Background: Verification of HOPL-computation

Higher-Order Procedural Languages. E.g. ML, C, Reynold’s Idealized Algol (I1A).

Recent results obtained using fully abstract game semantics:

Pushdown Hierarchies and the Safe Lambda-Calculus — . . :
Fragments of finitary 1A Is observational equivalence decidable?

Luke Ong 2nd-order Yes. (Ghica+McCusker 00)

Oxford University Computing Laboratory 2nd-order + iteration Yes (GM 00); PSPACE-complete (Murawski 03)

No. (Ong LICS 02)

www.comlab.ox.ac.uk/oucl/work/luke.ong/ 3rd-order Yes: reduction to DPDA Equivalence. (Ong 02)
4th-order or higher No. (Murawski LICS 03)

(Joint work with Jolie de Miranda)

3rd-order + iteration Yes. Rationally innocent strategies.

Computaton: E.g. Hierarchy of purely functional programs defined by recursion
(i.e. essentially type-levels of PCF)?

Properties: Other (or weaker) than observational equivalence? E.g. decidable
fragments of MSO logic.

WOoLLIC '04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 1 WOLLIC '04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 2
Four Hierarchies of Finitely-Presentable Structures Review: Chomsky Hierarchy
Class of Structures | Hierarchy A hierarchy of (string) languages. Four classes:
string languages Chomsky (1960's) Type Language Classes | Models of Computation
string languages Maslov (1974) and others Type-0 | Regular Finite automaton
(term) trees Knapik-Niwirski-Urzyczyn (2002) Type-1 | Context-free Pushdown automaton
labelled graphs Caucal (2002) Type-2 | Context-sensitive Linearly bounded automaton
Type-3 | R.e. Turing machines

WoLLIC '04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 3 WOLLIC '04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 4

Outline of the Talk A refinement: Maslov Hierarchy (= Ol Hierarchy)

0. Background An infinite hierarchy of (string) languages, arguably “more natural” (systematic,

“unifying”) than Chomsky'’s.
I. Maslov Hierarchy: Higher-Order Pushdown Automata

’ Levels ‘ Language Classes

Il. Ol Hierarchy: Safe Lambda Calculus and Higher-Order Grammars

0 Regular
Ill. Knapik-Niwinski-Urzyczyn Hierarchy of Pushdown Trees 1 Context-free
IV. Problems, a Result and an Example 2 Indexed languages [Aho68]

V. Explanation and Proof Idea)) o]]
Three equivalent devices for defining the Ievel-(n + 1) languages inductively:

VI. Further Directions . .
(1) Level-n generalized indexed languages (Maslov '74, '76)

Raising a language to a power (given by a language).
(2) Level-n pushdown automata (Maslov '74, '76, Fisher '68, Greibach '70)

Level-(n + 1) store is a stack of level-n stores.

(3) Level-n grammars definable in a system of derived types (Damm '82,

Damm-Goerdt '86)
WOoLLIC '04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 5 WOLLIC '04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 6

Level-n Stores nPDA: Level-n Pushdown Automaton A = (@, %, T, go, A)

Fix a stack alphabet I" with distinguished L. Define Ly = [L], Lyt1 =[Ls] . Maslov 76 (Greibach 70). We follow definition in [KNUOZ].

A 1-store is a non-empty sequence [ay, - - -, aj] of elements of I". By definition, OPDAs are DFAs, and 1PDAs are PDAs. For n > 2, we have:
An (n + 1)-store is a non-empty sequence [s1, - - -, §;] of n-stores.

