
Games Semantics: from Structures to Algorithmics

Luke Ong

Oxford University Computing Laboratory

www.comlab.ox.ac.uk/oucl/work/luke.ong/

(Acknowledgements: Samson Abramsky, Dan Ghica + Andrzej Murawski)

GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 1

Model Checking

Extremely successful in verifying relatively flat “unstructured” finite-state

processes.

E.g. digital circuits and communication protocols).

Naı̈ve application of these techniques to software raises problems:

1. Programs are potentially infinite-state systems. Tools are (mainly)

finite-state technologies.

2. Modern programs can only be accurately modelled using rich,

highly-structured models, as studied in Semantics. These are not

appropriate (as models) for Verification.

GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 2

Software Model Checking: Challenges and Approaches

“Model Construction Problem”: No systematic, fully automatic method exists for

model construction. Tension between:

• Accuracy in modelling - tends to make models large

• Engineering feasibility - tends to make models small.

A leading paradigm: Abstract–Test–Refine Cycle.

An alternative: Start from an accurate denotational semantics of the program

and then derive an appropriate model of computation sufficiently concrete (and

tractable) for the purpose of verification.

Advantages: Soundness and completeness inherited by the model; method

remains compositional.

Question: Is there such a semantics?

GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 3

Software Model Checking based on Game Semantics

Game semantics has emerged as a powerful paradigm for giving semantics to

a wide range of programming languages.

All of these models are highly accurate: fully abstract.

Promising features

• Clear operational content, while admitting compositional methods in the

style of denotational semantics.

• Strategies are highly-constrained processes, admitting automata-theoretic

representations.

• Rich mathematical structures yielding accurate models of advanced

high-level programming languages.

GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 4

Challanges of the Approach

To carry over methods of model checking to much more structured, modern

programming situations, in which the following features are important:

• data-types: references (pointers), recursive types

• non-local control flow: exceptions, call-cc, etc.

• modularity principles: e.g. object orientation: inheritance and subtyping

• higher-order features: higher-order procedures; components

• variables and names: passing mechanisms, life-span, scoping rules

• concurrency and non-determinism: synchronization, multithreading, etc.

Aim: Combine results and insights in Game Semantics, with techniques in

Verification.

GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 5

Outline of the Talk

I. A Higher-Order Procedural Language (HOPL): Idealized Algol

II. Game Semantics : An Impressionistic Introduction

III. Some Results in Algorithmic Game Semantics : Putting Game Semantics

to Work

IV. Applications to Software Model Checking : A Prototype Tool

V. Further Directions

GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 6

Idealized Algol (IA) [Reynolds 80]

A compact language that elegantly combines state-based procedural and

higher-order functional programming, using a simple type-theoretic framework.

IA is essentially a call-by-name variant of Core ML.

IA Types

T ::= int integer-valued expressions

| com commands

| loc locations (or assignable variables)

| T → T

IA Terms

Simply-typed λ-calculus + basic arithmetic + conditional (definition-by-cases) +

recursion + imperative constructs + block-allocated local variables.
GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 7

Observational equivalence M ≈ N

Intuitively M ≈ N means “M may be replaced by N (and vice versa) in

every program context with no observable difference in the resultant

computational outcome”.

Formally M ≈ N iff for every context C[] such that C[M] and C[N] are

programs (i.e. closed terms of type com)

C[M], S ⇓ skip, S′ ⇐⇒ C[N], S ⇓ skip, S′.

Quantification over all program context ensures that all side effects of M and

N are taken into account.

Observational equivalence is an intuitively compelling notion of program

equivalence, but very hard to reason about.

GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 8

The theory of observational equivalence is rich: Some examples

1. State changes are irreversible: No construct Snapback : com → com that

runs its argument and then undoes all its state-changes.

p : com → com

` new x := 0 in {p(x := 1) ; if !x = 1 thenΩ else skip} ≈ p(Ω)

2. Parametricity: Terms that have the “same underlying algorithm” are obs. eq.

p : com → bool → com

` new x := 1 in {p (x :=−!x) (!x > 0)}
≈ new y := t in {p (y := ¬y) (!y)}

Question . Is observational equivalence decidable?

