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Model checking and computer-aided verification

Beginning in the 80s, computer-aided verification (notably model
checking) of finite-state systems (e.g. hardware and communication
protocols) has been a great success story in computer science.
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Model checking and computer-aided verification

Beginning in the 80s, computer-aided verification (notably model
checking) of finite-state systems (e.g. hardware and communication
protocols) has been a great success story in computer science.

Clarke, Emerson and Sifakis won the 2007 ACM Turing Award

“for their role in developing model checking into a highly effective
verification technology, widely adopted in hardware and software
industries” .

Focus of past decade: transfer of these techniques to software verification.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 2 /52



What is (software) model checking?

Problem: Given a system Sys (e.g. an OS), and given a desirable
behavioural property Spec (e.g. deadlock freedom), does Sys satisfy Spec?
The model checking approach:

© Find an abstract model M of the system Sys.

© Describe the property Spec as a formula ¢ of a suitable logic.

© Exhaustively check if ¢ is violated by M.
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What is (software) model checking?

Problem: Given a system Sys (e.g. an OS), and given a desirable
behavioural property Spec (e.g. deadlock freedom), does Sys satisfy Spec?
The model checking approach:

© Find an abstract model M of the system Sys.

© Describe the property Spec as a formula ¢ of a suitable logic.

© Exhaustively check if ¢ is violated by M.

Huge strides made in verification of 1st-order imperative programs.
Many tools: SLAM, Blast, Terminator, SatAbs, etc.

Two key techniques: State-of-the-art tools use

© abstraction techniques, as exemplified by CEGAR (Counter-Example
Guided Abstraction Refinement)

@ acceleration methods such as SAT- and SMT-solvers.
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Verification of higher-order programs

Examples: OCaml, F#, Haskell, Lisp/Scheme, Ptalon, etc.

By comparison with 1st-order imperative program, the model checking of
higher-order programs is in its infancy.

Some theoretical advances in recent years; very little tool development.
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Verification of higher-order programs

Examples: OCaml, F#, Haskell, Lisp/Scheme, Ptalon, etc.
By comparison with 1st-order imperative program, the model checking of
higher-order programs is in its infancy.
Some theoretical advances in recent years; very little tool development.
Model-checking higher-order programs is hard:
© Infinite-state and extremely complex: Even without recursion,
higher-order programs over a finite base type are infinite-state.

(Other sources of infinity: data structures and manipulation, control
structures (with recursion), asynchronous communication, real-time and
embedded systems, systems with parameters etc.)

© Models of higher-order features as studied in semantics — are typically
too “abstract” to support any algorithmic analysis.

(A notable exception is game semantics.)
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Verifying higher-order programs: a worthwhile challenge

1. Widely used in diverse domains. Succinct, less error-prone, easy to

write and hence good for prototyping; performance (of e.g. F#)
approaching C++.

Traditional applications: theorem proving and reasoning assistance,
computational linguistics, programming language processing.

More recently: databases, networking, internet search (Google's
MapReduce), trading and investment banking.
See Wadler's page “Functional Programming in the Real World"!

'http://homepages.inf.ed.ac.uk/wadler/realworld/
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higher-order matching, and (contextual) reachability analysis.

'http://homepages.inf.ed.ac.uk/wadler/realworld/
Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf

5 /52


http://homepages.inf.ed.ac.uk/wadler/realworld/

Verifying higher-order programs: a worthwhile challenge

1. Widely used in diverse domains. Succinct, less error-prone, easy to
write and hence good for prototyping; performance (of e.g. F#)
approaching C++.

Traditional applications: theorem proving and reasoning assistance,
computational linguistics, programming language processing.

More recently: databases, networking, internet search (Google's
I\/IapReduce), trading and investment banking.
See Wadler's page “Functional Programming in the Real World"!

2. Many hard theoretical problems: E.g. termination analysis,
higher-order matching, and (contextual) reachability analysis.

Our goal: To use semantic methods, in conjunction with algorithmic ideas
and techniques from Verification, to formally analyze programming
situations in which higher-order features are important.

'http://homepages.inf.ed.ac.uk/wadler/realworld/
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Lecture Course: Aim and Overview

Aim
To introduce a systematic approach to the algorithmics of infinite
structures generated by families of higher-order generators, suitable as a
basis for model checking a wide range of behavioural properties of
higher-order functional programs.
4 lectures.
Part 1: Background and Survey

© Families of Generators of Higher-Order Infinite Structures

© Survey of Algorithmic Model Theory

Part 2: Some Theory and Application

© Type Theory and Modal Mu-Calculus Model Checking
© Application: Model Checking Functional Programs
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Outline |

@ Relating (Families of) Generators of Infinite Structures
@ Higher-Order Pushdown Automata
@ Higher-Order Recursion Schemes
@ Relating the Generator Families: Word Languages

© Recursion Schemes and their Algorithmic Model Theory
@ Q1: Decidability of MSO / Modal Mu-Calculus Theories
@ Q2: Machine Characterisation by Collapsible Pushdown Automata
@ Q3: Expressivity: The Safety Conjecture
@ Q4: Infinite Graphs Generated by Recursion Schemes / CPDA
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Outline

@ Relating (Families of) Generators of Infinite Structures
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Higher-order pushdown automata (HOPDA) [Maslov 74]

Order-2 pushdown automata

A 1-stack is an ordinary stack. A 2-stack (resp. n+ 1-stack) is a stack of
1-stacks (resp. n-stack).

