
Automatic Verification of Message-Passing Concurrency

Luke Ong

(Joint work with Jonathan Kochems and Emanuele D’Osualdo)

University of Oxford

Kröning Group Seminar, 6 March 2014

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 1 / 34

Outline

1 A Survey of Soter: Automatic Safety-Verification of Erlang Programs

2 A New Model of Asynchronous Message-Passing Concurrency

3 Conclusions and Further Directions

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 2 / 34

Outline

1 A Survey of Soter: Automatic Safety-Verification of Erlang Programs

2 A New Model of Asynchronous Message-Passing Concurrency

3 Conclusions and Further Directions

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 3 / 34

Erlang

– designed by Ericsson in 1980s to program real-time, distributed,
fault-tolerant telecoms systems.

1 Each process (actor) is a sequential, higher-order functional program.

2 Each process has an unbounded mailbox. Processes communicate by
asynchronous message passing – send is non-blocking.

3 Each process has a unique name or pid, which is datum and passable
as message.

4 A process may block while waiting to receive a message that matches
a given pattern: message retrieval is first-in-first-firable-out (FIFFO).

5 A process may spawn new processess (and remember their names).

Natural fit for programming “irregular concurrency”. E.g. multicore CPUs,
networked servers, parallel databases, GUIs and interacting programs.

Erlang: “a gold standard in concurrency-oriented programming”

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 4 / 34

Erlang

– designed by Ericsson in 1980s to program real-time, distributed,
fault-tolerant telecoms systems.

1 Each process (actor) is a sequential, higher-order functional program.

2 Each process has an unbounded mailbox. Processes communicate by
asynchronous message passing – send is non-blocking.

3 Each process has a unique name or pid, which is datum and passable
as message.

4 A process may block while waiting to receive a message that matches
a given pattern: message retrieval is first-in-first-firable-out (FIFFO).

5 A process may spawn new processess (and remember their names).

Natural fit for programming “irregular concurrency”. E.g. multicore CPUs,
networked servers, parallel databases, GUIs and interacting programs.

Erlang: “a gold standard in concurrency-oriented programming”

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 4 / 34

Goal: automatically verify safety properties (e.g. race freedom and mailbox
boundedness).

Approach: by abstract interpretation and infinite-state model checking.

Verifying Erlang programs is inherently difficult.

Theorem (Turing Completeness)

The following (tiny) fragment of Erlang is already Turing powerful.

(1) finite data types (in particular, finite message space)

(2) each process computes a first-order recursive function

(3) static spawning: the number of processes is 2

(4) bounded mailbox: mailboxes have a fixed capacity of 1

Proof is by encoding Minsky’s counter machine.

Replacing (1) and (2) by the following is also Turing powerful.

(1’) constructors with arity at most 2

(2’) order-0 function, equivalently, a finite-state transduceer

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 5 / 34

Goal: automatically verify safety properties (e.g. race freedom and mailbox
boundedness).

Approach: by abstract interpretation and infinite-state model checking.

Verifying Erlang programs is inherently difficult.

Theorem (Turing Completeness)

The following (tiny) fragment of Erlang is already Turing powerful.

(1) finite data types (in particular, finite message space)

(2) each process computes a first-order recursive function

(3) static spawning: the number of processes is 2

(4) bounded mailbox: mailboxes have a fixed capacity of 1

Proof is by encoding Minsky’s counter machine.

Replacing (1) and (2) by the following is also Turing powerful.

(1’) constructors with arity at most 2

(2’) order-0 function, equivalently, a finite-state transduceer

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 5 / 34

Goal: automatically verify safety properties (e.g. race freedom and mailbox
boundedness).

Approach: by abstract interpretation and infinite-state model checking.

Verifying Erlang programs is inherently difficult.

Theorem (Turing Completeness)

The following (tiny) fragment of Erlang is already Turing powerful.

(1) finite data types (in particular, finite message space)

(2) each process computes a first-order recursive function

(3) static spawning: the number of processes is 2

(4) bounded mailbox: mailboxes have a fixed capacity of 1

Proof is by encoding Minsky’s counter machine.

Replacing (1) and (2) by the following is also Turing powerful.

(1’) constructors with arity at most 2

(2’) order-0 function, equivalently, a finite-state transduceer

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 5 / 34

An Automatic Verification Pathway

Take (Core) Erlang code as source.

1 Perform a k-CFA-like analysis—specialised from the generic abstract
interpretation—to construct abstractions of data and control-flow.

2 Bootstrap the analysis to yield an Actor Communicating System
(ACS)—a CCS-like infinite-state model—that soundly approximates
the program.

3 Model-check the ACS using a vector addition system (or Petri nets, or
multicounter automata) coverability checker (BFC)
Counter abstraction. Three quantities: ι, q,m:

I Counter (ι, q) counts # processes in pid-class ι currently in state q
I Counter (ι,m) sums the occurrences of message m in the mailbox of a

process p, as p ranges over pid-class ι

The analysis is parametric and can be tuned for accuracy.

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 6 / 34

An Automatic Verification Pathway

Take (Core) Erlang code as source.

1 Perform a k-CFA-like analysis—specialised from the generic abstract
interpretation—to construct abstractions of data and control-flow.

2 Bootstrap the analysis to yield an Actor Communicating System
(ACS)—a CCS-like infinite-state model—that soundly approximates
the program.

