Automata, Logic and Games: Theory and Application Higher-Order Model Checking 1 / 2

Luke Ong

University of Oxford http://www.cs.ox.ac.uk/people/luke.ong/personal/

TACL Summer School University of Salerno, 14-19 June 2015

Interface between (Computer-Aided Formal) Verification and Semantics of Computation

Logical and Algorithmic Foundations of Verification

- Automata on infinite trees as computational models of state-based systems
- Logical systems for describing correctness properties
- Two-person games as an abstract model of interaction between a reactive system and its environment

Semantics of Higher-Order Computation

- Lambda calculus as a definitional device
- Game semantics as accurate, intensional model
- Type systems: compositional, syntax-directed inference systems of behavioural properties

Luke Ong (University of Oxford)

Higher-Order Model Checking

Model checking: an approach to program verification that promises accurate analysis with push-button automation.

Verification Problem: Given system *Sys* (e.g. OS), and correctness property *Spec* (e.g. deadlock freedom), does *Sys* satisfy *Spec*?

The model checking approach:

- Find an abstract model \mathcal{M} of the system Sys.
- 2 Describe property Spec as a formula φ of a decidable logic.
- **③** Exhaustively check if φ is violated by \mathcal{M} .

Major progress in verification of 1st-order imperative programs. Many tools: SLAM, Blast, Terminator, SatAbs, etc.

Two key techniques: State-of-the-art tools use

- abstraction refinement techniques: CEGAR (Counter-Example Guided Abstraction Refinement)
- **2** acceleration methods such as SAT- and SMT-solvers.

Examples of Higher-Order / Functional Languages: OCaml, F#, Haskell, Lisp/Scheme, JavaScript, and Erlang; even C++.

Why Higher-Order / Functional Languages?

- Functional programs are succinct, less error-prone, easy to write and maintain, good for prototyping.
- Lambdas (closures) and streams now standard in today's leading languages (TIOBE Index): Java8, C++11, C#5.0, Javascript, Perl5, Python, Scala.
- FL support domain-specific languages and organise data parallelism well; increasingly prevalent in scientific applications and financial modelling
- Attractive for concurrent programminng (multicore, GPU-processing and cloud computing), thanks to absence of mutable variables and monadic structuring principles

Two Standard Approaches

Type-Based Program Analysis.

- sound and scalable but often imprecise ("curse of false positives") E.g. type-and-effect system (region-based memory management), qualifier types, linear types, intersection types, resource usage (sized types), etc.

Theorem Proving and Dependent Types

- accurate, typically requires human intervention; does not scale well E.g. Coq, Agda, etc.

- Infinite-state and extremely complex: Even without recursion, higher-order programs over a finite base type are infinite-state.
- Many other sources of infinity: data structures, control structures (with recursion), concurrency, distribution and asynchronous communication, real-time and embedded systems, systems with parameters, etc.
- Models of higher-order features as studied in semantics are typically too "abstract" to support any algorithmic analysis.

A notable exception is game semantics.

Higher-Order Model Checking is the model checking of infinite trees which are generated by recursion schemes (equivalently, $\lambda \mathbf{Y}$ -calculus), with a view to formally analysing higher-order computation.

Outline of Part 2

- Relating Families of Generators of Infinite Trees / Graphs: Recursion Schemes and (Collapsible) Pushdown Automata
- Algorithmics and Expressivity
- Seducing Model Checking to Type Inference
- Compositional Model Checking of Higher-Type Böhm Trees
- In Practical Algorithms for Higher-Order Model Checking
- Onclusions and Further Directions

A review: Church's simple types

Types
$$\kappa$$
 ::= \circ | $(\kappa \rightarrow \kappa')$

Every type can be written uniquely as

$$\kappa_1 \to (\kappa_2 \to \dots \to (\kappa_n \to \mathsf{o}) \dots), \quad n \ge 0$$

often abbreviated to $\kappa_1 \rightarrow \kappa_2 \rightarrow \cdots \rightarrow \kappa_n \rightarrow o$. Arrows associate to the right.

Order of a type: measures "nestedness" on LHS of \rightarrow .

$$\mathsf{order}(\mathsf{o}) := 0$$

 $\mathsf{order}(\kappa \to \kappa') := \max(\mathsf{order}(\kappa) + 1, \mathsf{order}(\kappa'))$

Examples. $\mathbb{N} \to \mathbb{N}$ and $\mathbb{N} \to (\mathbb{N} \to \mathbb{N})$ both have order 1; $(\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$ has order 2.

