
Automata, Logic and Games: Theory and Application
2. Parity Games, Tree Automata, and S2S

Luke Ong

University of Oxford

TACL Summer School
University of Salerno, 14-19 June 2015

Luke Ong S2S 14-19 June 2015 1 / 40

Lecture Course Outline

Part 1: Foundations. Ideas and some technical details.

1 Büchi Automata and S1S: Legacy of Church & Büchi
2 Parity Games, Tree Automata, and S2S: Legacy of Rabin

Part 2: Active research topic. Mainly ideas.

Higher-Order Model Checking

Luke Ong S2S 14-19 June 2015 2 / 40

Lecture Outline

1 Parity Games

2 Binary Trees and Tree Automata

3 S2S and Rabin’s Tree Theorem

4 Nondeterministic Parity Tree Automata (NPT)

5 Alternating Parity Tree Automata (APT)

6 Closure Properties of APT

7 Proof of Rabin’s Tree Theorem

Luke Ong S2S 14-19 June 2015 3 / 40

Parity Game 〈VV, VR, E, v0, Ω 〉 (VV ∩ VR = ∅)

A parity game is played over a digraph 〈VV ∪ VR,E 〉 by V (Verifier) and R
(Refuter).
VV (resp. VR) is the set of vertices owned by V (resp. R).
Each vertex v has a priority Ω(v), where Ω : VV ∪ VR → { 0, · · · , p } with
p ≥ 0

Rules
A token is placed on the start vertex v0.

If the token is on v ∈ VV, then V chooses an outgoing edge (v, v′) ∈ E,
and moves the token onto v′; similarly if v ∈ VR.

Let π be the maximal path in the digraph tracced out by a play.

Who wins π?
If π is finite, the player who owns the last vertex loses.
If π is infinite, V wins if π satisfies parity: the least infinitely-occurring
priority in π is even; otherwise R wins.

Luke Ong S2S 14-19 June 2015 5 / 40

Example: parity game

Circled vertices belong to Verifier; boxed belong to Refuter. Priorities are red
numbers.

a: 1 //

b: 2 //

��}}

c: 3

��vv
d: 2

JJ

//

!!

e: 3

aa

// f : 2

aa

yy
g: 3

99

Recall: Verifier (circle) wins if the least infinitely-occurring priority is even.
Does Verifier have a winning strategy from f ? from d? from a?

[Ans: Verifier has a winning strategy from a, i.e., b 7→ c, f 7→ g, d 7→ g.]

Luke Ong S2S 14-19 June 2015 6 / 40

Parity games: a central topic in algorithmic verification

A strategy is memoryless (= history-free = positional) if it depends, not on the
history, but only on the last vertex of the play.

Theorem (Martin 1975, Mostowski 1991, Emerson & Jutla 1991)
Parity games are (memoryless) determined: from every vertex, exactly one of
V and R has a (memoryless) winning strategy.

PARITY (Given a finite parity game and a start vertex, does V have a winning
strategy?) is in NP ∩ co-NP.

Conjecture
PARITY in P.

Parity games are ubiquitous in algorithmic verification
Standard qualitative model checking problems about reactive systems (Does a
transition system satisfy a given temporal or modal property?) reduce to
PARITY.

Luke Ong S2S 14-19 June 2015 7 / 40

Σ-labelled (infinite, full) binary trees

A Σ-labelled binary tree is a function t : { 0, 1 }∗ → Σ.

I.e. the label of the tree t at node u ∈ { 0, 1 }∗ is t(u) ∈ Σ.

•ε

vv ((•0

}} !!

•1

}} !!
•00

��
•01

��
•10

��
•11

��
...

...
...

...

Write TωΣ for the collection of Σ-labelled binary trees.

A tree language is just a subset of TωΣ.

A path of a tree is a sequence π = u0 u1 u2 · · · of tree nodes whereby u0 = ε
(the root of the tree) and ui+1 = ui 0 or ui+1 = ui 1, for every i ≥ 0.