3 Model-check the ACS using a vector addition system (or Petri nets, or
multicounter automata) coverability checker (BFC)
Counter abstraction. Three quantities: ι, q,m:

I Counter (ι, q) counts # processes in pid-class ι currently in state q
I Counter (ι,m) sums the occurrences of message m in the mailbox of a

process p, as p ranges over pid-class ι

The analysis is parametric and can be tuned for accuracy.

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 6 / 34

An Automatic Verification Pathway

Take (Core) Erlang code as source.

1 Perform a k-CFA-like analysis—specialised from the generic abstract
interpretation—to construct abstractions of data and control-flow.

2 Bootstrap the analysis to yield an Actor Communicating System
(ACS)—a CCS-like infinite-state model—that soundly approximates
the program.

3 Model-check the ACS using a vector addition system (or Petri nets, or
multicounter automata) coverability checker (BFC)
Counter abstraction. Three quantities: ι, q,m:

I Counter (ι, q) counts # processes in pid-class ι currently in state q
I Counter (ι,m) sums the occurrences of message m in the mailbox of a

process p, as p ranges over pid-class ι

The analysis is parametric and can be tuned for accuracy.

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 6 / 34

Soter: Workflow in 3 Phases

http://mjolnir.cs.ox.ac.uk/soter/

ACS
BFC

model

Cover-
ability

queries

Elang
module

+

safety
queries

Core
Elang

module
erlc

Analysis

Data Abs

Msg Abs

bfc

Gen.

SAFE

UNSAFE

(ERROR)Mailbox
Abs

Context
Abs

Simpl.

Phase 3Phase 1

Phase 2

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 7 / 34

http://mjolnir.cs.ox.ac.uk/soter/

Empirical Evaluation

Example LOC SAFE?
ABS ACS TIME (sec.)

D M #Pl. Rat. Ana. Sim. BFC Total

reslockbeh 507 yes 0 2 40 4% 1.94 0.41 0.85 3.21
reslock 356 yes 0 2 40 10% 0.56 0.08 0.82 1.48
sieve 230 yes 0 2 47 19% 0.26 0.03 2.46 2.76
concdb 321 yes 0 2 67 12% 1.10 0.16 5.19 6.46
state factory 295 yes 0 1 22 4% 0.59 0.13 0.02 0.75
pipe 173 yes 0 0 18 8% 0.15 0.03 0.00 0.18
ring 211 yes 0 2 36 9% 0.55 0.07 0.25 0.88
parikh 101 yes 0 2 42 41% 0.05 0.01 0.07 0.13
unsafe send 49 no 0 1 10 38% 0.02 0.00 0.00 0.02
safe send 82 no* 0 1 33 36% 0.05 0.01 0.00 0.06
safe send 82 yes 1 2 82 34% 0.23 0.03 0.06 0.32
firewall 236 no* 0 2 35 10% 0.36 0.05 0.02 0.44
firewall 236 yes 1 3 74 10% 2.38 0.30 0.00 2.69
finite leader 555 no* 0 2 56 20% 0.35 0.03 0.01 0.40
finite leader 555 yes 1 3 97 23% 0.75 0.07 0.86 1.70
stutter 115 no* 0 0 15 19% 0.04 0.00 0.00 0.05
howait 187 no* 0 2 29 14% 0.19 0.02 0.00 0.22

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 8 / 34

Soter 0.1: References and Limitations

Soter tool: http://mjolnir.cs.ox.ac.uk/soter/

D’Osualdo, Kochems & O.: Soter: an Automatic Safety Verifier for Erlang. AGERE! ’12.

D’Osualdo, Kochems & O.: Automatic Verification of Erlang-style Concurrency. SAS

2013.

Limitations: Two Sources of Imprecision

(1) Each process is abstracted as a finite-state machine (even though the
ACS is an infinite-state model).

I Cannot analyse non-tail-recursive functions accurately. Undesirable
because Erlang processes are (higher-order) functional programs, and
definition-by-recursion is standard.

I Cannot support stack-based reasoning.

(2) Pids (process ids) are abstracted as finitely many pid equiv. classes
I Cannot fully support analysis that requires precision of process identity.
I Because mailboxes are merged, certain patterns of communication

cannot be analysed accurately.

The rest of the talk aims to address (1) above; for (2) see Further Directions.

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 9 / 34

http://mjolnir.cs.ox.ac.uk/soter/

Soter 0.1: References and Limitations

Soter tool: http://mjolnir.cs.ox.ac.uk/soter/

D’Osualdo, Kochems & O.: Soter: an Automatic Safety Verifier for Erlang. AGERE! ’12.

D’Osualdo, Kochems & O.: Automatic Verification of Erlang-style Concurrency. SAS

2013.

Limitations: Two Sources of Imprecision

(1) Each process is abstracted as a finite-state machine (even though the
ACS is an infinite-state model).

I Cannot analyse non-tail-recursive functions accurately. Undesirable
because Erlang processes are (higher-order) functional programs, and
definition-by-recursion is standard.

I Cannot support stack-based reasoning.

(2) Pids (process ids) are abstracted as finitely many pid equiv. classes
I Cannot fully support analysis that requires precision of process identity.
I Because mailboxes are merged, certain patterns of communication

cannot be analysed accurately.