Luke Ong (University of Oxford)
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Higher-order pushdown automata (HOPDA) [Maslov 74]

Order-2 pushdown automata
A 1-stack is an ordinary stack. A 2-stack (resp. n+ 1-stack) is a stack of
1-stacks (resp. n-stack).

Operations on 2-stacks: s; ranges over 1-stacks. Top of stack is at the
righthand end.

push, : [s1---si—1 [a1---anl] = [s1 - sic1sisid
Sj
popy : [si---si—1ilay---anl] = [s -+ 5.1]
pushya : [sy---si—1la;---a,]] —  [s;---si_1lar---apall
pop; : [si---si—ilar---apant1]] +—  [sy---si—1[ar---apl]
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Higher-order pushdown automata (HOPDA) [Maslov 74]

Order-2 pushdown automata
A 1-stack is an ordinary stack. A 2-stack (resp. n+ 1-stack) is a stack of
1-stacks (resp. n-stack).

Operations on 2-stacks: s; ranges over 1-stacks. Top of stack is at the
righthand end.

push, : [sy---sj—1 [a1---a,l] = [s1 - sic1sisid
———
Sj
popy : [s1---si—1lar---anll —  [s1 -+ 511
pushla : [sy---si-1[ar---a,]] — [sy---si—1[a1---a,all
pop;y : [si---siilar---apapt1l]l +—  [s1---si—1lar---anll

Idea extends to all finite orders: an order-n PDA has an order-n stack, and
has push; and pop; for each 1 < < n.
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HOPDA as recognizers of word languages

HOPDA can be used as recognizing/generating device for
O finite-word languages (Maslov 74) (and w-word languages)

(L, Q,q0,AC(ZU{e}) x @xTx0p, xQ,F)

@ possibly-infinite (ranked) trees (KNUOQ1), and tree languages
© possibly infinite graphs (Muller4+Schupp 86, Courcelle 95, Cachat 03)
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HOPDA as recognizers of word languages

HOPDA can be used as recognizing/generating device for
O finite-word languages (Maslov 74) (and w-word languages)
(%,Q,q90,1, A C (X U{e}) xQxT x0p,xQ,F)

@ possibly-infinite (ranked) trees (KNUOQ1), and tree languages
© possibly infinite graphs (Muller4+Schupp 86, Courcelle 95, Cachat 03)

Some basic facts (Maslov 74, 76):
© HOPDA define an infinite hierarchy of word languages.

© Low orders are well-known: orders 0, 1 and 2 are the regular, context
free, and indexed languages (Aho 68). Higher-order languages are
poorly understood.

© For each n > 0, the order-n languages form an abstract family of
languages (closed under +, -, (—)*, intersection with regular
languages, homomorphism and inverse homo.)

© For each n > 0, the emptiness problem for order-n PDA is decidable.

4
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Example: L :={a"b"c":n> 0} is recognizable by an order-2 PDA

L is not context free. Use the “uvwxy Lemma”.
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Example: L :={a"b"c":n> 0} is recognizable by an order-2 PDA

L is not context free. Use the “uvwxy Lemma”.

Idea: Use top 1-stack to process a” b”, and height of 2-stack to remember n.
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Example: L :={a"b"c":n> 0} is recognizable by an order-2 PDA
L is not context free. Use the “uvwxy Lemma”.

Idea: Use top 1-stack to process a” b”, and height of 2-stack to remember n.

g1 [[1] —2>q1 [[1[2]1] —2> g1 [[1[2] [22]]

s

q» [[1[z][z]]

s

g3 (1] =——q3 [[1[z2]] =—(—q2 [[1[2] 1]
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Example: L :={a"b"c":n> 0} is recognizable by an order-2 PDA
L is not context free. Use the “uvwxy Lemma”.

Idea: Use top 1-stack to process a” b”, and height of 2-stack to remember n.

g1 [[1] —2>q1 [[1[2]1] —2> g1 [[1[2] [22]]

s

q» [[1[z][z]]

s

g3 (1] =——q3 [[1[z2]] =—(—q2 [[1[2] 1]

a b c
— = push, ; push;z z — pop; Z — pop,
q1 ; q2 . K]
z = pop,z L = pop,
‘read a’ ‘read b’ ‘read ¢’

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 11 / 52



Pumping Lemma for Context-Free Languages

Theorem (uvwxy)

Let L be an infinite CFL. Every word in L longer then p can be written as
a concatenation of subwords, uv w xy, such that [vw x| < p, |vx| > 1,
and for every i > 0, uv' wx'y isin L.

Luke Ong (University of Oxford)
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A reminder: simple types

Types A == o | (A—=B)
Every type can be written uniquely as
A — (A= (Ap—0)--+), n>0

often abbreviated to Ay — A>--- — A, — o.
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A reminder: simple types
Types A == o | (A—=B)
Every type can be written uniquely as
A — (A= (Ap—0)--+), n>0
often abbreviated to Ay — A>--- — A, — o.