Game semantics can help to answer the question.

GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 9

II. Game Semantics: An Informal Introduction

GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 10

Game Semantics (for Idealized Algol)

Players Point-of-view

P System

O Environment

Functional Imperative Concurrent

term procedure process

program context context & store rest-of-system

Basic Idea of Game Semantics: The meaning of a system is given in terms

of its potential interaction with its environment.

Four kinds of moves: P-questions, P-answers, O-questions, O-answers.

Types are modelled by arenas.

Programs of a given type are modelled by strategies (for P) for playing in the

arena which denotes that type.

An evaluation of the program (P), in a given program context (O), corresponds

to a play between P and O, tracing out a dialogue of questions and answers.
GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 11

Definition: Arenas

An arena A = 〈MA,`A, λA 〉 is a triple such that 〈MA,`A 〉 is a directed

graph which is a forest, whose nodes (i.e. moves) are partitioned by

λA : MA −→ {OQ, PA, PQ,OA }

into P-questions, P-answers, O-questions and O-answers, that satisfies the

following rules:

(1) Roots (moves at level 0), called initial, are O-questions.

(2) Levels 0, 2, 4, etc. are O-moves; levels 1, 3, 5, etc. are P-moves.

(3) Whenever m `A m′ (read “m justifies m′”) then m is a question. ¤

Note. The arena is not the game tree. The game tree over an arena A is

generated from A, subject to a number of rules.

GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 12

Example arenas

Empty arena 1 = 〈∅,∅,∅ 〉.

Natural numbers arena:

OQ q

xxqqqqqqqqqq

¢¢££
££

£
²² ÂÂ@

@@
@@

@

PA 0 1 2 · · ·

Boolean arena:

OQ q

¡¡¢¢
¢¢

¢
ÁÁ=

==
==

PA tt ff

GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 13

Arena constructions

Product arena A×B: Disjoint union of (the underlying forest of) A and B.

Function space arena A → B: “First invert the P and O moves of A, then

graft one such copy of A just below every root of B.”

Ai

Bj

A1

B1

B1
Bj

A
B

A → B

· · · · · ·
· · · · · ·

· · · · · · · · ·· · · · · ·

A⊥1 A⊥i A⊥1 A⊥i

GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 14

More examples of arenas

q

f

[OQ]

t
[PA] [PA]

t

q

ft

q

f

[OQ]

[PA] [PA]

q

f

[OQ]

t
[PA] [PA]

[PQ]

[OA][OA]

o =

(o → o) → o =

GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 15

What are the plays (= legal positions)?

Intuitively, a play or legal position is a record of the moves made by O and P in

the course of a game.

Basic rules of the game (for HOPL computation):

1. Alternation. O starts, thereafter P and O alternate strictly.

2. Justification. At any point (after the opening move), the playable moves are

exactly those whose justifier moves have already been played.

[The justifier move of an non-initial m is the unique m′ such that

m′ `A m.]

3. Whenever a player makes a move, he must also declare the justification for

it (by way of a pointer from the move to some occurrence of its justifier

move).

Thus every move in a play is explicitly justified.
GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 16

What are the plays (i.e. legal positions)?

A justified sequence (over an arena A) is a sequence of P/O-alternating

moves such that each move m, except the first, has a pointer to an earlier m′

such that m′ `A m.

Example

s = a b
ww

c
xx

d
xx

eww
f

ww g
ww

h
ww

i
ww

O P O P O P O P O

GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 17

What are the plays?

A justified sequence (over an arena A) is a sequence of P/O-alternating

moves such that each move m, except the first, has a pointer to an earlier m′

such that m′ `A m.

The P-view psq of a justified sequence s is a subsequence consisting only of

moves which P considers relevant (for determining his response). Intuitively

these are “O-moves that directly respond to moves that P has made (in a

hereditarily fashion)”.

