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Model Checking

Extremely successful in verifying relatively flat “unstructured” finite-state

processes.

E.g. digital circuits and communication protocols).

Naı̈ve application of these techniques to software raises problems:

1. Programs are potentially infinite-state systems. Tools are (mainly)

finite-state technologies.

2. Modern programs can only be accurately modelled using rich,

highly-structured models, as studied in Semantics. These are not

appropriate (as models) for Verification.
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Software Model Checking: Challenges and Approaches

“Model Construction Problem”: No systematic, fully automatic method exists for

model construction. Tension between:

• Accuracy in modelling - tends to make models large

• Engineering feasibility - tends to make models small.

A leading paradigm: Abstract–Test–Refine Cycle.

An alternative: Start from an accurate denotational semantics of the program

and then derive an appropriate model of computation sufficiently concrete (and

tractable) for the purpose of verification.

Advantages: Soundness and completeness inherited by the model; method

remains compositional.

Question: Is there such a semantics?
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Software Model Checking based on Game Semantics

Game semantics has emerged as a powerful paradigm for giving semantics to

a wide range of programming languages.

All of these models are highly accurate: fully abstract.

Promising features

• Clear operational content, while admitting compositional methods in the

style of denotational semantics.

• Strategies are highly-constrained processes, admitting automata-theoretic

representations.

• Rich mathematical structures yielding accurate models of advanced

high-level programming languages.
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Challanges of the Approach

To carry over methods of model checking to much more structured, modern

programming situations, in which the following features are important:

• data-types: references (pointers), recursive types

• non-local control flow: exceptions, call-cc, etc.

• modularity principles: e.g. object orientation: inheritance and subtyping

• higher-order features: higher-order procedures; components

• variables and names: passing mechanisms, life-span, scoping rules

• concurrency and non-determinism: synchronization, multithreading, etc.

Aim: Combine results and insights in Game Semantics, with techniques in

Verification.
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Outline of the Talk

I. A Higher-Order Procedural Language (HOPL): Idealized Algol

II. Game Semantics : An Impressionistic Introduction

III. Some Results in Algorithmic Game Semantics : Putting Game Semantics

to Work

IV. Applications to Software Model Checking : A Prototype Tool

V. Further Directions
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Idealized Algol (IA) [Reynolds 80]

A compact language that elegantly combines state-based procedural and

higher-order functional programming, using a simple type-theoretic framework.

IA is essentially a call-by-name variant of Core ML.

IA Types

T ::= int integer-valued expressions

| com commands

| loc locations (or assignable variables)

| T → T

IA Terms

Simply-typed λ-calculus + basic arithmetic + conditional (definition-by-cases) +

recursion + imperative constructs + block-allocated local variables.
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Observational equivalence M ≈ N

Intuitively M ≈ N means “M may be replaced by N (and vice versa) in

every program context with no observable difference in the resultant

computational outcome”.

Formally M ≈ N iff for every context C[ ] such that C[M ] and C[N ] are

programs (i.e. closed terms of type com)

C[M ], S ⇓ skip, S′ ⇐⇒ C[N ], S ⇓ skip, S′.

Quantification over all program context ensures that all side effects of M and

N are taken into account.

Observational equivalence is an intuitively compelling notion of program

equivalence, but very hard to reason about.
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The theory of observational equivalence is rich: Some examples

1. State changes are irreversible: No construct Snapback : com → com that

runs its argument and then undoes all its state-changes.

p : com → com

` new x := 0 in {p(x := 1) ; if !x = 1 thenΩ else skip} ≈ p(Ω)

2. Parametricity: Terms that have the “same underlying algorithm” are obs. eq.

p : com → bool → com

` new x := 1 in {p (x :=−!x) (!x > 0)}
≈ new y := t in {p (y := ¬y) (!y)}

Question . Is observational equivalence decidable?

Game semantics can help to answer the question.
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II. Game Semantics: An Informal Introduction
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Game Semantics (for Idealized Algol)

Players Point-of-view

P System

O Environment

Functional Imperative Concurrent

term procedure process

program context context & store rest-of-system

Basic Idea of Game Semantics: The meaning of a system is given in terms

of its potential interaction with its environment.

Four kinds of moves: P-questions, P-answers, O-questions, O-answers.

Types are modelled by arenas.

Programs of a given type are modelled by strategies (for P) for playing in the

arena which denotes that type.

An evaluation of the program (P), in a given program context (O), corresponds

to a play between P and O, tracing out a dialogue of questions and answers.
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Definition: Arenas

An arena A = 〈MA,`A, λA 〉 is a triple such that 〈MA,`A 〉 is a directed

graph which is a forest, whose nodes (i.e. moves) are partitioned by

λA : MA −→ {OQ, PA, PQ,OA }

into P-questions, P-answers, O-questions and O-answers, that satisfies the

following rules:

(1) Roots (moves at level 0), called initial, are O-questions.

