
Pushdown Hierarchies and the Safe Lambda-Calculus

Luke Ong

Oxford University Computing Laboratory

www.comlab.ox.ac.uk/oucl/work/luke.ong/

(Joint work with Jolie de Miranda)

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 1

Background: Verification of HOPL-computation

Higher-Order Procedural Languages. E.g. ML, C, Reynold’s Idealized Algol (IA).

Recent results obtained using fully abstract game semantics:

Fragments of finitary IA Is observational equivalence decidable?

2nd-order Yes. (Ghica+McCusker 00)

2nd-order + iteration Yes (GM 00); PSPACE-complete (Murawski 03)

2nd-order + recursion No. (Ong LICS 02)

3rd-order Yes: reduction to DPDA Equivalence. (Ong 02)

4th-order or higher No. (Murawski LICS 03)

3rd-order + iteration Yes. Rationally innocent strategies.

Computaton: E.g. Hierarchy of purely functional programs defined by recursion

(i.e. essentially type-levels of PCF)?

Properties: Other (or weaker) than observational equivalence? E.g. decidable

fragments of MSO logic.
WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 2

Four Hierarchies of Finitely-Presentable Structures

Class of Structures Hierarchy

string languages Chomsky (1960’s)

string languages Maslov (1974) and others

(term) trees Knapik-Niwi«nski-Urzyczyn (2002)

labelled graphs Caucal (2002)

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 3

Review: Chomsky Hierarchy

A hierarchy of (string) languages. Four classes:

Type Language Classes Models of Computation

Type-0 Regular Finite automaton

Type-1 Context-free Pushdown automaton

Type-2 Context-sensitive Linearly bounded automaton

Type-3 R. e. Turing machines

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 4

Outline of the Talk

0. Background

I. Maslov Hierarchy: Higher-Order Pushdown Automata

II. OI Hierarchy: Safe Lambda Calculus and Higher-Order Grammars

III. Knapik-Niwinski-Urzyczyn Hierarchy of Pushdown Trees

IV. Problems, a Result and an Example

V. Explanation and Proof Idea

VI. Further Directions

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 5

A refinement: Maslov Hierarchy (= OI Hierarchy)

An infinite hierarchy of (string) languages, arguably “more natural” (systematic,

“unifying”) than Chomsky’s.

Levels Language Classes

0 Regular

1 Context-free

2 Indexed languages [Aho68]

· · · · · ·
Three equivalent devices for defining the level-(n + 1) languages inductively:

(1) Level-n generalized indexed languages (Maslov ’74, ’76)

Raising a language to a power (given by a language).

(2) Level-n pushdown automata (Maslov ’74, ’76, Fisher ’68, Greibach ’70)

Level-(n + 1) store is a stack of level-n stores.

(3) Level-n grammars definable in a system of derived types (Damm ’82,

Damm-Goerdt ’86)
WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 6

Level-n Stores

Fix a stack alphabet Γ with distinguished⊥. Define⊥1 = [⊥] ,⊥k+1 = [⊥k] .

A 1-store is a non-empty sequence [a1, · · · , al] of elements of Γ.

An (n + 1)-store is a non-empty sequence [s1, · · · , sl] of n-stores.

For n ≥ 2, level-n operations, Opn: defined over n-stores

pushn [s1, · · · , sl] = [s1, s1, · · · , sl]

pushk [s1, · · · , sl] = [pushk s1, s2, · · · , sl] , 2 ≤ k < n

pusha
1 [s1, · · · , sl] = [pusha

1 s1, s2, · · · , sl]

popn [s1, · · · , sl] = [s2, · · · , sl]

popk [s1, · · · , sl] = [popk s1, s2, · · · , sl] , 1 ≤ k < n

id [s1, · · · , sl] = [s1, · · · , sl]

topn [s1, · · · , sl] = s1
topk [s1, · · · , sl] = topk s1, 1 ≤ k < n

(pushk s undefined if topk s has only 1 element.)

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 7

nPDA: Level-n Pushdown Automaton A = 〈Q, Σ, Γ, q0, ∆ 〉

Maslov 76 (Greibach 70). We follow definition in [KNU02].

By definition, 0PDAs are DFAs, and 1PDAs are PDAs. For n ≥ 2, we have:

• Input alphabet Σ, Stack alphabet Γ.

• Control states Q, initial state q0

• Transition relation: ∆ ⊆ Q× (Σ ∪ { ε })× (Γ ∪ {⊥})×Q×Opn

Configuration: (q, s) where s is an n-store. Initial configuration: (q0,⊥n).