Luke Ong S2S 14-19 June 2015 9 / 40

A nondeterministic tree automaton A (for Σ-labelled binary trees) is a
quintuple, (Q,Σ, q0,∆,Acc), where

Q is the finite set of states, q0 is the initial state

∆ ⊆ Q× Σ× Q× Q is the transition relation, and

Acc is the acceptance condition (such as Büchi, Muller, Parity, etc.).

The automaton is deterministic if for every q ∈ Q and a ∈ Σ, there is at most
one transition (i.e. quadruple) in ∆ the first two components of which are q
and a.

Luke Ong S2S 14-19 June 2015 10 / 40

Run-tree and acceptance by a Büchi tree automaton

A run-tree is a Q-labelled binary tree such that the root is labelled q0, and the
labels respects the transition relation.

Formally a run-tree of a tree automaton A over a tree t is an assignment of
states to tree, i.e. a function ρ : { 0, 1 }∗ → Q, such that

ρ(ε) = q0, and

for all u ∈ { 0, 1 }∗, (ρ(u), t(u), ρ(u 0), ρ(u 1)) ∈ ∆.

A Büchi tree automaton A = (Q,Σ, q0,∆,F) accepts a tree t just if there
exists a Büchi-accepting run-tree ρ of A over t, i.e., in every path of ρ, a final
state from F occurs infinitely often.

The tree language recognised by the tree automaton A, denoted L(A), is the
set of trees accepted by A.

Luke Ong S2S 14-19 June 2015 11 / 40

Example

Let T1 be the set of { a, b }-labelled binary trees t such that t has a path with
infinitely many a’s.

The Büchi tree automaton ({ qa, qb,>}, { a, b }, qa,∆, { qa,>}) where

∆ :

(qa/qb, a) 7→ { (qa,>), (>, qa) }
(qa/qb, b) 7→ { (qb,>), (>, qb) }
(>, a/b) 7→ { (>,>) }

recognises the language T1 where ∗ “matches every symbol”.

Luke Ong S2S 14-19 June 2015 12 / 40

aqa

xx &&
aqa

�� ��

b>

�� ��
b
		 ��

a

		 ��

b
		 ��

b
		 ��

b
��

b
��

a
��

b
��

b
��

b
��

b
��

b
��

...
...

...
...

...
...

...
...

A = ({ qa, qb,>}, { a, b }, qa,∆, { qa,>}) where

∆ :

(qa/qb, a) 7→ { (qa,>), (>, qa) }
(qa/qb, b) 7→ { (qb,>), (>, qb) }
(>, a/b) 7→ { (>,>) }

recognises T1 := { t | t has a path with infinitely many a’s }.
Luke Ong S2S 14-19 June 2015 13 / 40

aqa

ww ''
aqa

�� ��

b>

�� ��
b>

�� ��

aqa

�� ��

b>

�� ��

b>

�� ��
b
��

b
��

a
��

b
��

b
��

b
��

b
��

b
��

...
...

...
...

...
...

...
...

A = ({ qa, qb,>}, { a, b }, qa,∆, { qa,>}) where

∆ :

(qa/qb, a) 7→ { (qa,>), (>, qa) }
(qa/qb, b) 7→ { (qb,>), (>, qb) }
(>, a/b) 7→ { (>,>) }

recognises T1 := { t | t has a path with infinitely many a’s }.
Luke Ong S2S 14-19 June 2015 14 / 40

A Büchi-accepting run-tree

aqa

uu))aqa

|| ""

b>

|| ""
b>

�� ��

aqa

�� ��

b>

�� ��

b>

�� ��
b>

��
b>

��
aqa

��
b>

��
b>

��
b>

��
b>

��
b>

��
...

...
...

...
...

...
...

...

