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Background
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Theorem (Knapik, Niwiński + Urzyczyn FOSSACS02). The MSO model

checking problem for trees generated by order-n safe recursion schemes is
decidable, for each n ≥ 0.

Recall: Homogeneous types

• o is homogeneous

• (A1 → · · · → An → o) is homogeneous just if
order(A1) ≥ order(A2) ≥ · · · ≥ order(An), and each Ai is

homogeneous.

Safety (which presupposes that all types are homogeneous) is a rather
awkward syntactic constraint; but

• It has a clear algorithmic virtue: Safe lambda calculus is an “α-conversion

free lambda calculus”.

• It has an elegant automata-theoretic characterization: Order-n safe

recursion schemes = order-n pushdown automata.



Is safety a genuine or spurious constraint for:
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1. Expressiveness . Are there inherently unsafe Σ-labelled trees?

I.e. Is there an unsafe recursion scheme whose value tree is not the value
tree of any safe recursion scheme? If so, at what order?

Conjecture . Yes, at order 2. But note:

Theorem . (A+deM+O FOSSACS 2005) There is no inherently unsafe

word language at order 2.

2. Decidability . Is safety necessary for decidabiliy? Two partial results:

Theorem . (A+deM+O 05) Σ-labelled trees generated by order-2 re-

cursion schemes (whether safe or not) have decidable MSO theories.

Theorem . (KNUW 05) Modal mu-calculus model checking problem

for homogeneously-typed order-2 schemes (whether safe or not) is
2-EXPTIME complete.

Question . What about higher orders?
Yes: Decidability result extends to all orders – main topic of this lecture.



Safety is not necessary for MSO decidability
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Theorem . (LICS 06) The modal mu-calculus model checking problem for

trees generated by arbitrary order-n recursion schemes is n-EXPTIME com-

plete, for each n ≥ 0.

We first consider the decidability argument and then discuss the complexity

analysis.



Key Steps of the Decidability Proof
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Let G be any order-n recursion scheme, and ϕ a modal mu-calculus formula.

The question of whether:

Value tree [[G ]] satisifes ϕ

⇐⇒ { Emerson + Jutla 1991}

‘Property’ alternating parity tree automaton (APT) Bϕ

has an accepting run-tree over value tree [[G ]]
Part 1
⇐⇒ { Correspondence Theorem }

Bϕ has an accepting traversal-tree over computation tree λ(G)
Part 2
⇐⇒ { Simulation Theorem }

‘Traversal-simulating’ APT Cϕ has an accepting run-tree over λ(G)

which is decidable, since the computation tree λ(G) is regular, and the APT

acceptance problem of regular trees is decidable (Rabin, Emerson, Jutla, etc.).



Outline
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Modal mu-calculus and alternating parity tree automata (AP T)
are equivalent
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Theorem [EM91]. There is a transformation from mu-calulus formulas to APT,

ϕ 7→ Bϕ, such that for any Σ-labelled tree t, t � ϕ iff the APT Bϕ accepts t.

Positive boolean formulas over a set P : p ranges over P

B+(P ) 3 θ ::= true | false | p | θ ∧ θ | θ ∨ θ

For S ⊆ P and θ ∈ B+(P ), we say S satisfies θ if assigning true to elements

in S and false to elements in P \ S makes θ true.

Alternating Parity Tree Automaton (APT)

B = 〈Σ, Q, δ, q0 ∈ Q, Ω : Q −→ N 〉

where

δ : Q × Σ −→ B+([ar(Σ)] × Q) is the transition function where, for each

f ∈ Σ and q ∈ Q, we have δ(q, f) ∈ B+([ar(f)] × Q)
Notation: [m] = { 1, · · · , m }; ar(Σ) = max{ ar(f) : f ∈ Σ }.



