Infinite Trees, Higher-Order Recursion Schemes and Game Semantics

Luke Ong

Oxford University Computing Laboratory

www.comlab.ox.ac.uk/oucl/work/luke.ong/

Higher-order recursion schemes are a natural (and old) model of programs. They define a family of finitely branching infinite term-trees, which forms an infinite hierarchy according to their type-theoretic level.

Building on the famous work of Rabin 1969 and others, Knapik *et al.* (FOSSACS 2002) proved that the MSO theories of all such trees are decidable, provided the generating recursion scheme satisfies a syntactic constraint called safety. Is the safety assumption really necessary?

We prove that

- (i) The modal mu-calculus model-checking problem for trees generated by level-n recursion schemes is n-EXPTIME complete, for all $n \ge 0$.
- (ii) Hence trees generated by recursion schemes of every level, *whether safe* or not, have decidable MSO theories.

In this talk, we survey the area, explain the result, and briefly sketch a game-semantic proof.

Outline of Talk

- 1. Level-n Recursion Schemes and their Value Trees
- 2. A Model-Checking Problem
- 3. Knapik-Niwiński-Urzyczyn Hierarchy of Safe Trees, and the Safe Lambda Calculus
- 4. The Theorem and Proof Outline

Fix a set *Var* of simply-typed variables.

• \mathcal{N} : Simply-typed non-terminals of level (= order) at most n

$$D: A_1 \to \cdots \to A_m \to o$$

including a distinguished start symbol S: o.

- Σ : Terminals $f: \underbrace{o \to \cdots \to o}_{k} \to o$ (written $o^k \to o$) with $k \ge 0$
- \mathcal{R} : Equations for non-terminals $D: A_1 \to \cdots \to A_m \to o$ of the shape

$$D \varphi_1 \cdots \varphi_m = e$$

where the applicative term e: o is constructed from

- terminals f, g, a, etc. from Σ
- variables $\varphi_1 : A_1, \cdots, \varphi_m : A_m$ from *Var*,
- non-terminals D, F, G, etc. from $\mathcal{N} \{S\}$

Examples

Set
$$\Sigma = \{ f, f' : o^2 \to o, g : o \to o, a : o \}.$$

1. A level-0 example: No variables.

$$G_1 : \begin{cases} S = fTT \\ T = f'UU \\ U = fTT \end{cases}$$

2. A level-2 example.

$$B: (o \to o) \to (o \to o) \to o \to o, \quad F: (o \to o) \to o$$
$$G_2: \begin{cases} S = Fg\\ B\varphi\psi x = \varphi(\psi x)\\ F\varphi = f(\varphi a) (F(B\varphi\varphi)) \end{cases}$$

The *value tree* $[\![G]\!]$ of a (deterministic) recursion scheme G is a possibly infinite applicative term *constructed from the terminals*, which is obtained by unfolding the equations *ad infinitum*, replacing formal by actual parameters each time, starting from S.

Example. $\Sigma = \{ f, g, a \}$. Take

$$G_1 : \begin{cases} S = Fa \\ Fx = fx (F(gx)) \end{cases}$$

We have $[\![G_1]\!] = f a (f (g a) (f (g (g a))(\cdots))).$

We view the infinite term $\llbracket G \rrbracket$ as a Σ -tree (*generated* by G).

Formally a Σ -tree is a function $t: T \longrightarrow \Sigma$ such that $T \subseteq \{1, \dots, m\}^*$ is prefix-closed, and for all occurrences $\alpha \in T$, the symbol $t(\alpha) \in \Sigma$ has arity k iff α has k children, which must be $\alpha 1, \dots, \alpha k \in T$.