e Input alphabet 3, Stack alphabet I".
Forn > 2, level-n operations, Op,,: defined over n-stores

e Control states (), initial state gq

pUShn[Sl,“',Sl] = [313817”'a8l]
oush, [51 a] = [pushy sy al. 2<k<n e Transition relation: A C Q x (XU{e})x (TU{L})xQ xOp,
k P - k) [3 =~
push?[s1,--+,s1] = [push?sq,sa, -, s8] Configuration: (g, s) where s is an n-store. Initial configuration: (go, L)
1 ’) - 1)))
pop, [s1,---,s1] = [2,--, s8] Define: (¢,5) — (¢', ') justif (¢, a,top,(s),q,0) € A where §s = s'.
Inductively (¢,s) — (¢',s) justif (¢,8) — (q”,s")and
op, [s1,---,81] = [popgsi,se,---,5], 1<k<n yig, 7,51 ¢ 7
POPg 1 3 Ol - PoOpg S1, S2, s Ol) >~ yoon a ; P
al s ol = s sl (¢",s") — (q,s),forsomeq”,s".
Lo, = Lo,
A accepts w € X* justif (qo, L) — (g, L,,), some q.
top, [s1,---,81] = s1
top [51, -+, 8] = topgsi, 1<k<n

(pushy, s undefined if top,, s has only 1 element.)

WoLLIC '04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 7 WOLLIC '04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 8

Examples of 2PDA- or Indexed Languages Outline of the Talk

{a" b"c":n>1 } (not context-free) 0. Background: Four Hierarchies

Idea: Check a™ b™ using the top 1-store, then check ¢™ against length of 2-store. I. Maslov Hierarchy: Higher-Order Pushdown Automata

qo,[[L] Il. Ol Hierarchy: Safe Lambda Calculus and Higher-Order Grammars
— qo,([Z,1],[1]]
= a0l 2.2,11,[2,11,[1]
= a0 Ml 2.2,2,11,12,2, 11,12, 11, 1]

IIl. Knapik-Niwinski-Urzyczyn Hierarchy of Pushdown Trees

IV. Problems, a Result and an Example

b V. Explanation and Proof Idea
I Q17[[Z7Z7J—]7[Z7Z7J—]7[Z7J—]7[J—]]
L Qh[[Z J_] 7[Z.7, J_] 7[Z J_] ,[J_]] VI. Further Directions

- Q17[[J_],[Z,Z,J_],[Z,L],[J_]]
e qQ?[[Zyva-] 7[Z7J-] 7[L]]
— qo,[[Z, 11,111

— ({2, [[J—]]
WOoLLIC '04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 9 WOLLIC '04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 10
Ol Hierarchy: Safe Types Safe A-Calculus: System S Typing Rules
Derived types: Damm '82; equivalently Safety (syntactic constraint): Knapik et al. (E| . |Tn| B) safe bis a type-B constant
Let A range over simple typesi.e. A ::= 0| A — A. Each A can be uniquely Z1: A | |ZTn: A b b B
written (A1, -+, Ay, 0), meaning A; — -+ — A, — o.
Define: order(0) = 0; order(A — B) = max(order(A) + 1, order(B). (7141 | -] An|7Ani) safe
Definition ois safe. Forn > 1, A = (A4, -+, Ay, 0) is safe just if order(A1) >
order(Asg) > --- > order(A,,), and each A; is safe. — —_ g
(2)_ - (n) i x1:A1\~~|xn+1:An+1l—M:B
Tr: Ay Tt Ap B AT M s (A1 | B)
Assume A = (A11,- -, A1y, oy Ap1, -+, Ari,., 0) s safe; write
Ax Ar I'-M:Bi| - |Bmnlo) TFN :By - TFN,:B
: 1 m | O 1: D11 1, - D1y
A= (A |4 o) Lk MN;, Ny, : (By| -+ | B | o)
to mean: all types in each sequence E = A1, -+, Ay, have the same order 7; When forming abstraction, all variables of the (right-most) type-partition must be
(say),and i > j < n; > n;, making explicit the type paritions. abstracted. When forming application, the operator-term must be applied to all

operand-terms (one for each type) of the left-most type-partition.

WoLLIC '04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 11 WOLLIC '04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 12

WOoLLIC '04, Paris, 19-22 July 2004.

WoLLIC '04, Paris, 19-22 July 2004.

Safe \-Calculus: Observations and Examples

Observations . Suppose Z7 : Ay | -+ | T, : A, = M : Bis S-valid, where
B=(Bi| - |Bm|o). Then
Q) (A1 |-+ | A, |B1| -+ | Bm | o) is safe.