Acceptance of Σ-labelled tree t : dom(t) −→ Σ by an APT B
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An APT B accepts a Σ-labelled tree t just if it has an accepting run-tree over t.
I.e. “there is a certain set of state-annotated paths in t that is

1. ‘δB-respecting’, and

2. such that the infinite paths among them satisfy the parity condition.”

Think of these (state-annotated) paths as footprints of automata descending

the tree.
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An APT B accepts a Σ-labelled tree t just if it has an accepting run-tree over t.
I.e. “there is a certain set of state-annotated paths in t that is

1. ‘δB-respecting’, and

2. such that the infinite paths among them satisfy the parity condition.”

Think of these (state-annotated) paths as footprints of automata descending

the tree.

δB-respecting :

Automaton reads root ε with initial state q0.

Suppose automaton reads node α of dom(t) with state q.

• Recall: δB : Q × Σ −→ B+([ar(Σ)] × Q).
Guess a set S ⊆ [ar(t(α))] × Q that satisfies the positive boolean

formula δB(q, t(α)).

• For each (i, q′) ∈ S, spawn automaton to read i-child of α with state q′.
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An APT B accepts a Σ-labelled tree t just if it has an accepting run-tree over t.
I.e. “there is a certain set of state-annotated paths in t that is

1. ‘δB-respecting’, and

2. such that the infinite paths among them satisfy the parity condition.”

Think of these (state-annotated) paths as footprints of automata descending

the tree.

δB-respecting :

Automaton reads root ε with initial state q0.

Suppose automaton reads node α of dom(t) with state q.

• Recall: δB : Q × Σ −→ B+([ar(Σ)] × Q).
Guess a set S ⊆ [ar(t(α))] × Q that satisfies the positive boolean

formula δB(q, t(α)).

• For each (i, q′) ∈ S, spawn automaton to read i-child of α with state q′.

Parity condition : largest priority that occurs infinitely often is even.
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Transference Principle: from value tree to computation tree
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Direct algorithmic analysis of value tree [[G ]] is futile:

Value tree has no useful structure for our purpose: It is the “extensional”

outcome of a (potentially infinite) computational process comprising two kinds
of intertwined basic actions

1. unfolding

2. β-reduction

It is the algorithmics of this process that we should analyse.

[KNU2002 did, hence their restriction to the safe case!]
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Direct algorithmic analysis of value tree [[G ]] is futile:

Value tree has no useful structure for our purpose: It is the “extensional”

outcome of a (potentially infinite) computational process comprising two kinds
of intertwined basic actions

1. unfolding

2. β-reduction

It is the algorithmics of this process that we should analyse.

[KNU2002 did, hence their restriction to the safe case!]

Our approach : By considering rewrite-rule in long form (= curried, eta-long

form), unfolding and β-reduction can be analysed separately (Aehlig).

• Build an auxiliary computation tree λ(G) which is the outcome of
performing all of the unfolding, but none of the β-reduction (thus no

substitution and hence no renaming needed!).

• Analyse the β-reduction locally (i.e. without the global operation of

substitution) using game semantics - traverals .



The Long Transform: from (order- n) G to (order-0) G
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G-rules are obtained by: For each G-rule

1. Expand RHS to its η-long form, including ground-type subterm in operand

position. Thus e : o η-expands to λ.e (“dummy lambdas”).

2. Insert long-apply symbol @: Replace every ground-type subterm
D e1 · · · en by @ D e1 · · · en, where D ranges over non-terminals.

3. Curry each equation.

4. Rename (bound) variables afresh. Only finitely many new names.

Note: This transform is canonical for innocent game semantics.

Example .

