
Model Checking Higher-Order Computation: I

Luke Ong

Computing Laboratory, University of Oxford

Marktoberdorf Summer School, 4-15 August 2009

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 1 / 52

Model checking and computer-aided verification

Beginning in the 80s, computer-aided verification (notably model
checking) of finite-state systems (e.g. hardware and communication
protocols) has been a great success story in computer science.

Clarke, Emerson and Sifakis won the 2007 ACM Turing Award

“for their rôle in developing model checking into a highly effective
verification technology, widely adopted in hardware and software
industries”.

Focus of past decade: transfer of these techniques to software verification.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 2 / 52

Model checking and computer-aided verification

Beginning in the 80s, computer-aided verification (notably model
checking) of finite-state systems (e.g. hardware and communication
protocols) has been a great success story in computer science.

Clarke, Emerson and Sifakis won the 2007 ACM Turing Award

“for their rôle in developing model checking into a highly effective
verification technology, widely adopted in hardware and software
industries”.

Focus of past decade: transfer of these techniques to software verification.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 2 / 52

Model checking and computer-aided verification

Beginning in the 80s, computer-aided verification (notably model
checking) of finite-state systems (e.g. hardware and communication
protocols) has been a great success story in computer science.

Clarke, Emerson and Sifakis won the 2007 ACM Turing Award

“for their rôle in developing model checking into a highly effective
verification technology, widely adopted in hardware and software
industries”.

Focus of past decade: transfer of these techniques to software verification.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 2 / 52

What is (software) model checking?

Problem: Given a system Sys (e.g. an OS), and given a desirable
behavioural property Spec (e.g. deadlock freedom), does Sys satisfy Spec?

The model checking approach:

1 Find an abstract model M of the system Sys.

2 Describe the property Spec as a formula ϕ of a suitable logic.

3 Exhaustively check if ϕ is violated by M.

Huge strides made in verification of 1st-order imperative programs.

Many tools: SLAM, Blast, Terminator, SatAbs, etc.

Two key techniques: State-of-the-art tools use

1 abstraction techniques, as exemplified by CEGAR (Counter-Example
Guided Abstraction Refinement)

2 acceleration methods such as SAT- and SMT-solvers.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 3 / 52

What is (software) model checking?

Problem: Given a system Sys (e.g. an OS), and given a desirable
behavioural property Spec (e.g. deadlock freedom), does Sys satisfy Spec?

The model checking approach:

1 Find an abstract model M of the system Sys.

2 Describe the property Spec as a formula ϕ of a suitable logic.

3 Exhaustively check if ϕ is violated by M.

Huge strides made in verification of 1st-order imperative programs.

Many tools: SLAM, Blast, Terminator, SatAbs, etc.

Two key techniques: State-of-the-art tools use

1 abstraction techniques, as exemplified by CEGAR (Counter-Example
Guided Abstraction Refinement)

2 acceleration methods such as SAT- and SMT-solvers.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 3 / 52

Verification of higher-order programs

Examples: OCaml, F#, Haskell, Lisp/Scheme, Ptalon, etc.
By comparison with 1st-order imperative program, the model checking of
higher-order programs is in its infancy.

Some theoretical advances in recent years; very little tool development.

Model-checking higher-order programs is hard:

1 Infinite-state and extremely complex: Even without recursion,
higher-order programs over a finite base type are infinite-state.

(Other sources of infinity: data structures and manipulation, control

structures (with recursion), asynchronous communication, real-time and

embedded systems, systems with parameters etc.)

2 Models of higher-order features as studied in semantics – are typically
too “abstract” to support any algorithmic analysis.

(A notable exception is game semantics.)

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 4 / 52

Verification of higher-order programs

Examples: OCaml, F#, Haskell, Lisp/Scheme, Ptalon, etc.
By comparison with 1st-order imperative program, the model checking of
higher-order programs is in its infancy.

Some theoretical advances in recent years; very little tool development.

Model-checking higher-order programs is hard:

1 Infinite-state and extremely complex: Even without recursion,
higher-order programs over a finite base type are infinite-state.

(Other sources of infinity: data structures and manipulation, control

structures (with recursion), asynchronous communication, real-time and

embedded systems, systems with parameters etc.)

2 Models of higher-order features as studied in semantics – are typically
too “abstract” to support any algorithmic analysis.

(A notable exception is game semantics.)

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 4 / 52

Verifying higher-order programs: a worthwhile challenge

1. Widely used in diverse domains. Succinct, less error-prone, easy to
write and hence good for prototyping; performance (of e.g. F#)
approaching C++.

Traditional applications: theorem proving and reasoning assistance,
computational linguistics, programming language processing.

More recently: databases, networking, internet search (Google’s
MapReduce), trading and investment banking.
See Wadler’s page “Functional Programming in the Real World”1

2. Many hard theoretical problems: E.g. termination analysis,
higher-order matching, and (contextual) reachability analysis.

Our goal: To use semantic methods, in conjunction with algorithmic ideas
and techniques from Verification, to formally analyze programming
situations in which higher-order features are important.

1http://homepages.inf.ed.ac.uk/wadler/realworld/
Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 5 / 52

http://homepages.inf.ed.ac.uk/wadler/realworld/

Verifying higher-order programs: a worthwhile challenge

1. Widely used in diverse domains. Succinct, less error-prone, easy to
write and hence good for prototyping; performance (of e.g. F#)
approaching C++.

Traditional applications: theorem proving and reasoning assistance,
computational linguistics, programming language processing.

More recently: databases, networking, internet search (Google’s
MapReduce), trading and investment banking.
See Wadler’s page “Functional Programming in the Real World”1

2. Many hard theoretical problems: E.g. termination analysis,
higher-order matching, and (contextual) reachability analysis.

Our goal: To use semantic methods, in conjunction with algorithmic ideas
and techniques from Verification, to formally analyze programming
situations in which higher-order features are important.

1http://homepages.inf.ed.ac.uk/wadler/realworld/
Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 5 / 52

http://homepages.inf.ed.ac.uk/wadler/realworld/

Verifying higher-order programs: a worthwhile challenge

1. Widely used in diverse domains. Succinct, less error-prone, easy to
write and hence good for prototyping; performance (of e.g. F#)
approaching C++.

Traditional applications: theorem proving and reasoning assistance,
computational linguistics, programming language processing.

More recently: databases, networking, internet search (Google’s
MapReduce), trading and investment banking.
See Wadler’s page “Functional Programming in the Real World”1

2. Many hard theoretical problems: E.g. termination analysis,
higher-order matching, and (contextual) reachability analysis.

Our goal: To use semantic methods, in conjunction with algorithmic ideas
and techniques from Verification, to formally analyze programming
situations in which higher-order features are important.

1http://homepages.inf.ed.ac.uk/wadler/realworld/
Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 5 / 52

http://homepages.inf.ed.ac.uk/wadler/realworld/

Lecture Course: Aim and Overview

Aim

To introduce a systematic approach to the algorithmics of infinite
structures generated by families of higher-order generators, suitable as a
basis for model checking a wide range of behavioural properties of
higher-order functional programs.

4 lectures.

