
Verifying Pure Functional Programs

Luke Ong

Oxford University Computing Laboratory

www.comlab.ox.ac.uk/oucl/work/luke.ong/

(Joint work with Klaus Aehlig and Jolie de Miranda)

NUS, 7 Jan 2005. Verifying Pure Functional Programs. 1

Abstract

Recursion schemes are an old model of computation for recursively-defined

procedural programs. Higher-order recursive schemes are very natural models

of (pure) functional programs. They can viewed as a means of defining a

family of (finitely branching) infinite term trees, which forms an infinite

hierarchy according to the type-theoretic level.

By building on the famous work of Rabin 1969, and others, Knapiket al (in

FOSSACS 2002) proved that the monadic second-order theories of all such

trees are decidable, provided the generating recursion schemes satisfy a

syntactic condition calledsafety. They asked if the safety assumption is

necessary for the decidability result. We resolve the question, negatively, for

trees at level 2. I.e. trees generated by all level-2 recursion schemes have

decidable MSO theories.

In this talk, we survey the area and explain the result.

NUS, 7 Jan 2005. Verifying Pure Functional Programs. 2

Motivation

Goal. Foundations of verification (as opposed to inference) of behavioural
and structural properties of functional computation.

Examples. Take a typed recursive-defined functional programM .

1. Termination analysis: DoesM evaluate to a WHNF? (Of course
undecidable in general.)

2. Usage analysis: DoesM use a given value only finitely often?

3. Strictness analysis. DoesM compute a strict function?

Model-checking paradigm. Fix a class of properties.

• Identify an appropriate model of computation for a class of useful
functional computation.

• Study algorithmic properties of the model.

Approach. Model is simple (and reasonably expressive), but problems are
hard.

NUS, 7 Jan 2005. Verifying Pure Functional Programs. 3

Outline of Talk

1. Level-2 Recursion Schemes and their Tree Denotations

2. MSO Logic of Trees

3. Safety and Knapik-Niwínski-Urzyczyn Hierarchy of Safe Trees

4. Tree Automata and Equivalence with MSO Logic

5. The Theorem and Proof Outline

NUS, 7 Jan 2005. Verifying Pure Functional Programs. 4

Level-2 Recursion SchemeG = (N, Σ, V,R, S)

• N : Non-terminals (at most level 2)

D : (o → · · · → o) → · · · → o → · · · → o

• Σ: Terminalsf : o → · · · → o︸ ︷︷ ︸
k

→ o (writtenok → o) with k ≥ 0

• V : Variablesx : o, ϕ : ok → o

• R: Equations for each non-terminalD

D ϕ1 · · · ϕm x1 · · · xn = e

wheree is constructed from

– terminalsf, g, a, etc.

– variablesϕ1, · · · , ϕm, x1, · · · , xn

– non-terminalsD, M, N , etc. fromN − {S }
• a distinguishedstart non-terminalS : o.

NUS, 7 Jan 2005. Verifying Pure Functional Programs. 5

Examples

1. A level-1 example:

F : o → o

G1 :





S = F a

F x = f x (F (g x))

2. A level-2 example.

B : (o → o) → (o → o) → o → o, F : (o → o) → o

G2 :





S = F g

B ϕ ψ x = ϕ (ψ x)

F ϕ = f (ϕa) (F (B ϕϕ))

NUS, 7 Jan 2005. Verifying Pure Functional Programs. 6

[[G]]: Denotation of a Recursion SchemeG

Thedenotation[[G]] of a (deterministic) recursion schemeG is a possibly

infinite applicative term constructed from terminals (fromΣ), which is

obtained by unfolding the equationsad infinitum, replacing formal by actual

parameters each time, starting fromS.

Example. Take

G1 :





S = F a

F x = f x (F (g x))

We have[[G1]] = f a (f (g a) (f (g a a)(· · ·))).

Regard denotation[[G]] as aΣ-tree.

The syntax tree of[[G]] is aΣ-labelled tree, orΣ-tree for short.

