
Infinite Trees, Higher-Order Recursion Schemes
and Game Semantics

Luke Ong

Oxford University Computing Laboratory

www.comlab.ox.ac.uk/oucl/work/luke.ong/

Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005. 1

Abstract

Higher-order recursion schemes are a natural (and old) model of programs.
They define a family of finitely branching infinite term-trees, which forms an
infinite hierarchy according to their type-theoretic level.

Building on the famous work of Rabin 1969 and others, Knapik et al.
(FOSSACS 2002) proved that the MSO theories of all such trees are
decidable, provided the generating recursion scheme satisfies a syntactic
constraint called safety. Is the safety assumption really necessary?

We prove that

(i) The modal mu-calculus model-checking problem for trees generated by
level-n recursion schemes is n-EXPTIME complete, for all n ≥ 0.

(ii) Hence trees generated by recursion schemes of every level, whether safe
or not, have decidable MSO theories.

In this talk, we survey the area, explain the result, and briefly sketch a
game-semantic proof.

Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005. 2

Outline of Talk

1. Level-n Recursion Schemes and their Value Trees

2. A Model-Checking Problem

3. Knapik-Niwiński-Urzyczyn Hierarchy of Safe Trees, and the Safe
Lambda Calculus

4. The Theorem and Proof Outline

Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005. 3

Level-n Recursion Scheme G = (N , Σ,R, S)

Fix a set Var of simply-typed variables.

• N : Simply-typed non-terminals of level (= order) at most n

D : A1 → · · · → Am → o

including a distinguished start symbol S : o.

• Σ: Terminals f : o → · · · → o︸ ︷︷ ︸
k

→ o (written ok → o) with k ≥ 0

• R: Equations for non-terminals D : A1 → · · · → Am → o of the shape

D ϕ1 · · · ϕm = e

where the applicative term e : o is constructed from

– terminals f, g, a, etc. from Σ

– variables ϕ1 : A1, · · · , ϕm : Am from Var ,

– non-terminals D, F,G, etc. from N − {S }
Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005. 4

Examples

Set Σ = { f, f ′ : o2 → o, g : o → o, a : o }.

1. A level-0 example: No variables.

G1 :





S = f T T

T = f ′ U U

U = f T T

2. A level-2 example.

B : (o → o) → (o → o) → o → o, F : (o → o) → o

G2 :





S = F g

B ϕ ψ x = ϕ (ψ x)

F ϕ = f (ϕa) (F (B ϕϕ))

Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005. 5

[[G]]: Value Tree (or Denotation) of a Recursion Scheme G

The value tree [[G]] of a (deterministic) recursion scheme G is a possibly
infinite applicative term constructed from the terminals, which is obtained by
unfolding the equations ad infinitum, replacing formal by actual parameters
each time, starting from S.

Example. Σ = { f, g, a }. Take

G1 :





S = F a

F x = f x (F (g x))

We have [[G1]] = f a (f (g a) (f (g (g a))(· · ·))).

We view the infinite term [[G]] as a Σ-tree (generated by G).

Formally a Σ-tree is a function t : T −→ Σ such that T ⊆ { 1, · · · ,m }∗ is
prefix-closed, and for all occurrences α ∈ T , the symbol t(α) ∈ Σ has arity k

iff α has k children, which must be α 1, · · · , α k ∈ T .
Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005. 6

A level-2 example.

Σ = { f, g, a }. B : (o → o) → (o → o) → o → o, F : (o → o) → o

G2 :

8
<
:

S = F g
B ϕ ψ x = ϕ (ψ x)

F ϕ = f (ϕ a) (F (B ϕ ϕ))

The value tree, [[G2]] : { 1, 2 }∗ −→ Σ, is:

8
><
>:

ε 7→ f 11 7→ a
1 7→ g 21 7→ g
2 7→ f 22 7→ f

· · · · · ·

f
xxx FFF

g f
xxx FFF

a g f
xxx FFF

g g f

a g ...
g

g

a

Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005. 7

Outline of Talk

1. Level-n Recursion Schemes and their Value Trees

2. A Model-Checking Problem

3. Knapik-Niwiński-Urzyczyn Hierarchy of Safe Trees, and the Safe
Lambda Calculus

4. The Theorem and Proof Outline

Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005. 8

Model Checking Problem

Parametrized over logical language L and level n.