Part 1: Background and Survey

1 Families of Generators of Higher-Order Infinite Structures

2 Survey of Algorithmic Model Theory

Part 2: Some Theory and Application

1 Type Theory and Modal Mu-Calculus Model Checking

2 Application: Model Checking Functional Programs

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 6 / 52

Outline I

1 Relating (Families of) Generators of Infinite Structures
Higher-Order Pushdown Automata
Higher-Order Recursion Schemes
Relating the Generator Families: Word Languages

2 Recursion Schemes and their Algorithmic Model Theory
Q1: Decidability of MSO / Modal Mu-Calculus Theories
Q2: Machine Characterisation by Collapsible Pushdown Automata
Q3: Expressivity: The Safety Conjecture
Q4: Infinite Graphs Generated by Recursion Schemes / CPDA

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 7 / 52

Outline

1 Relating (Families of) Generators of Infinite Structures
Higher-Order Pushdown Automata
Higher-Order Recursion Schemes
Relating the Generator Families: Word Languages

2 Recursion Schemes and their Algorithmic Model Theory
Q1: Decidability of MSO / Modal Mu-Calculus Theories
Q2: Machine Characterisation by Collapsible Pushdown Automata
Q3: Expressivity: The Safety Conjecture
Q4: Infinite Graphs Generated by Recursion Schemes / CPDA

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 8 / 52

Higher-order pushdown automata (HOPDA) [Maslov 74]

Order-2 pushdown automata
A 1-stack is an ordinary stack. A 2-stack (resp. n + 1-stack) is a stack of
1-stacks (resp. n-stack).

Operations on 2-stacks: si ranges over 1-stacks. Top of stack is at the
righthand end.

push2 : [s1 · · · si−1 [a1 · · · an]
︸ ︷︷ ︸

si

] 7→ [s1 · · · si−1 si si]

pop2 : [s1 · · · si−1 [a1 · · · an]] 7→ [s1 · · · si−1]

push1 a : [s1 · · · si−1 [a1 · · · an]] 7→ [s1 · · · si−1 [a1 · · · an a]]

pop1 : [s1 · · · si−1 [a1 · · · an an+1]] 7→ [s1 · · · si−1 [a1 · · · an]]

Idea extends to all finite orders: an order-n PDA has an order-n stack, and
has pushi and popi for each 1 ≤ i ≤ n.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 9 / 52

Higher-order pushdown automata (HOPDA) [Maslov 74]

Order-2 pushdown automata
A 1-stack is an ordinary stack. A 2-stack (resp. n + 1-stack) is a stack of
1-stacks (resp. n-stack).

Operations on 2-stacks: si ranges over 1-stacks. Top of stack is at the
righthand end.

push2 : [s1 · · · si−1 [a1 · · · an]
︸ ︷︷ ︸

si

] 7→ [s1 · · · si−1 si si]

pop2 : [s1 · · · si−1 [a1 · · · an]] 7→ [s1 · · · si−1]

push1 a : [s1 · · · si−1 [a1 · · · an]] 7→ [s1 · · · si−1 [a1 · · · an a]]

pop1 : [s1 · · · si−1 [a1 · · · an an+1]] 7→ [s1 · · · si−1 [a1 · · · an]]

Idea extends to all finite orders: an order-n PDA has an order-n stack, and
has pushi and popi for each 1 ≤ i ≤ n.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 9 / 52

Higher-order pushdown automata (HOPDA) [Maslov 74]

Order-2 pushdown automata
A 1-stack is an ordinary stack. A 2-stack (resp. n + 1-stack) is a stack of
1-stacks (resp. n-stack).

Operations on 2-stacks: si ranges over 1-stacks. Top of stack is at the
righthand end.

push2 : [s1 · · · si−1 [a1 · · · an]
︸ ︷︷ ︸

si

] 7→ [s1 · · · si−1 si si]

pop2 : [s1 · · · si−1 [a1 · · · an]] 7→ [s1 · · · si−1]

push1 a : [s1 · · · si−1 [a1 · · · an]] 7→ [s1 · · · si−1 [a1 · · · an a]]

pop1 : [s1 · · · si−1 [a1 · · · an an+1]] 7→ [s1 · · · si−1 [a1 · · · an]]

Idea extends to all finite orders: an order-n PDA has an order-n stack, and
has pushi and popi for each 1 ≤ i ≤ n.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 9 / 52

HOPDA as recognizers of word languages

HOPDA can be used as recognizing/generating device for
1 finite-word languages (Maslov 74) (and ω-word languages)

〈Σ,Q, q0,Γ,∆ ⊆ (Σ ∪ { ǫ }) × Q × Γ × Opn × Q,F 〉

2 possibly-infinite (ranked) trees (KNU01), and tree languages
3 possibly infinite graphs (Muller+Schupp 86, Courcelle 95, Cachat 03)

Some basic facts (Maslov 74, 76):

1 HOPDA define an infinite hierarchy of word languages.

2 Low orders are well-known: orders 0, 1 and 2 are the regular, context
free, and indexed languages (Aho 68). Higher-order languages are
poorly understood.

3 For each n ≥ 0, the order-n languages form an abstract family of
languages (closed under +, ·, (−)∗, intersection with regular
languages, homomorphism and inverse homo.)

4 For each n ≥ 0, the emptiness problem for order-n PDA is decidable.
Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 10 / 52

HOPDA as recognizers of word languages

HOPDA can be used as recognizing/generating device for
1 finite-word languages (Maslov 74) (and ω-word languages)

〈Σ,Q, q0,Γ,∆ ⊆ (Σ ∪ { ǫ }) × Q × Γ × Opn × Q,F 〉

2 possibly-infinite (ranked) trees (KNU01), and tree languages
3 possibly infinite graphs (Muller+Schupp 86, Courcelle 95, Cachat 03)

Some basic facts (Maslov 74, 76):

1 HOPDA define an infinite hierarchy of word languages.

2 Low orders are well-known: orders 0, 1 and 2 are the regular, context
free, and indexed languages (Aho 68). Higher-order languages are
poorly understood.

3 For each n ≥ 0, the order-n languages form an abstract family of
languages (closed under +, ·, (−)∗, intersection with regular
languages, homomorphism and inverse homo.)

4 For each n ≥ 0, the emptiness problem for order-n PDA is decidable.
Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 10 / 52

Example: L := { an bn cn : n ≥ 0 } is recognizable by an order-2 PDA

L is not context free. Use the “uvwxy Lemma”.

Idea: Use top 1-stack to process an bn, and height of 2-stack to remember n.

q1 [[]]
a

q1 [[][z]]
a

q1 [[][z][zz]]

b

q2 [[][z][z]]

b

q3 [[]] q3 [[][z]]c
q2 [[][z][]]c

q1

z
b
→ pop1z

−
a
→ push2 ; push1z

q2

⊥
c
→ pop2

z
b
→ pop1

q3

z
c
→ pop2

‘read a’ ‘read b’ ‘read c ’

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 11 / 52

Example: L := { an bn cn : n ≥ 0 } is recognizable by an order-2 PDA

L is not context free. Use the “uvwxy Lemma”.

Idea: Use top 1-stack to process an bn, and height of 2-stack to remember n.

q1 [[]]
a

q1 [[][z]]
a

q1 [[][z][zz]]

b

q2 [[][z][z]]

b

q3 [[]] q3 [[][z]]c
q2 [[][z][]]c

q1

z
b
→ pop1z

−
a
→ push2 ; push1z

q2

⊥
c
→ pop2

z
b
→ pop1

q3

z
c
→ pop2

‘read a’ ‘read b’ ‘read c ’

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 11 / 52

Example: L := { an bn cn : n ≥ 0 } is recognizable by an order-2 PDA

L is not context free. Use the “uvwxy Lemma”.

Idea: Use top 1-stack to process an bn, and height of 2-stack to remember n.

q1 [[]]
a

q1 [[][z]]
a

q1 [[][z][zz]]

b

q2 [[][z][z]]

b

q3 [[]] q3 [[][z]]c
q2 [[][z][]]c

q1

z
b
→ pop1z

−
a
→ push2 ; push1z

q2

⊥
c
→ pop2

z
b
→ pop1

q3

z
c
→ pop2

‘read a’ ‘read b’ ‘read c ’

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 11 / 52

Example: L := { an bn cn : n ≥ 0 } is recognizable by an order-2 PDA

L is not context free. Use the “uvwxy Lemma”.