Formally aΣ-tree is a functiont : T −→ Σ such thatT ⊆ { 1, · · · ,m }∗ is

prefix-closed, and for allx ∈ T , we havet(x) ∈ Σ has arityk iff x hask

children, which must bex 1, · · · , x k ∈ T .
NUS, 7 Jan 2005. Verifying Pure Functional Programs. 7

Recursion schemevs“real functional programs”

How much do recursion schemes fall short?

Recursion schemes are pure, uninterpreted functional programs, minimalist in

design.

Certain features can be added “without comprising decidability”.

Standard Functional Features Present in Recursion Schemes?

Basic data types Yes: only finite types

Dynamic data types No, but can be included if bounded

Basic arithmetics (Presburger) No, but extendable

Conditionals No, but extendable

Recursion Yes

Pattern matching No. Probably extendable

NUS, 7 Jan 2005. Verifying Pure Functional Programs. 8

Outline of Talk

1. Level-2 Recursion Schemes and their Tree Denotations

2. MSO Logic of Trees

3. Safety and Knapik-Niwínski-Urzyczyn Hierarchy of Safe Trees

4. Tree Automata and Equivalence with MSO Logic

5. The Theorem and Proof Outline

NUS, 7 Jan 2005. Verifying Pure Functional Programs. 9

Desiderata

Seek

1. A languageL to describe propertiesϕ

2. A classT of (finitely presentable) infinite trees

such that




INSTANCE: A treet ∈ T , and a formulaϕ ∈ L
QUESTION: Does “t ² ϕ” hold?

should bedecidable.

Aim . L should capture as many computationally meaningful properties, and

T should include tree denotations of as many useful functional programs as

possible.

NUS, 7 Jan 2005. Verifying Pure Functional Programs. 10

Monadic Second-Order Logic (forΣ-treest : T −→ Σ)

First-order variables: x, y, z, etc. (ranging over nodes)

Second-order variables: X, Y, Z, etc. (ranging oversetsof nodes

i.e.monadicrelations)

MSO formulas are built up fromatomic formulas:

1. Parent-child relationship between nodes: di(x, y) ≡ “y is i-child of x”

2. Node labelling: pf (x) ≡ “x has labelf ”, for f ranging overΣ

3. Set-membership: x ∈ X

and closed under

• boolean connectives¬,∨,∧,→
• first-order∀x.−,∃x.− quantifications

• second-order∀X.−, ∃X.− quantifications.

NUS, 7 Jan 2005. Verifying Pure Functional Programs. 11

Why MSO Logic?

In a netshell, there is no “better” candidate around (for describing tree

properties)!

• Any obvious extension would yield an undecidable logic.

Unrestricted interpretation ofbinary relation would permit an encoding of

a Turing machine.

E.g.Ta(i, t) meaning “i-th cell of the semi-infinite tape containsa ∈ Σ at

time t”.

Logics with first-order or higher expressivenss can only be decidable if

– Second-order quantification over binary relations is prohibited

– No freely interpretable binary relations in the vocabulary.

• MSO isveryexpressive.

MSO is strictly more expressive than the modalµ-calculus, into which all

standard temporal logics (e.g. LTL, CTL, CTL∗, etc.) are embeddable.

NUS, 7 Jan 2005. Verifying Pure Functional Programs. 12

Examples of MSO-definable properties

First, several useful relations are definable:

1. Set inclusion (and hence equality):X ⊆ Y ≡ ∀x . x ∈ X → x ∈ Y .

2. Prefix orderingx ≤ y (and hence node equalityx = y):

x ≤ y ≡ ∀X . PrefCl(X) ∧ y ∈ P → x ∈ P

PrefCl(X) ≡ ∀xy . y ∈ X ∧ ∨m
i=1 di(x, y) → x ∈ X

Example. “There are finitely many occurrences of the terminalf : o → o.”

• “X is a path (in a tree)”

Path(X) ≡ ∀xy ∈ X . x ≤ y ∨ y ≤ x

∧ ∀xyz . x ∈ X ∧ z ∈ X ∧ x ≤ y ≤ z → y ∈ X

• MaxPath(X) ≡ Path(X) ∧ ∀Y . Path(Y) ∧X ⊆ Y → Y ⊆ X.