MODEL CHECKING PROBLEM (L, LEVEL-n Σ-TREES)




INSTANCE: A level-n recursion scheme G, and a formula ϕ ∈ L
QUESTION: Does the Σ-tree [[G]] satisfy ϕ?

We consider L =

• Monadic Second-Order (MSO) Logic, and

• Modal mu-calculus.

A fundamental direction in Verification:

Find classes of finitely-presentable infinite structures (e.g. trees,
graphs, etc.) whose MSO model-checking problem is decidable.

Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005. 9

Monadic Second-Order Logic (for Σ-trees t : T −→ Σ)

First-order variables: x, y, z, etc. (ranging over nodes, which are finite
words over { 1, · · · ,m }, for a fixed m)

Second-order variables: X, Y, Z, etc. (ranging over sets of nodes
i.e. monadic relations)

MSO formulas are built up from atomic formulas:

1. Parent-child relationship between nodes: di(x, y) ≡ “y is i-child of x”

2. Node labelling: pf (x) ≡ “x has label f” where f is a Σ-symbol

3. Set-membership: x ∈ X

and closed under

• boolean connectives: ¬,∨,∧,→
• first-order quantifications: ∀x.−,∃x.−
• second-order quantifications: ∀X.−, ∃X.−.

Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005. 10

Why MSO Logic?

It is a kind of gold standard!

MSO is very expressive. Over graphs, MSO is strictly more expressive than
modal mu-calculus, into which all standard temporal logics (e.g. LTL, CTL,
CTL∗, etc.) can embed.

Over trees, modal mu-calculus is as expressive as (but algorithmically more
tractable than) MSO: For every MSO ϕ, there is a modal mu-calculus formula
pϕ s.t. for every Σ-tree t, we have t ² ϕ ⇐⇒ t, ε ² pϕ.

Any obvious extension of MSO would break decidability. Either of the
following would permit an encoding of a Turing machine:

• Second-order quantification over binary relations.

• Freely interpretable binary relations in the vocabulary.

E.g. Ta(i, t) = “i-th cell of the semi-infinite tape contains a ∈ Σ at time t”.

Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005. 11

Examples of MSO-definable properties of trees

Several useful relations are definable:

1. Set inclusion (and hence equality): X ⊆ Y ≡ ∀x . x ∈ X → x ∈ Y .

2. “Is-an-ancestor-of” or prefix ordering x ≤ y (and hence x = y):

PrefCl(X) ≡ ∀xy . y ∈ X ∧ ∨m
i=1 di(x, y) → x ∈ X

x ≤ y ≡ ∀X . PrefCl(X) ∧ y ∈ X → x ∈ X

Examples:

• Reachability property: “X is a path”

• “X is a cut” i.e. no two nodes in it are ≤-compatible, and it has a
non-empty intersection with every maximal path; “X is finite”.

• Recurrence condition: “There are infinitely many occurrences of the
symbol f : o → o.”

But “MSO cannot count”: E.g. “X has twice as many elements as Y ”.
Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005. 12

Outline of Talk

1. Level-n Recursion Schemes and their Value Trees

2. A Model-Checking Problem

3. Knapik-Niwiński-Urzyczyn Hierarchy of Safe Trees, and the Safe
Lambda Calculus

4. The Theorem and Proof Outline

Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005. 13

Structures with decidable MSO theories: some milestones

1. Rabin 1969: Regular trees. “Mother of all decidability results”

2. Muller and Schupp 1985: Configuration graphs of pushdown automata.

3. Caucal (ICALP 1996): Prefix-recognizable graphs (= ε-closures of
configuration graphs of pushdown automata, Stirling 2000).

4. Knapik, Niwiński and Urzyczyn (TLCA 2001, FOSSACS 2002): Σ-trees
generated by safe recursion schemes of all finite levels.

5. Caucal (MFCS 2002). Hierarchies of trees (Tn)n∈ω and graphs (Gn)n∈ω:

• G0 are the finite graphs; T0 are the finite trees.

• Trees in Tn+1 are the unfoldings of graphs in Gn (= KNU safe trees)

• Graphs in Gn are the inverse rational images of trees in Tn.

