
Automata, Logic and Games: Theory and Application
Higher-Order Model Checking 1 / 2

Luke Ong

University of Oxford
http://www.cs.ox.ac.uk/people/luke.ong/personal/

TACL Summer School
University of Salerno, 14-19 June 2015

Luke Ong (University of Oxford) Higher-Order Model Checking 14-19 June 2015 1 / 41

http://www.cs.ox.ac.uk/people/luke.ong/personal/


Themes in Logic in Computer Science

Interface between (Computer-Aided Formal) Verification and Semantics of
Computation

Logical and Algorithmic Foundations of Verification

Automata on infinite trees as computational models of state-based
systems

Logical systems for describing correctness properties

Two-person games as an abstract model of interaction between a
reactive system and its environment

Semantics of Higher-Order Computation

Lambda calculus as a definitional device

Game semantics as accurate, intensional model

Type systems: compositional, syntax-directed inference systems of
behavioural properties

Luke Ong (University of Oxford) Higher-Order Model Checking 14-19 June 2015 2 / 41



Model checking: an approach to program verification that promises
accurate analysis with push-button automation.

Verification Problem: Given system Sys (e.g. OS), and correctness
property Spec (e.g. deadlock freedom), does Sys satisfy Spec?

The model checking approach:

1 Find an abstract model M of the system Sys.

2 Describe property Spec as a formula ϕ of a decidable logic.

3 Exhaustively check if ϕ is violated by M.

Major progress in verification of 1st-order imperative programs. Many
tools: SLAM, Blast, Terminator, SatAbs, etc.

Two key techniques: State-of-the-art tools use

1 abstraction refinement techniques: CEGAR (Counter-Example Guided
Abstraction Refinement)

2 acceleration methods such as SAT- and SMT-solvers.

Luke Ong (University of Oxford) Higher-Order Model Checking 14-19 June 2015 3 / 41



Examples of Higher-Order / Functional Languages: OCaml, F#, Haskell,
Lisp/Scheme, JavaScript, and Erlang; even C++.

Why Higher-Order / Functional Languages?

1 Functional programs are succinct, less error-prone, easy to write and
maintain, good for prototyping.

2 Lambdas (closures) and streams now standard in today’s leading
languages (TIOBE Index): Java8, C++11, C#5.0, Javascript, Perl5,
Python, Scala.

3 FL support domain-specific languages and organise data parallelism
well; increasingly prevalent in scientific applications and financial
modelling

4 Attractive for concurrent programminng (multicore, GPU-processing
and cloud computing), thanks to absence of mutable variables and
monadic structuring principles

Luke Ong (University of Oxford) Higher-Order Model Checking 14-19 June 2015 4 / 41



Verifying Functional Programs

Two Standard Approaches

1 Type-Based Program Analysis.
- sound and scalable but often imprecise (“curse of false positives”)
E.g. type-and-effect system (region-based memory management),
qualifier types, linear types, intersection types, resource usage (sized
types), etc.

2 Theorem Proving and Dependent Types
- accurate, typically requires human intervention; does not scale well
E.g. Coq, Agda, etc.

Luke Ong (University of Oxford) Higher-Order Model Checking 14-19 June 2015 5 / 41



Model-Checking Higher-Order Programs is Intrinsically Hard

1 Infinite-state and extremely complex: Even without recursion,
higher-order programs over a finite base type are infinite-state.

2 Many other sources of infinity: data structures, control structures
(with recursion), concurrency, distribution and asynchronous
communication, real-time and embedded systems, systems with
parameters, etc.

3 Models of higher-order features as studied in semantics – are typically
too “abstract” to support any algorithmic analysis.

A notable exception is game semantics.

Luke Ong (University of Oxford) Higher-Order Model Checking 14-19 June 2015 6 / 41



Higher-Order Model Checking is the model checking of infinite trees which
are generated by recursion schemes (equivalently, λY-calculus), with a
view to formally analysing higher-order computation.