Notation. $e: \kappa$ means "expression e has type κ ". Applications associate to the left: write f g h a to mean ((f g) h) a.

Luke Ong (University of Oxford)

An order-*n* recursion scheme = closed, ground-type term definable in order-*n* fragment of λ **Y**-calculus (i.e. simply-typed λ -calculus with recursion and uninterpreted order-1 constant symbols).

We use recursion schemes to define infinite trees.

Example: An order-1 recursion scheme. Fix an alphabet of 1st-order constants $\Sigma = \{ f : o \to o \to o, g : o \to o, a : o \}.$

$$G : \left\{ \begin{array}{ccc} S & \to & F \, a \\ F \, x & \to & f \, x \, (F \, (g \, x)) \end{array} \right.$$

Unfolding from the start symbol S:

$$\begin{array}{rcl} S & \rightarrow & F \, a \\ & \rightarrow & f \, a \, (F \, (g \, a)) \\ & \rightarrow & f \, a \, (f \, (g \, a) \, (F \, (g \, (g \, a)))) \\ & \rightarrow & \cdots \end{array}$$

The term-tree thus generated, tree(G), is $f a (f (g a) (f (g (g a))(\cdots)))$.

Luke Ong (University of Oxford)

Higher-Order Model Checking

A recursion scheme is a quadruple $G = \langle \Sigma, \mathcal{N}, \mathcal{R}, S \rangle$ where

- Σ is a set of first-order constant symbols (tree constructors); write elements of Σ as a, b, \ldots
- $\mathcal N$ is a set of function symbols; write elements of $\mathcal N$ as F, H, \ldots
- $S \in \mathcal{N}$ is a distinguished *start symbol* where S: o
- \mathcal{R} is a set of rewrite rules of the form, one for each $F \in \mathcal{N}$:

$$F x_1 \cdots x_k \rightarrow e$$

where $F: \kappa_1 \to \cdots \to \kappa_k \to o$, and e: o is an applicative term built up from $\mathcal{N} \cup \{x_1, \cdots, x_k\}$.

The order of G is the highest order of the function symbols in \mathcal{N} .

Representing the term-tree tree(G) as a Σ -labelled tree

 $\mathsf{tree}(G) = f\,a\,(f\,(g\,a)\,(f\,(g\,(g\,a))(\cdots)))$ is the term-tree

Formally the term-tree, tree(G), is a map $T \longrightarrow \Sigma$, where T is a prefix-closed subset of $\{1, \dots, m\}^*$, and m is the maximal arity of symbols in Σ .

tree(G) is ranked and ordered trees.

(Think of tree(G) as the Böhm tree of G.)

An Order-3 Example: Fibonacci Numbers

fib generates an infinite spine, with each member (in unary) of the Fibonacci sequence appearing in turn as a left branch from the spine.

Constants: $b: o \to o \to o, s: o \to o, z: o$ Functions: Write *Church* as a shorthand for $(o \to o) \to o \to o$

$$\begin{array}{rcl}S &: o\\Zero &: Church\\One &: Church\\Show &: Church \rightarrow Church \rightarrow o\\Add &: Church \rightarrow Church \rightarrow (o \rightarrow o) \rightarrow o \rightarrow o\end{array}$$

$$\texttt{fib} \left\{ \begin{array}{ccc} S & \rightarrow & Show \ Zero \ One \\ Zero \ \varphi \ x & \rightarrow & x \\ One \ \varphi \ x & \rightarrow & \varphi \ x \\ Show \ n_1 \ n_2 \ \rightarrow & b \ (n_1 \ s \ z) \ (Show \ n_2 \ (Add \ n_1 \ n_2)) \\ Add \ n_1 \ n_2 \ \varphi \ x & \rightarrow & n_1 \ \varphi \ (n_2 \ \varphi \ x) \end{array} \right.$$

Idea: A word is just a linear tree.

Represent a finite word "a b c" (say) as the applicative term a (b (c e)), viewing a, b and c as Σ -symbols of arity 1, where e is a distinguished nullary end-of-word marker.

- A word language is regular iff it is generated by an order-0 recursion scheme.
- A word language is context-free iff it is generated by an order-1 recursion scheme.

What class of word languages do order-2 recursion schemes define?

Order-2 pushdown automata

A 1-stack is an ordinary stack. A 2-stack (resp. (n + 1)-stack) is a stack of 1-stacks (resp. n-stack).

Operations on 2-stacks: s_i ranges over 1-stacks.