The rest of the talk aims to address (1) above; for (2) see Further Directions.

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 9 / 34

http://mjolnir.cs.ox.ac.uk/soter/

Soter 0.1: References and Limitations

Soter tool: http://mjolnir.cs.ox.ac.uk/soter/

D’Osualdo, Kochems & O.: Soter: an Automatic Safety Verifier for Erlang. AGERE! ’12.

D’Osualdo, Kochems & O.: Automatic Verification of Erlang-style Concurrency. SAS

2013.

Limitations: Two Sources of Imprecision

(1) Each process is abstracted as a finite-state machine (even though the
ACS is an infinite-state model).

I Cannot analyse non-tail-recursive functions accurately. Undesirable
because Erlang processes are (higher-order) functional programs, and
definition-by-recursion is standard.

I Cannot support stack-based reasoning.

(2) Pids (process ids) are abstracted as finitely many pid equiv. classes
I Cannot fully support analysis that requires precision of process identity.
I Because mailboxes are merged, certain patterns of communication

cannot be analysed accurately.

The rest of the talk aims to address (1) above; for (2) see Further Directions.

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 9 / 34

http://mjolnir.cs.ox.ac.uk/soter/

Outline

1 A Survey of Soter: Automatic Safety-Verification of Erlang Programs

2 A New Model of Asynchronous Message-Passing Concurrency

3 Conclusions and Further Directions

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 10 / 34

Working Example: Server in Asynchronous-Programming Style

Background on Asynchronous Programming

A ubiquitous systems programming idiom for managing concurrent
interactions with the environment.

The programmer can make conventional (synchronous) function calls,
where a caller waits until the callee completes computation.

However, for time-consuming tasks, the programmer makes
(non-blocking) asynchronous procedure calls: the tasks are not
immediately executed but are rather posted in a task bag.

A despatcher picks and executes callback tasks from the task bag to
completion (and these callbacks can post further callbacks to be
executed later).

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 11 / 34

Working Example: Server in Asynchronous-Programming Style

1 server() →
2 init_despatcher(), do_server(), post_task(),
3 case (*) of
4 true →server();
5 false →system ? stop
6 end,
7 task_bag ! stop.
8

9 post_task() →task_bag ! task, task_bag ? ok.
10

11 init_despatcher() →task_bag ! init, task_bag ? ready.
12

13 despatcher() →
14 task_bag ? init, task_bag ! ready,
15 task_bag ? task, task_bag ! ok, do_task(),
16 case (*) of
17 true →despatcher();
18 false →task_bag ? stop, system ! despatcher_done.
19

20 main() →spawn(server), spawn(despatcher), system ! stop.

Question. Can the system reach a state s.t. ready ∈ task_bag and

despatcher_done ∈ system?
Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 12 / 34

Working Example: Server in Asynchronous-Programming Style

1 server() →
2 init_despatcher(), do_server(), post_task(),
3 case (*) of
4 true →server();
5 false →system ? stop
6 end,
7 task_bag ! stop.
8

9 post_task() →task_bag ! task, task_bag ? ok.
10

11 init_despatcher() →task_bag ! init, task_bag ? ready.
12

13 despatcher() →
14 task_bag ? init, task_bag ! ready,
15 task_bag ? task, task_bag ! ok, do_task(),
16 case (*) of
17 true →despatcher();
18 false →task_bag ? stop, system ! despatcher_done.
19

20 main() →spawn(server), spawn(despatcher), system ! stop.

Question. Can the system reach a state s.t. ready ∈ task_bag and

despatcher_done ∈ system?
Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 12 / 34

The server is an instance of a widely studied concurrency model, ACPS.

Asynchronously Communicating Pushdown Systems (ACPS)

Each process is a pushdown system.

Processes may be spawned dynamically.

Processes communicate asynchronously by message
passing—non-blocking send, and blocking receive—via a fixed, finite
number of unbounded, unordered channels (or message buffers).

Unfortunately reachability is undecidable in ACPS.
“Any context-sensitive and synchronisation-sensitive analysis is
undecidable.” (Ramalingam: TOPLAS 2000)

A common restriction of ACPS sufficient for decidability

A process may only receive a message when its call stack is empty.

Large literature: see, e.g., (Sen & Viswanathan: CAV 2006), (Jhala & Majumdar: POPL

2007).

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 13 / 34

The server is an instance of a widely studied concurrency model, ACPS.

Asynchronously Communicating Pushdown Systems (ACPS)

Each process is a pushdown system.

Processes may be spawned dynamically.

Processes communicate asynchronously by message
passing—non-blocking send, and blocking receive—via a fixed, finite
number of unbounded, unordered channels (or message buffers).

Unfortunately reachability is undecidable in ACPS.
“Any context-sensitive and synchronisation-sensitive analysis is
undecidable.” (Ramalingam: TOPLAS 2000)

A common restriction of ACPS sufficient for decidability

A process may only receive a message when its call stack is empty.

Large literature: see, e.g., (Sen & Viswanathan: CAV 2006), (Jhala & Majumdar: POPL

2007).

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 13 / 34

The server is an instance of a widely studied concurrency model, ACPS.

Asynchronously Communicating Pushdown Systems (ACPS)

Each process is a pushdown system.

Processes may be spawned dynamically.