Outline of Part 2

1 Relating Families of Generators of Infinite Trees / Graphs:
Recursion Schemes and (Collapsible) Pushdown Automata

2 Algorithmics and Expressivity

3 Reducing Model Checking to Type Inference

4 Compositional Model Checking of Higher-Type Böhm Trees

5 Practical Algorithms for Higher-Order Model Checking

6 Conclusions and Further Directions

Luke Ong (University of Oxford) Higher-Order Model Checking 14-19 June 2015 7 / 41



A review: Church’s simple types

Types κ ::= o | (κ→ κ′)

Every type can be written uniquely as

κ1 → (κ2 → · · · → (κn → o) · · · ), n ≥ 0

often abbreviated to κ1 → κ2 → · · · → κn → o. Arrows associate to the
right.

Order of a type: measures “nestedness” on LHS of →.

order(o) := 0
order(κ→ κ′) := max(order(κ) + 1, order(κ′))

Examples. N→ N and N→ (N→ N) both have order 1;
(N→ N)→ N has order 2.

Notation. e : κ means “expression e has type κ”.
Applications associate to the left: write f g h a to mean ((f g)h) a.
Luke Ong (University of Oxford) Higher-Order Model Checking 14-19 June 2015 9 / 41



Higher-order recursion schemes [Par68, Niv72, NC78, Dam82,...]

An order-n recursion scheme = closed, ground-type term definable in
order-n fragment of λY-calculus (i.e. simply-typed λ-calculus with
recursion and uninterpreted order-1 constant symbols).

We use recursion schemes to define infinite trees.

Example: An order-1 recursion scheme. Fix an alphabet of 1st-order
constants Σ = { f : o→ o→ o, g : o→ o, a : o }.

G :

{
S → F a

F x → f x (F (g x))

Unfolding from the start symbol S:

S → F a
→ f a (F (g a))
→ f a (f (g a) (F (g (g a))))
→ · · ·

The term-tree thus generated, tree(G), is f a (f (g a) (f (g (g a))(· · · ))).
Luke Ong (University of Oxford) Higher-Order Model Checking 14-19 June 2015 10 / 41



A recursion scheme is a quadruple G = 〈Σ,N ,R, S 〉 where

Σ is a set of first-order constant symbols (tree constructors); write
elements of Σ as a, b, . . .

N is a set of function symbols; write elements of N as F,H, . . .

S ∈ N is a distinguished start symbol where S : o

R is a set of rewrite rules of the form, one for each F ∈ N :

F x1 · · ·xk → e

where F : κ1 → · · · → κk → o, and e : o is an applicative term built
up from N ∪ {x1, · · · , xk }.

The order of G is the highest order of the function symbols in N .

Luke Ong (University of Oxford) Higher-Order Model Checking 14-19 June 2015 11 / 41



Representing the term-tree tree(G) as a Σ-labelled tree

tree(G) = f a (f (g a) (f (g (g a))(· · · ))) is the term-tree

f

a f

g f

a g f

g
...

a

Formally the term-tree, tree(G), is a map T −→ Σ, where T is a
prefix-closed subset of { 1, · · · ,m }∗, and m is the maximal arity of
symbols in Σ.

tree(G) is ranked and ordered trees.

(Think of tree(G) as the Böhm tree of G.)

Luke Ong (University of Oxford) Higher-Order Model Checking 14-19 June 2015 12 / 41



An Order-3 Example: Fibonacci Numbers

fib generates an infinite spine, with each member (in unary) of the
Fibonacci sequence appearing in turn as a left branch from the spine.

Constants: b : o→ o→ o, s : o→ o, z : o
Functions: Write Church as a shorthand for (o→ o)→ o→ o

S : o
Zero : Church
One : Church
Show : Church → Church → o
Add : Church → Church → (o→ o)→ o→ o

fib


S → Show Zero One

Zero ϕ x → x
One ϕ x → ϕ x

Show n1 n2 → b (n1 s z) (Show n2 (Add n1 n2))
Add n1 n2 ϕ x → n1 ϕ (n2 ϕ x)

Luke Ong (University of Oxford) Higher-Order Model Checking 14-19 June 2015 13 / 41



b b b b b · · ·

z s s s s

z z s s

z s

z

Luke Ong (University of Oxford) Higher-Order Model Checking 14-19 June 2015 14 / 41



Using recursion schemes as generators of word languages

Idea: A word is just a linear tree.

Represent a finite word “a b c” (say) as the applicative term a (b (c e)),
viewing a, b and c as Σ-symbols of arity 1, where e is a distinguished
nullary end-of-word marker.