Order of a type: measures “nestedness” on LHS of —.

order(o) = 0
order(A — B) = max(order(A) + 1,order(B))

Examples. N — N and N — (N — N) both have order 1;
(N — N) — N has order 2.

Notation. e: A means “expression e has type A".
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Higher-order recursion schemes [Par68, Niv72, NC78, Dam82,...]

An order-n recursion scheme = closed ground-type term definable in

order-n fragment of simply-typed A-calculus with recursion and
uninterpreted order-1 constant symbols.

Luke Ong (University of Oxford)
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Higher-order recursion schemes [Par68, Niv72, NC78, Dam82,...]

An order-n recursion scheme = closed ground-type term definable in

order-n fragment of simply-typed A-calculus with recursion and
uninterpreted order-1 constant symbols.

Example: An order-1 recursion scheme. Fix ranked alphabet
Y={f:2,g:1,a:0}.

_ S = Fa
¢ { Fx = fx(F(gx)
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Higher-order recursion schemes [Par68, Niv72, NC78, Dam82,...]

An order-n recursion scheme = closed ground-type term definable in
order-n fragment of simply-typed A-calculus with recursion and
uninterpreted order-1 constant symbols.

Example: An order-1 recursion scheme. Fix ranked alphabet
Y={f:2,g:1,a:0}.

_ S = Fa
¢ { Fx = fx(F(gx)

Unfolding from the start symbol S:

S Fa

fa(F(ga)
fa(f(ga)(F(g(ga))))

1Ll

The (term-)tree thus generated, [ G], is fa(f (ga) (f(g(ga))(---))).

Luke Ong (University of Oxford)
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Representing the term-tree [ G] as a X-labelled tree

[Gl=fa(f(ga)(f(g(ga))(---))) is the (term-)tree

f'
PN
a f
PN
g f
[ N
a g f
\
g
|
a
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Representing the term-tree [ G] as a X-labelled tree

[Gl=fa(f(ga)(f(g(ga))(---))) is the (term-)tree

f'
PN
a f
PN
g f
[ N
a g f
\
g
|
a

We view the infinite term [ G ] as a X-labelled tree, formally, a map

T — X, where T is a prefix-closed subset of Dir*, with Dir a set of edge
labels.

Formally term-trees such as [ G ] are ranked and ordered.

Luke Ong (University of Oxford)
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Definition: Order-n (deterministic) recursion scheme G = (M, X, R

Fix a set of typed variables (written as ¢, x, y etc).

o N: Typed non-terminals of order at most n (written as upper-case
letters), including a distinguished start symbol S : o.

@ X: Ranked alphabet of terminals: f € ¥ has arity ar(f) >0

@ R: An equation for each non-terminal D : Ay — --- — A, — o of
shape
D ©1 " ©m = e
where the term e : o is constructed from

> terminals f, g, a, etc. from X
> variables 1 : A1, , om : Ap from Var,
» non-terminals D, F, G, etc. from N.

using the application rule: If s: A— B and t: A then (st): B.
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The tree generated by a recursion scheme: value tree

Given a term t, define a (finite) tree t* by

f if tisa terminal f
tt =< thty ift=titrand ti # L
1 otherwise

We extend the flat partial order on X (i.e. L < afor all a € X) to trees by:
s <t := VYaecdom(s).a € dom(t) As(a) < t(a)

Eg L <fll <flb<fab.
For a directed set T of trees, we write | | T for the lub of T w.r.t. <.

Let G be a recursion scheme. We define the tree generated by G by

[G] == | {t"|S—"t}
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An order-2 example

Y={f:2,g:1,a:0}.
S:0o, B:(o—0)—(0—0)—0—0, F:(0—0)—o0
S = Fg
Gz i § Bovx = ¢(vx)
Fe = flpa)(F(Byyp)
The generated tree, [ G2] : {1,2}* — X, is:
f
PN
f
~

a 8

g
\
a

f
N

f‘

N
e

L -09-0g—0q—09
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Using recursion schemes as generators of word languages

Idea: A word is just a linear tree.

Represent a finite word “abc” (say) as the applicative term a(b(ce)),
viewing a, b and ¢ as symbols of arity 1, where e is the arity-0 end-of-word
marker.

Fix an input alphabet ¥. We can use a (non-deterministic) recursion
scheme to generate finite-word languages, with ranked alphabet
Y ={a:1|laeX}u{e:0}.

Example. {a"b" | n > 0} is generated by order-1 recursion scheme:

{ S — Fe
Fx — a(F(bx)) | x
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Exercises

© Find an order-2 (word-language) recursion scheme that generates
L={a'b'c"|i>0}.

© Prove that context-free languages are equivalent to languages
generated by order-1 (word-language) recursion schemes.

Answer to 1.

S — Fle
Fex — ¢x | F(Hg)(cx)
Hoy — a(e(by))
Ix — x
Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf
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Relating the two generator-families: word-language case

Theorem (Equi-expressivity)
For each n > 0, the three formalisms
Q order-n pushdown automata (Maslov 76)

@ order-n safe recursion schemes (Damm 82, Damm + Goerdt 86)
© order-n indexed grammars (Maslov 76)

generate the same class of word languages.