G :







S = F H

F ϕ = ϕ (F ϕ)

H z = fzz

7→ G :







S = λ.@ F (λx.@ H λ.x)

F = λϕ.ϕ(λ.@ F (λy.ϕ(λ.y))))

H = λz.f(λ.z)(λ.z)



Computation tree λ(G) is obtained by infinitely unfolding G:
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G :

{
S = F H

F ϕ = ϕ (F ϕ)
H z = fzz

7→ G :

{
S = λ.@ F (λx.@ H λ.x)
F = λϕ.ϕ(λ.@ F (λy.ϕ(λ.y))))
H = λz.f(λ.z)(λ.z)

[[ G ]] λ(G)

λ

f

qqqqq
MMMMM @

mmmmmm
TTTTTTTTT

f f λϕ λx

f f f f ϕ
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� 77
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Traversals
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Definition . Traversals over λ(G) are justified sequences defined by induction:

(Root) The singleton sequence (comprising ε) is a traversal.

(App) If t @ is a traversal, so is t @ λξ
0��

.

(Sig) If t f is a traversal, so is t f λ

i��
where 1 ≤ i ≤ arity(f).

(Var) If t n λξ · · · ξ
iyy

is a traversal, so is t n λξ · · · ξ
iyy

λη

i

~~
.

(Lam) If t λξ is a traversal, so is t λξ n, such that pt λξ nq is a path in

λ(G).

Key lemma :

(i) Traversals are justified sequences that satisfy Visibility.

(ii) P-views of traversals are paths in the computation tree.



Path-Traversal Correspondence
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Theorem . (Correspondence) Let G be an order-n recursion scheme.

(i) There is a 1-1 correspondence between maximal paths p in (Σ-labelled)

value tree [[G ]] and maximal traversals tp over computation tree λ(G).

(ii) Further for each p, we have p � Σ = tp � Σ.

Proof is by game semantics.

Idea:

• Value tree [[G ]] is a representation of the strategy-denotation of G (in game

semantics).

• Paths in [[G ]] correspond to plays in the strategy-denotation.
• Nodes of the computation trees are representations of move-occurrences of

the constituent arenas.

• Traversals tp over computation tree λ(G) are just (representations of) the

uncoverings of the plays (= path) p in the strategy-denotation of G.



Composition
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Strategy composition is “parallel composition of two processes σ : A ⇒ B and
τ : B ⇒ C synchronizing on B, followed by hiding of B-moves.”

A
σ // B B

τ // C A
σ;τ

// C
c1 c1

b1 b1

00

a1

00

a1

22

a2

77
a2

77

b2

UU

b2

UU

c2

SS

c2

SS

c3

gg
7→ c3

gg

b3

UU

b3

UU

b4 b4

MM

b5

ee

b5

ee

b6

ee

b6

ee

a3

==

a3

FF

The play in σ ; τ thus constructed is c1 a1 a2 c2 c3 a3.



From run-tree over [[G ]] to traversal-tree over λ(G)
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Thus: Property APT B has an accepting run-tree over [[G ]]

by def.
⇐⇒

{

∃ certain set of δB-respecting, state-annotated

paths in [[G ]] satisfying parity condition

Thm (Corr)
⇐⇒

{

∃ certain set of δB-respecting, state-annotated

traversals over λ(G) satisfying parity condition
new def.
⇐⇒ Property APT B has an accepting traversal-tree over λ(G).

Higher-order traversals can be very complex - they jump all over the tree, and

can visit certain nodes infinitely often. See order-3 example!

Problem : Find a device to recognise an accepting traversal-tree.



Example
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λ
〈0〉

@〈1〉

kkkkkk
YYYYYYYYYYYYYYYY

λΨ〈2〉 λϕz〈10〉

Ψ〈3〉

rrr GG
f 〈11〉

tt CC
C

λx1x2
〈4〉

λ
〈18〉

λ
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zz II
II

λx′
1
x′

2

〈6〉
λ
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xx FFF

λ
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Example
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Simulate traversals by paths – an order-2 illustration
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Idea. Simulate an annotated traversal by the respective P-views of all its

prefixes, which are a set of annotated paths in the computation tree.

@
iiiiii RRR

XXXXXXXXXXXXX

λϕx λy1y2, q1 λ

...
...