(i) Any free variable of M has order > order(M).

(iii) For any subterm A¢.N of M, if variable x occurs in N and order(z) < order(¢)

then x is bound in IV.
Examples

1. F': ((0,0),0,0,0),0: (0,0),x : 0,y : 0 F(F¢x)xy : ois not safe:

Reason: F': ((0,0),0,0,0),¢: (0,0),z : 0t Fox : (0,0) is not safe.
2. But F': ((0,0),0,0,0),¢ : (0,0) = Foa : (0, 0) is safe for constant a.

3. F:((0,0),0,0,0),¢: (0,0),x:0,y:0F Fozxy : ois safe.

Pushdown Hierarchies and the Safe Lambda-Calculus. Page 13

Lemma. “In safe A-calculus, it is safe not to rename bound variables afresh when

performing substitution.”

Proof idea. Take order(®) = 2, order(¢) = order(1)) = 1, order(z) = 0. Suppose
we do not rename bound variables in:

(- AD (- Az) A (e)) [G B/

M

Three types of variable capture may occur.
Type-1 capture: variable bound has order > order(¢)

(- AD(--)) [GPYz/P] becomes -+ AD.(--- (GDYx)) - -
L

Impossible because AP. L safe implies L has no free variables of order < order(®).

Pushdown Hierarchies and the Safe Lambda-Calculus. Page 15

WoLLIC '04, Paris, 19-22 July 2004.

WOLLIC '04, Paris, 19-22 July 2004.

What does “safe” mean?

Capture-avoiding substitution is commonly achieved using “Barendregt’s Variable

Convention”.

The key clause in definition of capture-avoiding substitution:

(Az.M)[N/y] = Xz.((M[z/z])[N/y]) where “z s fresh”

Suppose one is restricted to only n fresh names, for fixed n. There exists a A-term

such that variable-capture occurs in some reduction sequence from it.

Happily in safe A-calculus, it is safe to use capture-permitting substitution when

contracting B-redexes.
Proviso: We only perform M [Ny /x1, -+, N, /] provided:
@) x1,---,x, are all the free variables of same order in M, and

(i) The n replacement actions take place simultaneously.

Pushdown Hierarchies and the Safe Lambda-Calculus. Page 14

Type-2 capture: variable bound has order < order(¢))

Impossible because G®x (of order 1) safe implies N has no free variables of order
N——

N
<1

Type-3 capture: variable bound has order = order(¢)

(o A)) [GBYa /] becomes (--- Aip.(- - (GDYz)---)--+).

M

Impossible because abstraction formation rule would force M to be
(- Xpp.(---¢---)--+), making ¢ a bound variable of M.

Pushdown Hierarchies and the Safe Lambda-Calculus. Page 16

Higher-Order Grammar Example: A safe 2-grammar that generates { a”0"c" : n > 1}

S — a(ACe) Boxr — b(o(Cx))
Fix a typed alphabet X of symbols. Two versions:
ypecalb Y Apr — a(A(Bo)x) B¢ox — cx
e For generating string languages: all X-symbols of type (0, 0) with distinguished Apr — b <¢ x) Cr — cx
end-of-word marker e : 0. E.g. fora, b : (0,0), a(be) corresponds to word a b.
e For generating term-trees: all X-symbols of order at most 1 (as “function S — a(ACe)
symbols”). — a?(A(BC)e)
Level-n Grammar: G = (N, V, X, R, S) — a*(A(B(BC))e)
e N set of typed non-terminals, with start S € IV; and V' set of typed variables - (() e)
a3h?
e R is finite set of rules - " (BC(Ce))
313
Feyooozpy — B — a’b? (C(C(Ce)))
313
where F': (A1, Am,0) E Nz €V, xy t Ay, xm : Am E E 2o — a’b’c(C(Ce))
an applicative term-in-context with “constants” from N U 3. — a’b3c? (Ce)
313 .3
Say (G is n-level grammar if highest order of F' € R is n, and safe if all types and — a’b’c’e
terms occurring in the definition are safe. (An example of an unsafe 2-grammar later on.)
WOoLLIC '04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 17 WOLLIC '04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 18
Ol Hierarchy = Maslov Hierarchy Open problems concerning Maslov Hierarchy
Theorem. (Damm-Goerdt). A string language is accepted by an nPDA iff it is gen- Not much is known about level-3 and above.

erated by some safe n-grammar.