Idea: Use top 1-stack to process an bn, and height of 2-stack to remember n.

q1 [[]]
a

q1 [[][z]]
a

q1 [[][z][zz]]

b

q2 [[][z][z]]

b

q3 [[]] q3 [[][z]]c
q2 [[][z][]]c

q1

z
b
→ pop1z

−
a
→ push2 ; push1z

q2

⊥
c
→ pop2

z
b
→ pop1

q3

z
c
→ pop2

‘read a’ ‘read b’ ‘read c ’

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 11 / 52

Pumping Lemma for Context-Free Languages

Theorem (uvwxy)

Let L be an infinite CFL. Every word in L longer then p can be written as
a concatenation of subwords, u v w x y, such that |v w x | ≤ p, |v x | ≥ 1,
and for every i ≥ 0, u v i w x i y is in L.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 12 / 52

A reminder: simple types

Types A ::= o | (A → B)

Every type can be written uniquely as

A1 → (A2 · · · → (An → o) · · ·), n ≥ 0

often abbreviated to A1 → A2 · · · → An → o.

Order of a type: measures “nestedness” on LHS of →.

order(o) = 0
order(A → B) = max(order(A) + 1, order(B))

Examples. N → N and N → (N → N) both have order 1;
(N → N) → N has order 2.

Notation. e : A means “expression e has type A”.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 13 / 52

A reminder: simple types

Types A ::= o | (A → B)

Every type can be written uniquely as

A1 → (A2 · · · → (An → o) · · ·), n ≥ 0

often abbreviated to A1 → A2 · · · → An → o.

Order of a type: measures “nestedness” on LHS of →.

order(o) = 0
order(A → B) = max(order(A) + 1, order(B))

Examples. N → N and N → (N → N) both have order 1;
(N → N) → N has order 2.

Notation. e : A means “expression e has type A”.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 13 / 52

Higher-order recursion schemes [Par68, Niv72, NC78, Dam82,...]

An order-n recursion scheme = closed ground-type term definable in
order-n fragment of simply-typed λ-calculus with recursion and
uninterpreted order-1 constant symbols.

Example: An order-1 recursion scheme. Fix ranked alphabet
Σ = { f : 2, g : 1, a : 0 }.

G :

{
S = F a

F x = f x (F (g x))

Unfolding from the start symbol S :

S → F a
→ f a (F (g a))
→ f a (f (g a) (F (g (g a))))
→ · · ·

The (term-)tree thus generated, [[G]], is f a (f (g a) (f (g (g a))(· · ·))).
Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 14 / 52

Higher-order recursion schemes [Par68, Niv72, NC78, Dam82,...]

An order-n recursion scheme = closed ground-type term definable in
order-n fragment of simply-typed λ-calculus with recursion and
uninterpreted order-1 constant symbols.

Example: An order-1 recursion scheme. Fix ranked alphabet
Σ = { f : 2, g : 1, a : 0 }.

G :

{
S = F a

F x = f x (F (g x))

Unfolding from the start symbol S :

S → F a
→ f a (F (g a))
→ f a (f (g a) (F (g (g a))))
→ · · ·

The (term-)tree thus generated, [[G]], is f a (f (g a) (f (g (g a))(· · ·))).
Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 14 / 52

Higher-order recursion schemes [Par68, Niv72, NC78, Dam82,...]

An order-n recursion scheme = closed ground-type term definable in
order-n fragment of simply-typed λ-calculus with recursion and
uninterpreted order-1 constant symbols.

Example: An order-1 recursion scheme. Fix ranked alphabet
Σ = { f : 2, g : 1, a : 0 }.

G :

{
S = F a

F x = f x (F (g x))

Unfolding from the start symbol S :

S → F a
→ f a (F (g a))
→ f a (f (g a) (F (g (g a))))
→ · · ·

The (term-)tree thus generated, [[G]], is f a (f (g a) (f (g (g a))(· · ·))).
Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 14 / 52

Representing the term-tree [[G]] as a Σ-labelled tree

[[G]] = f a (f (g a) (f (g (g a))(· · ·))) is the (term-)tree

f

a f
g f

a g f

g ...
a

We view the infinite term [[G]] as a Σ-labelled tree, formally, a map
T −→ Σ, where T is a prefix-closed subset of Dir∗, with Dir a set of edge
labels.

Formally term-trees such as [[G]] are ranked and ordered.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 15 / 52

Representing the term-tree [[G]] as a Σ-labelled tree

[[G]] = f a (f (g a) (f (g (g a))(· · ·))) is the (term-)tree

f

a f
g f

a g f

g ...
a

We view the infinite term [[G]] as a Σ-labelled tree, formally, a map
T −→ Σ, where T is a prefix-closed subset of Dir∗, with Dir a set of edge
labels.

Formally term-trees such as [[G]] are ranked and ordered.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 15 / 52

Definition: Order-n (deterministic) recursion scheme G = (N ,Σ,R,S)

Fix a set of typed variables (written as ϕ, x , y etc).

N : Typed non-terminals of order at most n (written as upper-case
letters), including a distinguished start symbol S : o.

Σ: Ranked alphabet of terminals: f ∈ Σ has arity ar(f) ≥ 0

R: An equation for each non-terminal D : A1 → · · · → Am → o of
shape

D ϕ1 · · · ϕm = e

where the term e : o is constructed from
◮ terminals f , g , a, etc. from Σ
◮ variables ϕ1 : A1, · · · , ϕm : Am from Var ,
◮ non-terminals D,F ,G , etc. from N .

using the application rule: If s : A → B and t : A then (s t) : B .

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 16 / 52

The tree generated by a recursion scheme: value tree

Given a term t, define a (finite) tree t⊥ by

t⊥ :=







f if t is a terminal f
t⊥1 t⊥2 if t = t1 t2 and t⊥1 6= ⊥
⊥ otherwise

We extend the flat partial order on Σ (i.e. ⊥ ≤ a for all a ∈ Σ) to trees by:

s ≤ t := ∀α ∈ dom(s) . α ∈ dom(t) ∧ s(α) ≤ t(α)

E.g. ⊥ ≤ f ⊥⊥ ≤ f ⊥b ≤ fab.

For a directed set T of trees, we write
⊔

T for the lub of T w.r.t. ≤.

Let G be a recursion scheme. We define the tree generated by G by

[[G]] :=
⊔

{ t⊥ | S →∗ t }

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 17 / 52

An order-2 example

Σ = { f : 2, g : 1, a : 0 }.
S : o, B : (o → o) → (o → o) → o → o, F : (o → o) → o

G2 :







S = F g
B ϕψ x = ϕ (ψ x)

F ϕ = f (ϕ a) (F (B ϕϕ))

The generated tree, [[G2]] : { 1, 2 }∗ −→ Σ, is:

f
g f
a g f

g g f

a g ...
g

g

a

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 18 / 52

Using recursion schemes as generators of word languages

Idea: A word is just a linear tree.

Represent a finite word “a b c” (say) as the applicative term a (b (c e)),
viewing a, b and c as symbols of arity 1, where e is the arity-0 end-of-word
marker.

Fix an input alphabet Σ. We can use a (non-deterministic) recursion
scheme to generate finite-word languages, with ranked alphabet
Σ := { a : 1 | a ∈ Σ } ∪ { e : 0 }.

Example. { an bn | n ≥ 0 } is generated by order-1 recursion scheme:

{
S → F e

F x → a (F (b x)) | x

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 19 / 52

Exercises

1 Find an order-2 (word-language) recursion scheme that generates
L = { aibic i | i ≥ 0 }.

2 Prove that context-free languages are equivalent to languages
generated by order-1 (word-language) recursion schemes.

Answer to 1.






S → F I e
F ϕ x → ϕ x | F (H ϕ) (c x)
H ϕ y → a (ϕ (b y))

I x → x

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 20 / 52

Relating the two generator-families: word-language case

Theorem (Equi-expressivity)

For each n ≥ 0, the three formalisms

1 order-n pushdown automata (Maslov 76)

2 order-n safe recursion schemes (Damm 82, Damm + Goerdt 86)

3 order-n indexed grammars (Maslov 76)

generate the same class of word languages.