Processes communicate asynchronously by message
passing—non-blocking send, and blocking receive—via a fixed, finite
number of unbounded, unordered channels (or message buffers).

Unfortunately reachability is undecidable in ACPS.
“Any context-sensitive and synchronisation-sensitive analysis is
undecidable.” (Ramalingam: TOPLAS 2000)

A common restriction of ACPS sufficient for decidability

A process may only receive a message when its call stack is empty.

Large literature: see, e.g., (Sen & Viswanathan: CAV 2006), (Jhala & Majumdar: POPL

2007).

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 13 / 34

Questions
1 Find a model of asynchronous concurrency that relaxes the

Receiveable-Only-When-Stack-is-Empty restriction (hence extending
the paradigm), while preserving decidablity of reachability.

2 Is the new model realistic and useful?

3 How hard is safety verification of these models? What is the precise
complexity of (ExpSpace-hard) reachability / coverability?

4 Are there “realistic algorithms”?

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 14 / 34

Asynchronous Communicating Pushdown Systems: Related Work

Asynchronous procedure calls
(Sen & Viswanathan: CAV06), (Jhala & Majumdar: POPL07),
(Ganty et al.: POPL09)

Hierarchical communication
(Bouajjani & Emmi: POPL12), (Bouajjani et al.: Concur05)

Synchronisation over locks
(Kahlon: LICS09), etc.

Variously bounded by: context, phase and scope
(Lal & Reps: FMSD09), (Bouajjani & Emmi: TACAS12), (Torre et
al.: Concur11)

Pattern-based verification
(Esparza & Ganty: POPL11)

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 15 / 34

Idea

Because channels are unordered, the precise sequencing of
non-blocking actions (i.e. send and spawn) are unobservable.

Thus we postulate: certain actions commute with each other over
sequential composition, while others (notably receive) don’t.

Independence Relation and Commutative / Non-Comm. Actions

1 An independence relation # ⊆ Σ2 is an irreflexive and symmetric
relation; it induces a congruence between terms, '# ⊆ (Σ∗)2.
[Intuition: if a# b then “a commutes with b”]

2 a ∈ Σ is #-non-commutative if ∀a′ ∈ Σ : (a, a′) 6∈ #

3 a ∈ Σ is #-commutative if ∀a′ ∈ Σ: either a′ is #-non-commutative
or (a, a′) ∈ #.

4 An independence relation # is unambiguous just if it partitions Σ into
#-commutative (written Σcom) and #-non-comm. (Σ¬com) parts.

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 16 / 34

Idea

Because channels are unordered, the precise sequencing of
non-blocking actions (i.e. send and spawn) are unobservable.

Thus we postulate: certain actions commute with each other over
sequential composition, while others (notably receive) don’t.

Independence Relation and Commutative / Non-Comm. Actions

1 An independence relation # ⊆ Σ2 is an irreflexive and symmetric
relation; it induces a congruence between terms, '# ⊆ (Σ∗)2.
[Intuition: if a# b then “a commutes with b”]

2 a ∈ Σ is #-non-commutative if ∀a′ ∈ Σ : (a, a′) 6∈ #

3 a ∈ Σ is #-commutative if ∀a′ ∈ Σ: either a′ is #-non-commutative
or (a, a′) ∈ #.

4 An independence relation # is unambiguous just if it partitions Σ into
#-commutative (written Σcom) and #-non-comm. (Σ¬com) parts.

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 16 / 34

Idea

Because channels are unordered, the precise sequencing of
non-blocking actions (i.e. send and spawn) are unobservable.

Thus we postulate: certain actions commute with each other over
sequential composition, while others (notably receive) don’t.

Independence Relation and Commutative / Non-Comm. Actions

1 An independence relation # ⊆ Σ2 is an irreflexive and symmetric
relation; it induces a congruence between terms, '# ⊆ (Σ∗)2.
[Intuition: if a# b then “a commutes with b”]

2 a ∈ Σ is #-non-commutative if ∀a′ ∈ Σ : (a, a′) 6∈ #

3 a ∈ Σ is #-commutative if ∀a′ ∈ Σ: either a′ is #-non-commutative
or (a, a′) ∈ #.

4 An independence relation # is unambiguous just if it partitions Σ into
#-commutative (written Σcom) and #-non-comm. (Σ¬com) parts.

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 16 / 34

Idea

Because channels are unordered, the precise sequencing of
non-blocking actions (i.e. send and spawn) are unobservable.

Thus we postulate: certain actions commute with each other over
sequential composition, while others (notably receive) don’t.

Independence Relation and Commutative / Non-Comm. Actions

1 An independence relation # ⊆ Σ2 is an irreflexive and symmetric
relation; it induces a congruence between terms, '# ⊆ (Σ∗)2.
[Intuition: if a# b then “a commutes with b”]

2 a ∈ Σ is #-non-commutative if ∀a′ ∈ Σ : (a, a′) 6∈ #

3 a ∈ Σ is #-commutative if ∀a′ ∈ Σ: either a′ is #-non-commutative
or (a, a′) ∈ #.

4 An independence relation # is unambiguous just if it partitions Σ into
#-commutative (written Σcom) and #-non-comm. (Σ¬com) parts.

