Verifying Pure Functional Programs

Luke Ong

Oxford University Computing Laboratory

www.comlab.ox.ac.uk/oucl/work/luke.ong/

(Joint work with Klaus Aehlig and Jolie de Miranda)

NUS, 7 Jan 2005. Verifying Pure Functional Programsl

Motivation

Goal. Foundations of verification (as opposed to inference) of behavioural
and structural properties of functional computation.

Examples Take a typed recursive-defined functional prograim

1. Termination analysidDoesM evaluate to a WHNF? (Of course
undecidable in general.)

2. Usage analysidDoesM use a given value only finitely often?
3. Strictness analysi®oesM compute a strict function?
Model-checking paradigm Fix a class of properties.

o Identify an appropriate model of computation for a class of useful
functional computation.

e Study algorithmic properties of the model.

Approach. Model is simple (and reasonably expressive), but problems are
hard.

NUS, 7 Jan 2005. Verifying Pure Functional Programs3

Abstract

Recursion schemes are an old model of computation for recursively-defined
procedural programs. Higher-order recursive schemes are very natural models
of (pure) functional programs. They can viewed as a means of defining a
family of (finitely branching) infinite term trees, which forms an infinite
hierarchy according to the type-theoretic level.

By building on the famous work of Rabin 1969, and others, Knapil (in
FOSSACS 2002) proved that the monadic second-order theories of all such
trees are decidable, provided the generating recursion schemes satisfy a
syntactic condition calledafety They asked if the safety assumption is
necessary for the decidability result. We resolve the question, negatively, for
trees at level 2. l.e. trees generated by all level-2 recursion schemes have
decidable MSO theories.

In this talk, we survey the area and explain the result.

NUS, 7 Jan 2005. Verifying Pure Functional Program<

Outline of Talk

Level-2 Recursion Schemes and their Tree Denotations
MSO Logic of Trees
Safety and Knapik-Niviiski-Urzyczyn Hierarchy of Safe Trees

Tree Automata and Equivalence with MSO Logic

o 0 0 dp Pk

The Theorem and Proof Outline

NUS, 7 Jan 2005. Verifying Pure Functional Programs}

Level-2 Recursion Schem@& = (N, >, V, R, 5) Examples

e N: Non-terminals (at most level 2) 1. A level-1 example:
D:(0—-—0) =20 —0 F:0—o0
. . . S = Fa
e X: Terminalsf : o — --- — o — o (written o* — o) with & > 0 G :
—— Fe = fe(F(ge))
e V: Variablesz : 0, : 0" — o 2. Alevel-2 example.

R: Equations for each non-termin&l B:(0—0)—(0—0)—0—0, F:(0—0) —o0

Dgpl...gpmxl...lxn — e

S = Fy
wheree is constructed from Gy : Botpr =)
— terminalsf, g, a, etc. Fo = f(pa)(F(Bgy))
— variablespy, -+, ©m, 1, *, Tn

— non-terminalsD, M, N, etc. fromN — { S}

e a distinguishedtart non-terminalS : o.

NUS, 7 Jan 2005. Verifying Pure Functional Program®$ NUS, 7 Jan 2005. Verifying Pure Functional Program®$
[G]: Denotation of a Recursion Schere Recursion schemes“real functional programs”
Thedenotation] G] of a (deterministic) recursion scher@éis a possibly How much do recursion schemes fall short?

infinite applicative term constructed from terminals (fraj which is
obtained by unfolding the equationd infinitum replacing formal by actual
parameters each time, starting fram

Recursion schemes are pure, uninterpreted functional programs, minimalist in
design.

Certain features can be added “without comprising decidability”.
Example. Take

S — Fa Standard Functional Features| Present in Recursion Schemes?
Gq
! Fz = fa(F(gx)) Basic data types Yes: only finite types
We have[G1] = fa(f (ga) (f (gaa)(---))). Dynamic data types No, but can be included if bounded

Basic arithmetics (Presburger)| No, but extendable
Regard denotation[G] as aX-tree.

