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Themes in Logic in Computer Science

Interface between (Computer-Aided Formal) Verification and Semantics of
Computation

Logical and Algorithmic Foundations of Verification

@ Automata on infinite trees as computational models of state-based
systems

@ Logical systems for describing correctness properties

@ Two-person games as an abstract model of interaction between a
reactive system and its environment

Semantics of Higher-Order Computation
@ Lambda calculus as a definitional device
@ Game semantics as accurate, intensional model

@ Type systems: compositional, syntax-directed inference systems of
behavioural properties
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Model checking: an approach to program verification that promises
accurate analysis with push-button automation.

Verification Problem: Given system Sys (e.g. OS), and correctness
property Spec (e.g. deadlock freedom), does Sys satisfy Spec?
The model checking approach:

@ Find an abstract model M of the system Sys.

@ Describe property Spec as a formula ¢ of a decidable logic.

© Exhaustively check if ¢ is violated by M.

Major progress in verification of lst-order imperative programs. Many
tools: SLAM, Blast, Terminator, SatAbs, etc.
Two key techniques: State-of-the-art tools use

@ abstraction refinement techniques: CEGAR (Counter-Example Guided
Abstraction Refinement)

@ acceleration methods such as SAT- and SMT-solvers.
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Examples of Higher-Order / Functional Languages: OCaml, F#, Haskell,
Lisp/Scheme, JavaScript, and Erlang; even C4++.

Why Higher-Order / Functional Languages?

@ Functional programs are succinct, less error-prone, easy to write and
maintain, good for prototyping.

@ Lambdas (closures) and streams now standard in today's leading
languages (TIOBE Index): Java8, C++411, C#5.0, Javascript, Perl5,
Python, Scala.

© FL support domain-specific languages and organise data parallelism
well; increasingly prevalent in scientific applications and financial
modelling

@ Attractive for concurrent programminng (multicore, GPU-processing
and cloud computing), thanks to absence of mutable variables and
monadic structuring principles
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Verifying Functional Programs

Two Standard Approaches

© Type-Based Program Analysis.
- sound and scalable but often imprecise ( “curse of false positives”)
E.g. type-and-effect system (region-based memory management),
qualifier types, linear types, intersection types, resource usage (sized
types), etc.

© Theorem Proving and Dependent Types
- accurate, typically requires human intervention; does not scale well
E.g. Coq, Agda, etc.
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Model-Checking Higher-Order Programs is Intrinsically Hard

@ Infinite-state and extremely complex: Even without recursion,
higher-order programs over a finite base type are infinite-state.

@ Many other sources of infinity: data structures, control structures
(with recursion), concurrency, distribution and asynchronous
communication, real-time and embedded systems, systems with
parameters, etc.

© Models of higher-order features as studied in semantics — are typically
too “abstract” to support any algorithmic analysis.

A notable exception is game semantics.
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Higher-Order Model Checking is the model checking of infinite trees which
are generated by recursion schemes (equivalently, AY-calculus), with a
view to formally analysing higher-order computation.

Outline of Part 2

@ Relating Families of Generators of Infinite Trees / Graphs:
Recursion Schemes and (Collapsible) Pushdown Automata

@ Algorithmics and Expressivity

© Reducing Model Checking to Type Inference

© Compositional Model Checking of Higher-Type Bohm Trees
© Practical Algorithms for Higher-Order Model Checking

@ Conclusions and Further Directions
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A review: Church’s simple types

Types k == o | (k—K)

Every type can be written uniquely as

k1= (kg == (kp—0)+), n>0

often abbreviated to kK1 — k9 — -+ — K, — 0. Arrows associate to the

right.

Order of a type: measures “nestedness” on LHS of —.

order(o) 0
order(k — k') := max(order(k) + 1, order(x’))

Examples. N — N and N — (N — N) both have order 1;
(N — N) — N has order 2.

Notation. e:x means “expression e has type k".
Applications associate to the left: write fgha to mean ((fg)h) a.
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Higher-order recursion schemes [Par68, Niv72, NC78, Dam82,...]