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 16 / 34

A New Model of Asynchronous Concurrency: Notation

Fix finite sets: Chan (channels), M sg (messages), Labels and N
(non-terminal symbols, for procedures). Define (concurrency) actions

Spawns := { νX | X ∈ N }
Sends := { c !m | c ∈ Chan,m ∈ M sg }
Receives := { c ?m | c ∈ Chan,m ∈ M sg }

Set terminal symbols

Σ := Labels ∪ Sends ∪ Receives ∪ Spawns.

1 Easy to define an unambiguous #: partitioning Σ into commutative
actions Σcom and non-commutative actions Σ¬com as follows:

Σ := (Labels ∪ Spawns ∪ Sends)︸ ︷︷ ︸
Commutative

∪ Receives︸ ︷︷ ︸
Non-Comm.

2 We can lift # ∈ Σ2 to an unambiguous #̂ ⊆ (Σ ∪N)2, and so
partition N = N com ∪N¬com

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 17 / 34

A New Model of Asynchronous Concurrency: Notation

Fix finite sets: Chan (channels), M sg (messages), Labels and N
(non-terminal symbols, for procedures). Define (concurrency) actions

Spawns := { νX | X ∈ N }
Sends := { c !m | c ∈ Chan,m ∈ M sg }
Receives := { c ?m | c ∈ Chan,m ∈ M sg }

Set terminal symbols

Σ := Labels ∪ Sends ∪ Receives ∪ Spawns.

1 Easy to define an unambiguous #: partitioning Σ into commutative
actions Σcom and non-commutative actions Σ¬com as follows:

Σ := (Labels ∪ Spawns ∪ Sends)︸ ︷︷ ︸
Commutative

∪ Receives︸ ︷︷ ︸
Non-Comm.

2 We can lift # ∈ Σ2 to an unambiguous #̂ ⊆ (Σ ∪N)2, and so
partition N = N com ∪N¬com

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 17 / 34

A New Model of Asynchronous Concurrency: Notation

Fix finite sets: Chan (channels), M sg (messages), Labels and N
(non-terminal symbols, for procedures). Define (concurrency) actions

Spawns := { νX | X ∈ N }
Sends := { c !m | c ∈ Chan,m ∈ M sg }
Receives := { c ?m | c ∈ Chan,m ∈ M sg }

Set terminal symbols

Σ := Labels ∪ Sends ∪ Receives ∪ Spawns.

1 Easy to define an unambiguous #: partitioning Σ into commutative
actions Σcom and non-commutative actions Σ¬com as follows:

Σ := (Labels ∪ Spawns ∪ Sends)︸ ︷︷ ︸
Commutative

∪ Receives︸ ︷︷ ︸
Non-Comm.

2 We can lift # ∈ Σ2 to an unambiguous #̂ ⊆ (Σ ∪N)2, and so
partition N = N com ∪N¬com

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 17 / 34

A New Model of Asynchronous Concurrency: APCPS

Given Chan, M sg, Labels and N , an asynchronous partially
commutative pushdown system (APCPS) is a tuple (Σ,#,N ,R, S)
where

Σ := Labels ∪ Sends ∪ Receives ∪ Spawns is a finite set of terminal
symbols (= concurrency actions) as defined above

N is a finite set of non-terminal symbols (=procedure names);
S ∈ N is a start symbol

⊆ Σ2 is an unambiguous independence relation (defined above)
giving partitions: Σ = Σcom ∪ Σ¬com and N = N com ∪N¬com

R is a set of rewrite rules of the forms A→ a, or A→ BC, where
a ∈ Σ ∪ { ε }, A,B,C ∈ N

The induced leftmost derivation relation, →, is a binary relation over
(Σ ∪N)∗/ '#.

Cf. Partially commutative context-free grammar (Czerwinski et al.:Concur 2009).

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 18 / 34

Example: APCPS

1 server() →
2 init_despatcher(), do_server(), post_task(),
3 case (*) of
4 true →server();
5 false →system ? stop
6 end,
7 task_bag ! stop.
8

9 post_task() →task_bag ! task, task_bag ? ok.
10

11 init_despatcher() →task_bag ! init, task_bag ? ready.

Define a APCPS with rules:

S → I ·D · P · Scase · Sstop

Scase → S | system ? stop
Sstop → task bag ! stop
· · ·

Commutative non-terminal: Sstop

Non-commutative non-terminals: S, I, P, Scase

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 19 / 34

Example: APCPS

12 despatcher() →
13 task_bag ? init, task_bag ! ready,
14 task_bag ? task, task_bag ! ok, do_task(),
15 case (*) of
16 true →despatcher();
17 false →task_bag ? stop, system ! despatcher_done.

Further rules:

D → task bag ? init · `1 · task bag ! ready ·Dinit

Dinit → task bag ? task · task bag ! ok · T ·Dmsg

Dmsg → D | task bag ! stop · `2 · system ! d done

Labels: `1, `2

Labels are commutative actions: reasonable because we are interested in
the reachability of, not sequencing properties about, labels.

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 20 / 34

Standard Semantics of APCPS

Write Terms := (Σ ∪N)∗/ '#. The configurations are elements of

M[Terms]× (Chan→M[M sg])

where M[A] is the set of multisets of A.