1. Pumping Lemma (or Myhill-Nerode-type results)

There are “pumping lemmas” for levels 0, 1 and 2 ([Hay73,Gil96]).
Pace Blumensath '04 for whole Maslov Hierarchy — runs are pumpable, conditions
given as lengths of runs and configuration size.

2. Logical Characterization.
Regular languages are exactly those that are MSO definable (Buchi '60).
There is a characterization of context-free languages using quantification over
matchings [LST94].

3. Complexity-Theoretic Characterization.
Engelfriet '83, '91: characterizations of languages accepted by alternating /
two-way / multi-head / space-auxiliary nPDAs in terms of time-complexity classes
(but no result for Maslov Hierarchy itself).

4. Relationship with Chomsky Hierarchy. E.g. Is nPDA context-sensitive, for n. > 3?
WoLLIC '04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 19 WOLLIC '04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 20

Outline of the Talk Y.-Trees (or Trees given by Y-terms)

0. Background: Four Hierarchies Fix a typed alphabet X of symbols of order at most 1.

I. Maslov Hierarchy: Higher-Order Pushdown Automata AX-treeisamapt: T — X where T is a prefix-closed subset of w*, and for

k>0, wh t(w) : oF th h tly k in T which

Il. Ol Hierarchy: Safe Lambda Calculus and Higher-Order Grammars 1— 0, w e]:ever (w) 07 T ohenwhas exactly s SUCCesSors In L which are
w s PECEEY 7’11) .

IIl. Knapik-Niwinski-Urzyczyn Hierarchy of Pushdown Trees o o o)
A X-tree is just a (possibly infinite) applicative term constructed using symbols from ..

IV. Problems, a Result and an Example
P Let the maximum of arities of symbols in 32 be my. A Y-tree ¢ can be viewed as a

V. Explanation and Proof Idea logical structure over the relational vocabulary
VI. Further Directions Ry = {pf . f c E}U {di 1<i< mz}
with ar(ps) = 1 and ar(d;) = 2:
t = (dom(t),{psc fexi{dt:1<i<myg})

where p% = {w € dom(t) : t(w) = f } and d} = { (w,wi) : wi € dom(t) }.

WOoLLIC '04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 21 WOLLIC '04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 22
Knapik-Niwigski-Urzyczyn Hierarchy of Pushdown Trees A remarkable decidability result
Let GG be a deterministic n-grammar. Define the X-tree, [[G]] to be the possibly Monadic Second-Order Logic (MSO).

infinite “term tree” generated by unfolding the rules in G+ ad infinitum. Extension of first-order logic with monadic second-order variables (X,Y, Z, - -),

Theorem [KNUO2]. A Y-tree is generated by a safe (deterministic) n-grammar iff it ranging over sets of elements. Fix a relational vocabulary R = {1, - -, 7y, } where
is generated by an 7/PDA. 7; is a relation symbol with arity ar(r;). The atomic formulas over R are

X(Z)> r=y, 7"1'(.'131, R xar(m));
we have the usual boolean connectives, and quantification over both types of variables.

MSO is expressive: E.g. “a node-set is finite”, or “forms a path”, but MSO cannot count.

Theorem [KNU02]. For n > 0, for any safe deterministic n-grammar G, the MSO
theory of the X-tree [G | is decidable.

WoLLIC '04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 23 WOLLIC '04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 24

Timeline of results

e Rabin 1969: “Mother of all decidability results”: Second-order theory of two
successors (525) has a decidable MSO theory.

o Muller and Schupp 1985: Pushdown graphs have decidable MSO theories.

e Courcelle 1995: Y -trees generated by 1-grammars have decidable MSO theories.

e Knapik, Niwinski and Urzyczyn 2001: X-trees generated by safe deterministic

2-grammars have decidable MSO theories.

e KNU '02: For all n, the MSO theories of Y-trees generated by safe deterministic

n-grammars are decidable.