(2) Levels 0, 2, 4, etc. are O-moves; levels 1, 3, 5, etc. are P-moves.

(3) Whenever m `A m′ (read “m justifies m′”) then m is a question. ¤

Note. The arena is not the game tree. The game tree over an arena A is

generated from A, subject to a number of rules.
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Example arenas

Empty arena 1 = 〈∅,∅,∅ 〉.

Natural numbers arena:

OQ q

xxqqqqqqqqqq

¢¢££
££

£
²² ÂÂ@

@@
@@

@

PA 0 1 2 · · ·

Boolean arena:

OQ q

¡¡¢¢
¢¢

¢
ÁÁ=

==
==

PA tt ff
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Arena constructions

Product arena A×B: Disjoint union of (the underlying forest of) A and B.

Function space arena A → B: “First invert the P and O moves of A, then

graft one such copy of A just below every root of B.”

Ai

Bj

A1

B1

B1
Bj

A
B

A → B

· · · · · ·
· · · · · ·

· · · · · · · · ·· · · · · ·

A⊥1 A⊥i A⊥1 A⊥i
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More examples of arenas

q

f

[OQ]

t
[PA] [PA]

t

q

ft

q

f

[OQ]

[PA] [PA]

q

f

[OQ]

t
[PA] [PA]

[PQ]

[OA][OA]

o =

(o → o) → o =
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What are the plays (= legal positions)?

Intuitively, a play or legal position is a record of the moves made by O and P in

the course of a game.

Basic rules of the game (for HOPL computation):

1. Alternation. O starts, thereafter P and O alternate strictly.

2. Justification. At any point (after the opening move), the playable moves are

exactly those whose justifier moves have already been played.

[The justifier move of an non-initial m is the unique m′ such that

m′ `A m.]

3. Whenever a player makes a move, he must also declare the justification for

it (by way of a pointer from the move to some occurrence of its justifier

move).

Thus every move in a play is explicitly justified.
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What are the plays (i.e. legal positions)?

A justified sequence (over an arena A) is a sequence of P/O-alternating

moves such that each move m, except the first, has a pointer to an earlier m′

such that m′ `A m.

Example

s = a b
ww

c
xx

d
xx

eww
f

ww g
ww

h
ww

i
ww

O P O P O P O P O
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What are the plays?

A justified sequence (over an arena A) is a sequence of P/O-alternating

moves such that each move m, except the first, has a pointer to an earlier m′

such that m′ `A m.

The P-view psq of a justified sequence s is a subsequence consisting only of

moves which P considers relevant (for determining his response). Intuitively

these are “O-moves that directly respond to moves that P has made (in a

hereditarily fashion)”.

Example

s = a b
ww

c
xx

d
xx

eww
f

ww g
ww

h
ww

i
ww

O P O P O P O P O

psq = a b
ww

eww
f

ww
i

ww
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What are the plays?

A justified sequence (over an arena A) is a sequence of P/O-alternating

moves such that each move m, except the first, has a pointer to an earlier m′

such that m′ `A m.

The P-view psq of a justified sequence s is a subsequence consisting only of

moves which P considers relevant (for determining his response). (Similarly for

O-view.)

A play (over A) is a justified sequence satisfying:

(1) Visibility : Each P-move is explicitly justified by (i.e. points to) some move

that appears in the P-view at that point; similarly for O.

(2) Well-Bracketing : Each answer is explicitly justified by the last pending

question.
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Example

f : N → N ` f(5) + f(1) : N
OQ q

PQ q

//

OQ q

00

PA 5

77

OA n

II

PQ q

77

OA q

//

PA 1
66

OA m

II

PA m + n

MM

GVD ’04, Boston, 18 July 2004. Games Semantics: from Structures to Algorithmics. Page 20



Example: What’s the point of pointers?

Kierstead terms





(y) λf.f(λx.f(λy.y))

(x) λf.f(λx.f(λy.x))

type−3 type−2 type−1 type−0

((N → N) → N) → N

O q

P q

00

O q

00

P q

::

O q

00

P q

(y)
s

00d
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Example: What’s the point of pointers?

Kierstead terms





(y) λf.f(λx.f(λy.y))

(x) λf.f(λx.f(λy.x))

type−3 type−2 type−1 type−0

((N → N) → N) → N

O q

P q

00

O q

00

P q

::

O q

00

P q

(y)
s

00d
(x)

::
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A fully abstract game model of PCF [Hyland-O. 2000]

A P-strategy σ is said to be innocent iff it is (deterministic) and

view-dependent i.e. it is generated from a partial function from P-views to

justified P-moves.

The category:

• Objects are arenas

• Maps σ : A −→ B are innocent P-strategies over the arena A → B.

is cartesian closed, and gives rise to the first (syntax-independent) fully

abstract model of PCF – the functional part of IA.