What is safety? (See later.)

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 21 / 52

Maslov Hierarchy: Many Open Problems

1 Pumping Lemma, Myhill-Nerode, and Parikh Theorems.
Weak “pumping lemmas” for levels 1 and 2 (Hayashi 73, Gilman 96).

Pace (Blumensath 04) for Maslov Hierarchy – but runs (not plays) are

pumpable, conditions given as lengths of runs and configuration size.

2 Logical characterisations.
E.g. MSOL for regular languages (Büchi 60). Characterisation of CFL using

quantification over matchings (LST 94).

3 Complexity-theoretic characterisations.
Pace (Engelfriet 83, 91): characterisations of languages accepted by

alternating / two-way / multi-head / space-auxiliary order-n PDA as

time-complexity classes (but no result for Maslov Hierarchy itself)

4 Relationship with Chomsky Hierachy. E.g. is level 3 context-sensitive?

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 22 / 52

Why study the two families of generators?

They are relevant to both semantics and verification:

1 Recursion schemes are an old and influential formalism for the
semantical analysis of imperative and functional programs (Nivat 75,
Damm 82). They are a compelling model of computation for
higher-order functional programs.

2 Pushdown automata characterize the control flow of 1st-order
(recursive) procedural programs.
Pushdown checkers (e.g. MOPED) are essential back-end engines of

state-of-the-art software model checkers (e.g. SLAM, Terminator).

3 Higher-order (collapsible) pushdown automata are highly accurate
models of computation of higher-order procedural programs.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 23 / 52

Why study the two families of generators?

They are relevant to both semantics and verification:

1 Recursion schemes are an old and influential formalism for the
semantical analysis of imperative and functional programs (Nivat 75,
Damm 82). They are a compelling model of computation for
higher-order functional programs.

2 Pushdown automata characterize the control flow of 1st-order
(recursive) procedural programs.
Pushdown checkers (e.g. MOPED) are essential back-end engines of

state-of-the-art software model checkers (e.g. SLAM, Terminator).

3 Higher-order (collapsible) pushdown automata are highly accurate
models of computation of higher-order procedural programs.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 23 / 52

Why study the two families of generators?

They are relevant to both semantics and verification:

1 Recursion schemes are an old and influential formalism for the
semantical analysis of imperative and functional programs (Nivat 75,
Damm 82). They are a compelling model of computation for
higher-order functional programs.

2 Pushdown automata characterize the control flow of 1st-order
(recursive) procedural programs.
Pushdown checkers (e.g. MOPED) are essential back-end engines of

state-of-the-art software model checkers (e.g. SLAM, Terminator).

3 Higher-order (collapsible) pushdown automata are highly accurate
models of computation of higher-order procedural programs.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 23 / 52

Outline

1 Relating (Families of) Generators of Infinite Structures
Higher-Order Pushdown Automata
Higher-Order Recursion Schemes
Relating the Generator Families: Word Languages

2 Recursion Schemes and their Algorithmic Model Theory
Q1: Decidability of MSO / Modal Mu-Calculus Theories
Q2: Machine Characterisation by Collapsible Pushdown Automata
Q3: Expressivity: The Safety Conjecture
Q4: Infinite Graphs Generated by Recursion Schemes / CPDA

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 24 / 52

A challenge problem in higher-order verification

f

a f
g f

a g f

g ...
a

Example: Consider [[G]] on the right

ϕ1 = “Infinitely many f -nodes are reachable”.

ϕ2 = “Only finitely many g -nodes are reachable”.

Every node on the tree satisfies ϕ1 ∨ ϕ2.

Let RecSchTreen be the class of Σ-labelled
trees generated by order-n recursion schemes.

Is the “MSO Model-Checking Problem for RecSchTreen” decidable?

INSTANCE: An order-n recursion scheme G , and an MSO formula ϕ

QUESTION: Does the Σ-labelled tree [[G]] satisfy ϕ?

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 25 / 52

A challenge problem in higher-order verification

f

a f
g f

a g f

g ...
a

Example: Consider [[G]] on the right

ϕ1 = “Infinitely many f -nodes are reachable”.

ϕ2 = “Only finitely many g -nodes are reachable”.

Every node on the tree satisfies ϕ1 ∨ ϕ2.

Let RecSchTreen be the class of Σ-labelled
trees generated by order-n recursion schemes.

Is the “MSO Model-Checking Problem for RecSchTreen” decidable?

INSTANCE: An order-n recursion scheme G , and an MSO formula ϕ

QUESTION: Does the Σ-labelled tree [[G]] satisfy ϕ?

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 25 / 52

Why study MSO logic?

Because it is the gold standard of logics for describing model-checking
properties.

MSO is very expressive. Over graphs, MSO is more expressive than
the modal mu-calculus, into which all standard temporal logics
(e.g. LTL, CTL, CTL∗, etc.) can embed.

It is hard to extend MSO meaningfully without sacrificing decidability
where it holds.

What is MSO logic?

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 26 / 52

Why study MSO logic?

Because it is the gold standard of logics for describing model-checking
properties.

MSO is very expressive. Over graphs, MSO is more expressive than
the modal mu-calculus, into which all standard temporal logics
(e.g. LTL, CTL, CTL∗, etc.) can embed.

It is hard to extend MSO meaningfully without sacrificing decidability
where it holds.

What is MSO logic?

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 26 / 52

Review: Representing trees as logical structures

Represent a Σ-labelled tree t : dom(t) −→ Σ as a logical structure

〈dom(t), 〈di : 1 ≤ i ≤ m 〉, 〈pf : f ∈ Σ 〉 〉

Parent-child relationship between nodes: di (x , y) ≡ “y is i -child of x”

Node labelling: pf (x) ≡ “x has label f ” where f is a Σ-symbol

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 27 / 52

Monadic Second-Order Logic (for Σ-labelled trees)

First-order variables: x , y , z , etc. (ranging over nodes)

Second-order variables: X ,Y ,Z , etc. (ranging over sets of nodes
i.e. monadic relations)

MSO formulas are built up from atomic formulas:

Parent-child relationship between nodes: di (x , y)

Node labelling: pf (x)

Set-membership: x ∈ X

and closed under boolean connectives, first-order quantification
(∀x .−,∃x .−) and second-order quantifications: (∀X .−,∃X .−).

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 28 / 52

Examples of MSO-definable properties

Several useful relations are definable:

1 Set inclusion (and hence equality): X ⊆ Y ≡ ∀x . x ∈ X → x ∈ Y .

2 “Is-an-ancestor-of” or prefix ordering x ≤ y (and hence x = y):

PrefCl(X) ≡ ∀x , y . y ∈ X ∧
∨m

i=1 di(x , y) → x ∈ X
x ≤ y ≡ ∀X .PrefCl(X) ∧ y ∈ X → x ∈ X

Reachability property: “X is a path”

Path(X) ≡ ∀x , y ∈ X . x ≤ y ∨ y ≤ x
∧ ∀x , y , z . x ∈ X ∧ z ∈ X ∧ x ≤ y ≤ z → y ∈ X

MaxPath(X) ≡ Path(X) ∧ ∀Y . Path(Y) ∧ X ⊆ Y → Y ⊆ X .

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 29 / 52

E.g. MSO can expresss “∃ infinitely many f -labelled nodes”

A set of nodes is a cut if no two nodes in it are ≤-compatible, and it has a
non-empty intersection with every maximal path.

Cut(X) ≡ ∀x , y ∈ X . ¬(x ≤ y ∨ y ≤ x)
∧ ∀Z . MaxPath(Z) → ∃z ∈ Z . z ∈ X

Lemma

A set X of nodes in a finitely-branching tree is finite iff there is a cut C
such that every X -node is a prefix of some C-node.