WOoLLIC '04, Paris, 19-22 July 2004.

Outline of the Talk

0. Background: Four Hierarchies
I. Maslov Hierarchy: Higher-Order Pushdown Automata
II. Ol Hierarchy: Safe Lambda Calculus and Higher-Order Grammars
IIl. Knapik-Niwinski-Urzyczyn Hierarchy of Pushdown Trees
IV. Problems, a Result and an Example
V. Explanation and Proof Idea

VI. Further Directions

WoLLIC '04, Paris, 19-22 July 2004.

Pushdown Hierarchies and the Safe Lambda-Calculus. Page 25 WOLLIC '04, Paris, 19-22 July 2004.

Pushdown Hierarchies and the Safe Lambda-Calculus. Page 27 WOLLIC '04, Paris, 19-22 July 2004.

How did they prove it?

A reduction argument: They exhibit effective transformations of level-(n + 1)
pushdown trees ? to level-n pushdown trees tA and of MSO-formulas ¢ to ¢, such that
tE¢ <— tE &

Crucial dependence on safety.
The level-n ¥ T -tree ¢ uses additional symbols from
{@: (0,0,0)} U{zx1:0,---,2;:0} U{ Az :(0,0):x €L}

L

and has “back edges” from type-0 x to the binding Az. (So tis really the
corresponding Lamping graph.)

Both crucial conditions
() L (obtained from G), and hence 7, is finite
(i) The structure t is MSO-definable in the structure ¢.

require the generating grammar G to be safe.

Pushdown Hierarchies and the Safe Lambda-Calculus. Page 26

Problems and a Result

(1) (String languages) Can every string language generated by an unsafe n-grammar

be generated by a safe n-grammar?

Expressivenes: Is safety a real or spurious typing constraint for defining

languages?

(1) (Term trees) Can every Y-tree generated by an unsafe n-grammar be generated

by a safe n-grammar?

(2) Is the MSO theory of a 2-tree generated by an unsafe n-grammar decidable?

Note: Yes to (1) implies yes to (2), thanks to [KNUO02].

To date, we have only solved a small part of (1).

Theorem . Every string language generated by an unsafe 2-grammar is generated

by a (non-deterministic) safe 2-grammar.

Pushdown Hierarchies and the Safe Lambda-Calculus. Page 28

Example: Urzyczyn's(?) Language U An unsafe 2-grammar that generates U

Configuration: (-, ¥y, z) where

n e 7y is a list of future)-labels

e w is a proper prefix of a well-bracketed word that ends with a (e y is the number of ('s read thus far

e each parenthesis in w is implicitly labelled with a number, and 7 is the label of the e 2 is the label of the last parenthesis read,
last parenthesis (of w).
Note: |-y| is the number of unmatched (s at that point.
Labelling rules: »
Transition rules:

I. Each (is labelled with the number of (’s read thus far.

(
(z:¢y,2) — (z:x:dy+ly+1)
Il. Each) is labelled with the label of the parenthesis that precedes the matching (.)
(x:¢,y,z> — <¢,y7$>
E le.
rampe (z:6,y,2) > 2
c CcccHy)y o)y cc)yyy ¢ o)y)y = % 241 = 2
1 2 3 43 2 5 6 5 78 7 5 2 9 10 9 2
WOoLLIC '04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 29 WOLLIC '04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 30
An unsafe 2-grammar that generates U A characterization of U/-words

Idea: Each U-word has a unique partition into 3 parts:

Y = {(:(0,0),):(0,0),%:(0,0),e:0}
N = {S:0,D:((0,0,0),0,0,0,0),G:(0,0,0),F : (0,0)} CoC Q)) e %
—_—— ———
(1) (2) (3)
with variables ¢ : (0, 0,0) and x, ¥y, z : 0. The corresponding rules are:
where
Dozyz — ((D (D ¢ m) o (F y) (F y)) e (1) is prefix of a well-bracketed word such that no prefix of it is well-bracketed, and
Dozyz —)(oymx) has n occurrences of (
Dézyz — *z e (2) is well-bracketed
Fr — xx
has length n.
S — DGeee
Example