Idea extends to all finite orders: an order-n PDA has an order-n stack, and has $push_i$ and pop_i for each $1 \le i \le n$.

Luke Ong (University of Oxford)

Higher-Order Model Checking

Example: $L := \{ a^n b^n c^n : n \ge 0 \}$ is recognisable by an order-2 PDA

L is not context free—thanks to the "uvwxy Lemma".

Idea: Use top 1-stack to process $a^n b^n$, and height of 2-stack to remember n.

Higher-Order Model Checking

Some properties of the Maslow Hierarchy (Maslov 74, 76)

- In HOPDA define an infinite hierarchy of word languages.
- Output Context State of the second state of
- So For each n ≥ 0, the order-n languages form an abstract family of languages (closed under +, ·, (−)*, intersection with regular languages, homomorphism and inverse homo.)
- **④** For each $n \ge 0$, the emptiness problem for order-n PDA is decidable.

A recent breakthrough

Theorem (Inaba + Maneth FSTTCS08)

All languages of the Maslov Hierarchy are context-sensitive.

Proof uses macro tree transducers (Engelfriet); order-n languages \subseteq image of n iterates of MTTs

Theorem (Engelfriet 1991)

Let $s(n) \ge \log(n)$.

- (i) For k ≥ 0, word acceptance problem of non-det. order-k PDA augmented with a two-way work-tape with s(n) space is k-EXPTIME complete.
- (ii) For $k \ge 1$, the acceptance problem of alternating order-k PDA augmented with a two-way work-tape with s(n) space is (k-1)-EXPTIME complete.
- (iii) For $k \ge 0$, the acceptance problem of alternating order-k PDA is k-EXPTIME complete.
- (iv) For $k \ge 1$, the emptiness problem of non-det. order-k PDA is (k-1)-EXPTIME complete.

Theorem (Equi-expressivity)

For each $n \ge 0$, the three formalisms

- order-*n* pushdown automata (Maslov 76)
- **a** order-*n* safe recursion schemes (Damm 82, Damm + Goerdt 86)
- order-n indexed grammars (Maslov 76)

generate the same class of word languages.

What is safety?

Summary

Higher-order pushdown automata can be used as recognising/generating device for

- **(**) finite-word languages (Maslov 74) and ω -word languages
- of such trees
 (KNU01) and, more generally, languages of such trees
- possibly infinite graphs (Muller+Schupp 86, Courcelle 95, Cachat 03), qua configuration graphs of these pushdown systems

Higher-order recursion schemes can also be used to generate word languages, potentially-infinite trees (and languages there of) and graphs.

The two families are closely related.

A challenge problem in verification of higher-order computation

Example: Consider tree(G) on the right

- $\varphi_1 =$ "Infinitely many *f*-nodes are reachable".
- $\varphi_2 =$ "Only finitely many g-nodes are reachable".

Every node on the tree satisfies $\varphi_1 \lor \varphi_2$.

Monadic second-order (MSO) logic can describe properties such as $\varphi_1 \lor \varphi_2$.

MSO Model-Checking Problem for Order-n Recursion Schemes

- INSTANCE: An order-n recursion scheme G, and an MSO formula φ
- QUESTION: Does the Σ -labelled tree tree(G) satisfy φ ?

Is the above problem decidable?

where Σ is a ranked alphabet.

First-order variables: x, y, z, etc. (ranging over nodes)

Second-order variables: X, Y, Z, etc. (ranging over sets of nodes i.e. monadic relations)

MSO formulas are built up from atomic formulas:

- Parent-child relationship between nodes: $\mathbf{d}_i(x, y)$, for $1 \leq i \leq m$
- Node labelling: $\mathbf{p}_f(x)$, for $f \in \Sigma$
- Set-membership: $x \in X$

and closed under boolean connectives, first and second-order quantifications.

Because it is the gold standard of logics for describing correctness properties of reactive systems.

• MSO is *very* expressive.

Over graphs, MSO is more expressive than the modal mu calculus, into which all standard temporal logics (e.g. LTL, CTL, CTL*, etc.) can embed.

• It is hard to extend MSO meaningfully without sacrificing decidability where it holds.

- Rabin 1969: Infinite binary trees and regular trees. "Mother of all decidability results in algorithmic verification."
- Muller and Schupp 1985: Configuration graphs of PDA.
- Caucal 1996 Prefix-recognisable graphs (*e*-closures of configuration graphs of pushdown automata, Stirling 2000).
- Knapik, Niwiński and Urzyczyn (TLCA 2001, FOSSACS 2002): **PushdownTree**_n Σ = Trees generated by order-*n* pushdown automata.