Define: (q, s) a−→ (q′, s′) just if (q, a, top1(s), q′, θ) ∈ ∆ where θs = s′.
Inductively (q, s) wa−→−→ (q′, s′) just if (q, s) w−→−→ (q′′, s′′) and

(q′′, s′′) a−→ (q, s), for some q′′, s′′.

A accepts w ∈ Σ∗ just if (q0,⊥n) w−→−→ (q,⊥n), some q.

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 8

Examples of 2PDA- or Indexed Languages

{ an bn cn : n ≥ 1 } (not context-free)

Idea: Check an bn using the top 1-store, then check cn against length of 2-store.

q0, [[⊥]]
a−→ q0, [[Z,⊥] , [⊥]]
a−→ q0, [[Z, Z,⊥] , [Z,⊥] , [⊥]]
a−→ q0, [[Z, Z, Z,⊥] , [Z, Z,⊥] , [Z,⊥] , [⊥]]
b−→ q1, [[Z, Z,⊥] , [Z, Z,⊥] , [Z,⊥] , [⊥]]
b−→ q1, [[Z,⊥] , [Z,Z,⊥] , [Z,⊥] , [⊥]]
b−→ q1, [[⊥] , [Z, Z,⊥] , [Z,⊥] , [⊥]]
c−→ q2, [[Z, Z,⊥] , [Z,⊥] , [⊥]]
c−→ q2, [[Z,⊥] , [⊥]]
c−→ q2, [[⊥]]

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 9

Outline of the Talk

0. Background: Four Hierarchies

I. Maslov Hierarchy: Higher-Order Pushdown Automata

II. OI Hierarchy: Safe Lambda Calculus and Higher-Order Grammars

III. Knapik-Niwinski-Urzyczyn Hierarchy of Pushdown Trees

IV. Problems, a Result and an Example

V. Explanation and Proof Idea

VI. Further Directions

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 10

OI Hierarchy: Safe Types

Derived types: Damm ’82; equivalently Safety (syntactic constraint): Knapik et al.

Let A range over simple types i.e. A ::= o | A → A. Each A can be uniquely

written (A1, · · · , An, o), meaning A1 → · · · → An → o.

Define: order(o) = 0; order(A → B) = max(order(A) + 1, order(B).

Definition o is safe. For n ≥ 1, A = (A1, · · · , An, o) is safe just if order(A1) ≥
order(A2) ≥ · · · ≥ order(An), and each Ai is safe.

Assume A = (A11, · · · , A1l1︸ ︷︷ ︸
A1

, · · · , Ar1, · · · , Arlr︸ ︷︷ ︸
Ar

, o) is safe; write

A = (A1 | · · · |Ar | o)

to mean: all types in each sequence Ai = Ai1, · · · , Aili have the same order ni

(say), and i > j ⇐⇒ ni > nj , making explicit the type paritions.

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 11

Safe λ-Calculus: System S Typing Rules

(A1 | · · · |An |B) safe b is a type-B constant

x1 : A1 | · · · |xn : An ` b : B

(A1 | · · · |An |Ani) safe

x1 : A1 | · · · |xn : An ` xni : Ani

x1 : A1 | · · · |xn+1 : An+1 ` M : B

x1 : A1 | · · · |xn : An ` λxn+1.M : (An+1 |B)

Γ ` M : (B1 | · · · |Bm | o) Γ ` N1 : B11 · · · Γ ` Nl1 : B1l1

Γ ` MN1 · · ·Nl1 : (B2 | · · · |Bm | o)
When forming abstraction, all variables of the (right-most) type-partition must be

abstracted. When forming application, the operator-term must be applied to all

operand-terms (one for each type) of the left-most type-partition.

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 12

Safe λ-Calculus: Observations and Examples

Observations . Suppose x1 : A1 | · · · |xn : An ` M : B is S-valid, where

B = (B1 | · · · |Bm | o). Then

(i) (A1 | · · · |An |B1 | · · · |Bm | o) is safe.

(ii) Any free variable of M has order ≥ order(M).

(iii) For any subterm λφ.N of M , if variable x occurs in N and order(x) < order(φ)
then x is bound in N .

Examples

1. F : ((o, o), o, o, o), φ : (o, o), x : o, y : o ` F (Fφx)xy : o is not safe:

Reason: F : ((o, o), o, o, o), φ : (o, o), x : o ` Fφx : (o, o) is not safe.