A = ({ qa, qb,>}, { a, b }, qa,∆, { qa,>}) where

∆ :

(qa/qb, a) 7→ { (qa,>), (>, qa) }
(qa/qb, b) 7→ { (qb,>), (>, qb) }
(>, a/b) 7→ { (>,>) }

recognises T1 := { t | t has a path with infinitely many a’s }.
Luke Ong S2S 14-19 June 2015 15 / 40

A wrongly guessed run-tree!

aqa

uu))aqa

|| ""

b>

|| ""
bqa

�� ��

a>

�� ��

b>

�� ��

b>

�� ��
bqb

��
b>

��
a>

��
b>

��
b>

��
b>

��
b>

��
b>

��
...

...
...

...
...

...
...

...

A = ({ qa, qb,>}, { a, b }, qa,∆, { qa,>}) where

∆ :

(qa/qb, a) 7→ { (qa,>), (>, qa) }
(qa/qb, b) 7→ { (qb,>), (>, qb) }
(>, a/b) 7→ { (>,>) }

recognises T1 := { t | t has a path with infinitely many a’s }.
Luke Ong S2S 14-19 June 2015 16 / 40

The Logical System S2S (Monadic Second-order Logic of 2 Successors)

The logical system S2S is defined over

first-order variables x, y, · · · ranging over { 0, 1 }∗ (nodes in the full
binary tree) and

second-order variables X,Y, · · · ranging over 2{ 0,1 }∗ (sets of nodes of
the full binary tree).

Terms are built up from first-order variables and ε by the two successors,
represented as concatenation with 0 and 1 respectively.

Let s and t be terms. The atomic formulas are

s ∈ X “s is in X”

s ≤ t “s is a prefix of t”

s = t “s is equal to t”.

S2S formulas are built up from the atomic formulas using the standard
boolean connectives, and closed under first- and second-order quantifiers ∃
and ∀.

Luke Ong S2S 14-19 June 2015 18 / 40

Semantics of S2S

The logical structure of the infinite full binary tree is t2 = (B∗, ε, S0, S1) where
Si is the i-th successor function: S0(u) = u 0 and S1(u) = u 1 for u ∈ B∗.

S2S-formulas ϕ(X1, · · · ,Xn), with free 2nd-order variables from X1, · · · ,Xn,
are interpreted in expanded structures t̂ = (t2,P1, · · · ,Pn) where each
Pi ⊆ B∗. Write

t̂ � ϕ(X1, · · · ,Xn)

just if t̂ satisfies ϕ(X).

We identify t̂ with the infinite tree t ∈ TωBn such that for each u ∈ B∗, we have

t(u) = (b1, · · · , bn) where bi = 1 ↔ u ∈ Pi.

Given an S2S formula ϕ(X) the tree language defined by ϕ(X) is the set

L(ϕ(X1, · · · ,Xn)) := { t ∈ TωBn | t̂ � ϕ(X) }.

Luke Ong S2S 14-19 June 2015 19 / 40

Example. Take ϕ(X1) := ∃Y.infinite(Y) ∧ ∀y.(y ∈ Y → y ∈ X1), where
infinite(Y) says that Y is an infinite set. Then

L(ϕ(X1)) := { t ∈ TωB : t̂ has infinitely many positions where P1 holds }.

Our aim is to prove:

Theorem (Rabin 1969)
For n ≥ 0, a tree language T ⊆ TωBn is S2S-definable if, and only if, it is
recognisable by a nondeterministic parity tree automaton (NPT).

Proof steps: (familiar pattern from Büchi’s S1S)
⇒: closure of NPT under complementation (¬), union (∨), and projection
(∃X).
⇐: encode existence of an accepting run-tree as a S2S formula

Corollary (Rabin Tree Theorem)
Since non-emptiness of NPT is decidable, the theory S2S is decidable.

Evolution of proof: Rabin (1969), Gurevich & Harrington (1982), Löding
(2011).

Luke Ong S2S 14-19 June 2015 20 / 40

Notation

Following Vardi and Kupferman, we use acronym X Y Z where

X ranges over automaton modes: deterministic, nondeterministic and
alternating,

Y ranges over acceptance / winning conditions: Büchi, Muller, Rabin,
Streett, parity, and weak,

Z ranges over input structures: words and trees.