A level-2 example.

$$\begin{split} \Sigma &= \{ f, g, a \}. \ B : (o \to o) \to (o \to o) \to o \to o, \quad F : (o \to o) \to o \\ G_2 &: \left\{ \begin{array}{rrr} S &=& F g \\ B \varphi \psi x &=& \varphi (\psi x) \\ F \varphi &=& f (\varphi a) (F (B \varphi \varphi)) \end{array} \right. \end{split}$$

The value tree, $\llbracket G_2 \rrbracket : \{ 1, 2 \}^* \longrightarrow \Sigma$, is: $\left\{ \begin{array}{rrr} \epsilon &\mapsto f & 11 &\mapsto a \\ 1 &\mapsto g & 21 &\mapsto g \\ 2 &\mapsto f & 22 &\mapsto f \\ & \dots & \dots \end{array} \right.$

gagggagg. gт. a

. . .

. . .

Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005.

Outline of Talk

- 1. Level-n Recursion Schemes and their Value Trees
- 2. A Model-Checking Problem
- 3. Knapik-Niwiński-Urzyczyn Hierarchy of Safe Trees, and the Safe Lambda Calculus
- 4. The Theorem and Proof Outline

Parametrized over logical language \mathcal{L} and level n.

MODEL CHECKING PROBLEM (\mathcal{L} , LEVEL- $n \Sigma$ -TREES)

INSTANCE:A level-n recursion scheme G, and a formula $\varphi \in \mathcal{L}$ QUESTION:Does the Σ -tree $\llbracket G \rrbracket$ satisfy φ ?

We consider $\mathcal{L} =$

- Monadic Second-Order (MSO) Logic, and
- Modal mu-calculus.

A fundamental direction in Verification:

Find classes of finitely-presentable infinite structures (e.g. trees, graphs, etc.) whose MSO model-checking problem is decidable.

First-order variables: x, y, z, etc. (ranging over *nodes*, which are finite words over $\{1, \dots, m\}$, for a fixed m)

Second-order variables: X, Y, Z, etc. (ranging over *sets* of nodes i.e. *monadic* relations)

MSO formulas are built up from **atomic formulas**:

- 1. Parent-child relationship between nodes: $\mathbf{d}_i(x, y) \equiv "y$ is *i*-child of x"
- 2. Node labelling: $\mathbf{p}_f(x) \equiv x$ has label f" where f is a Σ -symbol
- 3. Set-membership: $x \in X$

and closed under

- boolean connectives: $\neg, \lor, \land, \rightarrow$
- first-order quantifications: $\forall x.-, \exists x.-$
- second-order quantifications: $\forall X.-, \exists X.-$.

It is a kind of gold standard!

MSO is *very* expressive. Over graphs, MSO is strictly more expressive than modal mu-calculus, into which all standard temporal logics (e.g. LTL, CTL, CTL*, etc.) can embed.

Over trees, modal mu-calculus is as expressive as (but algorithmically more tractable than) MSO: For every MSO φ , there is a modal mu-calculus formula p_{φ} s.t. for every Σ -tree t, we have $t \vDash \varphi \iff t, \epsilon \vDash p_{\varphi}$.

Any obvious extension of MSO would break decidability. Either of the following would permit an encoding of a Turing machine:

- Second-order quantification over binary relations.
- Freely interpretable binary relations in the vocabulary.

E.g. $T_a(i, t) =$ "*i*-th cell of the semi-infinite tape contains $a \in \Sigma$ at time t".

Examples of MSO-definable properties of trees

Several useful relations are definable:

- 1. Set inclusion (and hence equality): $X \subseteq Y \equiv \forall x . x \in X \rightarrow x \in Y$.
- 2. "Is-an-ancestor-of" or prefix ordering $x \le y$ (and hence x = y):

$$\begin{aligned} \mathsf{PrefCl}(X) &\equiv \forall xy \, . \, y \in X \land \bigvee_{i=1}^{m} \mathbf{d}_{i}(x, y) \to x \in X \\ x \leq y &\equiv \forall X \, . \, \mathsf{PrefCl}(X) \land y \in X \to x \in X \end{aligned}$$

Examples:

- Reachability property: "X is a path"
- "X is a cut" i.e. no two nodes in it are \leq -compatible, and it has a non-empty intersection with every maximal path; "X is finite".
- Recurrence condition: "There are infinitely many occurrences of the symbol $f: o \rightarrow o$."