2. But F : ((o, o), o, o, o), φ : (o, o) ` Fφa : (o, o) is safe for constant a.

3. F : ((o, o), o, o, o), φ : (o, o), x : o, y : o ` Fφxy : o is safe.

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 13

What does “safe” mean?

Capture-avoiding substitution is commonly achieved using “Barendregt’s Variable

Convention”.

The key clause in definition of capture-avoiding substitution:

(λx.M)[N/y] def= λz.((M [z/x])[N/y]) where “z is fresh”

Suppose one is restricted to only n fresh names, for fixed n. There exists a λ-term

such that variable-capture occurs in some reduction sequence from it.

Happily in safe λ-calculus, it is safe to use capture-permitting substitution when

contracting β-redexes.

Proviso: We only perform M [N1/x1, · · · , Nn/xn] provided:

(i) x1, · · · , xn are all the free variables of same order in M , and

(ii) The n replacement actions take place simultaneously.

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 14

Lemma. “In safe λ-calculus, it is safe not to rename bound variables afresh when

performing substitution.”

Proof idea. Take order(Φ) = 2, order(φ) = order(ψ) = 1, order(x) = 0. Suppose

we do not rename bound variables in:

(· · ·λΦ.(· · ·λx.· · ·φ · · ·) · · ·λψ.(· · ·φ · · ·) · · ·)︸ ︷︷ ︸
M

[G Φψx/φ]

Three types of variable capture may occur.

Type-1 capture: variable bound has order > order(φ)

(· · ·λΦ.(· · ·φ · · ·)︸ ︷︷ ︸
L

· · ·)[GΦψx/φ] becomes · · ·λΦ.(· · · (GΦψx) · · ·) · · ·.

Impossible because λΦ.L safe implies L has no free variables of order < order(Φ).

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 15

Type-2 capture: variable bound has order < order(φ)

(· · ·λx.(· · ·φ · · ·) · · ·)[GΦψx/φ] becomes · · ·λx.(· · · (GΦψx) · · ·) · · ·.
Impossible because GΦψx︸ ︷︷ ︸

N

(of order 1) safe implies N has no free variables of order

< 1.

Type-3 capture: variable bound has order = order(φ)

(· · ·λψ.(· · ·φ · · ·) · · ·)︸ ︷︷ ︸
M

[GΦψx/φ] becomes (· · ·λψ.(· · · (GΦψx) · · ·) · · ·).

Impossible because abstraction formation rule would force M to be

(· · ·λψφ.(· · ·φ · · ·) · · ·), making φ a bound variable of M .

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 16

Higher-Order Grammar

Fix a typed alphabet Σ of symbols. Two versions:

• For generating string languages: all Σ-symbols of type (o, o) with distinguished

end-of-word marker e : o. E.g. for a, b : (o, o), a(be) corresponds to word a b.

• For generating term-trees: all Σ-symbols of order at most 1 (as “function

symbols”).

Level-n Grammar : G = 〈N, V, Σ,R, S 〉
• N set of typed non-terminals, with start S ∈ N ; and V set of typed variables

• R is finite set of rules

Fx1 · · ·xn → E

where F : (A1, · · · , Am, o) ∈ N, xi ∈ V , x1 : A1, · · · , xm : Am ` E : o

an applicative term-in-context with “constants” from N ∪ Σ.

Say G is n-level grammar if highest order of F ∈ R is n, and safe if all types and

terms occurring in the definition are safe.

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 17

Example: A safe 2-grammar that generates { anbncn : n ≥ 1 }

S → a(AC e) B φ x → b (φ (C x))

Aφ x → a (A (Bφ)x) B φ x → c x

Aφ x → b (φx) C x → c x

S → a (AC e)

→ a2 (A (B C) e)

→ a3 (A (B (B C)) e)

→ a3b (B (B C) e)

→ a3b2 (B C (C e))

→ a3b3 (C (C (C e)))

→ a3b3c (C (C e))

→ a3b3c2 (C e)

→ a3b3c3 e

(An example of an unsafe 2-grammar later on.)

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 18

OI Hierarchy = Maslov Hierarchy

Theorem. (Damm-Goerdt). A string language is accepted by an nPDA iff it is gen-

erated by some safe n-grammar.

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 19

Open problems concerning Maslov Hierarchy

Not much is known about level-3 and above.

1. Pumping Lemma (or Myhill-Nerode-type results)

There are “pumping lemmas” for levels 0, 1 and 2 ([Hay73,Gil96]).

Pace Blumensath ’04 for whole Maslov Hierarchy – runs are pumpable, conditions

given as lengths of runs and configuration size.