[Recall: M fully abstract meansM ² M = N ⇐⇒ M ≈ N .]
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Classifying Programming Features

Strategies can be classified according to the behavioural constraints they

satisfy. Four constraints identified in the fully abstract game model for PCF.

1. Determinacy

2. Well-Bracketing

3. Innocence

4. Visibility
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Classifying Programming Features

Strategies can be classified according to the behavioural constraints they

satisfy. Four constraints identified in the fully abstract game model for PCF.

1. Determinacy: Erratic choice (Harmer + McCusker 1998)

2. Well-Bracketing: Non-local control operators (Laird 1998)

3. Innocence: Mutable store (Abramsky + McCusker 1996)

4. Visibility: Higher-order store (reference types) (Abramsky, Honda +

McCusker 1999)

Later work showed that each corresponds precisely to the absence/presence

of certain programming features.

Game semantics gives accurate models of advanced high-level programming

languages.
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III. Some results in Algorithmic Game Semantics

Putting Game Semantics to work!
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First steps in Algorithmic Game Semantics (Ghica-McCusker’00)

At low types, game semantics admits a concrete, algorithmic representation.

Theorem. (Ghica-McCusker). For finitary 2nd-order IA terms M and N

M ≈ N ⇐⇒ [[ Γ ` M : A ]]reg︸ ︷︷ ︸
R

= [[ Γ ` N : A ]]reg︸ ︷︷ ︸
S

Moreover R = S, equivalence of regular expressions, is decidable. ¤

Lemma. (Abramsky + McCusker 1997) Observational equivalence of IA is

characterized by complete plays. I.e.

M ≈ N ⇐⇒ cplays [[ Γ ` M : A ]]Kn = cplays [[ Γ ` N : A ]]Kn

Lemma. The set of complete plays in [[ Γ ` M : A ]]Kn
is regular.

Note . Up to order 2, justification pointers may be ignored; so plays are just words over

alphabet of moves.
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Decidability and undecidability results

Two orthogonal directions of extension:

Fragments of finitary IA Is observational equivalence decidable?

2nd-order Yes. (Ghica+McCusker 00)

Can Ghica-McCusker’s results be extended to larger fragments?
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Decidability and undecidability results

Two orthogonal directions of extension:

Fragments of finitary IA Is observational equivalence decidable?

2nd-order Yes. (Ghica+McCusker 00)

2nd-order + iteration Yes (GM 00); PSPACE-complete (Murawski 03)

2nd-order + recursion No. (Ong LICS’02)
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Decidability and undecidability results

Two orthogonal directions of extension:

Fragments of finitary IA Is observational equivalence decidable?

2nd-order Yes. (Ghica+McCusker 00)

2nd-order + iteration Yes (GM 00); PSPACE-complete (Murawski 03)

2nd-order + recursion No. (Ong LICS’02)

3rd-order Yes: reduction to DPDA Equivalence. (Ong 02)

4th-order or higher No. (Murawski LICS 03)
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Decidability and undecidability results

Two orthogonal directions of extension:

Fragments of finitary IA Is observational equivalence decidable?

2nd-order Yes. (Ghica+McCusker 00)

2nd-order + iteration Yes (GM 00); PSPACE-complete (Murawski 03)

2nd-order + recursion No. (Ong LICS’02)

3rd-order Yes: reduction to DPDA Equivalence. (Ong 02)

4th-order or higher No. (Murawski LICS 03)

3rd-order + iteration ?
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Decidability and undecidability results

Two orthogonal directions of extension:

Fragments of finitary IA Is observational equivalence decidable?

2nd-order Yes. (Ghica+McCusker 00)

2nd-order + iteration Yes (GM 00); PSPACE-complete (Murawski 03)

2nd-order + recursion No. (Ong LICS’02)

3rd-order Yes: reduction to DPDA Equivalence. (Ong 02)

4th-order or higher No. (Murawski LICS 03)

3rd-order + iteration Yes. Rationally innocent strategies.

A rationally innocent strategy is generated by a view function whose domain is a

disjoint union of a finite number of regular sets such that the function acts uniformly on

each set.
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Type-theoretic orders and expressiveness

Consider finitary IA generated from base types Σ = {x1, · · · , xn }, com and

loc. For a language L ⊆ Σ∗, we say that Γ ` M : A represents L just in

case

L = cplays [[ Γ ` M : A ]] ¹ Σ

Theorem (Murawski 03) Let L ⊆ Σ∗.

(i) L representable by a 2nd-order IA-term-in-context iff L is regular.

(ii) L representable by a 3rd-order IA-term-in-context iff L is context-free.

(iii) L representable by a 4th-order IA-term-in-context iff L is r.e.
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Obs. Equiv of 3rd-order IA is decidable: Proof Idea

At 3rd and higher orders, pointers can no longer be ignored. We use view

offset to encode pointers.