An order-n recursion scheme = closed, ground-type term definable in
order-n fragment of AY-calculus (i.e. simply-typed A-calculus with
recursion and uninterpreted order-1 constant symbols).

We use recursion schemes to define infinite trees.

Example: An order-1 recursion scheme. Fix an alphabet of 1st-order
constants X ={f:0—0—0,g:0—0, a:0}.

a - S — Fa
Pz~ fa(F(g2))
Unfolding from the start symbol S:

S — Fa
— fa(F(ga))
— fa(f(ga)(F(g(ga))))

—

The term-tree thus generated, tree(G), is fa(f (ga) (f(g(ga))(---))).
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A recursion scheme is a quadruple G = (X, NV, R, S) where

@ X is a set of first-order constant symbols (tree constructors); write
elements of ¥ as a, b, ...

e N is a set of function symbols; write elements of A as F, H, ...
e S € N is a distinguished start symbol where S : o
@ R is a set of rewrite rules of the form, one for each F' € N:

Fxy--xp, — e

where ' : k1 — -++ — K — 0, and e : o is an applicative term built
up from NU{zq,--- 2 }.

The order of G is the highest order of the function symbols in V.
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Representing the term-tree tree(GG) as a Y-labelled tree

tree(G) = fa(f(ga)(f(g(ga))(--+))) is the term-tree
f

AN
e

Formally the term-tree, tree(G), is a map 7' — 3, where T' is a
prefix-closed subset of {1,---,m }*, and m is the maximal arity of

symbols in 3.
tree(G) is ranked and ordered trees.

(Think of tree(G) as the Bohm tree of G.)
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An Order-3 Example: Fibonacci Numbers

fib generates an infinite spine, with each member (in unary) of the

Fibonacci sequence appearing in turn as a left branch from the spine.

Constants: b:0—0—0, s:0—0, 2:0
Functions: Write Church as a shorthand for (0 — 0) = 0 — o

S : o
Zero : Church
One : Church
Show : Church — Church — o
Add : Church — Church — (0 — 0) =0 — 0
S — Show Zero One
Zeropxr — T
fib Onepx — px
Shownina — b (nysz) (Show ng (Add ny n2))

Addnins pxr —

n ¢ (ng ¢ x)
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Using recursion schemes as generators of word languages

Idea: A word is just a linear tree.

Represent a finite word “abc’ (say) as the applicative term a (b (ce)),
viewing a, b and ¢ as X-symbols of arity 1, where e is a distinguished
nullary end-of-word marker.

@ A word language is regular iff it is generated by an order-0 recursion
scheme.

@ A word language is context-free iff it is generated by an order-1
recursion scheme.

What class of word languages do order-2 recursion schemes define?
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Higher-order pushdown automata (HOPDA) [Maslov 74]

Order-2 pushdown automata
A 1-stack is an ordinary stack. A 2-stack (resp. (n + 1)-stack) is a stack of
1-stacks (resp. n-stack).

Operations on 2-stacks: s; ranges over 1-stacks.
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Idea extends to all finite orders: an order-n PDA has an order-n stack, and
has push; and pop, for each 1 < i < n.
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Example: L :={a"b"c":n >0} is recognisable by an order-2 PDA

L is not context free—thanks to the “uvwxy Lemma”.

Idea: Use top 1-stack to process a™ b”, and height of 2-stack to remember n.

q 0] —%q (00211 —% ¢ [[1[2]1 [z 2]]

ib
go [[1[2][=]1]
b

g5 [[1] ~—— g3 [ [2]] =< o (01 [21 0]

a b c
— — pushy; pushyz z — popy Z — pop,
a1 ) 42 - a3
Z — pop, 2 L = pop,
‘read o' ‘read ' ‘read ¢’
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Some properties of the Maslow Hierarchy (Maslov 74, 76)
@ HOPDA define an infinite hierarchy of word languages.