Finite(X) ≡ ∃Y .Cut(Y) ∧ ∀x ∈ X .∃y ∈ Y . x ≤ y

Hence “there are finitely many nodes labelled by f ” is expressible in MSO
by ∃X . Finite(X) ∧ ∀x . pf (x) → x ∈ X .
But “MSO cannot count”: E.g. “X has twice as many elements as Y ”.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 30 / 52

A (selective) survey of MSO-decidable structures: up to 2002

Rabin 1969: Regular trees. “Mother of all decidability results in
Verification.”

Muller and Schupp 1985: Configuration graphs of PDA.

Caucal 1996 Prefix-recognizable graphs (ǫ-closures of configuration
graphs of pushdown automata, Stirling 2000).

Knapik, Niwiński and Urzyczyn (TLCA 2001, FOSSACS 2002):
PushdownTreenΣ = Trees generated by order-n pushdown automata.
SafeRecSchTreenΣ = Trees generated by order-n safe rec. schemes.

Subsuming all the above:
Caucal (MFCS 2002). CaucalTreenΣ and CaucalGraphnΣ.

Theorem (KNU-Caucal 2002)

For n ≥ 0, PushdownTreenΣ = SafeRecSchTreenΣ = CaucalTreenΣ;
and they have decidable MSO theories.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 31 / 52

A (selective) survey of MSO-decidable structures: up to 2002

Rabin 1969: Regular trees. “Mother of all decidability results in
Verification.”

Muller and Schupp 1985: Configuration graphs of PDA.

Caucal 1996 Prefix-recognizable graphs (ǫ-closures of configuration
graphs of pushdown automata, Stirling 2000).

Knapik, Niwiński and Urzyczyn (TLCA 2001, FOSSACS 2002):
PushdownTreenΣ = Trees generated by order-n pushdown automata.
SafeRecSchTreenΣ = Trees generated by order-n safe rec. schemes.

Subsuming all the above:
Caucal (MFCS 2002). CaucalTreenΣ and CaucalGraphnΣ.

Theorem (KNU-Caucal 2002)

For n ≥ 0, PushdownTreenΣ = SafeRecSchTreenΣ = CaucalTreenΣ;
and they have decidable MSO theories.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 31 / 52

A (selective) survey of MSO-decidable structures: up to 2002

Rabin 1969: Regular trees. “Mother of all decidability results in
Verification.”

Muller and Schupp 1985: Configuration graphs of PDA.

Caucal 1996 Prefix-recognizable graphs (ǫ-closures of configuration
graphs of pushdown automata, Stirling 2000).

Knapik, Niwiński and Urzyczyn (TLCA 2001, FOSSACS 2002):
PushdownTreenΣ = Trees generated by order-n pushdown automata.
SafeRecSchTreenΣ = Trees generated by order-n safe rec. schemes.

Subsuming all the above:
Caucal (MFCS 2002). CaucalTreenΣ and CaucalGraphnΣ.

Theorem (KNU-Caucal 2002)

For n ≥ 0, PushdownTreenΣ = SafeRecSchTreenΣ = CaucalTreenΣ;
and they have decidable MSO theories.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 31 / 52

A (selective) survey of MSO-decidable structures: up to 2002

Rabin 1969: Regular trees. “Mother of all decidability results in
Verification.”

Muller and Schupp 1985: Configuration graphs of PDA.

Caucal 1996 Prefix-recognizable graphs (ǫ-closures of configuration
graphs of pushdown automata, Stirling 2000).

Knapik, Niwiński and Urzyczyn (TLCA 2001, FOSSACS 2002):
PushdownTreenΣ = Trees generated by order-n pushdown automata.
SafeRecSchTreenΣ = Trees generated by order-n safe rec. schemes.

Subsuming all the above:
Caucal (MFCS 2002). CaucalTreenΣ and CaucalGraphnΣ.

Theorem (KNU-Caucal 2002)

For n ≥ 0, PushdownTreenΣ = SafeRecSchTreenΣ = CaucalTreenΣ;
and they have decidable MSO theories.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 31 / 52

A (selective) survey of MSO-decidable structures: up to 2002

Rabin 1969: Regular trees. “Mother of all decidability results in
Verification.”

Muller and Schupp 1985: Configuration graphs of PDA.

Caucal 1996 Prefix-recognizable graphs (ǫ-closures of configuration
graphs of pushdown automata, Stirling 2000).

Knapik, Niwiński and Urzyczyn (TLCA 2001, FOSSACS 2002):
PushdownTreenΣ = Trees generated by order-n pushdown automata.
SafeRecSchTreenΣ = Trees generated by order-n safe rec. schemes.

Subsuming all the above:
Caucal (MFCS 2002). CaucalTreenΣ and CaucalGraphnΣ.

Theorem (KNU-Caucal 2002)

For n ≥ 0, PushdownTreenΣ = SafeRecSchTreenΣ = CaucalTreenΣ;
and they have decidable MSO theories.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 31 / 52

A (selective) survey of MSO-decidable structures: up to 2002

Rabin 1969: Regular trees. “Mother of all decidability results in
Verification.”

Muller and Schupp 1985: Configuration graphs of PDA.

Caucal 1996 Prefix-recognizable graphs (ǫ-closures of configuration
graphs of pushdown automata, Stirling 2000).

Knapik, Niwiński and Urzyczyn (TLCA 2001, FOSSACS 2002):
PushdownTreenΣ = Trees generated by order-n pushdown automata.
SafeRecSchTreenΣ = Trees generated by order-n safe rec. schemes.

Subsuming all the above:
Caucal (MFCS 2002). CaucalTreenΣ and CaucalGraphnΣ.

Theorem (KNU-Caucal 2002)

For n ≥ 0, PushdownTreenΣ = SafeRecSchTreenΣ = CaucalTreenΣ;
and they have decidable MSO theories.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 31 / 52

What is the safety constraint on recursion schemes?

Safety is a set of constraints on where variables may occur in a term.

Definition (Damm TCS 82, KNU FoSSaCS’02)

An order-2 equation is unsafe if the RHS has a subterm P s.t.

1 P is order 1

2 P occurs in an operand position (i.e. as 2nd argument of application)

3 P contains an order-0 parameter.

Consequence: An order-i subterm of a safe term can only have free
variables of order at least i .
Example (unsafe eqn): F : (o → o) → o → o → o, f : o2 → o, x , y : o.

F ϕ x y = f (F (F ϕ y) y (ϕ x)) a

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 32 / 52

What is the safety constraint on recursion schemes?

Safety is a set of constraints on where variables may occur in a term.

Definition (Damm TCS 82, KNU FoSSaCS’02)

An order-2 equation is unsafe if the RHS has a subterm P s.t.

1 P is order 1

2 P occurs in an operand position (i.e. as 2nd argument of application)

3 P contains an order-0 parameter.

Consequence: An order-i subterm of a safe term can only have free
variables of order at least i .
Example (unsafe eqn): F : (o → o) → o → o → o, f : o2 → o, x , y : o.

F ϕ x y = f (F (F ϕ y) y (ϕ x)) a

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 32 / 52

What is the point of safety?

Safety does have an important algorithmic advantage!

Theorem (Blum + O. TLCA 07, LMCS 09)

Substitution (hence β-red.) in safe λ-calculus can be safely implemented
without renaming bound variables! Hence no fresh names needed.

Theorem
1 (Schwichtenberg 76) The numeric functions representable by

simply-typed λ-terms are multivariate polynomials with conditional.

2 (Blum + O. LMCS 09) The numeric functions representable by
simply-typed safe λ-terms are the multivariate polynomials.

(See (Blum + O. LMCS 09) for a study on the safe lambda calculus.)

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 33 / 52

What is the point of safety?

Safety does have an important algorithmic advantage!

Theorem (Blum + O. TLCA 07, LMCS 09)

Substitution (hence β-red.) in safe λ-calculus can be safely implemented
without renaming bound variables! Hence no fresh names needed.