Question: Is there a safe 2-grammar that generates U ?

ccccHy)y)y o)y yy ¢ o))

An earlier conjecture(?) was that the answer is no.
1 2 3 4 3 25 6 5 78 7 5 2 9 10 9 2

WoLLIC '04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 31 WOLLIC '04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 32

A non-deterministic 2PDA that accepts U

Verify the 3-partition of U/ -words in three stages:

(1 (2)

(1) Use the top 1-store to check word read thus far is a prefix of a well-bracketed word
such that no prefix of it is well-bracketed; use pushs to count the number of (s
read.

Non-deterministically decide to enter Stage 2 after reading a (.

(2) Using only the top 1-store, check word read in Stage 2 is well-bracketed.

Enter Stage 3 on reading *.
(3) Check the number of *’s read equals the number of 1-stores stacked, using pop,.

Thus U is an indexed language, and thanks to [DG86]

Lemma. There is a safe 2-grammar that generates U'.

WOoLLIC '04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 33

Transforming a 2-grammar to a 2PDA

Recall [KNUO02]: a X-tree is generated by a safe 2-grammar iff it is generated by a
2PDA.

Given a 2-grammar (. Define a 2PDA Ag:
e Stack alphabet: subterms of rhs of G-rules
e Control states: qo, q1, - * -, ¢m Where m is largest arities of 2-symbols.

e Configurations

{ (g0, $) meaning “evaluating top; (s) i.e. working out the head symbol of
topy ()"

{ (qi, s), 1 > 1: meaning “working out (the head symbol of) the ¢-th argument of
topy ()"

WoLLIC '04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 35

Outline of the Talk

0. Background: Four Hierarchies
I. Maslov Hierarchy: Higher-Order Pushdown Automata
Il. Ol Hierarchy: Safe Lambda Calculus and Higher-Order Grammars
IIl. Knapik-Niwinski-Urzyczyn Hierarchy of Pushdown Trees
IV. Problems, a Result and an Example
V. Explanation and Proof Idea

VI. Further Directions

WOLLIC '04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 34

Rules of 2PDA Ag (KNU '02)

Every variable that occurs in a stack item is a formal parameter of the head symbol

(which must be a non-terminal) of the item just below in the stack.

— (qo, push;rhs(D))
== (gi,id) if0<i<ar(f)

— (gj,popy)
— (g;, pushy ; pop;)

€ 7t'
j z 1»(qj7$t1"'tn) - (qo j)

)
)
(go,a) — accept ifar(a) =0
)
)

if 7 < m (argument present)

(qj,n, pop2) if 7 > n (argument missing)

WOLLIC '04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 36

Example: An unsafe grammar

S -> Dgab
D@xz -> h (D(D@x)z(@z)) (H(fz)x) (@2)
H@x -> @x

(To save writing, leave state (0 and e-transition out.)

[[Dgab,S]]

hl [[D(D@x)z(@z),Dgab,S]]

h3 [[@z,D(D@x)z(@z),Dgab,S]]
[[D@x,Dgab,S],[@z,D(D@x)z(@z),Dgab,S]]

h2 [[H(fz)x,D@x,Dgab,S],[@z,D(D@x)z(@2),Dgab,S]]

[[@x,H(fz2)x,D@x,Dgab,S],[@z,D(D@x)z(@z),Dgab,S]]

WOoLLIC '04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 37

2PDAL: 2PDA with Links

The word h1.h3.h2. f1.a is not in the branch language of [G |. Transformation

works only for safe n-grammars.
How to remedy it? Idea:

We do a push,, (followed by a pop;) on account of a level-1 head variable ¢ of the top

of stack.

Why? So that the missing arguments of ¢, if needed later, can be accessed from the

associated 1-store buried somewhere in the stack.