But "MSO cannot count": E.g. "X has twice as many elements as Y".

Outline of Talk

- 1. Level-n Recursion Schemes and their Value Trees
- 2. A Model-Checking Problem
- 3. Knapik-Niwiński-Urzyczyn Hierarchy of Safe Trees, and the Safe Lambda Calculus
- 4. The Theorem and Proof Outline

Structures with decidable MSO theories: some milestones

- 1. Rabin 1969: Regular trees. "Mother of all decidability results"
- 2. Muller and Schupp 1985: Configuration graphs of pushdown automata.
- 3. Caucal (ICALP 1996): Prefix-recognizable graphs (= ϵ -*closures* of configuration graphs of pushdown automata, Stirling 2000).
- 4. Knapik, Niwiński and Urzyczyn (TLCA 2001, FOSSACS 2002): Σ -trees generated by *safe* recursion schemes of all finite levels.
- 5. Caucal (MFCS 2002). Hierarchies of trees $(\mathcal{T}_n)_{n \in \omega}$ and graphs $(\mathcal{G}_n)_{n \in \omega}$:
 - \mathcal{G}_0 are the finite graphs; \mathcal{T}_0 are the finite trees.
 - Trees in \mathcal{T}_{n+1} are the *unfoldings* of graphs in \mathcal{G}_n (= KNU safe trees)
 - Graphs in \mathcal{G}_n are the *inverse rational images* of trees in \mathcal{T}_n .

Question. Do Σ -trees generated by *unsafe* recursion schemes have decidable MSO theories? If so, at which levels?

Trees generated by *Safe* recursion schemes

	Trees
Level 0	Regular trees
Level 1	Generated by DPDAs

(All level-0 and level-1 trees are safe.)

Safety seems a robust definition: several characterisations

1. Hierarchy of higher-order pushdown trees generated by higher-order pushdown automata (KNU 2002)

E.g. A level-2 stack is a stack of level-1 stacks.

- 2. Caucal Tree Hierarchy 2002: generated from finite trees by iterated transformations that preserve MSO decidability.
- 3. Indexed grammars of level n + 1 have exponents / indices that are grammars of level n. (Maslov 1976)

What is the safety constraint?

W. Damm: Derived types in "IO and OI Hierarchies", TCS 1982.

Definition [KNU02]. A level-2 equation is *unsafe* if the RHS has a subterm *P* such that

- (i) P is level 1
- (ii) P occurs in an operand position (i.e. as 2nd argument of the application operator)
- (iii) P contains a level-0 parameter.

Examples of unsafe equations: $f : o^2 \rightarrow o \ G, H : o$.

$$G x = H (f x)$$

$$F \varphi x y = f (F (F \varphi y) y (\varphi x)) a$$

Safety (as presented above) seems syntactically awkward and semantically unnatural, but has important algorithmic value.

A basic idea in lambda calculus / logic:

When performing β -reduction, one must use *capture-avoiding* substitution, which is standardly implemented by *renaming bound variables* afresh upon each substitution.

There is an algorithmic price to pay for renaming:

Any machine that correctly computes:

 $\begin{cases} INPUT: A simply-typed <math>\lambda$ -term $M \\ OUTPUT: A \beta$ -reduction sequence from $M \end{cases}$

needs an *unbounded* supply of names, and hence unbounded memory.

Safety lets us get away with no renaming of bound variables!

Safety *reformulated* as a simply-typed theory

We reexpress (and generalize) the safety constraint as a simply-typed theory. Sequents have the form

$$\underbrace{x_1:A_1,\cdots,x_i:A_i}_{\text{level }l_1} \mid \cdots \mid \underbrace{x_l:A_l,\cdots,x_n:A_n}_{\text{level }l_m} \vdash M:B$$

- Each A_i and B are homogeneous^a.
- Typing context partitioned according to levels with $l_1 \ge \cdots \ge l_m$.