Theorem
1 (Schwichtenberg 76) The numeric functions representable by

simply-typed λ-terms are multivariate polynomials with conditional.

2 (Blum + O. LMCS 09) The numeric functions representable by
simply-typed safe λ-terms are the multivariate polynomials.

(See (Blum + O. LMCS 09) for a study on the safe lambda calculus.)

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 33 / 52

Infinite structures generated by recursion schemes: key questions

1 MSO decidability: Is safety a genuine constraint for decidability?
I.e. do trees generated by (arbitrary) recursion schemes have
decidable MSO theories?

2 Machine characterisation: Find a hierarchy of automata that
characterise the expressive power of recursion schemes.
I.e. how should the power of higher-order pushdown automata be
augmented to achieve equi-expressivity with (arbitrary) recursion
schemes?

3 Expressivity: Is safety a genuine constraint for expressivity?
I.e. are there inherently unsafe word languages / trees / graphs?

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 34 / 52

Infinite structures generated by recursion schemes: key questions

1 MSO decidability: Is safety a genuine constraint for decidability?
I.e. do trees generated by (arbitrary) recursion schemes have
decidable MSO theories?

2 Machine characterisation: Find a hierarchy of automata that
characterise the expressive power of recursion schemes.
I.e. how should the power of higher-order pushdown automata be
augmented to achieve equi-expressivity with (arbitrary) recursion
schemes?

3 Expressivity: Is safety a genuine constraint for expressivity?
I.e. are there inherently unsafe word languages / trees / graphs?

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 34 / 52

Infinite structures generated by recursion schemes: key questions

1 MSO decidability: Is safety a genuine constraint for decidability?
I.e. do trees generated by (arbitrary) recursion schemes have
decidable MSO theories?

2 Machine characterisation: Find a hierarchy of automata that
characterise the expressive power of recursion schemes.
I.e. how should the power of higher-order pushdown automata be
augmented to achieve equi-expressivity with (arbitrary) recursion
schemes?

3 Expressivity: Is safety a genuine constraint for expressivity?
I.e. are there inherently unsafe word languages / trees / graphs?

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 34 / 52

Infinite structures generated by recursion schemes: key questions

4 Graph families:
1 Definition: What is a good definition of “graphs generated by

recursion schemes”?
2 Model-checking properties: What are the decidable (modal-) logical

theories of the graph families?

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 35 / 52

Q1. Do trees in RecSchTreenΣ have decidable MSO theories?

Recent Progress:

Theorem (Aehlig, de Miranda + O. TLCA 2005)

Σ-labelled trees generated by order-2 recursion schemes (whether safe or
not) have decidable MSO theories.

Theorem (Knapik, Niwinski, Urczyczn + Walukiewicz, ICALP 2005)

Modal mu-calculus model checking problem for homogenously-typed
order-2 schemes (whether safe or not) is 2-EXPTIME complete.

What about higher orders?

Yes: MSO decidability extends to all orders (O. LICS06).

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 36 / 52

Q1. Do trees in RecSchTreenΣ have decidable MSO theories?

Recent Progress:

Theorem (Aehlig, de Miranda + O. TLCA 2005)

Σ-labelled trees generated by order-2 recursion schemes (whether safe or
not) have decidable MSO theories.

Theorem (Knapik, Niwinski, Urczyczn + Walukiewicz, ICALP 2005)

Modal mu-calculus model checking problem for homogenously-typed
order-2 schemes (whether safe or not) is 2-EXPTIME complete.

What about higher orders?

Yes: MSO decidability extends to all orders (O. LICS06).

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 36 / 52

Q1. Do trees in RecSchTreenΣ have decidable MSO theories?

Recent Progress:

Theorem (Aehlig, de Miranda + O. TLCA 2005)

Σ-labelled trees generated by order-2 recursion schemes (whether safe or
not) have decidable MSO theories.

Theorem (Knapik, Niwinski, Urczyczn + Walukiewicz, ICALP 2005)

Modal mu-calculus model checking problem for homogenously-typed
order-2 schemes (whether safe or not) is 2-EXPTIME complete.

What about higher orders?

Yes: MSO decidability extends to all orders (O. LICS06).

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 36 / 52

Q1. Do trees in RecSchTreenΣ have decidable MSO theories? Yes

Theorem (O. LICS 2006)

For n ≥ 0, the modal mu-calculus model-checking problem for
RecSchTreenΣ (i.e. trees generated by order-n recursion schemes) is
n-EXPTIME complete. Thus these trees have decidable MSO theories.

[This is the largest generically-defined MSO-decidable class of ranked trees

(cf. Montanari + Puppis, LICS 2007).]

Two key ingredients:
[[G]] satisifes modal mu-calculus formula ϕ

⇐⇒ { Emerson + Jutla 1991}
APT Bϕ has accepting run-tree over generated tree [[G]]

⇐⇒ { I. Transference Principle: Traversal-Path Correspondence}
APT Bϕ has accepting traversal-tree over computation tree λ(G)

⇐⇒ { II. Simulation of traversals by paths }
APT Cϕ has an accepting run-tree over computation tree λ(G)

which is decidable.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 37 / 52

Q1. Do trees in RecSchTreenΣ have decidable MSO theories? Yes

Theorem (O. LICS 2006)

For n ≥ 0, the modal mu-calculus model-checking problem for
RecSchTreenΣ (i.e. trees generated by order-n recursion schemes) is
n-EXPTIME complete. Thus these trees have decidable MSO theories.

[This is the largest generically-defined MSO-decidable class of ranked trees

(cf. Montanari + Puppis, LICS 2007).]

Two key ingredients:
[[G]] satisifes modal mu-calculus formula ϕ

⇐⇒ { Emerson + Jutla 1991}
APT Bϕ has accepting run-tree over generated tree [[G]]

⇐⇒ { I. Transference Principle: Traversal-Path Correspondence}
APT Bϕ has accepting traversal-tree over computation tree λ(G)

⇐⇒ { II. Simulation of traversals by paths }
APT Cϕ has an accepting run-tree over computation tree λ(G)

which is decidable.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 37 / 52

Transference principle, based on a theory of traversals

G :

(

S = F H
F ϕ = ϕ (F ϕ)
H z = fzz

7→ G :

(

S = λ.@ F (λx .@ H λ.x)
F = λϕ.ϕ(λ.@ F (λy .ϕ(λ.y))))
H = λz .f (λ.z)(λ.z)

[[G]] λ(G)

λ

f @

f f λϕ λx

f f f f ϕ @

...
...

...
... λ λz λ

@ f x

λϕ λy λ λ

ϕ ϕ z z

λ λ

...
y

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 38 / 52

Idea: β-reduction is global (i.e. substitution changes the term being
evaluated); game semantics gives an equivalent but local view.
A traversal (over the computation tree λ(G)) is a trace of the local
computation that produces a path (over [[G]]).

Theorem (Path-traversal correspondence)

Let G be an order-n recursion scheme.

(i) There is a 1-1 correspondence between maximal paths p in (Σ-labelled)
generated tree [[G]] and maximal traversals tp over computation tree
λ(G).

(ii) Further for each p, we have p ↾ Σ = tp ↾ Σ.

Proof is by game semantics.

Explanation (for game semanticists):

Term-tree [[G]] is (a representation of) the game semantics of G .
Paths in [[G]] correspond to plays in the strategy-denotation.
Traversals tp over computation tree λ(G) are just (representations of) the
uncoverings of the plays (= path) p in the game semantics of G .

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 39 / 52

Idea: β-reduction is global (i.e. substitution changes the term being
evaluated); game semantics gives an equivalent but local view.
A traversal (over the computation tree λ(G)) is a trace of the local
computation that produces a path (over [[G]]).

Theorem (Path-traversal correspondence)

Let G be an order-n recursion scheme.

