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Model checking and computer-aided verification

Beginning in the 80s, computer-aided verification (notably model
checking) of finite-state systems (e.g. hardware and communication
protocols) has been a great success story in computer science.

Clarke, Emerson and Sifakis won the 2007 ACM Turing Award

“for their rôle in developing model checking into a highly effective
verification technology, widely adopted in hardware and software
industries”.

Focus of past decade: transfer of these techniques to software verification.
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What is (software) model checking?

Problem: Given a system Sys (e.g. an OS), and given a desirable
behavioural property Spec (e.g. deadlock freedom), does Sys satisfy Spec?

The model checking approach:

1 Find an abstract model M of the system Sys.

2 Describe the property Spec as a formula ϕ of a suitable logic.

3 Exhaustively check if ϕ is violated by M.

Huge strides made in verification of 1st-order imperative programs.

Many tools: SLAM, Blast, Terminator, SatAbs, etc.

Two key techniques: State-of-the-art tools use

1 abstraction techniques, as exemplified by CEGAR (Counter-Example
Guided Abstraction Refinement)

2 acceleration methods such as SAT- and SMT-solvers.
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Verification of higher-order programs

Examples: OCaml, F#, Haskell, Lisp/Scheme, Ptalon, etc.
By comparison with 1st-order imperative program, the model checking of
higher-order programs is in its infancy.

Some theoretical advances in recent years; very little tool development.

Model-checking higher-order programs is hard:

1 Infinite-state and extremely complex: Even without recursion,
higher-order programs over a finite base type are infinite-state.

(Other sources of infinity: data structures and manipulation, control

structures (with recursion), asynchronous communication, real-time and

embedded systems, systems with parameters etc.)

2 Models of higher-order features as studied in semantics – are typically
too “abstract” to support any algorithmic analysis.

(A notable exception is game semantics.)
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Verifying higher-order programs: a worthwhile challenge

1. Widely used in diverse domains. Succinct, less error-prone, easy to
write and hence good for prototyping; performance (of e.g. F#)
approaching C++.

Traditional applications: theorem proving and reasoning assistance,
computational linguistics, programming language processing.

More recently: databases, networking, internet search (Google’s
MapReduce), trading and investment banking.
See Wadler’s page “Functional Programming in the Real World”1

2. Many hard theoretical problems: E.g. termination analysis,
higher-order matching, and (contextual) reachability analysis.

Our goal: To use semantic methods, in conjunction with algorithmic ideas
and techniques from Verification, to formally analyze programming
situations in which higher-order features are important.

1http://homepages.inf.ed.ac.uk/wadler/realworld/
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Lecture Course: Aim and Overview

Aim

To introduce a systematic approach to the algorithmics of infinite
structures generated by families of higher-order generators, suitable as a
basis for model checking a wide range of behavioural properties of
higher-order functional programs.

4 lectures.

Part 1: Background and Survey

1 Families of Generators of Higher-Order Infinite Structures

2 Survey of Algorithmic Model Theory

Part 2: Some Theory and Application

1 Type Theory and Modal Mu-Calculus Model Checking

2 Application: Model Checking Functional Programs
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Outline I

1 Relating (Families of) Generators of Infinite Structures
Higher-Order Pushdown Automata
Higher-Order Recursion Schemes
Relating the Generator Families: Word Languages

2 Recursion Schemes and their Algorithmic Model Theory
Q1: Decidability of MSO / Modal Mu-Calculus Theories
Q2: Machine Characterisation by Collapsible Pushdown Automata
Q3: Expressivity: The Safety Conjecture
Q4: Infinite Graphs Generated by Recursion Schemes / CPDA
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Higher-order pushdown automata (HOPDA) [Maslov 74]

Order-2 pushdown automata
A 1-stack is an ordinary stack. A 2-stack (resp. n + 1-stack) is a stack of
1-stacks (resp. n-stack).