Question. Do Σ-trees generated by unsafe recursion schemes have decid-
able MSO theories? If so, at which levels?

Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005. 14

Trees generated by Safe recursion schemes

Trees

Level 0 Regular trees

Level 1 Generated by DPDAs

(All level-0 and level-1 trees are safe.)

Safety seems a robust definition: several characterisations

1. Hierarchy of higher-order pushdown trees generated by higher-order
pushdown automata (KNU 2002)

E.g. A level-2 stack is a stack of level-1 stacks.

2. Caucal Tree Hierarchy 2002: generated from finite trees by iterated
transformations that preserve MSO decidability.

3. Indexed grammars of level n + 1 have exponents / indices that are
grammars of level n. (Maslov 1976)

Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005. 15

What is the safety constraint?

W. Damm: Derived types in “IO and OI Hierarchies”, TCS 1982.

Definition [KNU02]. A level-2 equation is unsafe if the RHS has a subterm
P such that

(i) P is level 1

(ii) P occurs in an operand position (i.e. as 2nd argument of the application
operator)

(iii) P contains a level-0 parameter.

Examples of unsafe equations: f : o2 → o G,H : o.

Gx = H (f x)

F ϕx y = f (F (F ϕ y) y (ϕx)) a

Safety (as presented above) seems syntactically awkward and semantically
unnatural, but has important algorithmic value.

Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005. 16

In what sense is a safe λ-term safe?

A basic idea in lambda calculus / logic:

When performing β-reduction, one must use capture-avoiding substitution,
which is standardly implemented by renaming bound variables afresh upon
each substitution.

There is an algorithmic price to pay for renaming:

Any machine that correctly computes:




INPUT: A simply-typed λ-term M

OUTPUT: A β-reduction sequence from M

needs an unbounded supply of names, and hence unbounded memory.

Safety lets us get away with no renaming of bound variables!

Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005. 17

Safety reformulated as a simply-typed theory

We reexpress (and generalize) the safety constraint as a simply-typed theory.
Sequents have the form

x1 : A1, · · · , xi : Ai︸ ︷︷ ︸
level l1

| · · · | xl : Al, · · · , xn : An︸ ︷︷ ︸
level lm

` M : B

• Each Ai and B are homogeneousa.

• Typing context partitioned according to levels with l1 ≥ · · · ≥ lm.

Formation rules must respect (unicity of) the partition:

• When forming abstraction, all variables of the lowest type-partition must
be abstracted in an atomic step.

• When forming application, the operator-term must be applied to all
operand-terms (one for each type) of the highest type-partition, in one
atomic step.

ao is homogeneous; and (A1 → · · · → An → o) is homogeneous just if level(A1) ≥
level(A2) ≥ · · · ≥ level(An), and each Ai is homogeneous.

Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005. 18

Safe λ-calculus makes algorithmic sense

Examples. Set Γ = F : (o → o) → o → o → o | ϕ : o → o | x : o, y : o

1. (Fϕ)x : o → o is not safe.

2. λx y.Fϕxy is safe but not λx.Fϕxy.

Theorem. “Safe λ-calculus = α-conversion-free λ-calculus”
I.e. when performing β-reductions on a safe (recursively-defined) λ-term,
there is no need to rename bound variables when substituting.

Thus when reducing a safe λ-term, we do not need any supply of fresh name.

Safe λ-calculus seems of independent interest, and deserves further
investigations. E.g. what kind of reasoning principles does it support (via
Curry-Howard)? Does it have interesting models?

Nevertheless, we shall prove that safety is not necessary for decidability.

Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005. 19

Two questions about safety

Is safety a genuine or spurious constraint for:

1. Expressiveness. Are there inherently unsafe Σ-trees?

I.e. Is there an unsafe recursion scheme whose value tree is not the value tree
of any safe recursion scheme? If so, at what level?

Conjecture. Yes, at level 2. But note:

Theorem. (A+deM+O FOSSACS 2005) There is no inherently unsafe word
language at level 2.

2. Decidability. Is safety necessary for decidabiliy? No, not at level 2.

Theorem. (A+deM+O TLCA 2005) Σ-trees denoted by level-2 recursion
schemes, whether safe or not, have decidable MSO theories.

Question. What about higher levels?