What is safety? (See later.)

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf
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Maslov Hierarchy: Many Open Problems

© Pumping Lemma, Myhill-Nerode, and Parikh Theorems.
Weak “pumping lemmas"” for levels 1 and 2 (Hayashi 73, Gilman 96).

Pace (Blumensath 04) for Maslov Hierarchy — but runs (not plays) are
pumpable, conditions given as lengths of runs and configuration size.

© Logical characterisations.
E.g. MSOL for regular languages (Biichi 60). Characterisation of CFL using
quantification over matchings (LST 94).

© Complexity-theoretic characterisations.
Pace (Engelfriet 83, 91): characterisations of languages accepted by
alternating / two-way / multi-head / space-auxiliary order-n PDA as
time-complexity classes (but no result for Maslov Hierarchy itself)

© Relationship with Chomsky Hierachy. E.g. is level 3 context-sensitive?
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Why study the two families of generators?

They are relevant to both semantics and verification:

© Recursion schemes are an old and influential formalism for the
semantical analysis of imperative and functional programs (Nivat 75,
Damm 82). They are a compelling model of computation for
higher-order functional programs.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 23 /52



Why study the two families of generators?

They are relevant to both semantics and verification:
© Recursion schemes are an old and influential formalism for the

semantical analysis of imperative and functional programs (Nivat 75,

Damm 82). They are a compelling model of computation for
higher-order functional programs.

© Pushdown automata characterize the control flow of 1st-order
(recursive) procedural programs.
Pushdown checkers (e.g. MOPED) are essential back-end engines of
state-of-the-art software model checkers (e.g. SLAM, Terminator).
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Why study the two families of generators?

They are relevant to both semantics and verification:

© Recursion schemes are an old and influential formalism for the
semantical analysis of imperative and functional programs (Nivat 75,
Damm 82). They are a compelling model of computation for
higher-order functional programs.

© Pushdown automata characterize the control flow of 1st-order
(recursive) procedural programs.
Pushdown checkers (e.g. MOPED) are essential back-end engines of
state-of-the-art software model checkers (e.g. SLAM, Terminator).

© Higher-order (collapsible) pushdown automata are highly accurate
models of computation of higher-order procedural programs.
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Outline

© Recursion Schemes and their Algorithmic Model Theory
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A challenge problem in higher-order verification

Example: Consider [ G ] on the right P f “
@ 1 = "“Infinitely many f-nodes are reachable”. a L f\
@ y = "“Only finitely many g-nodes are reachable”. % v f .
a g f
Every node on the tree satisfies 1 V ¢>. é
Y
a

Let RecSchTree, be the class of X -labelled
trees generated by order-n recursion schemes.
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A challenge problem in higher-order verification

Example: Consider [ G ] on the right P f “
@ 1 = "“Infinitely many f-nodes are reachable”. a L f\
@ y = "“Only finitely many g-nodes are reachable”. i g v f . ]
Every node on the tree satisfies 1 V ¢>. é
;

Let RecSchTree, be the class of X -labelled
trees generated by order-n recursion schemes.

Is the “MSO Model-Checking Problem for RecSchTree," decidable?
@ INSTANCE: An order-n recursion scheme G, and an MSO formula ¢
@ QUESTION: Does the X-labelled tree [ G ] satisfy ¢?
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Why study MSO logic?

Because it is the gold standard of logics for describing model-checking
properties.
@ MSO is very expressive. Over graphs, MSO is more expressive than
the modal mu-calculus, into which all standard temporal logics
(e.g. LTL, CTL, CTLx, etc.) can embed.

@ It is hard to extend MSO meaningfully without sacrificing decidability

where it holds.
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Why study MSO logic?

Because it is the gold standard of logics for describing model-checking
properties.
@ MSO is very expressive. Over graphs, MSO is more expressive than
the modal mu-calculus, into which all standard temporal logics
(e.g. LTL, CTL, CTLx, etc.) can embed.
@ It is hard to extend MSO meaningfully without sacrificing decidability
where it holds.

What is MSO logic?
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Review: Representing trees as logical structures

Represent a ¥-labelled tree t : dom(t) — X as a logical structure

(dom(t), (d;:1<i<m), (pr:feX))

@ Parent-child relationship between nodes: d;(x,y) = "y is i-child of x”
@ Node labelling: pr(x) = “x has label f” where f is a X-symbol

Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 27 / 52
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Monadic Second-Order Logic (for X-labelled trees)

First-order variables:  x,y,z, etc. (ranging over nodes)

Second-order variables: X, Y, Z, etc. (ranging over sets of nodes
i.e. monadic relations)
MSO formulas are built up from atomic formulas:

@ Parent-child relationship between nodes: d;(x,y)

@ Node labelling: pf(x)

@ Set-membership: x € X

and closed under boolean connectives, first-order quantification
(Vx.—,3x.—) and second-order quantifications: (V.X.—,3X.-).
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Examples of MSO-definable properties

Several useful relations are definable:
© Set inclusion (and hence equality): X C Y = Vx.xe X - x €Y.