Operations on 2-stacks: si ranges over 1-stacks. Top of stack is at the
righthand end.

push2 : [s1 · · · si−1 [a1 · · · an]
︸ ︷︷ ︸

si

] 7→ [s1 · · · si−1 si si]

pop2 : [s1 · · · si−1 [a1 · · · an]] 7→ [s1 · · · si−1]

push1 a : [s1 · · · si−1 [a1 · · · an]] 7→ [s1 · · · si−1 [a1 · · · an a]]

pop1 : [s1 · · · si−1 [a1 · · · an an+1]] 7→ [s1 · · · si−1 [a1 · · · an]]

Idea extends to all finite orders: an order-n PDA has an order-n stack, and
has pushi and popi for each 1 ≤ i ≤ n.
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HOPDA as recognizers of word languages

HOPDA can be used as recognizing/generating device for
1 finite-word languages (Maslov 74) (and ω-word languages)

〈Σ,Q, q0,Γ,∆ ⊆ (Σ ∪ { ǫ }) × Q × Γ × Opn × Q,F 〉

2 possibly-infinite (ranked) trees (KNU01), and tree languages
3 possibly infinite graphs (Muller+Schupp 86, Courcelle 95, Cachat 03)

Some basic facts (Maslov 74, 76):

1 HOPDA define an infinite hierarchy of word languages.

2 Low orders are well-known: orders 0, 1 and 2 are the regular, context
free, and indexed languages (Aho 68). Higher-order languages are
poorly understood.

3 For each n ≥ 0, the order-n languages form an abstract family of
languages (closed under +, ·, (−)∗, intersection with regular
languages, homomorphism and inverse homo.)

4 For each n ≥ 0, the emptiness problem for order-n PDA is decidable.
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Example: L := { an bn cn : n ≥ 0 } is recognizable by an order-2 PDA

L is not context free. Use the “uvwxy Lemma”.

Idea: Use top 1-stack to process an bn, and height of 2-stack to remember n.

q1 [[]]
a

q1 [[][z]]
a

q1 [[][z][zz]]

b

q2 [[][z][z]]

b

q3 [[]] q3 [[][z]]c
q2 [[][z][]]c

q1

z
b
→ pop1z

−
a
→ push2 ; push1z

q2

⊥
c
→ pop2

z
b
→ pop1

q3

z
c
→ pop2

‘read a’ ‘read b’ ‘read c ’
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Pumping Lemma for Context-Free Languages

Theorem (uvwxy)

Let L be an infinite CFL. Every word in L longer then p can be written as
a concatenation of subwords, u v w x y, such that |v w x | ≤ p, |v x | ≥ 1,
and for every i ≥ 0, u v i w x i y is in L.
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A reminder: simple types

Types A ::= o | (A → B)

Every type can be written uniquely as

A1 → (A2 · · · → (An → o) · · · ), n ≥ 0

often abbreviated to A1 → A2 · · · → An → o.

Order of a type: measures “nestedness” on LHS of →.

order(o) = 0
order(A → B) = max(order(A) + 1, order(B))

Examples. N → N and N → (N → N) both have order 1;
(N → N) → N has order 2.

Notation. e : A means “expression e has type A”.
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Higher-order recursion schemes [Par68, Niv72, NC78, Dam82,...]

An order-n recursion scheme = closed ground-type term definable in
order-n fragment of simply-typed λ-calculus with recursion and
uninterpreted order-1 constant symbols.

Example: An order-1 recursion scheme. Fix ranked alphabet
Σ = { f : 2, g : 1, a : 0 }.

G :

{
S = F a

F x = f x (F (g x))

Unfolding from the start symbol S :

S → F a
→ f a (F (g a))
→ f a (f (g a) (F (g (g a))))
→ · · ·

The (term-)tree thus generated, [[G ]], is f a (f (g a) (f (g (g a))(· · · ))).
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Representing the term-tree [[ G ]] as a Σ-labelled tree

[[G ]] = f a (f (g a) (f (g (g a))(· · · ))) is the (term-)tree

f

a f
g f

a g f

g ...
a

We view the infinite term [[ G ]] as a Σ-labelled tree, formally, a map
T −→ Σ, where T is a prefix-closed subset of Dir∗, with Dir a set of edge
labels.