Yes: Decidability result extends to all levels - main result of this talk.
Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005. 20

Outline of Talk

1. Level-n Recursion Schemes and their Value Trees

2. A Model-Checking Problem

3. Knapik-Niwiński-Urzyczyn Hierarchy of Safe Trees, and the Safe
Lambda Calculus

4. The Theorem and Proof Outline

Theorem.

(i) The modal mu-calculus model checking problem for trees generated by
level-n recursion schemes is n-EXPTIME complete, for all n ≥ 0.

(ii) Hence trees generated by recursion schemes of every level, whether safe
or not, have decidable MSO theories.

The level-2 case has also been obtained, independently, by Knapik, Niwiński,
Urzyczyn + Walukiewicz (ICALP 2005) using a new kind of machines called
“panic automata”.

Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005. 21

Theorem. For every level-n (deterministic) recursion scheme G, for every
modal mu-calculus formula ϕ, it is decidable whether [[G]] ² ϕ.

Thanks to Rabin, Emerson + Jutla, etc., equivalent to deciding if [[G]] is
accepted by an alternating parity tree automaton B – call B the property APT.

Recall: B accepts [[G]] iff B has an accepting run-tree over [[G]].

Proof approach: Transfer algorithmic analysis from value tree [[G]] to an
auxiliary computation tree λ(G).

Two major technical components:

1. Strong 1-1 correspondence between paths in value tree and traversals over
the computation tree, established using game semantics.

2. Recognition of (accepting) traversals.

• P-views of a traversal over a computation tree are paths in the same tree.

• Thus we can simulate traversals by certain paths over the computation
tree, as formalised by the notion of traversal-simulating APT C.

Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005. 22

Computation trees, concretely

Fix a level-n recursion scheme G. Transform G 7→ G:

1. Expand each RHS to its η-long form, including ground-type subterm in
operand position. Thus e : o η-expands to λ.e (“dummy lambdas”).

2. Explicit “apply” symbol: Replace every ground-type subterm D e1 · · · en

by @ D e1 · · · en, where D ranges over non-terminals.

3. Curry each equation.

The computation tree λ(G) is the infinite term-tree obtained by unfolding the
transformed equations in G – a level-0 recursion scheme! – ad infinitum.

Labels in λ(G) from a finite set – no renaming of bound variables.

Semantically: The computation tree λ(G) is just (a representation of) the
uncovering (aka fully revealed strategy) of the value tree [[G]], which is an
innocent strategy.

Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005. 23

G :

(
S = F H

F ϕ = ϕ (F ϕ)
H z = fzz

7→ G :

(
S = @ F (λx.@ H λ.x)
F = λϕ.ϕ(λ.@ F (λy.ϕ(λ.y))))
H = λz.f(λ.z)(λ.z)

The computation tree λ(G) is (the abstract syntax tree of) the unfolding of G:

[[G]] λ(G)

f

qqqqq
MMMMM @

mmmmmm
TTTTTTTTT

f 66 f 66 λϕ λx

f f f f ϕ

<<

@
¥¥
¥ 77

7

...
...

...
... λ λz λ

@
sss

s @@
f

¤¤ @@
x

hh

λϕ λy λ λ

ϕ

;;

ϕ

ee

z

55

z

ii

λ λ

...
y

ZZ

Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005. 24

Theorem. (Correspondence) Let G be a level-n recursion scheme.

(i) There is a 1-1 correspondence between maximal paths p in (Σ-labelled)
value tree [[G]] and maximal traversals tp over computation tree λ(G).

(ii) Further, traversal tp is the uncovering of (and, hence, Σ-projects onto)
path p.

Thus: Property APT B has an accepting run-tree over [[G]]

by def.⇐⇒




∃ certain set of δB-respecting, state-annotated maximal

paths in [[G]] satisfying parity condition

Thm (Corr)⇐⇒




∃ certain set of δB-respecting, state-annotated maximal

traversals over λ(G) satisfying parity condition
by def.⇐⇒ Property APT B has an accepting traversal-tree over λ(G).

Problem: How to recognise such state-annotated traversals?