2. Logical Characterization.

Regular languages are exactly those that are MSO definable (B-uchi ’60).

There is a characterization of context-free languages using quantification over

matchings [LST94].

3. Complexity-Theoretic Characterization.

Engelfriet ’83, ’91: characterizations of languages accepted by alternating /

two-way / multi-head / space-auxiliary nPDAs in terms of time-complexity classes

(but no result for Maslov Hierarchy itself).

4. Relationship with Chomsky Hierarchy. E.g. Is nPDA context-sensitive, for n ≥ 3?
WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 20

Outline of the Talk

0. Background: Four Hierarchies

I. Maslov Hierarchy: Higher-Order Pushdown Automata

II. OI Hierarchy: Safe Lambda Calculus and Higher-Order Grammars

III. Knapik-Niwinski-Urzyczyn Hierarchy of Pushdown Trees

IV. Problems, a Result and an Example

V. Explanation and Proof Idea

VI. Further Directions

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 21

Σ-Trees (or Trees given by Σ-terms)

Fix a typed alphabet Σ of symbols of order at most 1.

A Σ-tree is a map t : T −→ Σ where T is a prefix-closed subset of ω∗, and for

k ≥ 0, whenever t(w) : ok → o then w has exactly k successors in T which are

w1, · · · , wk.

A Σ-tree is just a (possibly infinite) applicative term constructed using symbols from Σ.

Let the maximum of arities of symbols in Σ be mΣ. A Σ-tree t can be viewed as a

logical structure over the relational vocabulary

RΣ = { pf : f ∈ Σ } ∪ { di : 1 ≤ i ≤ mΣ }

with ar(pf) = 1 and ar(di) = 2:

t = 〈 dom(t), { pt
f : f ∈ Σ }, { dt

i : 1 ≤ i ≤ mΣ } 〉

where pt
f = {w ∈ dom(t) : t(w) = f } and dt

i = { (w,wi) : wi ∈ dom(t) }.

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 22

Knapik-Niwi«nski-Urzyczyn Hierarchy of Pushdown Trees

Let G be a deterministic n-grammar. Define the Σ-tree, [[G]], to be the possibly

infinite “term tree” generated by unfolding the rules in G ad infinitum.

Theorem [KNU02]. A Σ-tree is generated by a safe (deterministic) n-grammar iff it

is generated by an nPDA.

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 23

A remarkable decidability result

Monadic Second-Order Logic (MSO).

Extension of first-order logic with monadic second-order variables (X, Y, Z, · · ·),
ranging over sets of elements. Fix a relational vocabulary R = { r1, · · · , rn } where

ri is a relation symbol with arity ar(ri). The atomic formulas over R are

X(z), x = y, ri(x1, · · · , xar(ri));

we have the usual boolean connectives, and quantification over both types of variables.

MSO is expressive: E.g. “a node-set is finite”, or “forms a path”, but MSO cannot count.

Theorem [KNU02]. For n ≥ 0, for any safe deterministic n-grammar G, the MSO

theory of the Σ-tree [[G]] is decidable.

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 24

Timeline of results

• Rabin 1969: “Mother of all decidability results”: Second-order theory of two

successors (S2S) has a decidable MSO theory.

• Muller and Schupp 1985: Pushdown graphs have decidable MSO theories.

• Courcelle 1995: Σ-trees generated by 1-grammars have decidable MSO theories.

• Knapik, Niwi«nski and Urzyczyn 2001: Σ-trees generated by safe deterministic

2-grammars have decidable MSO theories.

• KNU ’02: For all n, the MSO theories of Σ-trees generated by safe deterministic

n-grammars are decidable.

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 25

How did they prove it?

A reduction argument: They exhibit effective transformations of level-(n + 1)
pushdown trees t to level-n pushdown trees t̂, and of MSO-formulas φ to φ̂, such that

t ² φ ⇐⇒ t̂ ² φ̂.

Crucial dependence on safety.

The level-n Σ+-tree t̂ uses additional symbols from

{@ : (o, o, o) } ∪ {x1 : o, · · · , xl : o }︸ ︷︷ ︸
L

∪ {λx : (o, o) : x ∈ L }

and has “back edges” from type-0 x to the binding λx. (So t̂ is really the

corresponding Lamping graph.)

Both crucial conditions

(i) L (obtained from G), and hence Σ+, is finite

(ii) The structure t̂ is MSO-definable in the structure t.

require the generating grammar G to be safe.