Formally term-trees such as [[G ]] are ranked and ordered.
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Definition: Order-n (deterministic) recursion scheme G = (N ,Σ,R,S)

Fix a set of typed variables (written as ϕ, x , y etc).

N : Typed non-terminals of order at most n (written as upper-case
letters), including a distinguished start symbol S : o.

Σ: Ranked alphabet of terminals: f ∈ Σ has arity ar(f ) ≥ 0

R: An equation for each non-terminal D : A1 → · · · → Am → o of
shape

D ϕ1 · · · ϕm = e

where the term e : o is constructed from
◮ terminals f , g , a, etc. from Σ
◮ variables ϕ1 : A1, · · · , ϕm : Am from Var ,
◮ non-terminals D,F ,G , etc. from N .

using the application rule: If s : A → B and t : A then (s t) : B .
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The tree generated by a recursion scheme: value tree

Given a term t, define a (finite) tree t⊥ by

t⊥ :=







f if t is a terminal f
t⊥1 t⊥2 if t = t1 t2 and t⊥1 6= ⊥
⊥ otherwise

We extend the flat partial order on Σ (i.e. ⊥ ≤ a for all a ∈ Σ) to trees by:

s ≤ t := ∀α ∈ dom(s) . α ∈ dom(t) ∧ s(α) ≤ t(α)

E.g. ⊥ ≤ f ⊥⊥ ≤ f ⊥b ≤ fab.

For a directed set T of trees, we write
⊔

T for the lub of T w.r.t. ≤.

Let G be a recursion scheme. We define the tree generated by G by

[[ G ]] :=
⊔

{ t⊥ | S →∗ t }
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An order-2 example

Σ = { f : 2, g : 1, a : 0 }.
S : o, B : (o → o) → (o → o) → o → o, F : (o → o) → o

G2 :







S = F g
B ϕψ x = ϕ (ψ x)

F ϕ = f (ϕ a) (F (B ϕϕ))

The generated tree, [[ G2 ]] : { 1, 2 }∗ −→ Σ, is:

f
g f
a g f

g g f

a g ...
g

g

a
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Using recursion schemes as generators of word languages

Idea: A word is just a linear tree.

Represent a finite word “a b c” (say) as the applicative term a (b (c e)),
viewing a, b and c as symbols of arity 1, where e is the arity-0 end-of-word
marker.

Fix an input alphabet Σ. We can use a (non-deterministic) recursion
scheme to generate finite-word languages, with ranked alphabet
Σ := { a : 1 | a ∈ Σ } ∪ { e : 0 }.

Example. { an bn | n ≥ 0 } is generated by order-1 recursion scheme:

{
S → F e

F x → a (F (b x)) | x
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Exercises

1 Find an order-2 (word-language) recursion scheme that generates
L = { aibic i | i ≥ 0 }.

2 Prove that context-free languages are equivalent to languages
generated by order-1 (word-language) recursion schemes.

Answer to 1.






S → F I e
F ϕ x → ϕ x | F (H ϕ) (c x)
H ϕ y → a (ϕ (b y))

I x → x
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Relating the two generator-families: word-language case

Theorem (Equi-expressivity)

For each n ≥ 0, the three formalisms

1 order-n pushdown automata (Maslov 76)

2 order-n safe recursion schemes (Damm 82, Damm + Goerdt 86)

3 order-n indexed grammars (Maslov 76)

generate the same class of word languages.

What is safety? (See later.)
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Maslov Hierarchy: Many Open Problems

1 Pumping Lemma, Myhill-Nerode, and Parikh Theorems.
Weak “pumping lemmas” for levels 1 and 2 (Hayashi 73, Gilman 96).

Pace (Blumensath 04) for Maslov Hierarchy – but runs (not plays) are

pumpable, conditions given as lengths of runs and configuration size.