© Low orders are well-known: orders 0, 1 and 2 are the regular, context
free, and indexed languages (Aho 68). Higher-order languages are
poorly understood.

© For each n > 0, the order-n languages form an abstract family of

languages (closed under +, -, (—)*, intersection with regular
languages, homomorphism and inverse homo.)

@ For each n > 0, the emptiness problem for order-n PDA is decidable.

A recent breakthrough
Theorem (Inaba + Maneth FSTTCS08)

All languages of the Maslov Hierarchy are context-sensitive.

Proof uses macro tree transducers (Engelfriet); order-n languages C image
of n iterates of MTTs
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Theorem (Engelfriet 1991)
Let s(n) > log(n).

(i) For k > 0, word acceptance problem of non-det. order-k PDA
augmented with a two-way work-tape with s(n) space is k-EXPTIME
complete.

(i) For k > 1, the acceptance problem of alternating order-k PDA
augmented with a two-way work-tape with s(n) space is
(k — 1)-EXPTIME complete.

(iii) For k > 0, the acceptance problem of alternating order-k PDA is
k-EXPTIME complete.

(iv) For k > 1, the emptiness problem of non-det. order-k PDA is
(k — 1)-EXPTIME complete.

Luke Ong (University of Oxford) Higher-Order Model Checking 14-19 June 2015 20 / 41



Relating the two generator-families: word-language case

Theorem (Equi-expressivity)
For each n > 0, the three formalisms
@ order-n pushdown automata (Maslov 76)

@ order-n safe recursion schemes (Damm 82, Damm + Goerdt 86)
© order-n indexed grammars (Maslov 76)

generate the same class of word languages.

What is safety?
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Two Families of Generators of Infinite Structures

Summary

Higher-order pushdown automata can be used as recognising/generating
device for

© finite-word languages (Maslov 74) and w-word languages

@ possibly-infinite ranked trees (KNUO1) and, more generally, languages
of such trees

@ possibly infinite graphs (Muller+Schupp 86, Courcelle 95, Cachat 03),
qua configuration graphs of these pushdown systems

Higher-order recursion schemes can also be used to generate word
languages, potentially-infinite trees (and languages there of) and graphs.

The two families are closely related.
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A challenge problem in verification of higher-order computation

Example: Consider tree(G) on the right f
“nfini " V2N
@ 1 = "Infinitely many f-nodes are reachable”. a f
“ . " VRN
@ o = "Only finitely many g-nodes are reachable”. g /f\
¥
Every node on the tree satisfies 1 V o. “ i /
g
Y
a

Monadic second-order (MSO) logic can describe properties such as

1V 2.

MSO Model-Checking Problem for Order-n Recursion Schemes
@ INSTANCE: An order-n recursion scheme G, and an MSO formula ¢
@ QUESTION: Does the ¥-labelled tree tree(G) satisfy ¢?

Is the above problem decidable?
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Monadic Second-Order Logic (for X-labelled trees)

where ¥ is a ranked alphabet.
First-order variables: =z, v, z, etc. (ranging over nodes)

Second-order variables: XY, Z, etc. (ranging over sets of nodes
i.e. monadic relations)
MSO formulas are built up from atomic formulas:
@ Parent-child relationship between nodes: d;(z,y), for 1 <i <m
o Node labelling: ps(x), for f € X
@ Set-membership: x € X

and closed under boolean connectives, first and second-order
quantifications.
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Why study monadic second-order (MSO) logic?

Because it is the gold standard of logics for describing correctness
properties of reactive systems.
@ MSO is very expressive.

Over graphs, MSO is more expressive than the modal mu calculus,
into which all standard temporal logics (e.g. LTL, CTL, CTLx, etc.)

can embed.
@ It is hard to extend MSO meaningfully without sacrificing decidability
where it holds.
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A (selective) survey of MSO-decidable structures: up to 2002

@ Rabin 1969: Infinite binary trees and regular trees. “Mother of all
decidability results in algorithmic verification.”