Conditionals No, but extendable
The syntax tree of G | is aX-labelled tree, ok-tree for short. Recursion Yes
Formally a>-treeis a functiont : T — Y such thatl’ C {1,---,m }*is Pattern matching No. Probably extendable

prefix-closed, and for alt € T', we havet(x) € ¥ has arityk iff = hask
children, which mustbe 1,--- 2k € T.
NUS, 7 Jan 2005. Verifying Pure Functional Program& NUS, 7 Jan 2005. Verifying Pure Functional Programs3

Outline of Talk Desiderata

1. Level-2 Recursion Schemes and their Tree Denotations Seek
2. MSO Logic of Trees 1. AlanguageC to describe properties
3. Safety and Knapik-Niviiski-Urzyczyn Hierarchy of Safe Trees 2. AclassT of (finitely presentable) infinite trees
4. Tree Automata and Equivalence with MSO Logic such that
5. The Theorem and Proof Outline INSTANCE: Atreet € 7, and a formulap € £
QUESTION: Doest E ¢" hold?
should bedecidable
Aim. £ should capture as many computationally meaningful properties, and
7 should include tree denotations of as many useful functional programs as
possible.
NUS, 7 Jan 2005. Verifying Pure Functional Program® NUS, 7 Jan 2005. Verifying Pure Functional Programd0
Monadic Second-Order Logic (fai-treest : T — X)) Why MSO Logic?
First-order variables: z,y, z, etc. (ranging over nodes) In a netshell, there is no “better” candidate around (for describing tree

Second-order variables: X, Y, Z, etc. (ranging ovesetsof nodes properties)!

i.e. monadicrelations) e Any obvious extension would yield an undecidable logic.

MSO formulas are built up fromtomic formulas: Unrestricted interpretation difinary relation would permit an encoding of

. Turi hine.
1. Parent-child relationship between nodégz, y) = “vy is i-child of z” & Turing machine

E.g.7,(i,t) meaning %-th cell of the semi-infinite tape containss ¥ at

2. Node labellingps(z) = “« has labelf”, for f ranging overx time .
3. Set-membership: € X Logics with first-order or higher expressivenss can only be decidable if
and closed under — Second-order quantification over binary relations is prohibited

« boolean connectives, v, A, — — No freely interpretable binary relations in the vocabulary.

o first-ordervVz.—, 3x.— quantifications * MSQisveryexpressive.

MSO is strictly more expressive than the mogdatalculus, into which all

* second-ordey X.—, 3X.— quantifications. standard temporal logics (e.g. LTL, CTL, C¥Letc.) are embeddable.

NUS, 7 Jan 2005. Verifying Pure Functional Programd.1 NUS, 7 Jan 2005. Verifying Pure Functional Programd.2

Examples of MSO-definable properties

First, several useful relations are definable:

1. Setinclusion (and hence equalit: C Y = Vx.z € X -z €Y.

2. Prefix ordering: < y (and hence node equality= y):

r<y = VX.PrefC(X)AyeP — z€P
PrefCl(X) = Vay.ye X A Vi ,di(z,y) —» z€ X

Example. “There are finitely many occurrences of the termifialo — 0.

e “X is apath (in a tree)”

Path(X) = VayeX .z<yVy<z
AN Veyz.ze X NzeXNae<y<z - yeX

e MaxPath(X) = Path(X) AVY . Path(Y)AX CY — Y C X.

NUS, 7 Jan 2005. Verifying Pure Functional Programd.3

Outline of Talk

Level-2 Recursion Schemes and their Tree Denotations
MSO Logic of Trees
Safety and Knapik-Niwinski-Urzyczyn Hierarchy of Safe Trees

Tree Automata and Equivalence with MSO Logic

o~ 0 poE

The Theorem and Proof Outline

NUS, 7 Jan 2005. Verifying Pure Functional Programd.5

Example (finite occurrence)

e A setof nodes is autif no two nodes in it are<-compatible, and it has a
non-trivial intersection with every maximal path.

Cut(X) = VeyeX . ~(z<yVy<uz)
AN YZ .MaxPath(Z) — 3z€Z.z€ X

e Fact. A setX of nodes in a finitely-branching tree is finite iff there is a
cutC' such that every-node is a prefix of somé&-node.

Finite(X) = Y .Cut(Y) A Vze X . FyeY.x <y
Note: By Konig's Lemma, every cut is finite.

Hence, “there are finitely many nodes labelledfiys expressible by

3X . Finite(X) A Vo .pslz) >z € X

NUS, 7 Jan 2005. Verifying Pure Functional Programd 4

Timeline of major decidability results

1. Rabin 1969Mother of all decidability results”:52.S, second-order
theory of two successors of infinite binary trees, is decidable.

2. Muller and Schupp 198%ushdown graphs have decidable MSO
theories.

3. Courcelle 19953 -trees denoed by level-1 recursion schemes have
decidable MSO theories.

4. Knapik, Niwihski and Urzyczyn; TLCA 20013 -trees denoted by level-2
saferecursion schemes have decidable MSO theories.

5. KNU, FOSSACS 2002For alln > 3, the MSO theories of-trees
denoted by levek saferecursion schemes are decidable.

Hence (combining 1, 3, 4 and 5)

Theorem. Safetrees of all levels have decidable MSO theories.