@ ‘lIs-an-ancestor-of" or prefix ordering x < y (and hence x = y):

PrefCI(X)
x<y

= Wx,y.ye X AViLdi(x,y) - xeX
= VX.PrefCI(X)Ay e X — xe€ X

Reachability property: “X is a path”

Path(X) Vx,ye X . x<yVy<x

AN VX y,z. xeEXNzeXAx<y<z —-yeX

MaxPath(X) = Path(X) AVY . Path(Y)AX C Y — Y C X.
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E.g. MSO can expresss “d infinitely many f-labelled nodes”

A set of nodes is a cut if no two nodes in it are <-compatible, and it has a
non-empty intersection with every maximal path.

Cut(X) Vx,y e X . a(x<yVy<x)

A VZ.MaxPath(Z) — Jze€Z.ze X
Lemma

A set X of nodes in a finitely-branching tree is finite iff there is a cut C
such that every X-node is a prefix of some C-node.

Finite(X) = 3Y.Cut(Y) A ¥xe X.ye Y.x<y

Hence “there are finitely many nodes labelled by f" is expressible in MSO
by 3X . Finite(X) A Vx.pf(x) — x € X.
But “MSO cannot count”: E.g. “X has twice as many elements as Y".
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A (selective) survey of MSO-decidable structures: up to 2002

@ Rabin 1969: Regular trees. “Mother of all decidability results in
Verification.”
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A (selective) survey of MSO-decidable structures: up to 2002

@ Rabin 1969: Regular trees. “Mother of all decidability results in
Verification.”

@ Muller and Schupp 1985: Configuration graphs of PDA.

@ Caucal 1996 Prefix-recognizable graphs (e-closures of configuration
graphs of pushdown automata, Stirling 2000).

@ Knapik, Niwiriski and Urzyczyn (TLCA 2001, FOSSACS 2002):
PushdownTree,> = Trees generated by order-n pushdown automata.
SafeRecSchTree,X = Trees generated by order-n safe rec. schemes.

@ Subsuming all the above:
Caucal (MFCS 2002). CaucalTree,x and CaucalGraph, ¥.

Theorem (KNU-Caucal 2002)

For n > 0, PushdownTree,> — SafeRecSchTree,> = CaucalTree,X;
and they have decidable MSO theories.
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What is the safety constraint on recursion schemes?

Safety is a set of constraints on where variables may occur in a term.

Definition (Damm TCS 82, KNU FoSSaCS'02)
An order-2 equation is unsafe if the RHS has a subterm P s.t.
© P isorder 1

@ P occurs in an operand position (i.e. as 2nd argument of application)

© P contains an order-0 parameter.
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What is the safety constraint on recursion schemes?

Safety is a set of constraints on where variables may occur in a term.

Definition (Damm TCS 82, KNU FoSSaCS'02)
An order-2 equation is unsafe if the RHS has a subterm P s.t.
© P isorder 1

@ P occurs in an operand position (i.e. as 2nd argument of application)

© P contains an order-0 parameter.

Consequence: An order-i subterm of a safe term can only have free
variables of order at least i.
Example (unsafe eqn): F: (o —0) - 0—0—o0, f:0>— 0, X,y : 0.

Feoxy = f(F(Fey)y(ex))a
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What is the point of safety?

Safety does have an important algorithmic advantage!

Theorem (Blum + O. TLCA 07, LMCS 09)

Substitution (hence (3-red.) in safe \-calculus can be safely implemented
without renaming bound variables! Hence no fresh names needed.
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What is the point of safety?

Safety does have an important algorithmic advantage!

Theorem (Blum + O. TLCA 07, LMCS 09)

Substitution (hence (3-red.) in safe \-calculus can be safely implemented
without renaming bound variables! Hence no fresh names needed.

Theorem
O (Schwichtenberg 76) The numeric functions representable by
simply-typed A-terms are multivariate polynomials with conditional.

Q@ (Blum + O. LMCS 09) The numeric functions representable by
simply-typed safe \-terms are the multivariate polynomials.

- .

(See (Blum + O. LMCS 09) for a study on the safe lambda calculus.)
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Infinite structures generated by recursion schemes: key questions

© MSO decidability: Is safety a genuine constraint for decidability?
l.e. do trees generated by (arbitrary) recursion schemes have
decidable MSO theories?
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l.e. do trees generated by (arbitrary) recursion schemes have
decidable MSO theories?

© Machine characterisation: Find a hierarchy of automata that
characterise the expressive power of recursion schemes.
I.e. how should the power of higher-order pushdown automata be
augmented to achieve equi-expressivity with (arbitrary) recursion
schemes?
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Infinite structures generated by recursion schemes: key questions

© MSO decidability: Is safety a genuine constraint for decidability?
l.e. do trees generated by (arbitrary) recursion schemes have
decidable MSO theories?

© Machine characterisation: Find a hierarchy of automata that
characterise the expressive power of recursion schemes.
I.e. how should the power of higher-order pushdown automata be
augmented to achieve equi-expressivity with (arbitrary) recursion
schemes?