(i) There is a 1-1 correspondence between maximal paths p in (Σ-labelled)
generated tree [[G]] and maximal traversals tp over computation tree
λ(G).

(ii) Further for each p, we have p ↾ Σ = tp ↾ Σ.

Proof is by game semantics.

Explanation (for game semanticists):

Term-tree [[G]] is (a representation of) the game semantics of G .
Paths in [[G]] correspond to plays in the strategy-denotation.
Traversals tp over computation tree λ(G) are just (representations of) the
uncoverings of the plays (= path) p in the game semantics of G .

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 39 / 52

Idea: β-reduction is global (i.e. substitution changes the term being
evaluated); game semantics gives an equivalent but local view.
A traversal (over the computation tree λ(G)) is a trace of the local
computation that produces a path (over [[G]]).

Theorem (Path-traversal correspondence)

Let G be an order-n recursion scheme.

(i) There is a 1-1 correspondence between maximal paths p in (Σ-labelled)
generated tree [[G]] and maximal traversals tp over computation tree
λ(G).

(ii) Further for each p, we have p ↾ Σ = tp ↾ Σ.

Proof is by game semantics.

Explanation (for game semanticists):

Term-tree [[G]] is (a representation of) the game semantics of G .
Paths in [[G]] correspond to plays in the strategy-denotation.
Traversals tp over computation tree λ(G) are just (representations of) the
uncoverings of the plays (= path) p in the game semantics of G .

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 39 / 52

Q2: Machine characterization: collapsible pushdown automata

Order-2 collapsible pushdown automata [HOMS, LiCS 08a] are essentially
the same as 2PDA with links [AdMO 05], and panic automata [KNUW 05].

Idea: Each stack symbol in 2-stack “remembers” the stack content at the
point it was first created (i.e. push1ed onto the stack), by way of a pointer
to some 1-stack underneath it (if there is one such).

Two new stack operations: a ∈ Γ (stack alphabet)

push1 a: pushes a onto the top of the top 1-stack, together with a
pointer to the 1-stack immediately below the top 1-stack.

collapse (= panic) collapses the 2-stack down to the prefix pointed to
by the top1-element of the 2-stack.

Note that the pointer-relation is preserved by push2.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 40 / 52

Q2: Machine characterization: collapsible pushdown automata

Order-2 collapsible pushdown automata [HOMS, LiCS 08a] are essentially
the same as 2PDA with links [AdMO 05], and panic automata [KNUW 05].

Idea: Each stack symbol in 2-stack “remembers” the stack content at the
point it was first created (i.e. push1ed onto the stack), by way of a pointer
to some 1-stack underneath it (if there is one such).

Two new stack operations: a ∈ Γ (stack alphabet)

push1 a: pushes a onto the top of the top 1-stack, together with a
pointer to the 1-stack immediately below the top 1-stack.

collapse (= panic) collapses the 2-stack down to the prefix pointed to
by the top1-element of the 2-stack.

Note that the pointer-relation is preserved by push2.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 40 / 52

Q2: Machine characterization: collapsible pushdown automata

Order-2 collapsible pushdown automata [HOMS, LiCS 08a] are essentially
the same as 2PDA with links [AdMO 05], and panic automata [KNUW 05].

Idea: Each stack symbol in 2-stack “remembers” the stack content at the
point it was first created (i.e. push1ed onto the stack), by way of a pointer
to some 1-stack underneath it (if there is one such).

Two new stack operations: a ∈ Γ (stack alphabet)

push1 a: pushes a onto the top of the top 1-stack, together with a
pointer to the 1-stack immediately below the top 1-stack.

collapse (= panic) collapses the 2-stack down to the prefix pointed to
by the top1-element of the 2-stack.

Note that the pointer-relation is preserved by push2.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 40 / 52

An example

Order-2 Collapsible Pushdown Automata (for word languages):

〈Σ,Q, q0,Γ,∆ ⊆ (Σ ∪ { ǫ }) × Q × Γ × Q × Op2,F 〉

where Op2 := { push2, pop2, pop1, collapse } ∪ { push1a | a ∈ Γ }.

Example. Starting from the empty 2-stack [[]], what is the top-of-stack
symbol after the following sequence of actions?

1. push2

2. push1a
3. push2

4. push1b
5. push2

6. pop1

7. collapse

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 41 / 52

An example

Order-2 Collapsible Pushdown Automata (for word languages):

〈Σ,Q, q0,Γ,∆ ⊆ (Σ ∪ { ǫ }) × Q × Γ × Q × Op2,F 〉

where Op2 := { push2, pop2, pop1, collapse } ∪ { push1a | a ∈ Γ }.

Example. Starting from the empty 2-stack [[]], what is the top-of-stack
symbol after the following sequence of actions?

1. push2

2. push1a
3. push2

4. push1b
5. push2

6. pop1

7. collapse

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 41 / 52

Collapsible pushdown automata: extending to all finite orders

In order-n CPDA, there are n− 1 versions of push1, namely, pushj
1 a, with

1 ≤ j ≤ n − 1:

pushj
1 a: pushes a onto the top of the top 1-stack, together with

a pointer to the j-stack immediately below the top j-stack.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 42 / 52

Example: Urzyczyn’s Language U over alphabet { (,), ∗ }

Definition (Aehlig, de Miranda + O. FoSSaCS 05) A U-word has 3 segments:

(· · · (· · · (
︸ ︷︷ ︸

A

(· · ·) · · · (· · ·)
︸ ︷︷ ︸

B

∗ · · · ∗
︸ ︷︷ ︸

C

Segment A is a prefix of a well-bracketed word that ends in (, and the
opening (is not matched in the entire word.
Segment B is a well-bracketed word.
Segment C has length equal to the number of (in segment A.

Examples

1 (() (() (()) ∗ ∗ ∗ ∈ U
2 For each n ≥ 0, we have ((n)n (∗n ∗ ∗ ∈ U. (Hence by “uvwxy

Lemma”, U is not context-free.)

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 43 / 52

Example: Urzyczyn’s Language U over alphabet { (,), ∗ }

Definition (Aehlig, de Miranda + O. FoSSaCS 05) A U-word has 3 segments:

(· · · (· · · (
︸ ︷︷ ︸

A

(· · ·) · · · (· · ·)
︸ ︷︷ ︸

B

∗ · · · ∗
︸ ︷︷ ︸

C

Segment A is a prefix of a well-bracketed word that ends in (, and the
opening (is not matched in the entire word.
Segment B is a well-bracketed word.
Segment C has length equal to the number of (in segment A.

Examples

1 (() (() (()) ∗ ∗ ∗ ∈ U
2 For each n ≥ 0, we have ((n)n (∗n ∗ ∗ ∈ U. (Hence by “uvwxy

Lemma”, U is not context-free.)

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 43 / 52

Example: Urzyczyn’s Language U over alphabet { (,), ∗ }

Definition (Aehlig, de Miranda + O. FoSSaCS 05) A U-word has 3 segments:

(· · · (· · · (
︸ ︷︷ ︸

A

(· · ·) · · · (· · ·)
︸ ︷︷ ︸

B

∗ · · · ∗
︸ ︷︷ ︸

C

Segment A is a prefix of a well-bracketed word that ends in (, and the
opening (is not matched in the entire word.
Segment B is a well-bracketed word.
Segment C has length equal to the number of (in segment A.

Examples

1 (() (() (()) ∗ ∗ ∗ ∈ U
2 For each n ≥ 0, we have ((n)n (∗n ∗ ∗ ∈ U. (Hence by “uvwxy

Lemma”, U is not context-free.)

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 43 / 52

Recognising U by a (det.) 2CPDA. E.g. (() (() ∗ ∗ ∗ ∈ U
(Ignoring control states for simplicity)

Upon reading Do
(push2 ; push1a
) pop1

first ∗ collapse
subsequent ∗ pop2

[[]]

([[] [a]]

([[] [a] [a a]]

) [[] [a] [a]]

([[] [a] [a] [a a]]

([[] [a] [a] [a a] [a a a]]

) [[] [a] [a] [a a] [a a]] Collapse!