...
ϕ, q1

mm

44

MMM
y1, q2

ooλ, q2 λ

Simulate the traversal above (indicated by arrows) by paths:

• At ϕ with q1, guess that the detour will return at first λ-child with state q2

• Spawn an automaton at λy1y2 to verify the guess.



Formalising the guesses as Variable Profiles VPB
G(A)
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Fix a recursion scheme G, and a property APT B = 〈Σ, Q, δ, q0, Ω 〉 with p
priorities. Write [p] = { 1, · · · , p }.

VPB
G(o) = Var

o
G × Q × [p] × 2∅

VPB
G(A1 → · · · → An → o) = Var

A
G × Q × [p] × 2(

Sn
i=1

VPB

G(Ai))

Asserting (ϕ, q, m, c) ∈ VPB
G(A) at node α of computation tree means:

the traversal being simulated will reach some descendant-node that is labelled

ϕ

1. with state q, such that

2. m is the highest priority that will have been encountered up to that point

3. further, the traversal (which will then jump to the root of a subtree that

denotes the actual argument of ϕ) will eventually return to the children of

the node labelled ϕ “in accord with c”.

Note: |VPB
G(i)| = expiO(|G| · |Q| · p).



Traversal-simulating APT
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Aim : Simulate B-states + verify guesses (= variable profiles).

C-states: q ρ where q is B-state being simulated, and environment ρ is the set

of profiles of variable (within current scope) to be verified.

Suppose automaton with state q ρ reading node with label l: Some cases
(verification of priorities omitted)

• l is a Σ-symbol f : ok → o.

Guess a set { (i1, q1), · · · , (il, ql) } satisfying δB(q, f) (abort, if

impossible), and guess environments ρ1, · · · , ρl such that
⋃l

j=1 ρj = ρ.

For each j, spawn automata with state qj ρj in direciton ij .

• l is an @ with children labelled by λϕ and λη1, · · · , ληk.
Guess ρ′ = { (ϕij , qj , mj , cj) : 1 ≤ j ≤ l }, and spawn automaton with

state q ρ′ in direction 0.

Guess ρ1, · · · , ρl with
⋃l

j=1 ρj = ρ. For each j, spawn automaton with

state qj (ρj ∪ cj) in direction ij .



Main Technical Lemma
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Theorem (Simulation ). The following are equivalent:

(i) Property APT B has an accepting traversal-tree over the computation tree

λ(G).

(ii) Traversal-simulating APT C has an accepting run-tree over the computa-
tion tree λ(G).

“(i) ⇒ (ii)”: From the traversal-tree annotated only by B-states, we perform a

succession of annotation operations, transforming it to a traversal-tree

annotated by C-states.

The set of P-views of all such C-state-annotated traversals is precisely an
accepting run-tree of C.

“(ii) ⇒ (i)”: Reconstruct each traversal (of the putative traversal-tree) as a

sequence of segments of paths (=P-views) in the accepting run-tree, thus

inheriting an accepting state-annotation.

Satisfaction of parity condition tricky to show!



Key Steps of the Decidability Proof
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Let G be any order-n recursion scheme, and ϕ a modal mu-calculus formula.

The question of whether:

Value tree [[G ]] satisifes ϕ

⇐⇒ { Emerson + Jutla 1991}

Property APT B has accepting run-tree over [[G ]]

⇐⇒ { Correspondence Theorem }

B has an accepting traversal-tree over computation tree λ(G)

⇐⇒ {Simulation Theorem }

Traversal-simulating APT C has an accepting run-tree over λ(G)

which is decidable, since the computation tree λ(G) is regular, and the APT

acceptance problem of regular trees is decidable.
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Equivalence of decision problems
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Let G be any order-n recursion scheme, and ϕ a modal mu-calculus formula.