For example, DMW and NPT are shorthand for deterministic Muller word
automaton and nondeterministic parity tree automaton respectively.

Luke Ong S2S 14-19 June 2015 22 / 40

Parity Tree Automata

A nondeterministic parity tree automaton is a tuple A = (Q,Σ, q0,∆,Ω)
with priority map Ω : Q→ { 0, · · · , k }.

A accepts a tree t just if there is a run-tree ρ of A over t such that for every
path of ρ, the least priority that occurs infinitely often is Verifier.

Luke Ong S2S 14-19 June 2015 23 / 40

Example

Recall T1 is the set of { a, b }-labelled binary trees t such that t has a path with
infinitely many a’s.

The nondeterministic parity tree automaton ({ qa, qb,>}, { a, b }, qa,∆,Ω)
where

∆ :

(qa/qb, a) 7→ { (qa,>), (>, qa) }
(qa/qb, b) 7→ { (qb,>), (>, qb) }
(>, a/b) 7→ { (>,>) }

and Ω : qa 7→ 0,> 7→ 0; qb 7→ 1 recognises the language T1.

Indeed, every nondeterministic Büchi automaton can be viewed as a
nondeterministic parity automaton with priorities { 0, 1 }.

Luke Ong S2S 14-19 June 2015 24 / 40

E.g. This tree is not in T2 := { t | every path of t has only finitely many a’s }.

aqa

uu))aqa

{{ ##

bqa

{{ ##
bqa

�� ��

aqa

�� ��

bqb

�� ��

bqb

�� ��
bqb

��
bqb

��
aqa

��
bqa

��
bqb

��
bqb

��
bqb

��
bqb

��
...

...
...

...
...

...
...

...

Deterministic parity ({ qa, qb }, { a, b }, qa,∆,Ω) where

∆ :

{
(qa/qb, a) 7→ { (qa, qa) }
(qa/qb, b) 7→ { (qb, qb) }

and Ω : qa 7→ 1; qb 7→ 2 recognises T2.
N.B. For each path π of t, there are infinitely many b’s (resp. a’s) on π iff the
corresponding path of the unique run-tree over t has infinitely many qb’s (resp. qa’s).

Luke Ong S2S 14-19 June 2015 25 / 40

Acceptance Parity Game

Given a NPT A = (Q,Σ, qI,∆,Ω) and a tree t, we define a parity game, called
the acceptance parity game, GA,t = (VV,VR,E, (ε, qI), λ,Ω

′) as follows.

VV = { 0, 1 }∗ × Q

VR = { 0, 1 }∗ × (Q× Q)

for each vertex (v, q) ∈ VV, for each transition (q, a, q0, q1) ∈ ∆ with
t(v) = a, we have ((v, q), (v, (q0, q1)) ∈ E

for each vertex (v, (q0, q1)) ∈ VR, we have

((v, (q0, q1)), (v 0, q0)), ((v, (q0, q1)), (v 1, q1)) ∈ E.

Ω′ : (v, q) 7→ Ω(q) and (v, (q0, q1)) 7→ max(Ω(q0),Ω(q1)).

Lemma
Verifier has a winning strategy in GA,t from vertex (ε, qI) if and only if
t ∈ L(A).

Luke Ong S2S 14-19 June 2015 26 / 40

Non-emptiness Parity Game

Given a NPT A = (Q,Σ, qI,∆,Ω), we define a parity game, called the
non-emptiness parity game, GA = (VV,VR,E, qI, λ,Ω

′) as follows.

VV = Q

VR = ∆

for each vertex q ∈ VV, and for each transition (q, a, q0, q1) ∈ ∆, we
have (q, (q, a, q0, q1)) ∈ E

for each vertex (q, a, q0, q1) ∈ VR, we have

((q, a, q0, q1), q0), ((q, a, q0, q1), q1) ∈ E

Ω′ : q 7→ Ω(q) and (q, a, q0, q1) 7→ Ω(q).

Lemma
Verifier has a winning strategy in GA from vertex qI if and only if L(A) 6= ∅.