Formation rules must respect (unicity of) the partition:

- When forming abstraction, all variables of the lowest type-partition must be abstracted in an atomic step.
- When forming application, the operator-term must be applied to all operand-terms (one for each type) of the highest type-partition, in one atomic step.

^ao is homogeneous; and $(A_1 \rightarrow \cdots \rightarrow A_n \rightarrow o)$ is homogeneous just if $level(A_1) \geq level(A_2) \geq \cdots \geq level(A_n)$, and each A_i is homogeneous. Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005. **Examples.** Set $\Gamma = F : (o \to o) \to o \to o \to o \mid \varphi : o \to o \mid x : o, y : o$

- 1. $(F\varphi)x: o \to o \text{ is not safe.}$
- 2. $\lambda x y.F\varphi xy$ is safe but not $\lambda x.F\varphi xy$.

Theorem. "Safe λ -calculus = α -conversion-free λ -calculus" I.e. when performing β -reductions on a safe (recursively-defined) λ -term, there is no need to rename bound variables when substituting.

Thus when reducing a safe λ -term, we do not need any supply of fresh name.

Safe λ -calculus seems of independent interest, and deserves further investigations. E.g. what kind of reasoning principles does it support (via Curry-Howard)? Does it have interesting models?

Nevertheless, we shall prove that safety is *not* necessary for decidability.

Is safety a genuine or spurious constraint for:

1. **Expressiveness**. Are there *inherently* unsafe Σ -trees?

I.e. Is there an unsafe recursion scheme whose value tree is not the value tree of any safe recursion scheme? If so, at what level?

Conjecture. Yes, at level 2. But note:

Theorem. (A+deM+O FOSSACS 2005) There is no inherently unsafe word language at level 2.

2. Decidability. Is safety necessary for decidabiliy? No, not at level 2.

Theorem. (A+deM+O TLCA 2005) Σ -trees denoted by level-2 recursion schemes, whether safe or not, have decidable MSO theories.

Question. What about higher levels?

Yes: Decidability result extends to all levels - main result of this talk. *Infinite Trees, Higher-Order Recursion Schemes and Game Semantics*, Oxford, 2 Dec. 2005.

Outline of Talk

- 1. Level-n Recursion Schemes and their Value Trees
- 2. A Model-Checking Problem
- 3. Knapik-Niwiński-Urzyczyn Hierarchy of Safe Trees, and the Safe Lambda Calculus
- 4. The Theorem and Proof Outline

Theorem.

- (i) The modal mu-calculus model checking problem for trees generated by level-n recursion schemes is n-EXPTIME complete, for all $n \ge 0$.
- (ii) Hence trees generated by recursion schemes of every level, whether safe or not, have decidable MSO theories.

The level-2 case has also been obtained, independently, by Knapik, Niwiński, Urzyczyn + Walukiewicz (ICALP 2005) using a new kind of machines called "panic automata".

Theorem. For every level-*n* (deterministic) recursion scheme *G*, for every modal mu-calculus formula φ , it is decidable whether $\llbracket G \rrbracket \vDash \varphi$.

Thanks to Rabin, Emerson + Jutla, etc., equivalent to deciding if $\llbracket G \rrbracket$ is accepted by an alternating parity tree automaton \mathcal{B} – call \mathcal{B} the property APT.

Recall: \mathcal{B} accepts $\llbracket G \rrbracket$ iff \mathcal{B} has an accepting run-tree over $\llbracket G \rrbracket$.

Proof approach: Transfer algorithmic analysis from value tree $\llbracket G \rrbracket$ to an auxiliary computation tree $\lambda(G)$.

Two major technical components:

1. Strong 1-1 correspondence between paths in value tree and traversals over the computation tree, established using game semantics.