2 Logical characterisations.
E.g. MSOL for regular languages (Büchi 60). Characterisation of CFL using

quantification over matchings (LST 94).

3 Complexity-theoretic characterisations.
Pace (Engelfriet 83, 91): characterisations of languages accepted by

alternating / two-way / multi-head / space-auxiliary order-n PDA as

time-complexity classes (but no result for Maslov Hierarchy itself)

4 Relationship with Chomsky Hierachy. E.g. is level 3 context-sensitive?
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Why study the two families of generators?

They are relevant to both semantics and verification:

1 Recursion schemes are an old and influential formalism for the
semantical analysis of imperative and functional programs (Nivat 75,
Damm 82). They are a compelling model of computation for
higher-order functional programs.

2 Pushdown automata characterize the control flow of 1st-order
(recursive) procedural programs.
Pushdown checkers (e.g. MOPED) are essential back-end engines of

state-of-the-art software model checkers (e.g. SLAM, Terminator).

3 Higher-order (collapsible) pushdown automata are highly accurate
models of computation of higher-order procedural programs.
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Outline

1 Relating (Families of) Generators of Infinite Structures
Higher-Order Pushdown Automata
Higher-Order Recursion Schemes
Relating the Generator Families: Word Languages

2 Recursion Schemes and their Algorithmic Model Theory
Q1: Decidability of MSO / Modal Mu-Calculus Theories
Q2: Machine Characterisation by Collapsible Pushdown Automata
Q3: Expressivity: The Safety Conjecture
Q4: Infinite Graphs Generated by Recursion Schemes / CPDA

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 24 / 52



A challenge problem in higher-order verification

f

a f
g f

a g f

g ...
a

Example: Consider [[ G ]] on the right

ϕ1 = “Infinitely many f -nodes are reachable”.

ϕ2 = “Only finitely many g -nodes are reachable”.

Every node on the tree satisfies ϕ1 ∨ ϕ2.

Let RecSchTreen be the class of Σ-labelled
trees generated by order-n recursion schemes.

Is the “MSO Model-Checking Problem for RecSchTreen” decidable?

INSTANCE: An order-n recursion scheme G , and an MSO formula ϕ

QUESTION: Does the Σ-labelled tree [[ G ]] satisfy ϕ?
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Why study MSO logic?

Because it is the gold standard of logics for describing model-checking
properties.

MSO is very expressive. Over graphs, MSO is more expressive than
the modal mu-calculus, into which all standard temporal logics
(e.g. LTL, CTL, CTL∗, etc.) can embed.

It is hard to extend MSO meaningfully without sacrificing decidability
where it holds.

What is MSO logic?
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Review: Representing trees as logical structures

Represent a Σ-labelled tree t : dom(t) −→ Σ as a logical structure

〈dom(t), 〈di : 1 ≤ i ≤ m 〉, 〈pf : f ∈ Σ 〉 〉

Parent-child relationship between nodes: di (x , y) ≡ “y is i -child of x”

Node labelling: pf (x) ≡ “x has label f ” where f is a Σ-symbol
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Monadic Second-Order Logic (for Σ-labelled trees)

First-order variables: x , y , z , etc. (ranging over nodes)

Second-order variables: X ,Y ,Z , etc. (ranging over sets of nodes
i.e. monadic relations)

MSO formulas are built up from atomic formulas:

Parent-child relationship between nodes: di (x , y)

Node labelling: pf (x)

Set-membership: x ∈ X

and closed under boolean connectives, first-order quantification
(∀x .−,∃x .−) and second-order quantifications: (∀X .−,∃X .−).
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Examples of MSO-definable properties

Several useful relations are definable:

1 Set inclusion (and hence equality): X ⊆ Y ≡ ∀x . x ∈ X → x ∈ Y .

2 “Is-an-ancestor-of” or prefix ordering x ≤ y (and hence x = y):

PrefCl(X ) ≡ ∀x , y . y ∈ X ∧
∨m

i=1 di(x , y) → x ∈ X
x ≤ y ≡ ∀X .PrefCl(X ) ∧ y ∈ X → x ∈ X

Reachability property: “X is a path”

Path(X ) ≡ ∀x , y ∈ X . x ≤ y ∨ y ≤ x
∧ ∀x , y , z . x ∈ X ∧ z ∈ X ∧ x ≤ y ≤ z → y ∈ X

MaxPath(X ) ≡ Path(X ) ∧ ∀Y . Path(Y ) ∧ X ⊆ Y → Y ⊆ X .
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E.g. MSO can expresss “∃ infinitely many f -labelled nodes”

A set of nodes is a cut if no two nodes in it are ≤-compatible, and it has a
non-empty intersection with every maximal path.

Cut(X ) ≡ ∀x , y ∈ X . ¬(x ≤ y ∨ y ≤ x)
∧ ∀Z . MaxPath(Z ) → ∃z ∈ Z . z ∈ X

Lemma

A set X of nodes in a finitely-branching tree is finite iff there is a cut C
such that every X -node is a prefix of some C-node.

Finite(X ) ≡ ∃Y .Cut(Y ) ∧ ∀x ∈ X .∃y ∈ Y . x ≤ y

Hence “there are finitely many nodes labelled by f ” is expressible in MSO
by ∃X . Finite(X ) ∧ ∀x . pf (x) → x ∈ X .
But “MSO cannot count”: E.g. “X has twice as many elements as Y ”.
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A (selective) survey of MSO-decidable structures: up to 2002

Rabin 1969: Regular trees. “Mother of all decidability results in
Verification.”

Muller and Schupp 1985: Configuration graphs of PDA.

Caucal 1996 Prefix-recognizable graphs (ǫ-closures of configuration
graphs of pushdown automata, Stirling 2000).

Knapik, Niwiński and Urzyczyn (TLCA 2001, FOSSACS 2002):
PushdownTreenΣ = Trees generated by order-n pushdown automata.
SafeRecSchTreenΣ = Trees generated by order-n safe rec. schemes.

Subsuming all the above:
Caucal (MFCS 2002). CaucalTreenΣ and CaucalGraphnΣ.

Theorem (KNU-Caucal 2002)

For n ≥ 0, PushdownTreenΣ = SafeRecSchTreenΣ = CaucalTreenΣ;
and they have decidable MSO theories.
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What is the safety constraint on recursion schemes?

Safety is a set of constraints on where variables may occur in a term.

Definition (Damm TCS 82, KNU FoSSaCS’02)

An order-2 equation is unsafe if the RHS has a subterm P s.t.

1 P is order 1

2 P occurs in an operand position (i.e. as 2nd argument of application)

3 P contains an order-0 parameter.

Consequence: An order-i subterm of a safe term can only have free
variables of order at least i .
Example (unsafe eqn): F : (o → o) → o → o → o, f : o2 → o, x , y : o.

F ϕ x y = f (F (F ϕ y) y (ϕ x)) a
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What is the point of safety?

Safety does have an important algorithmic advantage!

Theorem (Blum + O. TLCA 07, LMCS 09)

Substitution (hence β-red.) in safe λ-calculus can be safely implemented
without renaming bound variables! Hence no fresh names needed.

Theorem
1 (Schwichtenberg 76) The numeric functions representable by

simply-typed λ-terms are multivariate polynomials with conditional.

2 (Blum + O. LMCS 09) The numeric functions representable by
simply-typed safe λ-terms are the multivariate polynomials.

(See (Blum + O. LMCS 09) for a study on the safe lambda calculus.)
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Infinite structures generated by recursion schemes: key questions

1 MSO decidability: Is safety a genuine constraint for decidability?
I.e. do trees generated by (arbitrary) recursion schemes have
decidable MSO theories?