1 A word language is regular iff it is generated by an order-0 recursion
scheme.

2 A word language is context-free iff it is generated by an order-1
recursion scheme.

What class of word languages do order-2 recursion schemes define?

Luke Ong (University of Oxford) Higher-Order Model Checking 14-19 June 2015 15 / 41



Higher-order pushdown automata (HOPDA) [Maslov 74]

Order-2 pushdown automata
A 1-stack is an ordinary stack. A 2-stack (resp. (n+ 1)-stack) is a stack of
1-stacks (resp. n-stack).

Operations on 2-stacks: si ranges over 1-stacks.

push2 : [s1 · · · si−1 [γ1 · · · γn]︸ ︷︷ ︸
si

] 7→ [s1 · · · si−1 si si]

pop2 : [s1 · · · si−1 [γ1 · · · γn]] 7→ [s1 · · · si−1]

push1 γ : [s1 · · · si−1 [γ1 · · · γn]] 7→ [s1 · · · si−1 [γ1 · · · γn γ]]

pop1 : [s1 · · · si−1 [γ1 · · · γn γn+1]] 7→ [s1 · · · si−1 [γ1 · · · γn]]

Idea extends to all finite orders: an order-n PDA has an order-n stack, and
has pushi and popi for each 1 ≤ i ≤ n.

Luke Ong (University of Oxford) Higher-Order Model Checking 14-19 June 2015 17 / 41



Example: L := { an bn cn : n ≥ 0 } is recognisable by an order-2 PDA

L is not context free—thanks to the “uvwxy Lemma”.

Idea: Use top 1-stack to process an bn, and height of 2-stack to remember n.

q1 [[]]
a // q1 [[][z]]

a // q1 [[][z][z z]]

b
��

q2 [[][z][z]]

b
��

q3 [[]] q3 [[][z]]c
oo q2 [[][z][]]c

oo

q1
z

b→ pop1z

//

− a→ push2 ; push1z

��
q2

⊥ c→ pop2

//

z
b→ pop1

��
q3

z
c→ pop2

��

‘read a’ ‘read b’ ‘read c’

Luke Ong (University of Oxford) Higher-Order Model Checking 14-19 June 2015 18 / 41



Some properties of the Maslow Hierarchy (Maslov 74, 76)

1 HOPDA define an infinite hierarchy of word languages.

2 Low orders are well-known: orders 0, 1 and 2 are the regular, context
free, and indexed languages (Aho 68). Higher-order languages are
poorly understood.

3 For each n ≥ 0, the order-n languages form an abstract family of
languages (closed under +, ·, (−)∗, intersection with regular
languages, homomorphism and inverse homo.)

4 For each n ≥ 0, the emptiness problem for order-n PDA is decidable.

A recent breakthrough

Theorem (Inaba + Maneth FSTTCS08)

All languages of the Maslov Hierarchy are context-sensitive.

Proof uses macro tree transducers (Engelfriet); order-n languages ⊆ image
of n iterates of MTTs

Luke Ong (University of Oxford) Higher-Order Model Checking 14-19 June 2015 19 / 41



Theorem (Engelfriet 1991)

Let s(n) ≥ log(n).

(i) For k ≥ 0, word acceptance problem of non-det. order-k PDA
augmented with a two-way work-tape with s(n) space is k-EXPTIME
complete.

(ii) For k ≥ 1, the acceptance problem of alternating order-k PDA
augmented with a two-way work-tape with s(n) space is
(k − 1)-EXPTIME complete.

(iii) For k ≥ 0, the acceptance problem of alternating order-k PDA is
k-EXPTIME complete.

(iv) For k ≥ 1, the emptiness problem of non-det. order-k PDA is
(k − 1)-EXPTIME complete.

Luke Ong (University of Oxford) Higher-Order Model Checking 14-19 June 2015 20 / 41



Relating the two generator-families: word-language case

Theorem (Equi-expressivity)

For each n ≥ 0, the three formalisms

1 order-n pushdown automata (Maslov 76)

2 order-n safe recursion schemes (Damm 82, Damm + Goerdt 86)

3 order-n indexed grammars (Maslov 76)

generate the same class of word languages.

What is safety?