We give an intensional, state-explicit representation of the fully abstract game

semantics [[ Γ ` M : A ]]state (so that each move in a play is annotated with a

state).

Lemma. (i) [[ Γ ` M : A ]]state is compactly innocent i.e. generated by a finite

(view) function fM . (ii) Further fM determines an associated DPDA PfM
.

Theorem. The language recognized by the DPDA PfM
is precisely the com-

plete plays of [[ Γ ` M : A ]]Kn.

Thus we can decide observational equivalence of 3rd-order IA, provided there

is a procedure to decide: DPDA Equivalence.
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DPDA Equivalence : Given two DPDAs, do they recognize the same lan-

guage?

First posed in 1966, it was proved to be decidable by Seńizergues in 1998/2001

(Gödel Prize 2002). Primitive recursive bound by Stirling (TCS 255:1-31, 2001.

Theorem . There is an algorithm for deciding

Given two finitary 3rd-order IA terms M and N , does M observa-

tionally approximate N?

in O(22n
).

Proof: superdeterministic PDAs: subclass with a decidable inclusion problem.

Or use Visibly pushdown automata [AM04]!
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Example: DPDA defined by λf.f(λx.x) : ((o → o) → o) → o

[0

(1

[2

(3

)1

]2

]0

[0 (1)1

[0

[0 (1

[0 (1 [2

init

[0 (1 )1 ]0

[0 (1 [2 (3
[0 (1 [2 (3 )3

[0 (1 [2 (3)3 ]2

† [2)3

)1

[2

)3
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IV. Applications to Software Model Checking
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Prototype Tool (developed by Dan Ghica)

A compiler transforming an open procedural program into finite automaton

representing its fully abstract game semantics. See [AGMO04] at TACAS ’04.

Parser + type inference + back-end processing in CAML. Back-end heavy-duty

regular language processing uses AT&T FSM Library.

A case study: Bubble sort

Why sorting? Well-known pathological case involving complicating interactions

between data and control control.

“... it seems impossible to use Model Checking to verify that a sorting algorithm is

correct since sorting correctness is a data-oriented property involving several

quantifications and data structures.” [Bandera user manual]

Why bubble sort? Not for any algorithmic virtues, but because it is a

straightforward non-recursive sorting algorithm.
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Program parameterized over array size (n) and basic data type (Z MOD 3).

The DFA model is fully abstract.

Some performance data: (SunBlade 100, 2GB RAM)

array size n model construction time

2 5 mins
5 10 mins
10 15 mins
20 4 hours
25 10 hours

An array of size 20 (over integers MOD 3) has circa 320 states.

Key features of our Model:

• representation of the fully abstract semantics.

• highly compact: it has only about 5500 states!

• extensional: tranforms of all (correct) sorting algorithms are isomorphic.

Related work: Lazic (Warwick) has an IA-to-CSP compiler for FDR checking.
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A new approach to Software Model Checking

Though we emphasize observational equivalence, the same algorithmic

representations of program meanings can be used to verify a wide range of

program properties Ξ ² φ where Ξ is a term-in-context, provided φ is a

regular property.

E.g. take Ξ = p : int → int, x : loc ` M : com, and

φ = “in M , whenever p is called, its argument is read from x and its

result is (immediately) written into x”

can be captured by the regular expression: for appropriate move sets X,Y

and Z

(X∗ (q1 read3
∑

d∈D

(d3 d1) Y ∗ ∑

d∈D

(d3 write(d)3)ok3 Z)∗)∗)∗
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A new approach to Software Model Checking (con’d)

Fact. Definability by regular expressions is equivalent to definability in

QPLTL.

Thus we obtain for free a model checker for a temporal style of program

correctness assertions verifiable by checking for emptiness of the intersection

of the program automaton and the complement of the property automaton.

We intend to:

• Combine these ideas with the standard methods of over-approximation and

data-abstraction

• Investigate applications in inter-procedural dataflow analysis and

reachability analysis.

Goal : Build on the tools and methods of the verification community, while

exploring the advantages offered by our semantics-based approach.
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Further directions: Verification of recursive HOPL Programs

Verifying infinitary computation against infinitary properties

Finitary computation Finitary properties Yes

Infinitary computation Finitary properties Yes

Infinitary computation Infinitary properties ?

E.g. Model Checking. Given a order-n recursively-defined IA term M and a

µ-calculus formula φ, does [[M ]] ² φ?

General problem is hard: Don’t have a sensible model of computation for

generating [[M ]] for n > 3.

First step: restrict to Pure functional fragment of IA - already very rich; e.g. it

contains the hierarchy of safe higher-order recursion scheme Damm /

Knapik-Niwinski-Urzyczyn / Caucal etc. Many intriguing and challenging

problems.
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