Luke Ong S2S 14-19 June 2015 27 / 40

Theorem (Rabin Basis Theorem)
1 The emptiness problem for NPT is decidable.
2 If an NPT accepts some tree then it accepts a regular tree.

Let A = (Q,Σ, qI,∆,Ω) be an NPT.
1 The non-emptiness game GA is a parity game on a finite graph, hence

solvable: there is an algorithm to determine the winning region for each
player.
By the previous lemma, Verifier has a winning strategy from qI iff
L(A) 6= ∅.

2 Omitted.

Luke Ong S2S 14-19 June 2015 28 / 40

Alternating (tree) automata

- An automaton mode, introduced by Chandra & Kozen (1986?). Complexity
theory motivation.
- Generalises determinism and nondeterminism.
- Natural duality: counterpart of 2-player game

Define the set B+(X) of positive boolean formulas consisting of formulas
built up from atoms in X using ∨ and ∧.

The transition function δ : Q× Σ→ B+({ 0, 1 } × Q) of an alternating tree
automaton describes which moves are controlled by players:

disjunctions by Verifier
conjunction by Refuter.

and negation swaps the rôle of player.

Example. δ(q, a) := (0, q) ∧ (1, q) ∧
(
(0, qb) ∨ (1, qb)

)
Assume in state q at node x in t with t(x) = a. Refuter could choose
(0, qb) ∨ (1, qb), then Verifier could choose (1, qb).

Automaton would then move to the right successor of x (the node x 1), change
to state qb, and continue the computation therefrom.Luke Ong S2S 14-19 June 2015 30 / 40

Alternating parity tree automata

An alternating parity tree automaton A (for Σ-labelled binary trees) is a
tuple (Q,Σ, qI, δ,Ω) where

Q is the finite set of states, qI is the initial state

δ : Q× Σ→ B+({ 0, 1 } × Q) is the transition function, and

Ω : Q→ { 0, . . . , k } is the priority function.

We define the language L(A) recognised by A to be the set of trees t such that
Verifier has a winning strategy in the (alternating) acceptance parity game GA,t

starting from vertex (ε, qI).

Luke Ong S2S 14-19 June 2015 31 / 40

Acceptance Game for Alternating Parity Automata

Given APT A = (Q,Σ, qI, δ,Ω) and tree t, the acceptance parity game
GA,t = (VV,VR,E, (ε, qI),Ω

′) is defined as follows.

Let U := { 0, 1 }∗ × Q and V := U ∪ ({ 0, 1 }∗ × B+({ 0, 1 } × Q)).

VV is the set of nodes of the form (x, q), or nodes of the form (x, ψ) for ψ
a disjunction or a single atom;
VR is the set of nodes of the form (x, ψ) for ψ a conjunction;
for all q ∈ Q, x ∈ { 0, 1 }∗, d ∈ { 0, 1 }, and ψ ∈ B+({ 0, 1 } × Q):

((x, q), (x, δ(q, t(x))) ∈ E

((x, ψ1 ∧ ψ2), (x, ψi)) ∈ E for i ∈ { 1, 2 }
((x, ψ1 ∨ ψ2), (x, ψi)) ∈ E for i ∈ { 1, 2 }

((x, (d, q)), (x d, q)) ∈ E

Ω′ :

{
(x, q) 7→ Ω(q)

(x, ψ) 7→ max Ω(Q)

Luke Ong S2S 14-19 June 2015 32 / 40

Example

Consider T3 := { t ∈ Tω{ a,b } : below every a-node there is a b-node }.
Define an APT A := ({ q, qb,>}, { a, b }, q, δ,Ω) where

δ :

(q, a) 7→ (0, q) ∧ (1, q) ∧

(
(0, qb) ∨ (1, qb)

)
(q, b) 7→ (0, q) ∧ (1, q)

(qb, a) 7→ (0, qb) ∨ (1, qb)

(qb, b), (>, a/b) 7→ (0,>)

and Ω : q,> 7→ 0; qb 7→ 1.