© Expressivity: Is safety a genuine constraint for expressivity?
l.e. are there inherently unsafe word languages / trees / graphs?
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Infinite structures generated by recursion schemes: key questions

4 Graph families:
©® Definition: What is a good definition of “graphs generated by
recursion schemes” ?
® Model-checking properties: What are the decidable (modal-) logical
theories of the graph families?
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Q1. Do trees in RecSchTree,X> have decidable MSO theories?

Recent Progress:

Theorem (Aehlig, de Miranda + O. TLCA 2005)

Y -labelled trees generated by order-2 recursion schemes (whether safe or
not) have decidable MSO theories.
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Recent Progress:

Theorem (Aehlig, de Miranda + O. TLCA 2005)

Y -labelled trees generated by order-2 recursion schemes (whether safe or
not) have decidable MSO theories.

Theorem (Knapik, Niwinski, Urczyczn + Walukiewicz, ICALP 2005)

Modal mu-calculus model checking problem for homogenously-typed
order-2 schemes (whether safe or not) is 2-EXPTIME complete.
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Q1. Do trees in RecSchTree,X> have decidable MSO theories?

Recent Progress:

Theorem (Aehlig, de Miranda + O. TLCA 2005)

Y -labelled trees generated by order-2 recursion schemes (whether safe or
not) have decidable MSO theories.

Theorem (Knapik, Niwinski, Urczyczn + Walukiewicz, ICALP 2005)

Modal mu-calculus model checking problem for homogenously-typed
order-2 schemes (whether safe or not) is 2-EXPTIME complete.

What about higher orders?
Yes: MSO decidability extends to all orders (O. LICSO06).
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Q1. Do trees in RecSchTree,> have decidable MSO theories? Yes

Theorem (O. LICS 2006)

For n > 0, the modal mu-calculus model-checking problem for
RecSchTree X (i.e. trees generated by order-n recursion schemes) is
n-EXPTIME complete. Thus these trees have decidable MSO theories.

[This is the largest generically-defined MSO-decidable class of ranked trees
(cf. Montanari + Puppis, LICS 2007).]

Luke Ong (University of Oxford)
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Q1. Do trees in RecSchTree,X> have decidable MSO theories? Yes

Theorem (O. LICS 2006)

For n > 0, the modal mu-calculus model-checking problem for
RecSchTree X (i.e. trees generated by order-n recursion schemes) is
n-EXPTIME complete. Thus these trees have decidable MSO theories.

[This is the largest generically-defined MSO-decidable class of ranked trees
(cf. Montanari + Puppis, LICS 2007).]
Two key ingredients:
[ G] satisifes modal mu-calculus formula ¢
<= { Emerson + Jutla 1991}
APT B, has accepting run-tree over generated tree [ G ]
<= { |. Transference Principle: Traversal-Path Correspondence}
APT B, has accepting traversal-tree over computation tree A(G)
<= { Il. Simulation of traversals by paths }
APT C,, has an accepting run-tree over computation tree A\(G)
which is decidable.
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Transference principle, based on a theory of traversals

S = FH _ S = AOF(Ax.QHAX)
G:i{ Fp = w(Fp) = G:i{ F = App(ACF (Ayve(Ay))
Hz = fzz H = Xz.f(Az)(\.2)
[c] A(G)
A
f (¢
f f AP AX <
f f f f v ¢
‘ ‘ ‘ ‘ \ VRN
7)\Z< )\
| \ \
- C - p f - X
LA Ay
¥ i z z
A A
\
y
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Idea: (-reduction is global (i.e. substitution changes the term being
evaluated); game semantics gives an equivalent but local view.

A traversal (over the computation tree A\(G)) is a trace of the local
computation that produces a path (over [ G]).
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Idea: (-reduction is global (i.e. substitution changes the term being
evaluated); game semantics gives an equivalent but local view.

A traversal (over the computation tree A\(G)) is a trace of the local
computation that produces a path (over [ G]).

Theorem (Path-traversal correspondence)
Let G be an order-n recursion scheme.

(i) There is a 1-1 correspondence between maximal paths p in (X-labelled)
generated tree [ G| and maximal traversals t, over computation tree
AG).

(ii) Further for each p, we have p | X =t, [ ¥.

Proof is by game semantics.
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Idea: (-reduction is global (i.e. substitution changes the term being
evaluated); game semantics gives an equivalent but local view.

A traversal (over the computation tree A\(G)) is a trace of the local
computation that produces a path (over [ G]).

Theorem (Path-traversal correspondence)
Let G be an order-n recursion scheme.

(i) There is a 1-1 correspondence between maximal paths p in (X-labelled)
generated tree [ G| and maximal traversals t, over computation tree
AG).

(ii) Further for each p, we have p | X =t, [ ¥.

Proof is by game semantics.

Explanation (for game semanticists):

@ Term-tree [ G] is (a representation of) the game semantics of G.

@ Paths in [ G] correspond to plays in the strategy-denotation.

@ Traversals t, over computation tree A\(G) are just (representations of) the
uncoverings of the plays (= path) p in the game semantics of G.
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Q2: Machine characterization: collapsible pushdown automata

Order-2 collapsible pushdown automata [HOMS, LiCS 08a] are essentially
the same as 2PDA with links [AdMO 05], and panic automata [KNUW 05].