@ Muller and Schupp 1985: Configuration graphs of PDA.

o Caucal 1996 Prefix-recognisable graphs (e-closures of configuration
graphs of pushdown automata, Stirling 2000).

e Knapik, Niwiriski and Urzyczyn (TLCA 2001, FOSSACS 2002):
PushdownTree, > = Trees generated by order-n pushdown
automata.

SafeRecSchTree, > = Trees generated by order-n safe rec. schemes.

@ Subsuming all the above:
Caucal (MFCS 2002). CaucalTree, > and CaucalGraph,,X.

Theorem (KNU-Caucal 2002)

For n > 0, PushdownTree, > = SafeRecSchTree,,>. = CaucalTree,X;
and they have decidable MSO theories.
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What is the safety constraint on recursion schemes? (1)

There is another notion of “higher-order” types:

Safe types
Dy := {trees}
Order-0 objects are trees.

Di+1 = Ukz(] Dz X o+ X Dz = Dl]

k
Order (i + 1)-objects are functions from (tuples of) order-i objects

to order-¢ objects.
Define s-order(t) :=i ift € D;

Safe (or “Derived”) types
e Ol-Hierarchy (Damm 82)
o Higher-level tree transducer (Engelfriet & Vogler 88)
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What is the safety constraint on recursion schemes? (2)

Safety is a set of constraints on where variables may occur in a term.

Definition (Damm TCS 82, KNU FoSSaCS'02)

No order-k subterm of a safe term can contain free variables of order <k. J

Example (unsafe rule).

F:(0o—0)—0—0—o0, f:0—>0—0, x,y:0.

Fory = [f(FFeyylpz))a

The subterm F' ¢ y has order 1, but the free variable y has order 0.
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What is the point of safety?

Safety does have an important algorithmic advantage!

Theorem (KNU 02, Blum + O. TLCA 07, LMCS 09)

Substitution (hence (-reduction) in safe A-calculus can be safely
implemented without renaming bound variables! Hence no fresh names
needed!

Theorem (Expressivity)
© (Schwichtenberg 76) The numeric functions representable by
simply-typed \-terms are multivariate polynomials with conditional.

@ (Blum + O. LMCS 09) The numeric functions representable by
simply-typed safe A\-terms are the multivariate polynomials.

(See (Blum + O. LMCS 09) for a study on the safe lambda calculus .)

Luke Ong (University of Oxford) Higher-Order Model Checking 14-19 June 2015 31 /41



Infinite structures generated by recursion schemes: key questions

@ MSO decidability: Is safety a genuine constraint for decidability?
l.e. do trees generated by (arbitrary) recursion schemes have
decidable MSO theories?

@ Machine characterisation: Find a hierarchy of automata that
characterise the expressive power of recursion schemes.

© Expressivity: Is safety a genuine constraint for expressivity?
l.e. are there inherently unsafe word languages / trees / graphs?

@ Graph families:
@ Definition: What is a good definition of “graphs generated by recursion
schemes” ?
® Model-checking properties: What are the decidable theories of the
graph families?
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A Tale of Two Higher-Order Systems

Damm’s Safe Types (TCS 82)

Di+1 = UkZO Di X e X Di — Dz}

k

Church’s Simple Types (JSL 40)
k=0 | k=K

MSO model checking is decidable
(KNU 02)

Q17

Safe RS equi-expressive with HOPDA
(Damm 82, KNU 02)

Q2: Equi-expressive with HOPDA++7?

Q3: Are there inherently unsafe word
languages / trees / graphs?

Hierarchy is strict
(Damm 82)

?

Word languages are context-sensitive
(Inaba & Maneth 08)
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Q1. Do trees generated by HORS have decidable MSO theories?

Theorem (Aehlig, de Miranda + O. TLCA 2005)

Trees generated by order-2 recursion schemes (whether safe or not) have
decidable MSO theories.

Theorem (Knapik, Niwinski, Urczyczn + Walukiewicz, ICALP 2005)

Modal mu-calculus model checking problem for homogenously-typed
order-2 schemes (whether safe or not) is 2-EXPTIME complete.