Consider some tree t ∈ Tω{ a,b }.

In state q, Refuter chooses a path in t. If he sees a, he can switch to qb, which
represents a challenge to Verifier to witness a b below the current a-node.

In state qb, Verifier chooses a path. If she sees b, then she moves to a sink
state > with priority 0, so Verifier wins. If not, then Verifier remains forever
in state qb with priority 1, so Verifier loses.

Luke Ong S2S 14-19 June 2015 33 / 40

Special types of alternating automata

Nondeterministic tree automaton

Alternating automaton where every transition is of the form∨
i(0, qi

0) ∧ (1, qi
1).

In other words, a nondeterministic automaton is an alternating automaton that
sends exactly one state to each successor.

Deterministic tree automaton

Alternating automaton where every transition is of the form (0, q0) ∧ (1, q1).

Luke Ong S2S 14-19 June 2015 34 / 40

Closure under Complementation

Theorem (Closure under Complementation)
Given an APT A, there is an algorithm to construct an APT for Tω{ a,b } \ L(A).

Dualise the transition function and acceptance condition of
A = (Q,Σ, qI, δ,Ω).

Dual of δ : Q× Σ→ (B+({ 0, 1 } × Q) is the transition function δ̃
obtained by exchanging ∨ and ∧ in all formulas in δ.

Dual of the parity condition Ω, is Ω̃ : q 7→ Ω(q) + 1.

Dualisation switches the rôles of Refuter and Verifier in the acceptance games.
Thanks to determinacy of parity games, Ã := (Q,Σ, qI, δ̃, Ω̃) recognises
Tω{ a,b } \ L(A).

Luke Ong S2S 14-19 June 2015 36 / 40

Closure under Union and Intersection

Lemma (Closure under Union and Intersection)
Given APT A1 and A2, there is an algorithm to construct an APT for
L(A1) ∪ L(A2) and an APT for L(A1) ∩ L(A2).

Straightforward for alternating automata (Exercise).

Given s× t ∈ TωΓ×Σ where s× t : u 7→ (s(u), t(u)), the Σ-projection of s× t is
the tree t, and the Σ-projection of the language T ⊆ TωΓ×Σ is denoted πΣ(T).

Lemma (Closure under Projection)
Given an APT recognising the language T of (Γ× Σ)-labelled binary trees,
there is an algorithm to construct an APT recognising πΣ(T).

Straightforward for nondeterministic automata, but challenging for alternating
automata!

Goal. Prove that APT can be simulated by NPT.

Luke Ong S2S 14-19 June 2015 37 / 40

Simulation of APT by NPT

Theorem (Simulation of APT by NPT)
Given an APT A, there is an algorithm to construct an NPT B such that
L(A) = L(B).

The proof relies on two fundamental results:
1 Memoryless determinacy of parity games, and
2 Complementation and “determinising” NBW to DPW.

Informally, on input t,

B guesses an annotation of t with a memoryless strategy for Verifier in
the acceptance game GA,t, and

B runs a DPW on each branch of this annotated tree in order to check
that the strategy is winning.

Luke Ong S2S 14-19 June 2015 38 / 40

Decidability

Theorem (Rabin 1969)
A tree language T ⊆ TωBn is S2S-definable if and only if it is recognisable by a
NPT.

⇐: Given an NPT, write an equivalent S2S-formula: formula asserts the
existence of a run-tree of APT.

⇒: Given S2S-formula, construct an equivalent NPT by induction on the
structure of the formula, using closure (and equivalence between APT and
NPT) under complementation, union and projection.

Theorem (Rabin’s Tree Theorem)
Since non-emptiness of NTP is decidable, so is the theory S2S.

Luke Ong S2S 14-19 June 2015 40 / 40

	Parity Games
	Binary Trees and Tree Automata
	S2S and Rabin's Tree Theorem
	Nondeterministic Parity Tree Automata (NPT)
	Alternating Parity Tree Automata (APT)
	Closure Properties of APT
	Proof of Rabin's Tree Theorem