2. Recognition of (accepting) traversals.

- P-views of a traversal over a computation tree are paths in the same tree.
- Thus we can simulate traversals by certain paths over the computation tree, as formalised by the notion of traversal-simulating APT C.

Fix a level-*n* recursion scheme *G*. Transform $G \mapsto \overline{G}$:

- 1. Expand each RHS to its η -long form, including ground-type subterm in operand position. Thus $e : o \eta$ -expands to $\lambda . e$ ("dummy lambdas").
- 2. Explicit "apply" symbol: Replace every ground-type subterm $D e_1 \cdots e_n$ by @ $D e_1 \cdots e_n$, where D ranges over non-terminals.
- 3. Curry each equation.

The *computation tree* $\lambda(G)$ is the infinite term-tree obtained by unfolding the transformed equations in \overline{G} – a level-0 recursion scheme! – *ad infinitum*. Labels in $\lambda(G)$ from a finite set – no renaming of bound variables. *Semantically:* The computation tree $\lambda(G)$ is just (a representation of) the uncovering (aka *fully revealed strategy*) of the value tree $\llbracket G \rrbracket$, which is an innocent strategy.

$$G: \left\{ \begin{array}{rrrr} S &=& F H \\ F \varphi &=& \varphi \left(F \varphi \right) \\ H z &=& f z z \end{array} \right. \mapsto \qquad \overline{G}: \left\{ \begin{array}{rrrr} S &=& @ F \left(\lambda x. @ H \lambda. x \right) \\ F &=& \lambda \varphi. \varphi (\lambda. @ F \left(\lambda y. \varphi (\lambda. y) \right)) \\ H &=& \lambda z. f (\lambda. z) (\lambda. z) \end{array} \right\}$$

The computation tree $\lambda(G)$ is (the abstract syntax tree of) the unfolding of \overline{G} :

Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005.

Theorem. (Correspondence) Let G be a level-n recursion scheme.

- (i) There is a 1-1 correspondence between maximal paths p in (Σ -labelled) value tree $\llbracket G \rrbracket$ and maximal traversals t_p over computation tree $\lambda(G)$.
- (ii) Further, traversal t_p is the *uncovering* of (and, hence, Σ -projects onto) path p.
 - Thus:Property APT \mathcal{B} has an accepting run-tree over $\llbracket G \rrbracket$ by def. \exists certain set of $\delta_{\mathcal{B}}$ -respecting, state-annotated maximal
paths in $\llbracket G \rrbracket$ satisfying parity conditionThm (Corr) \exists certain set of $\delta_{\mathcal{B}}$ -respecting, state-annotated maximal
traversals over $\lambda(G)$ satisfying parity conditionby def.Property APT \mathcal{B} has an accepting traversal-tree over $\lambda(G)$.

Problem: How to recognise such state-annotated traversals?

Higher-order traversals can be very complex! Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005.

Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005.

Definition. *Traversals* over $\lambda(G)$ are justified sequences defined by induction:

A traversal jumps all over the comp. tree, and can visit a node infinitely often!

Key lemma: P-views of traversals are paths in the computation tree.

Idea. Simulate a traversal by the respective P-views of all its prefixes, which can be shown to be a set of paths in the computation tree.

Suppose a traversal jumps from φ at simulating state q_1 to a sibling subtree rooted at $\lambda y_1 y_2$, subsequently exits it at y_1 and rejoins the original subtree at first λ -child of φ with state q_2 .

Simulate the traversal by paths:

• At φ with q_1 , guess that the detour will return at first λ -child with state q_2

• Spawn an automaton at $\lambda y_1 y_2$ to verify the guess. Infinite Trees, Higher-Order Recursion Schemes and Game Semantics, Oxford, 2 Dec. 2005.