NUS, 7 Jan 2005. Verifying Pure Functional Programd6

Knapik-Niwinski-Urzyczyn Hierarchy oSafeTrees

Forn > 0, leveln safe treesare trees denoted by levelrecursion schemes
satisfying thesafetycondition. (Safety only “bites” from level 2 onwards.)

e Level 0: Regular trees
e Level 1: Trees generated by deterministic pushdown automaton
Several Characterizations

1. Hierarchy otigher-order pushdown tregenerated by higher-order
pushdown automata (KNU 2002)

E.g. A level-2 stack is a stack of level-1 stacks.

2. Caucal hierarchies of treé$,, : n > 0), and graph$g,, : n > 0)
(Caucal 2002)

e Gy are theX-labelled finite graphs]y the ¥-labelled finite trees
e Treesin7, . are the tree-unfoldings of graphsdn

e Graphs ing, . are the inverse rational images of treegjn
NUS, 7 Jan 2005. Verifying Pure Functional Programd.7

What doesafemean?

A basic idea in functional programming:

When performing3-reduction, one must usmpture-avoidingsubstitution,
which is often implemented bygnaming bound variableafresh upon each
substitution.

An algorithmic price to pay:

Any reduction machin¢hat correctly computes:

INPUT: a (recursively defined) simply-typedterm M
OUTPUT: ag-reduction sequence frofy/

needs arnfinite supply of names, and hence unbounded memory.

Safety lets us get away with not renaming bound variables!

Lemma. When performings-reductions on aafe-term, it is safe not to

rename bound variables afresh upon substitution.
NUS, 7 Jan 2005. Verifying Pure Functional Programd.9

What is safety?

An awkward syntactic constraint. Semantically unnatural, but has great
algorithmic value.

Idea goes back to W. Dammderived types “IO and Ol Hierarchies” TCS
1982.

Definition. A level-2 equation isinsafeif the RHS contains a level-1 subterm
that occurs in an operand position and contains a level-0 parameter.

Examples

1. Unsafe equation: underlined subterm level-1 igspgrandposition

Fozy = f(F(Feyy(pr))a

2. Safe equation: underlined subterm level-1 isgratorposition

Gozy = g(Gpyr)(ga)

NUS, 7 Jan 2005. Verifying Pure Functional Programd8

Two natural questions about safety

Is the safety constraint spurious?

1. ExpressivenessAre there inherently unsafe-trees?

l.e. Is there an unsafe recursion scheme whose tree-denotation is not the
denotation of any safe recursion scheme? If so, at what level?

Conjecture Yes, at level 2. Butf. our FOSSACSO05 paper
Theorem. (A+deM+QO)There is no inherently unsafe word language.

2. Decidability. Is safety necessary for decidabiliy?
No, not at level 2.

The main result of this talk (TLCA 2005):

Theorem. (A+deM+0O) X-trees denoted by level-2 recursion schemes Have
decidable MSO theories.

What about higher levels? Don’t know.

NUS, 7 Jan 2005. Verifying Pure Functional Program20

Outline of Talk

. Level-2 Recursion Schemes and their Tree Denotations
. MSO Logic of Trees
. Safety and Knapik-Niwiiski-Urzyczyn Hierarchy of Safe Trees

. Tree Automata and Equivalence with MSO Logic

a b~ W N PP

. The Theorem and Proof Outline

NUS, 7 Jan 2005. Verifying Pure Functional Program<1

Tree language recognised by a tree automaton

A run of tree automatont over a¥-treet : T — X is just an assignment of
states to nodes dfthat respects the transition relation.

Formally it is a functionr : T — @ such that-(¢) = ¢o and for each
acT C{1,---,m}*, we have

(r(), t(a): o® = o, (r(al),---,r(ak))) € A

Arunr : T — (@ is acceptingif every maximal pathsy5; - - - (i.e. an
elementof{ 1,---,m }*)in T, r(Bo)r(B1) - -- € Acc

A Y-treet is accepted by just if there is an accepting run df overt.
Define thetree languageof A, L(A) = {T € X-trees: A acceptd }.
Parity conditiont Accconsists ofpgp1ps - - - € Q¥ such that

min{ Q(q) : ¢ occurs infinitely often imyp1ps - - - }

is even.

NUS, 7 Jan 2005. Verifying Pure Functional Program3

Tree Automatad = (Q, X, A, qo, Acc)

¢ afinite set) of control-states, with initial stat@) € @
e afinite alphabeE comprising symbolg : o* — o of arity k > 0
e transition relation:

ACQxIx(Q+Q*+ - +QM)

wherem is the maximum arity of symbols iR, andA has elements of
the form

<Qa f : Ok — 0, (qla"'vqk’))
e Acc C Q¥ (for defining acceptance).