Example

s = a b
ww

c
xx

d
xx

eww
f

ww g
ww

h
ww

i
ww

O P O P O P O P O

psq = a b
ww

eww
f

ww
i

ww

GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 18

What are the plays?

A justified sequence (over an arena A) is a sequence of P/O-alternating

moves such that each move m, except the first, has a pointer to an earlier m′

such that m′ `A m.

The P-view psq of a justified sequence s is a subsequence consisting only of

moves which P considers relevant (for determining his response). (Similarly for

O-view.)

A play (over A) is a justified sequence satisfying:

(1) Visibility : Each P-move is explicitly justified by (i.e. points to) some move

that appears in the P-view at that point; similarly for O.

(2) Well-Bracketing : Each answer is explicitly justified by the last pending

question.

GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 19

Example

f : N → N ` f(5) + f(1) : N
OQ q

PQ q

//

OQ q

00

PA 5

77

OA n

II

PQ q

77

OA q

//

PA 1
66

OA m

II

PA m + n

MM

GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 20

Example: What’s the point of pointers?

Kierstead terms

(y) λf.f(λx.f(λy.y))

(x) λf.f(λx.f(λy.x))

type−3 type−2 type−1 type−0

((N → N) → N) → N

O q

P q

00

O q

00

P q

::

O q

00

P q

(y)
s

00d

GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 21

Example: What’s the point of pointers?

Kierstead terms

(y) λf.f(λx.f(λy.y))

(x) λf.f(λx.f(λy.x))

type−3 type−2 type−1 type−0

((N → N) → N) → N

O q

P q

00

O q

00

P q

::

O q

00

P q

(y)
s

00d
(x)

::

GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 22

A fully abstract game model of PCF [Hyland-O. 2000]

A P-strategy σ is said to be innocent iff it is (deterministic) and

view-dependent i.e. it is generated from a partial function from P-views to

justified P-moves.

The category:

• Objects are arenas

• Maps σ : A −→ B are innocent P-strategies over the arena A → B.

is cartesian closed, and gives rise to the first (syntax-independent) fully

abstract model of PCF – the functional part of IA.

[Recall: M fully abstract meansM ² M = N ⇐⇒ M ≈ N .]

GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 23

Classifying Programming Features

Strategies can be classified according to the behavioural constraints they

satisfy. Four constraints identified in the fully abstract game model for PCF.

1. Determinacy

2. Well-Bracketing

3. Innocence

4. Visibility

GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 24

Classifying Programming Features

Strategies can be classified according to the behavioural constraints they

satisfy. Four constraints identified in the fully abstract game model for PCF.

1. Determinacy: Erratic choice (Harmer + McCusker 1998)

2. Well-Bracketing: Non-local control operators (Laird 1998)

3. Innocence: Mutable store (Abramsky + McCusker 1996)

4. Visibility: Higher-order store (reference types) (Abramsky, Honda +

McCusker 1999)

Later work showed that each corresponds precisely to the absence/presence

of certain programming features.

Game semantics gives accurate models of advanced high-level programming

languages.

GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 25

III. Some results in Algorithmic Game Semantics

Putting Game Semantics to work!

GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 26

First steps in Algorithmic Game Semantics (Ghica-McCusker’00)

At low types, game semantics admits a concrete, algorithmic representation.

Theorem. (Ghica-McCusker). For finitary 2nd-order IA terms M and N

M ≈ N ⇐⇒ [[Γ ` M : A]]reg︸ ︷︷ ︸
R

= [[Γ ` N : A]]reg︸ ︷︷ ︸
S

Moreover R = S, equivalence of regular expressions, is decidable. ¤

Lemma. (Abramsky + McCusker 1997) Observational equivalence of IA is

characterized by complete plays. I.e.

M ≈ N ⇐⇒ cplays [[Γ ` M : A]]Kn = cplays [[Γ ` N : A]]Kn

Lemma. The set of complete plays in [[Γ ` M : A]]Kn
is regular.