Formalising the guesses as Variable Profiles $VP_G^{\mathcal{B}}(A)$

Fix a higher-order recursion scheme G, and a property APT $\mathcal{B} = \langle \Sigma, Q, \delta, q_0, \Omega \rangle$ with p priorities. Write $[p] = \{1, \dots, p\}$.

$$\mathbf{VP}_G^{\mathcal{B}}(o) = Var_G^o \times Q \times [p] \times 2^{\varnothing}$$

 $\mathbf{VP}_G^{\mathcal{B}}(A_1 \to \cdots \to A_n \to o) = Var_G^A \times Q \times [p] \times 2^{(\bigcup_{i=1}^n \mathbf{VP}_G^{\mathcal{B}}(A_i))}$

Asserting

$$(\varphi, q, m, c) \in \mathbf{VP}_G^{\mathcal{B}}(A)$$

at node α of computation tree means: the traversal being simulated will reach some descendant-node that is labelled φ

- (i) with state q, such that
- (ii) m is the highest priority that will have been encountered up to that point
- (iii) further, the traversal (which will then jump to the root of a subtree that denotes the *actual* argument of φ) will eventually return to the children of the node labelled φ "in accord with *c*".

Traversal-simulating APT C**: simulates** B**-states and verifies guesses**

C-automata descend the computation tree with states $q \rho$ where q is the \mathcal{B} -state being simulated, and environment ρ is the set of profiles of variable (within current scope) to be verified.

Suppose automaton with state $q \rho$ reading node with label *l*: Some cases (verification of priorities omitted)

• *l* is level-0 variable *x*.

If $\rho = \{ (x, q, m, \emptyset) \}$, succeed; otherwise abort.

• l is a Σ -symbol $f : o^k \to o$.

Guess a set { $(i_1, q_1), \dots, (i_l, q_l)$ } satisfying $\delta_{\mathcal{B}}(q, f)$ (abort, if impossible), and guess environments ρ_1, \dots, ρ_l such that $\bigcup_{j=1}^l \rho_j = \rho$. For each j, spawn automata with state $q_j \rho_j$ in direction i_j .

• *l* is an @ with children labelled by $\lambda \overline{\varphi}$ and $\lambda \overline{\eta_1}, \dots, \lambda \overline{\eta_k}$. Guess $\rho' = \{ (\varphi_{i_j}, q_j, m_j, c_j) : 1 \le j \le l \}$, and spawn automaton with state $q \rho'$ in direction 0. Guess ρ_1, \dots, ρ_l with $\bigcup_{j=1}^l \rho_j = \rho$. For each j, spawn automaton with state $q_j (\rho_j \cup c_j)$ in direction i_j .

Theorem (**Simulation**). The following are equivalent:

- (i) Property APT \mathcal{B} has an accepting traversal-tree over the computation tree $\lambda(G)$.
- (ii) Traversal-simulating APT C has an accepting run-tree of over the computation tree $\lambda(G)$.

" $(i) \Rightarrow (ii)$ ": From the traversal-tree annotated only by \mathcal{B} -states, we perform a succession of annotation operations, transforming it to a traversal-tree annotated by \mathcal{C} -states.

The set of P-views of all such C-state-annotated traversals *is* precisely an accepting run-tree of C.

" $(ii) \Rightarrow (i)$ ": Reconstruct each traversal (of the putative traversal-tree) as a sequence of segments of paths (=P-views) in the accepting run-tree, thus inheriting an accepting state-annotation.

Let G be any level-n recursion scheme, and φ a modal mu-calculus formula.

Value tree $[\![\,G\,]\!]$ satisifes φ

- $\iff \{ \text{ Theorems of Rabin, Muller + Schupp, Emerson + Jutla, etc.} \}$ Property APT \mathcal{B}_{φ} accepts the value tree $\llbracket G \rrbracket$
- $\iff \{ \text{ Definition of APT } \}$

 \mathcal{B}_{φ} has an accepting run-tree over the value tree $\llbracket G \rrbracket$

 \iff { Correspondence Theorem }

 \mathcal{B}_{φ} has an *accepting traversal-tree* over the computation tree $\lambda(G)$

 \iff { Simulation Theorem }

Traversal-simulating APT C has an accepting run-tree over $\lambda(G)$

Mu-calculus model checking of level-n trees is n-EXPTIME hard, because it is already so for safe trees (T. Cachat ICALP'04).