2 Machine characterisation: Find a hierarchy of automata that
characterise the expressive power of recursion schemes.
I.e. how should the power of higher-order pushdown automata be
augmented to achieve equi-expressivity with (arbitrary) recursion
schemes?

3 Expressivity: Is safety a genuine constraint for expressivity?
I.e. are there inherently unsafe word languages / trees / graphs?
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Infinite structures generated by recursion schemes: key questions

4 Graph families:
1 Definition: What is a good definition of “graphs generated by

recursion schemes”?
2 Model-checking properties: What are the decidable (modal-) logical

theories of the graph families?
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Q1. Do trees in RecSchTreenΣ have decidable MSO theories?

Recent Progress:

Theorem (Aehlig, de Miranda + O. TLCA 2005)

Σ-labelled trees generated by order-2 recursion schemes (whether safe or
not) have decidable MSO theories.

Theorem (Knapik, Niwinski, Urczyczn + Walukiewicz, ICALP 2005)

Modal mu-calculus model checking problem for homogenously-typed
order-2 schemes (whether safe or not) is 2-EXPTIME complete.

What about higher orders?

Yes: MSO decidability extends to all orders (O. LICS06).
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Q1. Do trees in RecSchTreenΣ have decidable MSO theories? Yes

Theorem (O. LICS 2006)

For n ≥ 0, the modal mu-calculus model-checking problem for
RecSchTreenΣ (i.e. trees generated by order-n recursion schemes) is
n-EXPTIME complete. Thus these trees have decidable MSO theories.

[This is the largest generically-defined MSO-decidable class of ranked trees

(cf. Montanari + Puppis, LICS 2007).]

Two key ingredients:
[[G ]] satisifes modal mu-calculus formula ϕ

⇐⇒ { Emerson + Jutla 1991}
APT Bϕ has accepting run-tree over generated tree [[ G ]]

⇐⇒ { I. Transference Principle: Traversal-Path Correspondence}
APT Bϕ has accepting traversal-tree over computation tree λ(G )

⇐⇒ { II. Simulation of traversals by paths }
APT Cϕ has an accepting run-tree over computation tree λ(G )

which is decidable.
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Transference principle, based on a theory of traversals

G :

(

S = F H
F ϕ = ϕ (F ϕ)
H z = fzz

7→ G :

(

S = λ.@ F (λx .@ H λ.x)
F = λϕ.ϕ(λ.@ F (λy .ϕ(λ.y))))
H = λz .f (λ.z)(λ.z)

[[ G ]] λ(G)

λ

f @

f f λϕ λx

f f f f ϕ @

...
...

...
... λ λz λ

@ f x

λϕ λy λ λ

ϕ ϕ z z

λ λ

...
y
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Idea: β-reduction is global (i.e. substitution changes the term being
evaluated); game semantics gives an equivalent but local view.
A traversal (over the computation tree λ(G )) is a trace of the local
computation that produces a path (over [[G ]]).

Theorem (Path-traversal correspondence)

Let G be an order-n recursion scheme.

(i) There is a 1-1 correspondence between maximal paths p in (Σ-labelled)
generated tree [[ G ]] and maximal traversals tp over computation tree
λ(G ).

(ii) Further for each p, we have p ↾ Σ = tp ↾ Σ.

Proof is by game semantics.

Explanation (for game semanticists):

Term-tree [[ G ]] is (a representation of) the game semantics of G .
Paths in [[G ]] correspond to plays in the strategy-denotation.
Traversals tp over computation tree λ(G ) are just (representations of) the
uncoverings of the plays (= path) p in the game semantics of G .
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Q2: Machine characterization: collapsible pushdown automata

Order-2 collapsible pushdown automata [HOMS, LiCS 08a] are essentially
the same as 2PDA with links [AdMO 05], and panic automata [KNUW 05].