SafeRecSchTree_n Σ = Trees generated by order-*n* safe rec. schemes.

• Subsuming all the above: Caucal (MFCS 2002). CaucalTree_n Σ and CaucalGraph_n Σ .

Theorem (KNU-Caucal 2002)

For $n \ge 0$, PushdownTree_n Σ = SafeRecSchTree_n Σ = CaucalTree_n Σ ; and they have decidable MSO theories.

Luke Ong (University of Oxford)

Higher-Order Model Checking

What is the safety constraint on recursion schemes? (1)

There is another notion of "higher-order" types:

Safe types

$$\begin{array}{ll} D_0 &:= \; \{ \, trees \, \} \\ & \text{Order-0 objects are trees.} \\ D_{i+1} &:= \; \bigcup_{k \geq 0} [\underbrace{D_i \times \cdots \times D_i}_k \to D_i] \\ & \text{Order } (i+1) \text{-objects are functions from (tuples of) order-} i \text{ objects } \\ & \text{to order-} i \text{ objects.} \\ & \text{Define s-order}(t) := i \quad \text{if } t \in D_i \end{array}$$

Safe (or "Derived") types

- OI-Hierarchy (Damm 82)
- Higher-level tree transducer (Engelfriet & Vogler 88)

What is the safety constraint on recursion schemes? (2)

Safety is a set of constraints on where variables may occur in a term.

Definition (Damm TCS 82, KNU FoSSaCS'02)

No order-k subterm of a safe term can contain free variables of order <k.

Example (unsafe rule).

$$F:(o \to o) \to o \to o \to o, \ f:o \to o \to o, \ x,y:o.$$

$$F \varphi x y = f \left(F (F \varphi y) y (\varphi x) \right) a$$

The subterm $F \varphi y$ has order 1, but the free variable y has order 0.

Safety does have an important algorithmic advantage!

Theorem (KNU 02, Blum + O. TLCA 07, LMCS 09)

Substitution (hence β -reduction) in safe λ -calculus can be safely implemented without renaming bound variables! Hence no fresh names needed!

Theorem (Expressivity)

- (Schwichtenberg 76) The numeric functions representable by simply-typed λ-terms are multivariate polynomials with conditional.
- (Blum + O. LMCS 09) The numeric functions representable by simply-typed safe λ -terms are the multivariate polynomials.

(See (Blum + O. LMCS 09) for a study on the safe lambda calculus .)

- MSO decidability: Is safety a genuine constraint for decidability? I.e. do trees generated by (arbitrary) recursion schemes have decidable MSO theories?
- Machine characterisation: Find a hierarchy of automata that characterise the expressive power of recursion schemes.
- Expressivity: Is safety a genuine constraint for expressivity?
 I.e. are there inherently unsafe word languages / trees / graphs?
- Graph families:
 - Definition: What is a good definition of "graphs generated by recursion schemes"?
 - Model-checking properties: What are the decidable theories of the graph families?

A Tale of Two Higher-Order Systems

Damm's Safe Types (TCS 82) $D_{i+1} := \bigcup_{k \ge 0} [\underbrace{D_i \times \cdots \times D_i}_k \to D_i]$	Church's Simple Types (JSL 40) $\kappa := o \mid \kappa \to \kappa'$
MSO model checking is decidable	Q1 ?
Safe RS equi-expressive with HOPDA (Damm 82, KNU 02)	Q2 : Equi-expressive with HOPDA++?
	Q3 : Are there inherently unsafe word languages / trees / graphs?
Hierarchy is strict (Damm 82)	?
Word languages are context-sensitive (Inaba & Maneth 08)	?

Theorem (Aehlig, de Miranda + O. TLCA 2005)

Trees generated by order-2 recursion schemes (whether safe or not) have decidable MSO theories.

Theorem (Knapik, Niwinski, Urczyczn + Walukiewicz, ICALP 2005)

Modal mu-calculus model checking problem for homogenously-typed order-2 schemes (whether safe or not) is 2-EXPTIME complete.

What about higher orders?

Yes: MSO decidability extends to all orders (O. LICS06).

- (Rabin 69): MSOL and parity tree automata are effectively equi-expressive for tree languages.
- (EJ 91): mu-calculus and alternating parity tree automata (APT) are effectively equi-expressive for tree languages.
- Mu-calculus and MSOL are equi-expressive for tree languages. (JW 96): mu-calculus is the bisimulation-invariant fragment of MSOL.