The question of whether

Value tree [[G ]] satisifes ϕ

⇐⇒ { Emerson + Jutla 1991}

Property APT B has accepting run-tree over [[G ]]

⇐⇒ { Correspondence Theorem }

B has an accepting traversal-tree over computation tree λ(G)

⇐⇒ {Simulation Theorem }

Traversal-simulating APT C has an accepting run-tree over λ(G)

⇐⇒ { Emerson + Jutla, Stirling, etc. }

Eloise has winning strategy in acceptance parity game G(Gr(G), C)

(from root) for finite graph Gr(G) which unravels to λ(G)



Complexity of Modal Mu-Calculus Model Checking
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Model-checking safe trees is already n-EXPTIME hard. (Cachat ICALP’04 +

Walukiewicz)
Use parity game to show problem is decidable in n-EXPTIME.

Theorem . (Jurdzinski 2000) Eloise’s winning regions and strategy in a parity

game over (V, E) with p (≥2) priorities is computable in time

O

(

p · |E| ·

(
|V |

bp/2c

)bp/2c
)

Note: Actually a coarse bound |V |O(|p|) suffices (Emerson + Lei 86).

Fix an order-n G, a property APT B with traversal-simulating APT C.
Construct acceptance parity game G(Gr(G), C) such that the finite

deterministic ΛG-labelled graph Gr(G) unfolds to λ(G).

Fact . Eloise has a winning strategy in G(Gr(G), C) iff the APT C accepts

λ(G) (iff B accepts [[G ]]).



Complexity

Verifying Finitely-Presentable Infinite Structures Games in Semantics and Verification, 29 May - 2 June 06 – 30 / 47

Recall VPB
G(A1 → · · · → An → o) = Var

A
G × Q × [p] × 2(

Sn
i=1

VPB

G(Ai))

Write VPB
G(i) for the set of profiles of variables of order at most i. We have

|VPB
G(i)| = expiO(|G| · |Q| · p).

Theorem . (Succinctness). If the traversal-simulating APT C has an accepting

run-tree, it has one with a small branching factor.

As a corollary, |V | = expnO(|G| · |Q| · p). Since |E| is at most |V |2, time

complexity is

O
(

p · (|V |)bp/2c+2
)

= expnO(|G| · |Q| · p)

Theorem . The modal mu-calculus model checking problem for trees gener-

ated by order-n recursion schemes is n-EXPTIME complete.
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Order-2 pushdown automata (Maslov 74)
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A 1-stack is just an ordinary stack.

A 2-stack (resp. n + 1-stack) is a stack of 1-stacks (resp. n-stack).

Operations on 2-stacks : si ranges over 1-stacks

push2 : s1 · · · si−1 [a1 · · · an]
︸ ︷︷ ︸

si

7→ s1 · · · si−1 si si

pop2 : s1 · · · si−1 [a1 · · · an]
︸ ︷︷ ︸

si

7→ s1 · · · si−1

push1 a : s1 · · · si−1 [a1 · · · an]
︸ ︷︷ ︸

si

7→ s1 · · · si−1 [a1 · · · an a]
︸ ︷︷ ︸

pop1 : s1 · · · si−1 [a1 · · · an]
︸ ︷︷ ︸

si

] 7→ s1 · · · si−1 [a1 · · · an−1]
︸ ︷︷ ︸
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Order-2 CPDA :

[KNUW ICALP05] “panic automata”; [AdMO FOSSACS05] “2PDA with links”

Each stack symbol in 2-stack “remembers” the stack content at the point it was
first created (i.e. push1-ed), by way of a pointer to some 1-stack buried

underneath it (if there is one such).

Two new operations:

• push1 a: Whenever a symbol is pushed onto the top of stack, it has a

pointer to the 1-stack immediately below the top 1-stack.
• “collapse” (= panic) collapses the 2-stack up to the point as remembered by

(i.e. pointed to) by the top element of the 2-stack.

