regular trees (Rabin, etc.)	
Order 1	Context-free languages; e.g. $a^n b^n$	Algebraic trees (Bourcelle, etc.)	
Order 2	Indexed languages; e.g. $a^n b^n c^n$	Hyperalgebraic trees (KNU 01)	
• • •	• • •	• • •	

Verifying Finitely-Presentable Infinite Structures Games in Semantics and Verification, 29 May - 2 June 06 – 24 / 32

Open Problems about the Maslov (= Damm) Hierarchy

Not much is known about order-3 and above.

1. **Pumping Lemma** (or Myhill-Nerode-type results)

There are "pumping lemmas" for orders 0, 1 and 2 ([Hay73,Gil96]). *Pace* [Blumensath04] for whole Maslov Hierarchy – runs are pumpable, conditions given as lengths of runs and configuration size.

2. Logical Characterization.

Regular languages are exactly those that are MSO definable (Büchi '60). There is a characterization of context-free languages using quantification over matchings [LST94].

3. Complexity-Theoretic Characterization.

Engelfriet '83, '91: characterizations of languages accepted by alternating / two-way / multi-head / space-auxiliary order-n PDA in terms of time-complexity classes (but no result for Maslov Hierarchy itself).

4. Relationship with Chomsky Hierachy.

E.g. Is order 3 context-sensitive?

What is the safety constraint?

W. Damm: Derived types in "IO and OI Hierarchies", TCS 1982.

Definition [KNU02]. An order-2 equation is **unsafe** if the RHS has a subterm P such that

- 1. P is order 1
- 2. P occurs in an operand position (i.e. as 2nd argument of the application operator)
- 3. P contains an order-0 parameter.

Examples of unsafe equations:

$$F: (o \to o) \to o \to o \to o, \ G: o \to o, \ H: (o \to o) \to o, \ \underline{f}: o^2 \to o.$$

$$G x = H (\underline{f} x)$$

$$F \varphi x y = f (\overline{F} (\overline{F} \varphi y) y (\varphi x)) \underline{a}$$

Safety (as presented above) seems syntactically awkward and semantically unnatural but (we shall see shortly) it has important algorithmic value.

Verifying Finitely-Presentable Infinite Structures Games in Semantics and Verification, 29 May - 2 June 06 – 26 / 32

Motivation

Higher-order Recursion Schemes

A Model-Checking Problem

Infinite Structures with Decidable MSO Theories

The Safe Lambda Calculus

- Safety?
- Safety reformulated
- Safe lambda calculus
- Algorithmic meaning
- of safety
- Thinking about safety

The Safe Lambda Calculus

In what sense is a safe λ -term safe?

A basic idea in lambda calculus / logic:

When performing β -reduction, one must use *capture-avoiding* substitution, which is standardly implemented by *renaming bound variables* afresh upon each substitution.

There is a price to pay for renaming:

Any machine that correctly computes:

 $\left\{ \begin{array}{ll} {\rm INPUT:} & {\rm A \ simply-typed \ }\lambda{\rm -term \ }M \\ {\rm OUTPUT:} & {\rm A \ }\beta{\rm -reduction \ sequence \ from \ }M \end{array} \right.$

needs an unbounded supply of names, and hence unbounded memory.

Safety lets us get away with no renaming of bound variables!

Safety reformulated as a simply-typed theory

We reexpress (and generalize) the safety constraint as a simply-typed theory. Sequents have the form

$$\underbrace{x_1:A_1,\cdots,x_i:A_i}_{\text{order }l_1} | \cdots | \underbrace{x_l:A_l,\cdots,x_n:A_n}_{\text{order }l_m} \vdash M:B$$

- Each A_i and B are homogeneous¹.
- Typing context partitioned according to orders with $l_1 \geq \cdots \geq l_m$.

Formation rules must respect the partition:

- When forming abstraction, all variables of the lowest type-partition must be abstracted in an atomic step.
- When forming application, the operator-term must be applied to all operand-terms (one for each type) of the highest type-partition, in one atomic step.

¹*o* is homogeneous; and $(A_1 \to \cdots \to A_n \to o)$ is homogeneous just if $order(A_1) \ge order(A_2) \ge \cdots \ge order(A_n)$, and each A_i is homogeneous.

Safe λ -Calculus: System S Typing Rules

When forming abstraction, all variables of the lowest-order type-partition must be abstracted. When forming application, the operator-term must be applied to all operand-terms (one for each type) of the highest-order type-partition.

Safe λ -calculus makes algorithmic sense

Example. Suppose $f : o^2 \rightarrow o$. Contracting the β -redex without renmaing

 $(\boldsymbol{\lambda}\varphi^{(o,o)}.(\boldsymbol{\lambda}x.\varphi x))(f x)$

leads to variable capture. The term is *not* safe.

Theorem. "Safe λ -calculus = (a) α -conversion-free λ -calculus" In the safe lambda calculus, there is no need to rename bound variables when performing substitution $M[N_1/\varphi_1, \dots, N_n/\varphi_n]$ provided the substitution is performed simultaneously on all free variables of the same order in M.

Proof idea. Suppose φ free in M, and x free in N, and x captured in (capture permitting) $M[N/\varphi]$. Then M looks like $\cdots (\lambda x \cdots \varphi \cdots) \cdots$. Case analysis by comparing order(x) with $order(\varphi)$.

Lemma. A free variable in a safe term has order as least that of the term.

Thus when reducing a safe λ -term, we do not need any supply of fresh name.

What is the right way to think of the Safe Lambda Calculus?

Safe λ -calculus seems of independent interest, and we don't understand it.

Design issues: Is the homogeneity assumption really necessary?

Proof theory: What kind of reasoning principles does it support (via Curry-Howard)? Is it useful to automated deduction / theorem proving?

What is a model of safe λ -calculus? Does it have interesting models?

Game semantics: What kind of pointer economy does safety determine? Ans: Pointers are redundant in safe view-functions! E.g. Kierstead terms: $\lambda f.f(\lambda x.f(\lambda y.y))$ is safe, but $\lambda f.f(\lambda x.f(\lambda y.x))$ is unsafe.

Implicit complexity. Simply-typed λ -calculus characterize polytime-computable numeric functions (Leivant-Marion 93). What about the safe terms?

Nevertheless, we shall prove that safety is *not* necessary for MSO decidability.