Luke Ong (University of Oxford) Higher-Order Model Checking 14-19 June 2015 21 / 41



Two Families of Generators of Infinite Structures

Summary

Higher-order pushdown automata can be used as recognising/generating
device for

1 finite-word languages (Maslov 74) and ω-word languages

2 possibly-infinite ranked trees (KNU01) and, more generally, languages
of such trees

3 possibly infinite graphs (Muller+Schupp 86, Courcelle 95, Cachat 03),
qua configuration graphs of these pushdown systems

Higher-order recursion schemes can also be used to generate word
languages, potentially-infinite trees (and languages there of) and graphs.

The two families are closely related.

Luke Ong (University of Oxford) Higher-Order Model Checking 14-19 June 2015 22 / 41



A challenge problem in verification of higher-order computation

f
|| ""

a f
|| ""

g
��

f
|| ""

a g

��
f

g
��

...

a

Example: Consider tree(G) on the right

ϕ1 = “Infinitely many f -nodes are reachable”.

ϕ2 = “Only finitely many g-nodes are reachable”.

Every node on the tree satisfies ϕ1 ∨ ϕ2.

Monadic second-order (MSO) logic can describe properties such as
ϕ1 ∨ ϕ2.

MSO Model-Checking Problem for Order-n Recursion Schemes

INSTANCE: An order-n recursion scheme G, and an MSO formula ϕ

QUESTION: Does the Σ-labelled tree tree(G) satisfy ϕ?

Is the above problem decidable?

Luke Ong (University of Oxford) Higher-Order Model Checking 14-19 June 2015 23 / 41



Monadic Second-Order Logic (for Σ-labelled trees)

where Σ is a ranked alphabet.

First-order variables: x, y, z, etc. (ranging over nodes)

Second-order variables: X,Y, Z, etc. (ranging over sets of nodes
i.e. monadic relations)

MSO formulas are built up from atomic formulas:

Parent-child relationship between nodes: di(x, y), for 1 ≤ i ≤ m
Node labelling: pf (x), for f ∈ Σ

Set-membership: x ∈ X
and closed under boolean connectives, first and second-order
quantifications.

Luke Ong (University of Oxford) Higher-Order Model Checking 14-19 June 2015 24 / 41



Why study monadic second-order (MSO) logic?

Because it is the gold standard of logics for describing correctness
properties of reactive systems.

MSO is very expressive.
Over graphs, MSO is more expressive than the modal mu calculus,
into which all standard temporal logics (e.g. LTL, CTL, CTL∗, etc.)
can embed.

It is hard to extend MSO meaningfully without sacrificing decidability
where it holds.

Luke Ong (University of Oxford) Higher-Order Model Checking 14-19 June 2015 25 / 41



A (selective) survey of MSO-decidable structures: up to 2002

Rabin 1969: Infinite binary trees and regular trees. “Mother of all
decidability results in algorithmic verification.”

Muller and Schupp 1985: Configuration graphs of PDA.

Caucal 1996 Prefix-recognisable graphs (ε-closures of configuration
graphs of pushdown automata, Stirling 2000).

Knapik, Niwiński and Urzyczyn (TLCA 2001, FOSSACS 2002):
PushdownTreenΣ = Trees generated by order-n pushdown
automata.
SafeRecSchTreenΣ = Trees generated by order-n safe rec. schemes.

Subsuming all the above:
Caucal (MFCS 2002). CaucalTreenΣ and CaucalGraphnΣ.

Theorem (KNU-Caucal 2002)

For n ≥ 0, PushdownTreenΣ = SafeRecSchTreenΣ = CaucalTreenΣ;
and they have decidable MSO theories.

Luke Ong (University of Oxford) Higher-Order Model Checking 14-19 June 2015 27 / 41



What is the safety constraint on recursion schemes? (1)

There is another notion of “higher-order” types:

Safe types

D0 := { trees }
Order-0 objects are trees.

Di+1 :=
⋃

k≥0[Di × · · · ×Di︸ ︷︷ ︸
k

→ Di]

Order (i+ 1)-objects are functions from (tuples of) order-i objects
to order-i objects.