For simplicity, we write a configuration

([α, β, α], { c1 7→ [m1,m1], c2 7→ [] })

as
α ‖ β ‖ α J c1 7→ [m1,m1], c2 7→ []

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 21 / 34

Standard Semantics of APCPS by Example

S → I · P · Scase · Sstop D → bag ? init · `1 · bag ! rdy ·Dinit

I → bag ! init · bag ? rdy Dinit → bag ? task · bag ! ok ·Dmsg

P → bag ! task · bag ? ok.

A transition sequence of standard semantics

S ‖ D J bag 7→ [], sys 7→ []

→ I · P · Scase · Sstop ‖ D J bag 7→ [], sys 7→ []

→ bag ! init · bag ? rdy · P · Scase · Sstop ‖ D J bag 7→ [], sys 7→ []

→
bag ! init · bag ? rdy · P · Scase · Sstop

‖ bag ? init · `1 · bag ! rdy ·Dinit
J bag 7→ [], sys 7→ []

→
bag ? rdy · P · Scase · Sstop

‖ bag ? init · `1 · bag ! rdy ·Dinit
J bag 7→ [init], sys 7→ []

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 22 / 34

S → I · P · Scase · Sstop D → bag ? init · `1 · bag ! rdy ·Dinit

I → bag ! init · bag ? rdy Dinit → bag ? task · bag ! ok ·Dmsg

P → bag ! task · bag ? ok.

A transition sequence of standard semantics (cont’d)

→
bag ? rdy · P · Scase · Sstop

‖ `1 · bag ! rdy ·Dinit
J bag 7→ [], sys 7→ []

→
bag ? rdy · P · Scase · Sstop

‖ bag ! rdy ·Dinit
J bag 7→ [], sys 7→ []

→∗
P · Scase · Sstop

‖ Dinit
J bag 7→ [], sys 7→ []

→∗
Scase · Sstop

‖ Dmsg
J bag 7→ [], sys 7→ []

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 23 / 34

Safety Verification Problems

In the sequential setting, the control-state reachability problem (of
pushdown systems) is of central interest.

APCPS Program-Point Reachability Problem

Given an APCPS and `1, · · · , `n ∈ Labels, are there α1, · · · , αn ∈ Terms
and channel contents Γ s.t. S J ∅ →∗ `1 α1 ‖ · · · ‖ `n αn ‖ · · · J Γ
(possibly in parallel with some other processes)?

APCPS Program-Point Coverability Problem

Given an APCPS and `1, · · · , `n ∈ Labels, are there configuration Π J Γ
and α1, · · · , αn ∈ Terms such that

1 S J ∅ →∗ Π J Γ, and

2 `1 α1 ‖ · · · ‖ `n αn J ∅ ≤ Π J Γ (for a fixed well quasi-ordering ≤,
see next slide).

Question: Is Coverability decidable?

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 24 / 34

Safety Verification Problems

In the sequential setting, the control-state reachability problem (of
pushdown systems) is of central interest.

APCPS Program-Point Reachability Problem

Given an APCPS and `1, · · · , `n ∈ Labels, are there α1, · · · , αn ∈ Terms
and channel contents Γ s.t. S J ∅ →∗ `1 α1 ‖ · · · ‖ `n αn ‖ · · · J Γ
(possibly in parallel with some other processes)?

APCPS Program-Point Coverability Problem

Given an APCPS and `1, · · · , `n ∈ Labels, are there configuration Π J Γ
and α1, · · · , αn ∈ Terms such that

1 S J ∅ →∗ Π J Γ, and

2 `1 α1 ‖ · · · ‖ `n αn J ∅ ≤ Π J Γ (for a fixed well quasi-ordering ≤,
see next slide).

Question: Is Coverability decidable?

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 24 / 34

An Approach to Deciding Coverability

A well-structured transition system (WSTS) is a triple (S,→,≤) such that

1 (S,≤) is a well-quasi-order (WQO) i.e. a preorder such that
∀s0 s1 s2 · · · ∈ Sω .∃i < j . si ≤ sj

2 transition relation (S,→) is ≤-monotone i.e. if s→ t and s ≤ s′ then
there exists t′ s.t. s′ → t′ and t ≤ t′

3 for each s ∈ S, min(pred(↑s)) is computable.

WSTS Coverability Problem

Given a WSTS (S,→,≤), a start state and an (error) state serr, is there a
reachable element s that covers serr i.e. s ≥ serr?

WSTS Coverability is decidable.
(Abdulla et al.: LICS96), (Finkel & Schnoebelen: TCS 2001)

Thus we seek conditions on APCPS that guarantee a well-quasi-ordering
of the configurations, with respect to which the (APCPS) transition
relation is monotone.

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 25 / 34

An Approach to Deciding Coverability

A well-structured transition system (WSTS) is a triple (S,→,≤) such that

1 (S,≤) is a well-quasi-order (WQO) i.e. a preorder such that
∀s0 s1 s2 · · · ∈ Sω .∃i < j . si ≤ sj

2 transition relation (S,→) is ≤-monotone i.e. if s→ t and s ≤ s′ then
there exists t′ s.t. s′ → t′ and t ≤ t′

3 for each s ∈ S, min(pred(↑s)) is computable.

WSTS Coverability Problem

Given a WSTS (S,→,≤), a start state and an (error) state serr, is there a
reachable element s that covers serr i.e. s ≥ serr?