NUS, 7 Jan 2005. Verifying Pure Functional Programs. 13

Example (finite occurrence)

• A set of nodes is acut if no two nodes in it are≤-compatible, and it has a

non-trivial intersection with every maximal path.

Cut(X) ≡ ∀xy ∈ X . ¬(x ≤ y ∨ y ≤ x)

∧ ∀Z . MaxPath(Z) → ∃z ∈ Z . z ∈ X

• Fact. A setX of nodes in a finitely-branching tree is finite iff there is a

cutC such that everyX-node is a prefix of someC-node.

Finite(X) ≡ ∃Y . Cut(Y) ∧ ∀x ∈ X . ∃y ∈ Y . x ≤ y

Note: By König’s Lemma, every cut is finite.

Hence, “there are finitely many nodes labelled byf ” is expressible by

∃X . Finite(X) ∧ ∀x . pf (x) → x ∈ X

NUS, 7 Jan 2005. Verifying Pure Functional Programs. 14

Outline of Talk

1. Level-2 Recursion Schemes and their Tree Denotations

2. MSO Logic of Trees

3. Safety and Knapik-Niwiński-Urzyczyn Hierarchy of Safe Trees

4. Tree Automata and Equivalence with MSO Logic

5. The Theorem and Proof Outline

NUS, 7 Jan 2005. Verifying Pure Functional Programs. 15

Timeline of major decidability results

1. Rabin 1969“Mother of all decidability results”:S2S, second-order
theory of two successors of infinite binary trees, is decidable.

2. Muller and Schupp 1985: Pushdown graphs have decidable MSO
theories.

3. Courcelle 1995: Σ-trees denoed by level-1 recursion schemes have
decidable MSO theories.

4. Knapik, Niwiński and Urzyczyn; TLCA 2001: Σ-trees denoted by level-2
saferecursion schemes have decidable MSO theories.

5. KNU, FOSSACS 2002: For alln ≥ 3, the MSO theories ofΣ-trees
denoted by level-n saferecursion schemes are decidable.

Hence (combining 1, 3, 4 and 5)

Theorem. Safetrees of all levels have decidable MSO theories.

NUS, 7 Jan 2005. Verifying Pure Functional Programs. 16

Knapik-Niwiński-Urzyczyn Hierarchy ofSafeTrees

Forn ≥ 0, level-n safe treesare trees denoted by level-n recursion schemes
satisfying thesafetycondition. (Safety only “bites” from level 2 onwards.)

• Level 0: Regular trees

• Level 1: Trees generated by deterministic pushdown automaton

Several Characterizations

1. Hierarchy ofhigher-order pushdown treesgenerated by higher-order
pushdown automata (KNU 2002)

E.g. A level-2 stack is a stack of level-1 stacks.

2. Caucal hierarchies of trees(Tn : n ≥ 0), and graphs(Gn : n ≥ 0)
(Caucal 2002)

• G0 are theΣ-labelled finite graphs;T0 theΣ-labelled finite trees

• Trees inTn+1 are the tree-unfoldings of graphs inGn

• Graphs inGn+1 are the inverse rational images of trees inTn.

NUS, 7 Jan 2005. Verifying Pure Functional Programs. 17

What is safety?

An awkward syntactic constraint. Semantically unnatural, but has great

algorithmic value.

Idea goes back to W. Damm:derived typesin “IO and OI Hierarchies” TCS

1982.

Definition. A level-2 equation isunsafeif the RHS contains a level-1 subterm

that occurs in an operand position and contains a level-0 parameter.

Examples.

1. Unsafe equation: underlined subterm level-1 is atoperandposition

F ϕx y = f (F (F ϕy) y (ϕx)) a

2. Safe equation: underlined subterm level-1 is atoperatorposition

G ϕx y = g (Gϕ y x) (g a)

NUS, 7 Jan 2005. Verifying Pure Functional Programs. 18

What doessafemean?

A basic idea in functional programming:

When performingβ-reduction, one must usecapture-avoidingsubstitution,

which is often implemented byrenaming bound variablesafresh upon each

substitution.