Define s-order(t) := i if t ∈ Di

Safe (or “Derived”) types

OI-Hierarchy (Damm 82)

Higher-level tree transducer (Engelfriet & Vogler 88)

Luke Ong (University of Oxford) Higher-Order Model Checking 14-19 June 2015 29 / 41



What is the safety constraint on recursion schemes? (2)

Safety is a set of constraints on where variables may occur in a term.

Definition (Damm TCS 82, KNU FoSSaCS’02)

No order-k subterm of a safe term can contain free variables of order <k.

Example (unsafe rule).

F : (o→ o)→ o→ o→ o, f : o→ o→ o, x, y : o.

F ϕx y = f (F (F ϕy) y (ϕx)) a

The subterm F ϕ y has order 1, but the free variable y has order 0.

Luke Ong (University of Oxford) Higher-Order Model Checking 14-19 June 2015 30 / 41



What is the point of safety?

Safety does have an important algorithmic advantage!

Theorem (KNU 02, Blum + O. TLCA 07, LMCS 09)

Substitution (hence β-reduction) in safe λ-calculus can be safely
implemented without renaming bound variables! Hence no fresh names
needed!

Theorem (Expressivity)

1 (Schwichtenberg 76) The numeric functions representable by
simply-typed λ-terms are multivariate polynomials with conditional.

2 (Blum + O. LMCS 09) The numeric functions representable by
simply-typed safe λ-terms are the multivariate polynomials.

(See (Blum + O. LMCS 09) for a study on the safe lambda calculus .)

Luke Ong (University of Oxford) Higher-Order Model Checking 14-19 June 2015 31 / 41



Infinite structures generated by recursion schemes: key questions

1 MSO decidability: Is safety a genuine constraint for decidability?
I.e. do trees generated by (arbitrary) recursion schemes have
decidable MSO theories?

2 Machine characterisation: Find a hierarchy of automata that
characterise the expressive power of recursion schemes.

3 Expressivity: Is safety a genuine constraint for expressivity?
I.e. are there inherently unsafe word languages / trees / graphs?

4 Graph families:
1 Definition: What is a good definition of “graphs generated by recursion

schemes”?
2 Model-checking properties: What are the decidable theories of the

graph families?

Luke Ong (University of Oxford) Higher-Order Model Checking 14-19 June 2015 33 / 41



A Tale of Two Higher-Order Systems

Damm’s Safe Types (TCS 82) Church’s Simple Types (JSL 40)
Di+1 :=

⋃
k≥0[Di × · · · ×Di︸ ︷︷ ︸

k

→ Di] κ := o | κ→ κ′

MSO model checking is decidable Q1?
(KNU 02)
Safe RS equi-expressive with HOPDA Q2: Equi-expressive with HOPDA++?
(Damm 82, KNU 02)

Q3: Are there inherently unsafe word
languages / trees / graphs?

Hierarchy is strict ?
(Damm 82)
Word languages are context-sensitive ?
(Inaba & Maneth 08)

Luke Ong (University of Oxford) Higher-Order Model Checking 14-19 June 2015 34 / 41



Q1. Do trees generated by HORS have decidable MSO theories?

Theorem (Aehlig, de Miranda + O. TLCA 2005)

Trees generated by order-2 recursion schemes (whether safe or not) have
decidable MSO theories.

Theorem (Knapik, Niwinski, Urczyczn + Walukiewicz, ICALP 2005)

Modal mu-calculus model checking problem for homogenously-typed
order-2 schemes (whether safe or not) is 2-EXPTIME complete.

What about higher orders?

Yes: MSO decidability extends to all orders (O. LICS06).

Luke Ong (University of Oxford) Higher-Order Model Checking 14-19 June 2015 35 / 41



Q1. Do trees generated by HORS have decidable MSO theories? Yes

(Rabin 69): MSOL and parity tree automata are effectively
equi-expressive for tree languages.

(EJ 91): mu-calculus and alternating parity tree automata (APT) are
effectively equi-expressive for tree languages.

Mu-calculus and MSOL are equi-expressive for tree languages.
(JW 96): mu-calculus is the bisimulation-invariant fragment of
MSOL.

Theorem (O. LICS 2006)

For n ≥ 0, the mu-calculus model-checking problem for trees generated by
order-n recursion schemes is n-EXPTIME complete. Thus these trees have
decidable MSO theories.