WSTS Coverability is decidable.
(Abdulla et al.: LICS96), (Finkel & Schnoebelen: TCS 2001)

Thus we seek conditions on APCPS that guarantee a well-quasi-ordering
of the configurations, with respect to which the (APCPS) transition
relation is monotone.

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 25 / 34

An Abstract Semantics by Summarisation

Idea: An APCPS process has shape:

α β0 X1 β1 X2 β2 · · ·Xj βj ∈ (Σ ∪N)∗/ '#

where α ∈ N ∪ (Σ · N) ∪ Σ ∪ { ε }︸ ︷︷ ︸
CtrlState

, βi ∈ (N com ∪ Σcom)∗ and

Xi ∈ (N¬com ∪ Σ¬com)

1 View α as control state, β0 X1 β1 · · ·Xj βj as (pushdown) stack
2 “Summarise” the stack as M0 X1 M1 · · ·Xj Mj where each
Mi := M[βi], is the Parikh image1 of βi.

3 The non-commutative non-terminals Xis act as separators of the
caches Mjs of commutative actions.

4 Whenever the top separator is popped, the actions of the top cache
M0 is despatched at once.

1The Parikh image of a word is the number of occurrences of each letter in the word.
E.g. Take Σ = { a, b, c, d }. MΣ(b a c a) is the multiset { (a, 2), (b, 1), (c, 1), (d, 0) }

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 26 / 34

An Abstract Semantics by Summarisation

Idea: An APCPS process has shape:

α β0 X1 β1 X2 β2 · · ·Xj βj ∈ (Σ ∪N)∗/ '#

where α ∈ N ∪ (Σ · N) ∪ Σ ∪ { ε }︸ ︷︷ ︸
CtrlState

, βi ∈ (N com ∪ Σcom)∗ and

Xi ∈ (N¬com ∪ Σ¬com)

1 View α as control state, β0 X1 β1 · · ·Xj βj as (pushdown) stack
2 “Summarise” the stack as M0 X1 M1 · · ·Xj Mj where each
Mi := M[βi], is the Parikh image1 of βi.

3 The non-commutative non-terminals Xis act as separators of the
caches Mjs of commutative actions.

4 Whenever the top separator is popped, the actions of the top cache
M0 is despatched at once.

1The Parikh image of a word is the number of occurrences of each letter in the word.
E.g. Take Σ = { a, b, c, d }. MΣ(b a c a) is the multiset { (a, 2), (b, 1), (c, 1), (d, 0) }

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 26 / 34

An Abstract Semantics by Summarisation

Idea: An APCPS process has shape:

α β0 X1 β1 X2 β2 · · ·Xj βj ∈ (Σ ∪N)∗/ '#

where α ∈ N ∪ (Σ · N) ∪ Σ ∪ { ε }︸ ︷︷ ︸
CtrlState

, βi ∈ (N com ∪ Σcom)∗ and

Xi ∈ (N¬com ∪ Σ¬com)

1 View α as control state, β0 X1 β1 · · ·Xj βj as (pushdown) stack
2 “Summarise” the stack as M0 X1 M1 · · ·Xj Mj where each
Mi := M[βi], is the Parikh image1 of βi.

3 The non-commutative non-terminals Xis act as separators of the
caches Mjs of commutative actions.

4 Whenever the top separator is popped, the actions of the top cache
M0 is despatched at once.

1The Parikh image of a word is the number of occurrences of each letter in the word.
E.g. Take Σ = { a, b, c, d }. MΣ(b a c a) is the multiset { (a, 2), (b, 1), (c, 1), (d, 0) }

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 26 / 34

An Abstract Semantics by Summarisation

Idea: An APCPS process has shape:

α β0 X1 β1 X2 β2 · · ·Xj βj ∈ (Σ ∪N)∗/ '#

where α ∈ N ∪ (Σ · N) ∪ Σ ∪ { ε }︸ ︷︷ ︸
CtrlState

, βi ∈ (N com ∪ Σcom)∗ and

Xi ∈ (N¬com ∪ Σ¬com)

1 View α as control state, β0 X1 β1 · · ·Xj βj as (pushdown) stack
2 “Summarise” the stack as M0 X1 M1 · · ·Xj Mj where each
Mi := M[βi], is the Parikh image1 of βi.

3 The non-commutative non-terminals Xis act as separators of the
caches Mjs of commutative actions.

4 Whenever the top separator is popped, the actions of the top cache
M0 is despatched at once.

1The Parikh image of a word is the number of occurrences of each letter in the word.
E.g. Take Σ = { a, b, c, d }. MΣ(b a c a) is the multiset { (a, 2), (b, 1), (c, 1), (d, 0) }

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 26 / 34

An Abstract Semantics by Summarisation

Idea: An APCPS process has shape:

α β0 X1 β1 X2 β2 · · ·Xj βj ∈ (Σ ∪N)∗/ '#

where α ∈ N ∪ (Σ · N) ∪ Σ ∪ { ε }︸ ︷︷ ︸
CtrlState

, βi ∈ (N com ∪ Σcom)∗ and

Xi ∈ (N¬com ∪ Σ¬com)

1 View α as control state, β0 X1 β1 · · ·Xj βj as (pushdown) stack
2 “Summarise” the stack as M0 X1 M1 · · ·Xj Mj where each
Mi := M[βi], is the Parikh image1 of βi.