In order-n CPDA, there are n − 1 versions of push1, namely, push
j
1 a, with

1 ≤ j ≤ n − 1:

push
j
1 a: Whenever a symbol is pushed onto the top of stack, it has a pointer to

the j-stack immediately below the top j-stack.
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U -words are uniquely composed of 3 segments:

( · · · ( · · · (
︸ ︷︷ ︸

A

( · · · ) · · · ( · · · )
︸ ︷︷ ︸

B

∗ · · · ∗
︸ ︷︷ ︸

C

• Segment A is a prefix of a well-bracketed word that ends in (, such that

none of its prefixes is a well-bracketed word.

• Segment B is a well-bracketed word.

• Segment C has length equal to the number of ( in A.

E.g. ( ( ) ( ( ) ( ( ) ) ∗ ∗ ∗ ∈ U .



Recognising U by a 2CPDA. E.g. ( ( ) ( ( ) ∗ ∗ ∗ ∈ U
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push1a upon reading the first symbol, which must be (. Thereafter:

- push2 ; push1a upon reading (
- pop1 upon reading )
- collapse upon reading first ∗, thereafter pop2 for each subsequent ∗.

( [ [ a ] ]
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push1a upon reading the first symbol, which must be (. Thereafter:

- push2 ; push1a upon reading (
- pop1 upon reading )
- collapse upon reading first ∗, thereafter pop2 for each subsequent ∗.

( [ [ a ] ]

( [ [ a ] [ a a
{{

] ]
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push1a upon reading the first symbol, which must be (. Thereafter:

- push2 ; push1a upon reading (
- pop1 upon reading )
- collapse upon reading first ∗, thereafter pop2 for each subsequent ∗.

( [ [ a ] ]

( [ [ a ] [ a a
zz

] ]

) [ [ a ] [ a ] ]
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push1a upon reading the first symbol, which must be (. Thereafter:

- push2 ; push1a upon reading (
- pop1 upon reading )
- collapse upon reading first ∗, thereafter pop2 for each subsequent ∗.

( [ [ a ] ]

( [ [ a ] [ a a
zz

] ]

) [ [ a ] [ a ] ]

( [ [ a ] [ a ] [ a a
zz

] ]
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push1a upon reading the first symbol, which must be (. Thereafter:

- push2 ; push1a upon reading (
- pop1 upon reading )
- collapse upon reading first ∗, thereafter pop2 for each subsequent ∗.

( [ [ a ] ]

( [ [ a ] [ a a
zz

] ]

) [ [ a ] [ a ] ]

( [ [ a ] [ a ] [ a a
zz

] ]

( [ [ a ] [ a ] [ a a
zz

] [ a avv a
yy

] ]
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push1a upon reading the first symbol, which must be (. Thereafter:

- push2 ; push1a upon reading (
- pop1 upon reading )
- collapse upon reading first ∗, thereafter pop2 for each subsequent ∗.

( [ [ a ] ]

( [ [ a ] [ a a
zz

] ]

) [ [ a ] [ a ] ]

( [ [ a ] [ a ] [ a a
zz

] ]

( [ [ a ] [ a ] [ a a
zz

] [ a avv a
yy

] ]

) [ [ a ] [ a ] [ a a
zz

] [ a avv
] ]
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push1a upon reading the first symbol, which must be (. Thereafter:

- push2 ; push1a upon reading (
- pop1 upon reading )
- collapse upon reading first ∗, thereafter pop2 for each subsequent ∗.

( [ [ a ] ]

( [ [ a ] [ a a
zz

] ]

) [ [ a ] [ a ] ]

( [ [ a ] [ a ] [ a a
zz

] ]

( [ [ a ] [ a ] [ a a
zz

] [ a avv a
yy

] ]

) [ [ a ] [ a ] [ a a
zz

] [ a avv
] ] Collapse!