Idea: Each stack symbol in 2-stack “remembers” the stack content at the
point it was first created (i.e. push1ed onto the stack), by way of a pointer
to some 1-stack underneath it (if there is one such).

Two new stack operations: a ∈ Γ (stack alphabet)

push1 a: pushes a onto the top of the top 1-stack, together with a
pointer to the 1-stack immediately below the top 1-stack.

collapse (= panic) collapses the 2-stack down to the prefix pointed to
by the top1-element of the 2-stack.

Note that the pointer-relation is preserved by push2.
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An example

Order-2 Collapsible Pushdown Automata (for word languages):

〈Σ,Q, q0,Γ,∆ ⊆ (Σ ∪ { ǫ }) × Q × Γ × Q × Op2,F 〉

where Op2 := { push2, pop2, pop1, collapse } ∪ { push1a | a ∈ Γ }.

Example. Starting from the empty 2-stack [ [ ] ], what is the top-of-stack
symbol after the following sequence of actions?

1. push2

2. push1a
3. push2

4. push1b
5. push2

6. pop1

7. collapse
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Collapsible pushdown automata: extending to all finite orders

In order-n CPDA, there are n− 1 versions of push1, namely, pushj
1 a, with

1 ≤ j ≤ n − 1:

pushj
1 a: pushes a onto the top of the top 1-stack, together with

a pointer to the j-stack immediately below the top j-stack.
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Example: Urzyczyn’s Language U over alphabet { (, ), ∗ }

Definition (Aehlig, de Miranda + O. FoSSaCS 05) A U-word has 3 segments:

( · · · ( · · · (
︸ ︷︷ ︸

A

( · · · ) · · · ( · · · )
︸ ︷︷ ︸

B

∗ · · · ∗
︸ ︷︷ ︸

C

Segment A is a prefix of a well-bracketed word that ends in (, and the
opening ( is not matched in the entire word.
Segment B is a well-bracketed word.
Segment C has length equal to the number of ( in segment A.

Examples

1 ( ( ) ( ( ) ( ( ) ) ∗ ∗ ∗ ∈ U
2 For each n ≥ 0, we have ( (n )n ( ∗n ∗ ∗ ∈ U. (Hence by “uvwxy

Lemma”, U is not context-free.)
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Recognising U by a (det.) 2CPDA. E.g. ( ( ) ( ( ) ∗ ∗ ∗ ∈ U
(Ignoring control states for simplicity)

Upon reading Do
( push2 ; push1a
) pop1

first ∗ collapse
subsequent ∗ pop2

[ [ ] ]

( [ [ ] [ a ] ]

( [ [ ] [ a ] [ a a ] ]

) [ [ ] [ a ] [ a ] ]

( [ [ ] [ a ] [ a ] [ a a ] ]

( [ [ ] [ a ] [ a ] [ a a ] [ a a a ] ]

) [ [ ] [ a ] [ a ] [ a a ] [ a a ] ] Collapse!

∗ [ [ ] [ a ] [ a ] ]

∗ [ [ ] [ a ] ]

∗ [ [ ] ]

What does the depth of the top 1-stack mean?
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E.g. Urzyczyn’s Language U (cont’d)

Observation
1 U is recognisable by a deterministic order-2 CPDA.

2 Equivalently (thanks to [AdMO 05]) U is recognisable by a
non-deterministic order-2 PDA — because of the need to guess the
transition from segment A to segment B.

Conjecture

U is not recognisable by a deterministic order-2 PDA.

(Related to the Safety Conjecture - more anon.)

Exercise (moderately hard). Give an order-2 recursion scheme that
generates U.
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Q2: Recursion schemes are equi-expressive with CPDA

Theorem (Equi-Expressivity, Hague, Murawski, O. + Serre LICS’08)

For each n ≥ 0, order-n recursion schemes and order-n collapsible PDA are
equi-expressive for Σ-labelled trees. I.e. RecSchTreenΣ = CPDATreenΣ

(Proof uses theory of traversals, based on game semantics.)