Higher-order traversals can be very complex!
Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005. 25

@〈0〉
jjjjj

ZZZZZZZZZZZZZZZ

λΨ〈1〉 λϕz〈9〉

Ψ〈2〉oo
f 〈10〉

EE
λx1x2

〈3〉 λ〈17〉 λ〈11〉 λ

Ψ〈4〉mm NNN
ϕ〈12〉

KKK

λx′1x
′
2
〈5〉

λ〈7〉 λ〈13〉 λ

x1
〈6〉 x2

〈8〉 ϕ〈14〉
JJ

λ〈15〉 λ

z〈16〉

A level-3 example:

0 1 2 9
~~

10 11
¯¯

12
¨¨

3
¦¦

4
¥¥

9
££

10 11
££

12
{{

5
{{

6
zz

13
yy

14
~~

3
}}

4
||

9
||

10 11
££

12 · · ·{{

Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005. 26

Definition. Traversals over λ(G) are justified sequences defined by induction:

(Root) The singleton sequence (comprising ε) is a traversal.

(App) If t @ is a traversal, so is t @ λξ

0¤¤
.

(Sig) If t f is a traversal, so is t f λ

i¦¦
where 1 ≤ i ≤ arity(f).

(Var) If t n λξ · · · ξ
iyy

is a traversal, so is

t n λξ · · · ξ
iyy

λη

i

~~
.

(Lam) If t λξ is a traversal, so is t λξ n, such that ptλξ nq is a path in
λ(G).

A traversal jumps all over the comp. tree, and can visit a node infinitely often!

Key lemma: P-views of traversals are paths in the computation tree.

Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005. 27

Simulate traversals by paths – A level-2 illustration

Idea. Simulate a traversal by the respective P-views of all its prefixes, which
can be shown to be a set of paths in the computation tree.

@
iiiiii RRR

XXXXXXXXXXXXX

λϕx λy1y2, q1 λ

...
...

...
ϕ, q1

mm

44

MMM
y1, q2

ooλ, q2 λ

Suppose a traversal jumps from ϕ at simulating state q1 to a sibling subtree
rooted at λy1y2, subsequently exits it at y1 and rejoins the original subtree at
first λ-child of ϕ with state q2.

Simulate the traversal by paths:

• At ϕ with q1, guess that the detour will return at first λ-child with state q2

• Spawn an automaton at λy1y2 to verify the guess.
Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005. 28

Formalising the guesses as Variable Profiles VPBG(A)

Fix a higher-order recursion scheme G, and a property APT
B = 〈Σ, Q, δ, q0, Ω 〉 with p priorities. Write [p] = { 1, · · · , p }.

VPBG(o) = Varo
G ×Q× [p]× 2∅

VPBG(A1 → · · · → An → o) = VarA
G ×Q× [p]× 2(

Sn
i=1 VPBG(Ai))

Asserting
(ϕ, q, m, c) ∈ VPBG(A)

at node α of computation tree means: the traversal being simulated will reach
some descendant-node that is labelled ϕ

(i) with state q, such that

(ii) m is the highest priority that will have been encountered up to that point

(iii) further, the traversal (which will then jump to the root of a subtree that
denotes the actual argument of ϕ) will eventually return to the children of
the node labelled ϕ “in accord with c”.

Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005. 29

Traversal-simulating APT C: simulates B-states and verifies guesses

C-automata descend the computation tree with states q ρ where q is the B-state
being simulated, and environment ρ is the set of profiles of variable (within
current scope) to be verified.

Suppose automaton with state q ρ reading node with label l: Some cases
(verification of priorities omitted)

• l is level-0 variable x.

If ρ = { (x, q, m,∅) }, succeed; otherwise abort.

• l is a Σ-symbol f : ok → o.

Guess a set { (i1, q1), · · · , (il, ql) } satisfying δB(q, f) (abort, if
impossible), and guess environments ρ1, · · · , ρl such that

⋃l
j=1 ρj = ρ.

For each j, spawn automata with state qj ρj in direciton ij .

• l is an @ with children labelled by λϕ and λη1, · · · , ληk.

Guess ρ′ = { (ϕij , qj ,mj , cj) : 1 ≤ j ≤ l }, and spawn automaton with
state q ρ′ in direction 0. Guess ρ1, · · · , ρl with

⋃l
j=1 ρj = ρ. For each j,

spawn automaton with state qj (ρj ∪ cj) in direction ij .
Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005. 30

Theorem (Simulation). The following are equivalent:

(i) Property APT B has an accepting traversal-tree over the computation
tree λ(G).