∗ [ [ a ] [ a ] ]



Recognising U by a 2CPDA. E.g. ( ( ) ( ( ) ∗ ∗ ∗ ∈ U

Verifying Finitely-Presentable Infinite Structures Games in Semantics and Verification, 29 May - 2 June 06 – 42 / 47

push1a upon reading the first symbol, which must be (. Thereafter:

- push2 ; push1a upon reading (
- pop1 upon reading )
- collapse upon reading first ∗, thereafter pop2 for each subsequent ∗.

( [ [ a ] ]

( [ [ a ] [ a a
zz

] ]

) [ [ a ] [ a ] ]

( [ [ a ] [ a ] [ a a
zz

] ]

( [ [ a ] [ a ] [ a a
zz

] [ a avv a
yy

] ]

) [ [ a ] [ a ] [ a a
zz

] [ a avv
] ] Collapse!

∗ [ [ a ] [ a ] ]

∗ [ [ a ] ]
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push1a upon reading the first symbol, which must be (. Thereafter:

- push2 ; push1a upon reading (
- pop1 upon reading )
- collapse upon reading first ∗, thereafter pop2 for each subsequent ∗.

( [ [ a ] ]

( [ [ a ] [ a a
zz

] ]

) [ [ a ] [ a ] ]

( [ [ a ] [ a ] [ a a
zz

] ]

( [ [ a ] [ a ] [ a a
zz

] [ a avv a
yy

] ]

) [ [ a ] [ a ] [ a a
zz

] [ a avv
] ] Collapse!

∗ [ [ a ] [ a ] ]

∗ [ [ a ] ]

∗ [ [ ] ]
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U is recognised by a deterministic 2CPDA and a non-deterministic 2PDA.

Conjecture . U is not recognisable by a deterministic 2PDA.

As a corollary, there is an associated tree that is generated by an order-2

recursion scheme, but not by any order-2 safe scheme.

Theorem . For each n ≥ 0, order-n collapsible PDA and order-n recursion
schemes are equi-expressive for Σ-labelled trees.

Proof idea

• From recursion scheme G to CPDA AG: Use game semantics.

Code traversals as n-stacks.

Invariant: The top 1-stack is the P-view of the encoded traversal.

• From CPDA A to recursion scheme GA:

Code configurations c as Σ-term Mc, so that c → c′ implies Mc rewrites
(in 1-step) to Mc′ .
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The same approach applies to solving parity games over graphs.

There is a transformation from n-collapsible pushdown systems (CPDS) A to

an equivalent order-n (non-deterministic) recursion schemes GA.

Transference Principle : Paths in the configuration graph of the CPDS A,

CGA, correspond exactly to traversals over the computation tree λ(GA) (or

equivalently over the finite computation graph Gr(A) that unfolds to λ(GA)).

Simulating Traversals : For any parity game over CGA, accepting

traversal-trees over Gr(A) can be recognised by a traversal-simulating APT C.

Thus, for any parity game over a collapsible n-pushdown graph CGA, there is
an equivalent finite acceptance parity game, which is an appropriate product of

Gr(A) and C.

Hence parity games over collapsible n-pushdown graphs are solvable.

Many open problems. E.g. Is winning region of 2-collapsible pushdown game

regular? What about higher-order games?



Many Further Directions
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1. Is safety a genuine constraint on expressiveness? Equivalently, are order-n
collapsible PDA more expressive than order-n PDA?

Conjecture . SafeRecSch2Σ ⊂ RecSchTree2Σ I.e. There are

inherently unsafe trees (at order 2).

Candidate: Urzyczyn’s tree.

2. Define graphs generated by order-n recursion schemes to be ε-closures of

configuration graphs of order-n collapsible PDA? Are their MSO theories

decidable?

Matthew Hague’s work.
Notions of graphs definable by order-n recursion schemes.

3. “Mixing semantic and verification games”: Denotational semantics of

λ-calculus “relative to an alternating parity tree automaton (APT)”.

Problem . Construct a cartesian closed category (= model of the lambda

calculus), parameterized by an APT, whose maps are witnessed by profiles
(“guesses”).
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