Consequences:

1 Kleene’s Problem: What computing power is required to compute
order-n lambda-definable functionals?

The Theorem gives a syntax-independent characterisation of pure
simply-typed lambda-calculus with recursion.

2 A new proof of the MSO decidability of trees generated by order-n
recursion schemes.

Open Problem. Find a new proof of “RS → CPDA” without using game
semantics.
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Q3: Does safety constrain expressivity?

Case 1: Word languages. Conjecture: Yes; but note

Theorem (Aehlig, de Miranda + O., FoSSaCS 2005)

At order 2, there are no inherently unsafe word languages. I.e. for every
unsafe order-2 recursion scheme, there is a safe (non-deterministic) order-2
recursion scheme that generates the same language.

Case 2: Trees. Conjecture: Yes.

The Safety Conjecture

For each n ≥ 2, there is a tree generated by an unsafe order-n recursion
scheme but not by any safe order-n recursion scheme.
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Q3: Does safety constrain expressivity?

Case 3: Graphs. Yes.

Theorem (Hague, Murawski, O. + Serre LICS 2008a)

There is an order-2 CPDA graph that is not generated by any order-2 PDA.

(See example graph later.)
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A survey of graph families with model-checking properties

Decidable?

MSO µ FO(R) FO

Caucal Graph Hierarchy yes yes yes yes

Ground-term tree rewriting (Löding 02) no no yes yes

Automatic graphs (Hodgson 76, KN 94) no no no yes

Rational graphs no no no no
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A survey of graph families with model-checking properties

Decidable?

MSO µ FO(R) FO

Caucal’s Graph Hierarchy yes yes yes yes

C no yes ? ?

Ground-term tree rewriting (Löding 02) no no yes yes

Automatic graphs (Hodgson 76, KN 94) no no no yes

Rational graphs no no no no

Question

Is there a generically-defined family C of graphs that have decidable
modal-mu calculus theories but undecidable MSO theories?

Yes. See construction on next slide (HMOS, LiCS 08a).
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Configuration graphs of (order-2) CPDA is not MSO-decidable

An order-2 CPDA graph: MSO-interpretable into the infinite half-grid.

0[[]]
t

1[[][]]
a

b

0[[][a]]
t

1[[][a][a]]
a

b

0[[][a][a a]]
t

1[[][a][a a][a a]] · · ·

b

2[[][b]]

1

0

2[[][a][a b]]

1

0

2[[][a][a a][a a b]] · · ·

1

0

2[[][]] 2[[][a][a]]

1

0

2[[][a][a a][a a]] · · ·

1

0

2[[][a][]] 2[[][a][a a][a]] · · ·

1

0

2[[][a][a a][]]

To our knowledge CPDA graphs are the first “natural” generically-defined
graph families that have decidable modal mu-calculus theories but
undecidable MSO theories.
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Q4: Model-checking properties of CPDA graphs

Theorem (Hague, Murawski, O and Serre, LiCS 2008a)

1 For each n ≥ 0, the decidability of modal mu-calculus model-checking
problem for configuration graphs of order-n CPDA is n-EXPTIME
complete.

2 Equivalently solvability of parity games over order-n CPDA graphs is
n-EXPTIME complete.

Luke Ong (University of Oxford) Model Checking Functional Programs 4-16 Aug 09, Marktoberdorf 52 / 52


	Relating (Families of) Generators of Infinite Structures
	Higher-Order Pushdown Automata
	Higher-Order Recursion Schemes
	Relating the Generator Families: Word Languages

	Recursion Schemes and their Algorithmic Model Theory
	Q1: Decidability of MSO / Modal Mu-Calculus Theories
	Q2: Machine Characterisation by Collapsible Pushdown Automata
	Q3: Expressivity: The Safety Conjecture
	Q4: Infinite Graphs Generated by Recursion Schemes / CPDA