(ii) Traversal-simulating APT C has an accepting run-tree of over the com-
putation tree λ(G).

“(i) ⇒ (ii)”: From the traversal-tree annotated only by B-states, we perform
a succession of annotation operations, transforming it to a traversal-tree
annotated by C-states.

The set of P-views of all such C-state-annotated traversals is precisely an
accepting run-tree of C.

“(ii) ⇒ (i)”: Reconstruct each traversal (of the putative traversal-tree) as a
sequence of segments of paths (=P-views) in the accepting run-tree, thus
inheriting an accepting state-annotation.

Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005. 31

Key Steps of Decidability Proof

Let G be any level-n recursion scheme, and ϕ a modal mu-calculus formula.

Value tree [[G]] satisifes ϕ

⇐⇒ { Theorems of Rabin, Muller + Schupp, Emerson + Jutla, etc.}
Property APT Bϕ accepts the value tree [[G]]

⇐⇒ { Definition of APT }
Bϕ has an accepting run-tree over the value tree [[G]]

⇐⇒ { Correspondence Theorem }
Bϕ has an accepting traversal-tree over the computation tree λ(G)

⇐⇒ { Simulation Theorem }
Traversal-simulating APT C has an accepting run-tree over λ(G)

Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005. 32

Complexity of Modal Mu-Calculus Model Checking

Mu-calculus model checking of level-n trees is n-EXPTIME hard, because it
is already so for safe trees (T. Cachat ICALP’04).

Use parity game to show problem is decidable in n-EXPTIME.

Theorem. (Jurdzinski 2000) Eloise’s winning regions and strategy in a parity
game with |V | vertices and |E| edges and p ≥ 2 priorities is computed in time

O

(
p · |E| ·

(|V |
bp/2c

)bp/2c)

Theorem. Given a property APT B = 〈Q, Σ, δ, q0,Ω 〉with p priorities, and
a level-n recursion schemes G (whether safe or not), acceptance of [[G]] by
B is decidable in time expnO(|G| · |Q| · p).

Hence MSO theories of these trees are decidable (non-elementarily).
Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005. 33

Further directions: a selection

1. Conjecture: There are inherently unsafe trees (at level 2) - Urzyczyn’s tree.

2. What is the automata-theoretic counterpart of (possibly unsafe) higher-order
recursion schemes. E.g. Stirling’s pointer machines.

3. Definition of hierarchy of graphs generated by high-order recursion schemes? Are
their MSO theories decidable? Relationship with Caucal Hierarchy?

4. “Mixing semantic and verification games”: Denotational semantics of λ-calculus
“relative to an alternating parity tree automaton (APT)”. Construct a CCC,
parameterized by an APT, with maps witnessed by profiles (“guesses”).

5. Algorithmic properties of Σ-trees generated by stateful (Algol-like) rec. schemes.

6. Given a µ-formula over [[G]], is its “winning region” computable?

7. Identify properties and/or subclasses of trees that are “feasibly” model-checkable.

Safe λ-calculus, safe word and tree languages, higher-order PDAs:

1. Safe λ-calculus (Idealised Algol?): Models? Proof theory (via Curry-Howard)?

2. Are safe word languages context-sensitive?

3. Higher-order (visibly) PDA; hot topic - 6 recent PhD theses! Equiv. problem.
Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005. 34

Safe Lambda Calculus: System S Typing Rules

(A1 | · · · |An | o) homogeneous b is a type-B constant
x1 : A1 | · · · |xn : An ` b : B

(A1 | · · · |An | o) homogeneous
x1 : A1 | · · · |xn : An ` xij : Aij

x1 : A1 | · · · |xn+1 : An+1 ` M : B (An+1 |B) homogeneous
x1 : A1 | · · · |xn : An ` λxn+1.M : (An+1 |B)

Γ ` M : (B1 | · · · |Bm | o) Γ ` N1 : B11 · · · Γ ` Nl1 : B1l1

Γ ` MN1 · · ·Nl1 : (B2 | · · · |Bm | o)

When forming abstraction, all variables of the (right-most) type-partition must
be abstracted. When forming application, the operator-term must be applied to
all operand-terms (one for each type) of the left-most type-partition.

Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005. 35