∗ [[] [a] [a]]

∗ [[] [a]]

∗ [[]]

What does the depth of the top 1-stack mean?
Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 44 / 52

E.g. Urzyczyn’s Language U (cont’d)

Observation
1 U is recognisable by a deterministic order-2 CPDA.

2 Equivalently (thanks to [AdMO 05]) U is recognisable by a
non-deterministic order-2 PDA — because of the need to guess the
transition from segment A to segment B.

Conjecture

U is not recognisable by a deterministic order-2 PDA.

(Related to the Safety Conjecture - more anon.)

Exercise (moderately hard). Give an order-2 recursion scheme that
generates U.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 45 / 52

Q2: Recursion schemes are equi-expressive with CPDA

Theorem (Equi-Expressivity, Hague, Murawski, O. + Serre LICS’08)

For each n ≥ 0, order-n recursion schemes and order-n collapsible PDA are
equi-expressive for Σ-labelled trees. I.e. RecSchTreenΣ = CPDATreenΣ

(Proof uses theory of traversals, based on game semantics.)

Consequences:

1 Kleene’s Problem: What computing power is required to compute
order-n lambda-definable functionals?

The Theorem gives a syntax-independent characterisation of pure
simply-typed lambda-calculus with recursion.

2 A new proof of the MSO decidability of trees generated by order-n
recursion schemes.

Open Problem. Find a new proof of “RS → CPDA” without using game
semantics.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 46 / 52

Q2: Recursion schemes are equi-expressive with CPDA

Theorem (Equi-Expressivity, Hague, Murawski, O. + Serre LICS’08)

For each n ≥ 0, order-n recursion schemes and order-n collapsible PDA are
equi-expressive for Σ-labelled trees. I.e. RecSchTreenΣ = CPDATreenΣ

(Proof uses theory of traversals, based on game semantics.)

Consequences:

1 Kleene’s Problem: What computing power is required to compute
order-n lambda-definable functionals?

The Theorem gives a syntax-independent characterisation of pure
simply-typed lambda-calculus with recursion.

2 A new proof of the MSO decidability of trees generated by order-n
recursion schemes.

Open Problem. Find a new proof of “RS → CPDA” without using game
semantics.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 46 / 52

Q2: Recursion schemes are equi-expressive with CPDA

Theorem (Equi-Expressivity, Hague, Murawski, O. + Serre LICS’08)

For each n ≥ 0, order-n recursion schemes and order-n collapsible PDA are
equi-expressive for Σ-labelled trees. I.e. RecSchTreenΣ = CPDATreenΣ

(Proof uses theory of traversals, based on game semantics.)

Consequences:

1 Kleene’s Problem: What computing power is required to compute
order-n lambda-definable functionals?

The Theorem gives a syntax-independent characterisation of pure
simply-typed lambda-calculus with recursion.

2 A new proof of the MSO decidability of trees generated by order-n
recursion schemes.

Open Problem. Find a new proof of “RS → CPDA” without using game
semantics.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 46 / 52

Q2: Recursion schemes are equi-expressive with CPDA

Theorem (Equi-Expressivity, Hague, Murawski, O. + Serre LICS’08)

For each n ≥ 0, order-n recursion schemes and order-n collapsible PDA are
equi-expressive for Σ-labelled trees. I.e. RecSchTreenΣ = CPDATreenΣ

(Proof uses theory of traversals, based on game semantics.)

Consequences:

1 Kleene’s Problem: What computing power is required to compute
order-n lambda-definable functionals?

The Theorem gives a syntax-independent characterisation of pure
simply-typed lambda-calculus with recursion.

2 A new proof of the MSO decidability of trees generated by order-n
recursion schemes.

Open Problem. Find a new proof of “RS → CPDA” without using game
semantics.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 46 / 52

Q3: Does safety constrain expressivity?

Case 1: Word languages. Conjecture: Yes; but note

Theorem (Aehlig, de Miranda + O., FoSSaCS 2005)

At order 2, there are no inherently unsafe word languages. I.e. for every
unsafe order-2 recursion scheme, there is a safe (non-deterministic) order-2
recursion scheme that generates the same language.

Case 2: Trees. Conjecture: Yes.

The Safety Conjecture

For each n ≥ 2, there is a tree generated by an unsafe order-n recursion
scheme but not by any safe order-n recursion scheme.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 47 / 52

Q3: Does safety constrain expressivity?

Case 1: Word languages. Conjecture: Yes; but note

Theorem (Aehlig, de Miranda + O., FoSSaCS 2005)

At order 2, there are no inherently unsafe word languages. I.e. for every
unsafe order-2 recursion scheme, there is a safe (non-deterministic) order-2
recursion scheme that generates the same language.

Case 2: Trees. Conjecture: Yes.

The Safety Conjecture

For each n ≥ 2, there is a tree generated by an unsafe order-n recursion
scheme but not by any safe order-n recursion scheme.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 47 / 52

Q3: Does safety constrain expressivity?

Case 3: Graphs. Yes.

Theorem (Hague, Murawski, O. + Serre LICS 2008a)

There is an order-2 CPDA graph that is not generated by any order-2 PDA.

(See example graph later.)

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 48 / 52

A survey of graph families with model-checking properties

Decidable?

MSO µ FO(R) FO

Caucal Graph Hierarchy yes yes yes yes

Ground-term tree rewriting (Löding 02) no no yes yes

Automatic graphs (Hodgson 76, KN 94) no no no yes

Rational graphs no no no no

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 49 / 52

A survey of graph families with model-checking properties

Decidable?

MSO µ FO(R) FO

Caucal’s Graph Hierarchy yes yes yes yes

C no yes ? ?

Ground-term tree rewriting (Löding 02) no no yes yes

Automatic graphs (Hodgson 76, KN 94) no no no yes

Rational graphs no no no no

Question

Is there a generically-defined family C of graphs that have decidable
modal-mu calculus theories but undecidable MSO theories?

Yes. See construction on next slide (HMOS, LiCS 08a).

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 50 / 52

Configuration graphs of (order-2) CPDA is not MSO-decidable

An order-2 CPDA graph: MSO-interpretable into the infinite half-grid.

0[[]]
t

1[[][]]
a

b

0[[][a]]
t

1[[][a][a]]
a

b

0[[][a][a a]]
t

1[[][a][a a][a a]] · · ·

b

2[[][b]]

1

0

2[[][a][a b]]

1

0

2[[][a][a a][a a b]] · · ·

1

0

2[[][]] 2[[][a][a]]

1

0

2[[][a][a a][a a]] · · ·

1

0

2[[][a][]] 2[[][a][a a][a]] · · ·

1

0

2[[][a][a a][]]

To our knowledge CPDA graphs are the first “natural” generically-defined
graph families that have decidable modal mu-calculus theories but
undecidable MSO theories.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 51 / 52

Q4: Model-checking properties of CPDA graphs

Theorem (Hague, Murawski, O and Serre, LiCS 2008a)

1 For each n ≥ 0, the decidability of modal mu-calculus model-checking
problem for configuration graphs of order-n CPDA is n-EXPTIME
complete.

2 Equivalently solvability of parity games over order-n CPDA graphs is
n-EXPTIME complete.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 52 / 52

	Relating (Families of) Generators of Infinite Structures
	Higher-Order Pushdown Automata
	Higher-Order Recursion Schemes
	Relating the Generator Families: Word Languages

	Recursion Schemes and their Algorithmic Model Theory
	Q1: Decidability of MSO / Modal Mu-Calculus Theories
	Q2: Machine Characterisation by Collapsible Pushdown Automata
	Q3: Expressivity: The Safety Conjecture
	Q4: Infinite Graphs Generated by Recursion Schemes / CPDA