3 The non-commutative non-terminals Xis act as separators of the
caches Mjs of commutative actions.

4 Whenever the top separator is popped, the actions of the top cache
M0 is despatched at once.

1The Parikh image of a word is the number of occurrences of each letter in the word.
E.g. Take Σ = { a, b, c, d }. MΣ(b a c a) is the multiset { (a, 2), (b, 1), (c, 1), (d, 0) }

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 26 / 34

Abstract Semantics of APCPS by Example

S → I · P · Scase · Sstop P → bag ! tk · bag ? ok
Scase → S | sys ? stop Dinit → bag ? tk · bag ! ok ·Dmsg

Sstop → bag ! stop Dmsg → D | bag ! stop · `2 · sys ! d done

I → bag ! init · bag ? rdy D → bag ? init · `1 · bag ! rdy ·Dinit

A transition sequence

S ‖ D J bag 7→ [], sys 7→ [stop]

→ I · P · Scase · [bag ! stop] ‖ D J bag 7→ [], sys 7→ [stop]

→∗ P · Scase · [bag ! stop] ‖ Dinit J bag 7→ [], sys 7→ [stop]

→∗ S · [bag ! stop] ‖ Dmsg J bag 7→ [], sys 7→ [stop]

→∗ I · P · Scase · [bag ! stop, bag ! stop] ‖ D J bag 7→ [], sys 7→ [stop]

→ P · Scase · [bag ! stop, bag ! stop] ‖ Dinit J bag 7→ [], sys 7→ [stop]

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 27 / 34

Standard Coverability Reduces to Abstract Coverability

Program-Point Coverability Problem (Abstract Semantics)

Given an APCPS and labels `1, · · · , `n, is there a configuration Π J Γ
such that for each i ∈ { 1, · · · , n }, there is a process λi βi ∈ Π such that
λi = li or (λi = Mi and li ∈Mi)?

Theorem (Reduction)

An instance of the Program-Point Coverability Problem is a yes-instance
according to the standard semantics iff it is a yes-instance according to the
abstract semantics.

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 28 / 34

A Decidable Subclass: APCPS with Shaped Stacks

An APCPS has k-shaped stacks just if (the “stack” of) every reachable
process is separated by at most k non-terminals.
An APCPS has shaped stacks if it has k-shaped stacks, for some k.

Theorem

Using the abstract semantics, APCPS with shaped stacks give rise to a
WSTS.

Corollary

The Program-Point Coverability Problem is decidable and
ExpSpace-hard.

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 29 / 34

Is the Shaped Constraint Useful in Practice?

The shaped constraint is a “semantic” condition and undecidable. But
there is a sufficient syntactic condition.

Proposition (Well-foundedness)

If an APCPS satisfies

Well-foundnedness. There is a well-founded preorder � s.t. for
all A ∈ N and B ∈ RHS(A) ∩N

1 A � B, and
2 if A→ BC is a G-rule where C ∈ N¬com then A � B

then it has k-shaped stacks for some k.

N.B. The k above is the length of the longest �-chain.

The condition is quite general and seems practically useful.

Example: The APCPS server satisfies the condition.

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 30 / 34

Outline

1 A Survey of Soter: Automatic Safety-Verification of Erlang Programs

2 A New Model of Asynchronous Message-Passing Concurrency

3 Conclusions and Further Directions

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 31 / 34

Summary

1 We introduce a new model of computation for asynchronous
procedure calls—asynchronous partially commutative pushdown
systems (APCPS)—that relaxes the
Receivable-Only-When-Stack-is-Empty constraint.

2 Coverability of APCPS with shaped stacks is decidable and
ExpSpace-hard.

3 We give a syntactic sufficient condition for APCPS to have shaped
stacks. The condition seems practically useful.

J. Kochems & O.: Safety Verification of Asynchronous Pushdown Systems with Shaped

Stacks. Concur 2013.

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 32 / 34

Further Directions: Asynchronous Partially Commutative Pushdown
Systems (APCPS)

1 Determine the precise complexity of deciding Coverability of APCPS
with k-shaped stacks

I We (Kochems) use a new variant Petri nets—Nets with Nested
Coloured Data—and have a conjecture.

2 Extend the APCPS framework to higher-order processes.

3 Is the BFC algorithm the basis of an efficient solution for
model-checking APCPS?

4 Clarify the connexions between the APCPS approach and partial order
reduction. Cf. [Abdullah et al.: POPL14]

I Is there scope to use (static / dynamic) partial order reduction to
further optimise APCPS?

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 33 / 34

Further Directions, cont.

4. Use π-calculus (rather than ACS) as intermediate models of
computation

I Fragments of π-calculus that are decidable models of computation:
depth-bounded / mixed-bounded / breadth-bounded fragments map
(“bisimilarly”) into WSTS, Petri nets and bounded Petri nets.
(Roland Meyer: PhD thesis 2008)

I Membership of these fragments are undecidable. We (D’Osualdo) aim
to develop static analysis based on behavioural types and / or
graph-grammatical analysis.

Luke Ong (University of Oxford) Concurrency and Verification 6 March 2014 34 / 34

	A Survey of Soter: Automatic Safety-Verification of Erlang Programs
	A New Model of Asynchronous Message-Passing Concurrency
	Conclusions and Further Directions