We use tree automatd as accepting devices to define tree languages.

NUS, 7 Jan 2005. Verifying Pure Functional Program=2

MSO logic and tree automata are expressively equivalent

1. There is an algorithm that transforms a MSO formpll® a tree
automaton4,, such that for al-treest

tFy <= A, accepts

2. There is an algorithm that transforms a tree automattman MSO
formulay 4 such that for alb-treest

Aaccepts < tEpgu

Recall:

9%
@

Rabin’s Theorem 1969 For any tree automaton, it is decidable if its ti
language (i.e. set di-trees accepted by it) is empty.

NUS, 7 Jan 2005. Verifying Pure Functional Program24

Outline of Talk

. Level-2 Recursion Schemes and their Tree Denotations
. MSO Logic of Trees
. Safety and Knapik-Niwiiski-Urzyczyn Hierarchy of Safe Trees

. Tree Automata and Equivalence with MSO Logic

a b~ W N PP

. The Theorem and Proof Outline

Safety is not necessary for decidability at leveP2ecisely

Theorem (A+deM+0O 2004).X-trees denoted by level-2 recursion scherpes
have decidable MSO theories.

(Also obtained by Knapik, Niwinski, Urzyczyn + Walukiewicz, but by a
different proof.)

NUS, 7 Jan 2005. Verifying Pure Functional Program5
Example
S = Ffab
Take level-2 G353 =
Fory = F(Foy)y(pz)
Consider
S = Ffab
Gy = /
Fo = XvyF(Fey)y(pr)

By regardingy as alevel-0 parametermandAzy. andz andy asnew
terminals G “becomes’level-1!

Problem: Unfolding and only replace formal paramet{eby actual
S = Ffab
= Xy F(Ffyy(fz)ad
= Avy.(A"y F(F(Ffy)y)y'(Ffya))y(fr)ab

We needy andy’ to be distinct to avoid name capture. So need infinitely

many distinct names (and hence terminal symbols)!
NUS, 7 Jan 2005. Verifying Pure Functional Program®7

An idea that works for safe trees ...

... but doesn't carry over to the general case.

Level-1 recursion schemes are well understood (recall: safety only bites from
level 2 onwards).

Transform any level-Z7 to an equivalent level-1 recursion scheme
(essentially by partially evaluation).

NUS, 7 Jan 2005. Verifying Pure Functional Program26

Doing it precisely!

S = Ffab
We transformGs = to
Fory = F(Fey)y(pr)
= @(@(Ff)a)b

ay =
Fo = Az.dy.@Q@((F(@(F¢)y)y)(@epx)

wherep : o andF' : 0 — o with

@ : o—o—o
Az, Ay. : 0—o0
T,y : 0

are new symbols in the augmented signatote

Now GY is a level-1 recursion scheme. Intuitively, corresponds to
unfolding G3-rulesad infinitum but only contracting the level-1 redexes.

NUS, 7 Jan 2005. Verifying Pure Functional Program28

An idea that does work: Never contract asyedex We prove a more general result:

For any level-2 (non-deterministic) recursion schasdor any
Take a level-25. Consider the curried (angexpanded) versions of the MSO formulay, it is decidable ift & ¢ for somet € [G].
G-rules.

Example Thus fromGs we obtain:

S = Ffab
F = Xpzy.F(XAz2.F (Ar' .o)y2)y(px)

This is alevel-Orecursion scheme. Call the corresponding syntax tree of
[G4] thelambda treeof Gs.

No danger of name capture, as there are no formal parameters!

Intuitively the lambda tree is obtained by unfolding the rules (and hence
replicating the3-redexes), but never contracting any.

NUS, 7 Jan 2005. Verifying Pure Functional Program<9 NUS, 7 Jan 2005. Verifying Pure Functional Programs0

Outline of Argument

INPUT: G, ¢

1. Define the tree languagdrees(G) of lambda treegenerated fronds.

Note: EveryL € ATrees(G) “evaluates” (by potentially infinite
B-reduction) to som&-treeEval(L) € [G].

ATrees(G) is regulari.e. recognisable by a tree automat8g.

2. Fromy construct the tree automateh, that accepts all-trees
satisfyinge.
Simulation of A,: Construct a tree automatan, that accepts precisely
those lambda trees that “evaluates ¥btrees accepted by, i.e.

C, accepts,. <= A, acceptEval(L).
3. Construct the intersection automatonf andC,,, and check for
non-emptiness.

OUTPUT: Yes ifft = ¢ for somet € [G].
NUS, 7 Jan 2005. Verifying Pure Functional Programs31