Use parity game to show problem is decidable in *n*-EXPTIME.

Theorem. (Jurdzinski 2000) Eloise's winning regions and strategy in a parity game with |V| vertices and |E| edges and $p \ge 2$ priorities is computed in time

$$O\left(p \cdot |E| \cdot \left(\frac{|V|}{\lfloor p/2 \rfloor}\right)^{\lfloor p/2 \rfloor}\right)$$

Theorem. Given a property APT $\mathcal{B} = \langle Q, \Sigma, \delta, q_0, \Omega \rangle$ with p priorities, and a level-n recursion schemes G (whether safe or not), acceptance of $\llbracket G \rrbracket$ by \mathcal{B} is decidable in time $\exp_n O(|G| \cdot |Q| \cdot p)$.

Hence MSO theories of these trees are decidable (non-elementarily).

Further directions: a selection

- 1. **Conjecture**: There are *inherently* unsafe trees (at level 2) Urzyczyn's tree.
- 2. What is the automata-theoretic counterpart of (possibly unsafe) higher-order recursion schemes. E.g. Stirling's *pointer machines*.
- 3. Definition of hierarchy of graphs generated by high-order recursion schemes? Are their MSO theories decidable? Relationship with Caucal Hierarchy?
- 4. "Mixing semantic and verification games": Denotational semantics of λ -calculus "relative to an alternating parity tree automaton (APT)". Construct a CCC, parameterized by an APT, with maps witnessed by profiles ("guesses").
- 5. Algorithmic properties of Σ -trees generated by stateful (Algol-like) rec. schemes.
- 6. Given a μ -formula over $\llbracket G \rrbracket$, is its "winning region" computable?
- 7. Identify properties and/or subclasses of trees that are "feasibly" model-checkable.

Safe λ -calculus, safe word and tree languages, higher-order PDAs:

- 1. Safe λ -calculus (Idealised Algol?): Models? Proof theory (via Curry-Howard)?
- 2. Are safe word languages context-sensitive?
- 3. Higher-order (visibly) PDA; hot topic 6 recent PhD theses! Equiv. problem.

$$\frac{(\overline{A_1} \mid \dots \mid \overline{A_n} \mid o) \text{ homogeneous } b \text{ is a type-}B \text{ constant}}{\overline{x_1} : \overline{A_1} \mid \dots \mid \overline{x_n} : \overline{A_n} \vdash b : B}$$

$$\frac{(\overline{A_1} \mid \dots \mid \overline{A_n} \mid o) \text{ homogeneous}}{\overline{x_1} : \overline{A_1} \mid \dots \mid \overline{x_n} : \overline{A_n} \vdash x_{ij} : A_{ij}}$$

$$\overline{x_1}: \overline{A_1} | \cdots | \overline{x_{n+1}}: \overline{A_{n+1}} \vdash M: B \quad (\overline{A_{n+1}} \mid B) \text{ homogeneous}$$
$$\overline{x_1}: \overline{A_1} | \cdots | \overline{x_n}: \overline{A_n} \vdash \lambda \overline{x_{n+1}}.M: (\overline{A_{n+1}} \mid B)$$

$$\frac{\Gamma \vdash M : (\overline{B_1} \mid \dots \mid \overline{B_m} \mid o) \qquad \Gamma \vdash N_1 : B_{11} \ \dots \ \Gamma \vdash N_{l_1} : B_{1l_1}}{\Gamma \vdash MN_1 \cdots N_{l_1} : (\overline{B_2} \mid \dots \mid \overline{B_m} \mid o)}$$

When forming abstraction, all variables of the (right-most) type-partition must be abstracted. When forming application, the operator-term must be applied to all operand-terms (one for each type) of the left-most type-partition.