Idea: Each stack symbol in 2-stack “remembers” the stack content at the
point it was first created (i.e. push;ed onto the stack), by way of a pointer
to some 1-stack underneath it (if there is one such).
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the same as 2PDA with links [AdMO 05], and panic automata [KNUW 05].

Idea: Each stack symbol in 2-stack “remembers” the stack content at the
point it was first created (i.e. push;ed onto the stack), by way of a pointer
to some 1-stack underneath it (if there is one such).

Two new stack operations: a € I' (stack alphabet)

@ push; a: pushes a onto the top of the top 1l-stack, together with a
pointer to the 1-stack immediately below the top 1-stack.
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Q2: Machine characterization: collapsible pushdown automata

Order-2 collapsible pushdown automata [HOMS, LiCS 08a] are essentially
the same as 2PDA with links [AdMO 05], and panic automata [KNUW 05].

Idea: Each stack symbol in 2-stack “remembers” the stack content at the
point it was first created (i.e. push;ed onto the stack), by way of a pointer
to some 1-stack underneath it (if there is one such).

Two new stack operations: a € I' (stack alphabet)

@ push; a: pushes a onto the top of the top 1l-stack, together with a
pointer to the 1-stack immediately below the top 1-stack.

@ collapse (= panic) collapses the 2-stack down to the prefix pointed to
by the top;-element of the 2-stack.

Note that the pointer-relation is preserved by push,.
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An example

Order-2 Collapsible Pushdown Automata (for word languages):
(X,Q,q0,,AC(TU{e})x QxT xQxOpy, F)

where Op, := { push,, pop,, popy,collapse } U {push;a|acTl}.
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An example

Order-2 Collapsible Pushdown Automata (for word languages):
(X,Q,q0,,AC(TU{e})x QxT xQxOpy, F)

where Op, := { push,, pop,, popy,collapse } U {push;a|acTl}.

Example. Starting from the empty 2-stack [[]], what is the top-of-stack
symbol after the following sequence of actions?

pushy
push;a
pushy
push;b
pushy
pPop;
collapse

Noorwn =
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Collapsible pushdown automata: extending to all finite orders
In order-n CPDA, there are n— 1 versions of push;, namely, push’i a, with
1<;<n-1:

pushji a: pushes a onto the top of the top 1-stack, together with
a pointer to the j-stack immediately below the top j-stack.
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Example: Urzyczyn's Language U over alphabet { (,),* }

Definition (Aehlig, de Miranda + O. FoSSaCS 05) A U-word has 3 segments:

oG () () s

——
A B C

@ Segment A is a prefix of a well-bracketed word that ends in (, and the
opening ( is not matched in the entire word.

@ Segment B is a well-bracketed word.

@ Segment C has length equal to the number of ( in segment A.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 43 / 52



Example: Urzyczyn's Language U over alphabet { (,),* }

Definition (Aehlig, de Miranda + O. FoSSaCS 05) A U-word has 3 segments:

oG () () s

——
A B C

@ Segment A is a prefix of a well-bracketed word that ends in (, and the
opening ( is not matched in the entire word.

@ Segment B is a well-bracketed word.

@ Segment C has length equal to the number of ( in segment A.

Examples

O (OCO)(O))*x*xeU
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Example: Urzyczyn's Language U over alphabet { (,),* }

Definition (Aehlig, de Miranda + O. FoSSaCS 05) A U-word has 3 segments:

oG () () s

——
A B C

@ Segment A is a prefix of a well-bracketed word that ends in (, and the
opening ( is not matched in the entire word.

@ Segment B is a well-bracketed word.

@ Segment C has length equal to the number of ( in segment A.

Examples

O (O(O)((O))*xxeU

@ For each n >0, we have ((")"( " *x € U. (Hence by “uvwxy
Lemma”, U is not context-free.)
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Recognising U by a (det.) 2CPDA. E.g. (() (() * xx € U
(Ignoring control states for simplicity)

[ Upon reading | Do |
push, ; push;a
. pop,
first x collapse
subsequent x POop,

(r11
( (L1 a1]

AR
( (L1l adla a 1]
) [(C1[allall

VAR

( [(C1[aJllall a all
( [[10al0ad( a adlaaa 1]
) [[][a][amc’a]] Collapse!
* (LIl allall

* (L 10 a1]]
* (L 11

What does the depth of the top 1-stack mean?
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E.g. Urzyczyn's Language U (cont’d)

Observation
© U is recognisable by a deterministic order-2 CPDA.

@ Equivalently (thanks to [AdMO 05]) U is recognisable by a
non-deterministic order-2 PDA — because of the need to guess the
transition from segment A to segment B.

Conjecture J

U is not recognisable by a deterministic order-2 PDA.

(Related to the Safety Conjecture - more anon.)

Exercise (moderately hard). Give an order-2 recursion scheme that
generates U.
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Q2: Recursion schemes are equi-expressive with CPDA

Theorem (Equi-Expressivity, Hague, Murawski, O. + Serre LICS'08)

For each n > 0, order-n recursion schemes and order-n collapsible PDA are
equi-expressive for 2 -labelled trees. l.e. RecSchTree,X = CPDATree, X

(Proof uses theory of traversals, based on game semantics.)