After the push,, make an explicit (and fresh) link from the subterm pointed to by ¢, to
the 1-store just below. So that subsequently when we do a corresponding pops, we
will do as many pop, as required to reach the 1-store thus linked.

Indicate start and end of a link by superscripts { n+) and { n—) respectively, for
n > 0.

Of course, we will need an unbounded(!) number of such links.

WoLLIC '04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 39

D@xz -> h (D(D@x)z(@z)) (H(fz)x) (@2)
H@x -> @x

[[fz,D@x,Dgab,S],[@x,H(fz)x,D@x,Dgab,S],
[@z,D(D@x)z(@2z),Dgab,S]]

fl [[z,D@x,Dgab,S],[@x,H(fz)x,D@x,Dgab,S],
[@z,D(D@x)z(@2),Dgab,S]]

g3 [[D@x,Dgab,S],[@x,H(fz)x,D@x,Dgab,S],
[@z,D(D@x)z(@2),Dgab,S]]

ql [[@x,H(fz)x,D@x,Dgab,S],[@z,D(D@x)z(@z),Dgab,S]]
g2 [[Dgab,S],[@z,D(D@x)z(@z),Dgab,S]]

[[a,S],[@z,D(D@x)z(@2),Dgab,S]]

WOLLIC '04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 38

Example: Running 2PDAL

S — Dgab
Doxzz — h (D(Dox)z(¢z)) (H(f2)z) (¢2)
Hopx — ox

[[Dgab, S]]

“5 [[D(Déw)z(¢2), Dgab, S]]

L3, ¢z, D(Déx)z(¢z), Dgab, S]]

— [[D¢a"""), Dgab, S1,[62", D(Dz)2(42), Dgab, S]]

2 [[H(f2)z, Déz" "), Dgab, S, [¢z"", D(Dgx)z(¢7), Dgab, S]]

WOLLIC '04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 40

— [[2, D(D¢x)z(¢z), Dgab, S]]

Dozz — h(D(D¢x)z(¢z)) (H(f2)z) (¢2)
Hopx — ox

— g3 [[D(D(¢Z)Z(¢Z),Dgab,$]]
— [[¢x, H(f2)x, D¢>x<17>,Dgab, S, [¢z<1+>,D(D¢>x)z(¢z), Dgab, S]]
— [[#2, Dgab, S]]

— [[fz<27>,D¢x<17>,Dgab, ST, [¢x<2+>,H(fz)x, D¢x<1*>,Dgab, ST,
[z, D(D¢x)2(¢2), Dgab, S]] — (93], 1028, Dgab, S]]
LL (12, D¢ Dgab, 81, [¢2*) H(f2)x, Déx'™), Dgab, S, 25 [[2 Dgab, S]]
(621", D(D¢)z($2), Dgab, S]]
— [[6]]
— g3 [[D¢z'), Dgab, S, [¢x*T) H(f2)x, Dpat™), Dgab, S,
(621", D(D¢)z(¢z), Dgab, S]]
— a1 [[¢z"7), D(Déz)2(¢2), Dgab, S]]
WOoLLIC '04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 41 WOLLIC '04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 42
Simulating 2PDALSs by non-deterministic safe 2PDAs Further directions
In some cases of push,, we will never ever go back down to the associated 1-store Extension to level-3 and beyond.

(because no missing argument of that type-1 item is required in that particular run). The case of level-2 pushdown trees

If we guess that some missing argument of the type-1 item in queston will be accessed Kasai's Hierarchy of context-sensitive languages.
(later in that particular run), we make an explicit link as before, but always using the

same pair of start-of-link (—) and end-of-link (4) markers. {a? L aﬁl ‘n>1 } c K, \ K,
However we would be penalised (i.e. force to abort) if at some point a present (as

opposed to missing) argument of a (—)-marked is accessed instead.

This will turn out to be enough if we maintain an invariant:

Assume the top 1-store contains at least one item marked with a start marker. If the
stack item is closest to the top, then the corresponding + will be found in the first
1-store beneath it whose topmost item is marked .

WoLLIC '04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 43 WOLLIC '04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 44