What about higher orders?

Yes: MSO decidability extends to all orders (O. LICS06).
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Q1. Do trees generated by HORS have decidable MSO theories? Yes

e (Rabin 69): MSOL and parity tree automata are effectively
equi-expressive for tree languages.

o (EJ 91): mu-calculus and alternating parity tree automata (APT) are
effectively equi-expressive for tree languages.

@ Mu-calculus and MSOL are equi-expressive for tree languages.

(JW 96): mu-calculus is the bisimulation-invariant fragment of
MSOL.

Theorem (O. LICS 2006)

For n > 0, the mu-calculus model-checking problem for trees generated by
order-n recursion schemes is n-EXPTIME complete. Thus these trees have
decidable MSO theories.
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Remarks on the Proof (1)

A(G) is the tree-unravelling of the underlying (finite) syntax graph of G.

Theorem (Transfer)

Given %, there is an effective transformation of APT, «, such that for
every HORS G, we have B accepts tree(G) iff a(B) accepts A\(G).

A(G) is regular; and APT acceptance problem of regular trees is decidable.
Hence:

Corollary
The modal mu-calculus model checking problem for HORS is decidable.
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Remarks on the Proof (2)

A(G) is the tree-unravelling of the underlying (finite) syntax graph of G.

Theorem (Transfer)

Given X, there is an effective transformation of APT, «, such that for
every HORS G, we have B accepts tree(G) iff a(B) accepts A\(G).

Extension to infintary HORS

Given finite sets 7 and V of types and variables respecively,
G=(X,N,R,S) € RS®(T,V) just if types of all subterms are in T,
and rules may only use variables from V, but N and R may be infinite.

Theorem (O. 2013)

Given X,T,V, there is an effective transformation of APT, «, s.t. for
every G € RS™(T,V), we have B accepts tree(G) iff a(B) accepts \(G).

Cf. Same result in [Salvati & Walukiewicz 13] but they use infinitary

AY -calculus.
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Remarks on the Proof (3)

A(G) is the tree-unravelling of the underlying (finite) syntax graph of G.
Theorem (Transfer)

Given %, there is an effective transformation of APT, «, such that for
every HORS G, we have B accepts tree(G) iff a(B) accepts A\(G).

Proof Idea. Two key ingredients:
APT B has accepting run-tree over tree(G)
<= { |. Traversal-Path Correspondence}
APT B has accepting traversal-tree over A\(G)
<= { Il. Simulation of traversals by paths }
APT «(B) has an accepting run-tree over A\(G)
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Transference principle, based on a theory of traversals

S = FH (s = )\.@F()\m.@H)\.a?
G: { Fo = ¢(Fy) — G: { F = Xp.oAQF (Ay.p(Xy))))
Hz = fzz H = Xz.f(A2)(A2)
tree(Q) ANG)
2
f @
, / N , / N 7 A ., )\‘a: e
fo 7 o r e Q
. : : . | VAN
)‘\ > A‘Z < )‘\ _
Ap - N S
7 | | ‘\ o |
12 L2 z z
A >‘\
y
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Idea: [-reduction is global (i.e. substitution changes the term being
evaluated); game semantics gives an equivalent but local view.

A traversal (over the computation tree A(G)) is a trace of the local
computation that produces a path (over tree(G)).

Theorem (Path-traversal correspondence)
Let G' be an order-n recursion scheme.

(i) There is a 1-1 correspondence between maximal paths p in (X-labelled)
generated tree tree(G) and maximal traversals t, over computation tree
AG).

(it) Further for each p, we have p =t, | X.

Proof is by game semantics.

Explanation (for game semanticists):

o Term-tree tree(() is (a representation of) the game semantics of G.

e Paths in tree(G) correspond to P-views in the strategy-denotation.

e Traversals t, over computation tree A(G) are just (representations of) the
uncoverings of the P-views (= path) p in the game semantics of G.
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