Luke Ong (University of Oxford)
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For each n > 0, order-n recursion schemes and order-n collapsible PDA are
equi-expressive for 2 -labelled trees. l.e. RecSchTree,X = CPDATree, X
(Proof uses theory of traversals, based on game semantics.)
Consequences:
O Kleene’s Problem: What computing power is required to compute
order-n lambda-definable functionals?

The Theorem gives a syntax-independent characterisation of pure
simply-typed lambda-calculus with recursion.
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For each n > 0, order-n recursion schemes and order-n collapsible PDA are
equi-expressive for 2 -labelled trees. l.e. RecSchTree,X = CPDATree, X
(Proof uses theory of traversals, based on game semantics.)

Consequences:

O Kleene’s Problem: What computing power is required to compute
order-n lambda-definable functionals?

The Theorem gives a syntax-independent characterisation of pure
simply-typed lambda-calculus with recursion.

O A new proof of the MSO decidability of trees generated by order-n
recursion schemes.
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Q2: Recursion schemes are equi-expressive with CPDA

Theorem (Equi-Expressivity, Hague, Murawski, O. + Serre LICS'08)

For each n > 0, order-n recursion schemes and order-n collapsible PDA are
equi-expressive for 2 -labelled trees. l.e. RecSchTree,X = CPDATree, X

(Proof uses theory of traversals, based on game semantics.)
Consequences:
O Kleene’s Problem: What computing power is required to compute
order-n lambda-definable functionals?

The Theorem gives a syntax-independent characterisation of pure
simply-typed lambda-calculus with recursion.

O A new proof of the MSO decidability of trees generated by order-n
recursion schemes.

Open Problem. Find a new proof of “RS — CPDA" without using game
semantics.
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Q3: Does safety constrain expressivity?

Case 1: Word languages. Conjecture: Yes; but note

Theorem (Aehlig, de Miranda + O., FoSSaCS 2005)

At order 2, there are no inherently unsafe word languages. l.e. for every
unsafe order-2 recursion scheme, there is a safe (non-deterministic) order-2
recursion scheme that generates the same language.
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Q3: Does safety constrain expressivity?

Case 1: Word languages. Conjecture: Yes; but note

Theorem (Aehlig, de Miranda + O., FoSSaCS 2005)

At order 2, there are no inherently unsafe word languages. l.e. for every
unsafe order-2 recursion scheme, there is a safe (non-deterministic) order-2
recursion scheme that generates the same language.

Case 2: Trees. Conjecture: Yes.

The Safety Conjecture

For each n > 2, there is a tree generated by an unsafe order-n recursion
scheme but not by any safe order-n recursion scheme.
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Q3: Does safety constrain expressivity?

Case 3: Graphs. Yes.

Theorem (Hague, Murawski, O. + Serre LICS 2008a)
There is an order-2 CPDA graph that is not generated by any order-2 PDA.J
(See example graph later.)

Luke Ong (University of Oxford)
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A survey of graph families with model-checking properties

Caucal Graph Hierarchy

Ground-term tree rewriting (Loding 02)
Automatic graphs (Hodgson 76, KN 94)
Rational graphs

Luke Ong (University of Oxford)

Decidable?
MSO | u | FO(R) | FO
yes | yes | yes | yes
no no yes yes
no no no yes
no | no no no

Model Checking Functional Programs
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A survey of graph families with model-checking properties

Decidable?

MSO | © | FO(R) | FO
Caucal's Graph Hierarchy yes | yes yes yes
C no | yes ? ?
Ground-term tree rewriting (Loding 02) no no yes | yes
Automatic graphs (Hodgson 76, KN 94) | no | no no | yes
Rational graphs no no no no

Question

Is there a generically-defined family C of graphs that have decidable
modal-mu calculus theories but undecidable MSO theories?

Yes. See construction on next slide (HMOS, LiCS 08a).
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Configuration graphs of (order-2) CPDA is not MSO-decidable

An order-2 CPDA graph: MSO-interpretable into the infinite half-grid.

orr11 5 1001 —> 0[01[al] —5 1001 [al [a]] —>= O[[1[al [aal] > 1[[1[al[aal[aal]

AN T b

2[[10p1] 5 2[[1[a]l[ab]] 2[[1[al[aal [aab]]
5 I
2001101 2[[1[al[al] © 2[[1[al[aal[aal]l

3 4

2[[1[al (1] 2[[1[al [aa] [a]]

|

2[[1[al[aal[1]

To our knowledge CPDA graphs are the first “natural” generically-defined
graph families that have decidable modal mu-calculus theories but
undecidable MSO theories.
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Q4: Model-checking properties of CPDA graphs

Theorem (Hague, Murawski, O and Serre, LiCS 2008a)

@ For each n > 0, the decidability of modal mu-calculus model-checking

problem for configuration graphs of order-n CPDA is n-EXPTIME
complete.

© Equivalently solvability of parity games over order-n CPDA graphs is
n-EXPTIME complete.
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