Theorem (O. LICS 2006)

For $n \ge 0$, the mu-calculus model-checking problem for trees generated by order-n recursion schemes is n-EXPTIME complete. Thus these trees have decidable MSO theories.

 $\lambda(G)$ is the tree-unravelling of the underlying (finite) syntax graph of G.

Theorem (Transfer)

Given Σ , there is an effective transformation of APT, α , such that for every HORS G, we have \mathcal{B} accepts tree(G) iff $\alpha(\mathcal{B})$ accepts $\lambda(G)$.

 $\lambda(G)$ is regular; and APT acceptance problem of regular trees is decidable. Hence:

Corollary

The modal mu-calculus model checking problem for HORS is decidable.

 $\lambda(G)$ is the tree-unravelling of the underlying (finite) syntax graph of G.

Theorem (Transfer)

Given Σ , there is an effective transformation of APT, α , such that for every HORS G, we have \mathcal{B} accepts tree(G) iff $\alpha(\mathcal{B})$ accepts $\lambda(G)$.

Extension to infintary HORS

Given finite sets \mathcal{T} and \mathcal{V} of types and variables respecively, $G = \langle \Sigma, \mathcal{N}, \mathcal{R}, S \rangle \in \mathbf{RS}^{\infty}(\mathcal{T}, \mathcal{V})$ just if types of all subterms are in \mathcal{T} , and rules may only use variables from \mathcal{V} , but \mathcal{N} and \mathcal{R} may be infinite.

Theorem (O. 2013)

Given $\Sigma, \mathcal{T}, \mathcal{V}$, there is an effective transformation of APT, α , s.t. for every $G \in \mathbf{RS}^{\infty}(\mathcal{T}, \mathcal{V})$, we have \mathcal{B} accepts tree(G) iff $\alpha(\mathcal{B})$ accepts $\lambda(G)$.

Cf. Same result in [Salvati & Walukiewicz 13] but they use infinitary $\lambda Y\text{-calculus.}$

Luke Ong (University of Oxford)

 $\lambda(G)$ is the tree-unravelling of the underlying (finite) syntax graph of G.

Theorem (Transfer)

Given Σ , there is an effective transformation of APT, α , such that for every HORS G, we have \mathcal{B} accepts tree(G) iff $\alpha(\mathcal{B})$ accepts $\lambda(G)$.

Proof Idea. Two key ingredients:

APT \mathcal{B} has accepting run-tree over tree(G)

↔ { I. Traversal-Path Correspondence}

APT \mathcal{B} has accepting traversal-tree over $\lambda(G)$

 $\iff \{ \text{ II. Simulation of traversals by paths } \}$ APT $\alpha(\mathcal{B})$ has an accepting run-tree over $\lambda(G)$

Transference principle, based on a theory of traversals

$$G: \left\{ \begin{array}{cccc} S &=& FH \\ F\varphi &=& \varphi(F\varphi) \\ Hz &=& fzz \end{array} \right. \mapsto \overline{G}: \left\{ \begin{array}{cccc} S &=& \lambda.@F(\lambda x.@H\lambda.x) \\ F &=& \lambda\varphi.\varphi(\lambda.@F(\lambda y.\varphi(\lambda.y)))) \\ H &=& \lambda z.f(\lambda.z)(\lambda.z) \end{array} \right. \\ \underbrace{\mathsf{tree}(G) \\ f & f & f & f \\ \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ \ddots & \ddots & \ddots & \ddots \\ \varphi & \varphi & \varphi \\ \lambda & \lambda \\ \vdots & y \end{array} \right. \left. \begin{array}{c} \lambda (G) \\ \lambda (G)$$

Idea: β -reduction is global (i.e. substitution changes the term being evaluated); game semantics gives an equivalent but local view. A traversal (over the computation tree $\lambda(G)$) is a trace of the local computation that produces a path (over tree(G)).

Theorem (Path-traversal correspondence)

Let G be an order-n recursion scheme.

- (i) There is a 1-1 correspondence between maximal paths p in (Σ-labelled) generated tree tree(G) and maximal traversals t_p over computation tree λ(G).
- (ii) Further for each p, we have $p = t_p \upharpoonright \Sigma$.

Proof is by game semantics.

Explanation (for game semanticists):

- Term-tree tree(G) is (a representation of) the game semantics of G.
- Paths in tree(G) correspond to P-views in the strategy-denotation.
- Traversals t_p over computation tree λ(G) are just (representations of) the uncoverings of the P-views (= path) p in the game semantics of G.