An algorithmic price to pay :

Any reduction machinethat correctly computes:




INPUT: a (recursively defined) simply-typedλ-termM

OUTPUT: aβ-reduction sequence fromM

needs aninfinitesupply of names, and hence unbounded memory.

Safety lets us get away with not renaming bound variables!

Lemma. When performingβ-reductions on asafeλ-term, it is safe not to

rename bound variables afresh upon substitution.
NUS, 7 Jan 2005. Verifying Pure Functional Programs. 19

Two natural questions about safety

Is the safety constraint spurious?

1. Expressiveness. Are there inherently unsafeΣ-trees?

I.e. Is there an unsafe recursion scheme whose tree-denotation is not the

denotation of any safe recursion scheme? If so, at what level?

Conjecture. Yes, at level 2. Butcf. our FOSSACS05 paper

Theorem. (A+deM+O)There is no inherently unsafe word language.

2. Decidability. Is safety necessary for decidabiliy?

No, not at level 2.

The main result of this talk (TLCA 2005):

Theorem. (A+deM+O)Σ-trees denoted by level-2 recursion schemes have

decidable MSO theories.

What about higher levels? Don’t know.
NUS, 7 Jan 2005. Verifying Pure Functional Programs. 20

Outline of Talk

1. Level-2 Recursion Schemes and their Tree Denotations

2. MSO Logic of Trees

3. Safety and Knapik-Niwínski-Urzyczyn Hierarchy of Safe Trees

4. Tree Automata and Equivalence with MSO Logic

5. The Theorem and Proof Outline

NUS, 7 Jan 2005. Verifying Pure Functional Programs. 21

Tree AutomataA = (Q, Σ, ∆, q0, Acc)

• a finite setQ of control-states, with initial stateq0 ∈ Q

• a finite alphabetΣ comprising symbolsf : ok → o of arity k ≥ 0

• transition relation:

∆ ⊆ Q× Σ× (Q + Q2 + · · ·+ Qm)

wherem is the maximum arity of symbols inΣ, and∆ has elements of

the form

(q, f : ok → o, (q1, · · · , qk))

• Acc ⊆ Qω (for defining acceptance).

We use tree automataA as accepting devices to define tree languages.

NUS, 7 Jan 2005. Verifying Pure Functional Programs. 22

Tree language recognised by a tree automaton

A run of tree automatonA over aΣ-treet : T −→ Σ is just an assignment of
states to nodes oft that respects the transition relation.

Formally it is a functionr : T −→ Q such thatr(ε) = q0 and for each
α ∈ T ⊆ { 1, · · · ,m }∗, we have

(r(α), t(α) : ok → o, (r(α 1), · · · , r(α k))) ∈ ∆

A run r : T −→ Q is acceptingif every maximal pathβ0β1 · · · (i.e. an
element of{ 1, · · · ,m }ω) in T , r(β0)r(β1) · · · ∈ Acc.

A Σ-treet is accepted byA just if there is an accepting run ofA overt.

Define thetree languageof A, L(A) = {T ∈ Σ-trees: A acceptsT }.

Parity condition: Accconsists ofp0p1p2 · · · ∈ Qω such that

min{Ω(q) : q occurs infinitely often inp0p1p2 · · · }
is even.

NUS, 7 Jan 2005. Verifying Pure Functional Programs. 23

MSO logic and tree automata are expressively equivalent

1. There is an algorithm that transforms a MSO formulaϕ to a tree

automatonAϕ such that for allΣ-treest

t ² ϕ ⇐⇒ Aϕ acceptst

2. There is an algorithm that transforms a tree automatonA to an MSO

formulaϕA such that for allΣ-treest

A acceptst ⇐⇒ t ² ϕA

Recall:

Rabin’s Theorem 1969. For any tree automaton, it is decidable if its tree

language (i.e. set ofΣ-trees accepted by it) is empty.

NUS, 7 Jan 2005. Verifying Pure Functional Programs. 24

Outline of Talk

1. Level-2 Recursion Schemes and their Tree Denotations

2. MSO Logic of Trees

3. Safety and Knapik-Niwínski-Urzyczyn Hierarchy of Safe Trees

4. Tree Automata and Equivalence with MSO Logic

5. The Theorem and Proof Outline

Safety is not necessary for decidability at level 2. Precisely

Theorem (A+deM+O 2004).Σ-trees denoted by level-2 recursion schemes

have decidable MSO theories.