Note . Up to order 2, justification pointers may be ignored; so plays are just words over

alphabet of moves.
GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 27

Decidability and undecidability results

Two orthogonal directions of extension:

Fragments of finitary IA Is observational equivalence decidable?

2nd-order Yes. (Ghica+McCusker 00)

Can Ghica-McCusker’s results be extended to larger fragments?

GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 28

Decidability and undecidability results

Two orthogonal directions of extension:

Fragments of finitary IA Is observational equivalence decidable?

2nd-order Yes. (Ghica+McCusker 00)

2nd-order + iteration Yes (GM 00); PSPACE-complete (Murawski 03)

2nd-order + recursion No. (Ong LICS’02)

GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 29

Decidability and undecidability results

Two orthogonal directions of extension:

Fragments of finitary IA Is observational equivalence decidable?

2nd-order Yes. (Ghica+McCusker 00)

2nd-order + iteration Yes (GM 00); PSPACE-complete (Murawski 03)

2nd-order + recursion No. (Ong LICS’02)

3rd-order Yes: reduction to DPDA Equivalence. (Ong 02)

4th-order or higher No. (Murawski LICS 03)

GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 30

Decidability and undecidability results

Two orthogonal directions of extension:

Fragments of finitary IA Is observational equivalence decidable?

2nd-order Yes. (Ghica+McCusker 00)

2nd-order + iteration Yes (GM 00); PSPACE-complete (Murawski 03)

2nd-order + recursion No. (Ong LICS’02)

3rd-order Yes: reduction to DPDA Equivalence. (Ong 02)

4th-order or higher No. (Murawski LICS 03)

3rd-order + iteration ?

GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 31

Decidability and undecidability results

Two orthogonal directions of extension:

Fragments of finitary IA Is observational equivalence decidable?

2nd-order Yes. (Ghica+McCusker 00)

2nd-order + iteration Yes (GM 00); PSPACE-complete (Murawski 03)

2nd-order + recursion No. (Ong LICS’02)

3rd-order Yes: reduction to DPDA Equivalence. (Ong 02)

4th-order or higher No. (Murawski LICS 03)

3rd-order + iteration Yes. Rationally innocent strategies.

A rationally innocent strategy is generated by a view function whose domain is a

disjoint union of a finite number of regular sets such that the function acts uniformly on

each set.
GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 32

Type-theoretic orders and expressiveness

Consider finitary IA generated from base types Σ = {x1, · · · , xn }, com and

loc. For a language L ⊆ Σ∗, we say that Γ ` M : A represents L just in

case

L = cplays [[Γ ` M : A]] ¹ Σ

Theorem (Murawski 03) Let L ⊆ Σ∗.

(i) L representable by a 2nd-order IA-term-in-context iff L is regular.

(ii) L representable by a 3rd-order IA-term-in-context iff L is context-free.

(iii) L representable by a 4th-order IA-term-in-context iff L is r.e.

GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 33

Obs. Equiv of 3rd-order IA is decidable: Proof Idea

At 3rd and higher orders, pointers can no longer be ignored. We use view

offset to encode pointers.

We give an intensional, state-explicit representation of the fully abstract game

semantics [[Γ ` M : A]]state (so that each move in a play is annotated with a

state).

Lemma. (i) [[Γ ` M : A]]state is compactly innocent i.e. generated by a finite

(view) function fM . (ii) Further fM determines an associated DPDA PfM
.

Theorem. The language recognized by the DPDA PfM
is precisely the com-

plete plays of [[Γ ` M : A]]Kn.

Thus we can decide observational equivalence of 3rd-order IA, provided there

is a procedure to decide: DPDA Equivalence.

GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 34

DPDA Equivalence : Given two DPDAs, do they recognize the same lan-

guage?

First posed in 1966, it was proved to be decidable by Seńizergues in 1998/2001

(Gödel Prize 2002). Primitive recursive bound by Stirling (TCS 255:1-31, 2001.