Luke Ong (University of Oxford) Higher-Order Model Checking 14-19 June 2015 36 / 41



Remarks on the Proof (1)

λ(G) is the tree-unravelling of the underlying (finite) syntax graph of G.

Theorem (Transfer)

Given Σ, there is an effective transformation of APT, α, such that for
every HORS G, we have B accepts tree(G) iff α(B) accepts λ(G).

λ(G) is regular; and APT acceptance problem of regular trees is decidable.
Hence:

Corollary

The modal mu-calculus model checking problem for HORS is decidable.

Luke Ong (University of Oxford) Higher-Order Model Checking 14-19 June 2015 37 / 41



Remarks on the Proof (2)

λ(G) is the tree-unravelling of the underlying (finite) syntax graph of G.

Theorem (Transfer)

Given Σ, there is an effective transformation of APT, α, such that for
every HORS G, we have B accepts tree(G) iff α(B) accepts λ(G).

Extension to infintary HORS

Given finite sets T and V of types and variables respecively,
G = 〈Σ,N ,R, S 〉 ∈ RS∞(T ,V) just if types of all subterms are in T ,
and rules may only use variables from V, but N and R may be infinite.

Theorem (O. 2013)

Given Σ, T ,V, there is an effective transformation of APT, α, s.t. for
every G ∈ RS∞(T ,V), we have B accepts tree(G) iff α(B) accepts λ(G).

Cf. Same result in [Salvati & Walukiewicz 13] but they use infinitary
λY -calculus.
Luke Ong (University of Oxford) Higher-Order Model Checking 14-19 June 2015 38 / 41



Remarks on the Proof (3)

λ(G) is the tree-unravelling of the underlying (finite) syntax graph of G.

Theorem (Transfer)

Given Σ, there is an effective transformation of APT, α, such that for
every HORS G, we have B accepts tree(G) iff α(B) accepts λ(G).

Proof Idea. Two key ingredients:
APT B has accepting run-tree over tree(G)

⇐⇒ { I. Traversal-Path Correspondence}
APT B has accepting traversal-tree over λ(G)

⇐⇒ { II. Simulation of traversals by paths }
APT α(B) has an accepting run-tree over λ(G)

Luke Ong (University of Oxford) Higher-Order Model Checking 14-19 June 2015 39 / 41



Transference principle, based on a theory of traversals

G :

{
S = F H

F ϕ = ϕ (F ϕ)
H z = f z z

7→ G :

{
S = λ.@F (λx.@H λ.x)
F = λϕ.ϕ(λ.@F (λy.ϕ(λ.y))))
H = λz.f(λ.z)(λ.z)

tree(G) λ(G)

λ

f @

f f λϕ λx

f f f f ϕ

;;

@
...

...
...

... λ λz λ

@ f x

jj

λϕ λy λ λ

ϕ

::
ϕ

gg

z

33

z

kk

λ λ
... y

ZZ

Luke Ong (University of Oxford) Higher-Order Model Checking 14-19 June 2015 40 / 41



Idea: β-reduction is global (i.e. substitution changes the term being
evaluated); game semantics gives an equivalent but local view.
A traversal (over the computation tree λ(G)) is a trace of the local
computation that produces a path (over tree(G)).

Theorem (Path-traversal correspondence)

Let G be an order-n recursion scheme.

(i) There is a 1-1 correspondence between maximal paths p in (Σ-labelled)
generated tree tree(G) and maximal traversals tp over computation tree
λ(G).

(ii) Further for each p, we have p = tp � Σ.

Proof is by game semantics.

Explanation (for game semanticists):

Term-tree tree(G) is (a representation of) the game semantics of G.
Paths in tree(G) correspond to P-views in the strategy-denotation.
Traversals tp over computation tree λ(G) are just (representations of) the
uncoverings of the P-views (= path) p in the game semantics of G.

Luke Ong (University of Oxford) Higher-Order Model Checking 14-19 June 2015 41 / 41


	Relating Families of Generators of Infinite Structures
	Higher-Order Recursion Schemes
	Higher-Order Pushdown Automata

	Algorithmics and Expressivity
	Survey of MSO-decidable structures
	What is the safety constraint?
	Four questions: decidability, machine characterisation, expressivity, and graph definability