(Also obtained by Knapik, Niwinski, Urzyczyn + Walukiewicz, but by a

different proof.)

NUS, 7 Jan 2005. Verifying Pure Functional Programs. 25

An idea that works for safe trees ...

... but doesn’t carry over to the general case.

Level-1 recursion schemes are well understood (recall: safety only bites from

level 2 onwards).

Transform any level-2G to an equivalent level-1 recursion scheme

(essentially by partially evaluation).

NUS, 7 Jan 2005. Verifying Pure Functional Programs. 26

Example

Take level-2 G3 =





S = F f a b

F ϕ x y = F (F ϕ y) y (ϕx)

Consider

G′3 =





S = F f a b

F ϕ = λx y.F (F ϕy) y (ϕx)

By regardingϕ as alevel-0 parameter, andλxy. andx andy asnew
terminals, G′3 “becomes”level-1!

Problem: Unfolding and only replace formal parameterϕ by actual

S = F f a b

= λxy.F (F f y) y (f x) a b

= λxy.(λx′y′.F (F (F f y) y′) y′(F f y x′)) y (f x) a b

We needy andy′ to be distinct to avoid name capture. So need infinitely
many distinct names (and hence terminal symbols)!

NUS, 7 Jan 2005. Verifying Pure Functional Programs. 27

Doing it precisely!

We transformG3 =





S = F f a b

F ϕx y = F (F ϕ y) y (ϕx)
to

G′3 =





S = @(@(F f) a) b

F ϕ = λx.λy.@(@(F (@(F ϕ) y)) y)(@ϕx)

whereϕ : o andF : o → o with




@ : o → o → o

λx., λy. : o → o

x, y : o

are new symbols in the augmented signatureΣ′.

Now G′3 is a level-1 recursion scheme. IntuitivelyG′3 corresponds to

unfoldingG3-rulesad infinitum, but only contracting the level-1 redexes.

NUS, 7 Jan 2005. Verifying Pure Functional Programs. 28

An idea that does work: Never contract anyβ-redex

Take a level-2G. Consider the curried (andη-expanded) versions of the

G-rules.

ExampleThus fromG3 we obtain:

G′′3 =





S = F f a b

F = λϕ x y.F (λz.F (λx′.ϕx′) y z) y (ϕx)

This is alevel-0recursion scheme. Call the corresponding syntax tree of

[[G′′3]] the lambda treeof G3.

No danger of name capture, as there are no formal parameters!

Intuitively the lambda tree is obtained by unfolding the rules (and hence

replicating theβ-redexes), but never contracting any.

NUS, 7 Jan 2005. Verifying Pure Functional Programs. 29

We prove a more general result:

For any level-2 (non-deterministic) recursion schemeG, for any

MSO formulaϕ, it is decidable ift ² ϕ for somet ∈ [[G]].

NUS, 7 Jan 2005. Verifying Pure Functional Programs. 30

Outline of Argument

INPUT: G, ϕ

1. Define the tree languageλTrees(G) of lambda treesgenerated fromG.

Note: EveryL ∈ λTrees(G) “evaluates” (by potentially infinite
β-reduction) to someΣ-treeEval(L) ∈ [[G]].

λTrees(G) is regulari.e. recognisable by a tree automatonBG.

2. Fromϕ construct the tree automatonAϕ that accepts allΣ-trees
satisfyingϕ.

Simulation of Aϕ: Construct a tree automatonCϕ that accepts precisely
those lambda trees that “evaluates to”Σ-trees accepted byAϕ i.e.

Cϕ acceptsL ⇐⇒ Aϕ acceptsEval(L).

3. Construct the intersection automaton ofBG andCϕ, and check for
non-emptiness.

OUTPUT: Yes ifft ² ϕ for somet ∈ [[G]].
NUS, 7 Jan 2005. Verifying Pure Functional Programs. 31