Theorem . There is an algorithm for deciding

Given two finitary 3rd-order IA terms M and N , does M observa-

tionally approximate N?

in O(22n
).

Proof: superdeterministic PDAs: subclass with a decidable inclusion problem.

Or use Visibly pushdown automata [AM04]!

GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 35

Example: DPDA defined by λf.f(λx.x) : ((o → o) → o) → o

[0

(1

[2

(3

)1

]2

]0

[0 (1)1

[0

[0 (1

[0 (1 [2

init

[0 (1)1]0

[0 (1 [2 (3
[0 (1 [2 (3)3

[0 (1 [2 (3)3]2

† [2)3

)1

[2

)3

GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 36

IV. Applications to Software Model Checking

GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 37

Prototype Tool (developed by Dan Ghica)

A compiler transforming an open procedural program into finite automaton

representing its fully abstract game semantics. See [AGMO04] at TACAS ’04.

Parser + type inference + back-end processing in CAML. Back-end heavy-duty

regular language processing uses AT&T FSM Library.

A case study: Bubble sort

Why sorting? Well-known pathological case involving complicating interactions

between data and control control.

“... it seems impossible to use Model Checking to verify that a sorting algorithm is

correct since sorting correctness is a data-oriented property involving several

quantifications and data structures.” [Bandera user manual]

Why bubble sort? Not for any algorithmic virtues, but because it is a

straightforward non-recursive sorting algorithm.
GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 38

Program parameterized over array size (n) and basic data type (Z MOD 3).

The DFA model is fully abstract.

Some performance data: (SunBlade 100, 2GB RAM)

array size n model construction time

2 5 mins
5 10 mins
10 15 mins
20 4 hours
25 10 hours

An array of size 20 (over integers MOD 3) has circa 320 states.

Key features of our Model:

• representation of the fully abstract semantics.

• highly compact: it has only about 5500 states!

• extensional: tranforms of all (correct) sorting algorithms are isomorphic.

Related work: Lazic (Warwick) has an IA-to-CSP compiler for FDR checking.
GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 39

GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 40

A new approach to Software Model Checking

Though we emphasize observational equivalence, the same algorithmic

representations of program meanings can be used to verify a wide range of

program properties Ξ ² φ where Ξ is a term-in-context, provided φ is a

regular property.

E.g. take Ξ = p : int → int, x : loc ` M : com, and

φ = “in M , whenever p is called, its argument is read from x and its

result is (immediately) written into x”

can be captured by the regular expression: for appropriate move sets X,Y

and Z

(X∗ (q1 read3
∑

d∈D

(d3 d1) Y ∗ ∑

d∈D

(d3 write(d)3)ok3 Z)∗)∗)∗

GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 41

A new approach to Software Model Checking (con’d)

Fact. Definability by regular expressions is equivalent to definability in

QPLTL.

Thus we obtain for free a model checker for a temporal style of program

correctness assertions verifiable by checking for emptiness of the intersection

of the program automaton and the complement of the property automaton.

We intend to:

• Combine these ideas with the standard methods of over-approximation and

data-abstraction

• Investigate applications in inter-procedural dataflow analysis and

reachability analysis.

Goal : Build on the tools and methods of the verification community, while

exploring the advantages offered by our semantics-based approach.

GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 42

Further directions: Verification of recursive HOPL Programs

Verifying infinitary computation against infinitary properties

Finitary computation Finitary properties Yes

Infinitary computation Finitary properties Yes

Infinitary computation Infinitary properties ?

E.g. Model Checking. Given a order-n recursively-defined IA term M and a

µ-calculus formula φ, does [[M]] ² φ?

General problem is hard: Don’t have a sensible model of computation for

generating [[M]] for n > 3.

First step: restrict to Pure functional fragment of IA - already very rich; e.g. it

contains the hierarchy of safe higher-order recursion scheme Damm /

Knapik-Niwinski-Urzyczyn / Caucal etc. Many intriguing and challenging

problems.
GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 43