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 26

Outline of the Talk

0. Background: Four Hierarchies

I. Maslov Hierarchy: Higher-Order Pushdown Automata

II. OI Hierarchy: Safe Lambda Calculus and Higher-Order Grammars

III. Knapik-Niwinski-Urzyczyn Hierarchy of Pushdown Trees

IV. Problems, a Result and an Example

V. Explanation and Proof Idea

VI. Further Directions

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 27

Problems and a Result

(1) (String languages) Can every string language generated by an unsafe n-grammar

be generated by a safe n-grammar?

Expressivenes: Is safety a real or spurious typing constraint for defining

languages?

(1’) (Term trees) Can every Σ-tree generated by an unsafe n-grammar be generated

by a safe n-grammar?

(2) Is the MSO theory of a Σ-tree generated by an unsafe n-grammar decidable?

Note: Yes to (1’) implies yes to (2), thanks to [KNU02].

To date, we have only solved a small part of (1).

Theorem . Every string language generated by an unsafe 2-grammar is generated

by a (non-deterministic) safe 2-grammar.

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 28

Example: Urzyczyn’s(?) Language U

w ∗ · · · ∗︸ ︷︷ ︸
n

• w is a proper prefix of a well-bracketed word that ends with a (

• each parenthesis in w is implicitly labelled with a number, and n is the label of the

last parenthesis (of w).

Labelling rules:

I. Each (is labelled with the number of (’s read thus far.

II. Each) is labelled with the label of the parenthesis that precedes the matching (.

Example .

(((()) (() (())) (()) ∗ ∗
1 2 3 4 3 2 5 6 5 7 8 7 5 2 9 10 9 2

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 29

An unsafe 2-grammar that generates U

Configuration: 〈 γ, y, z 〉 where

• γ is a list of future)-labels

• y is the number of (’s read thus far

• z is the label of the last parenthesis read,

Note: |γ| is the number of unmatched (’s at that point.

Transition rules:

〈x : φ, y, z 〉 (−→ 〈 z : x : φ, y + 1, y + 1 〉
〈x : φ, y, z 〉)−→ 〈φ, y, x 〉
〈x : φ, y, z 〉 ∗−→ z

z + 1 ∗−→ z

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 30

An unsafe 2-grammar that generates U

Σ = { (: (o, o),) : (o, o), ∗ : (o, o), e : o }
N = {S : o,D : ((o, o, o), o, o, o, o), G : (o, o, o), F : (o, o) }

with variables φ : (o, o, o) and x, y, z : o. The corresponding rules are:

D φ xy z → ((D (D φx) z (F y) (F y))

D φ xy z →) (φ y x)

D φ xy z → ∗ z

F x → ∗x

S → D G e e e

Question: Is there a safe 2-grammar that generates U?

An earlier conjecture(?) was that the answer is no.

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 31

A characterization of U -words

Idea: Each U -word has a unique partition into 3 parts:

(· · · (· · · (︸ ︷︷ ︸
(1)

(· · ·) · · · (· · ·)︸ ︷︷ ︸
(2)

∗ · · · ∗︸ ︷︷ ︸
(3)

where

• (1) is prefix of a well-bracketed word such that no prefix of it is well-bracketed, and

has n occurrences of (

• (2) is well-bracketed

• (3) has length n.

Example

(((()) (() (())) (()) ∗ ∗
1 2 3 4 3 2 5 6 5 7 8 7 5 2 9 10 9 2

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 32

A non-deterministic 2PDA that accepts U

Verify the 3-partition of U -words in three stages:

(· · · (· · · (︸ ︷︷ ︸
(1)

(· · ·) · · · (· · ·)︸ ︷︷ ︸
(2)

∗ · · · ∗︸ ︷︷ ︸
(3)

(1) Use the top 1-store to check word read thus far is a prefix of a well-bracketed word

such that no prefix of it is well-bracketed; use push2 to count the number of (’s

read.

Non-deterministically decide to enter Stage 2 after reading a (.

(2) Using only the top 1-store, check word read in Stage 2 is well-bracketed.

Enter Stage 3 on reading ∗.

(3) Check the number of ∗’s read equals the number of 1-stores stacked, using pop2.

Thus U is an indexed language, and thanks to [DG86]

Lemma. There is a safe 2-grammar that generates U .

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 33

Outline of the Talk

0. Background: Four Hierarchies

I. Maslov Hierarchy: Higher-Order Pushdown Automata

II. OI Hierarchy: Safe Lambda Calculus and Higher-Order Grammars

III. Knapik-Niwinski-Urzyczyn Hierarchy of Pushdown Trees

IV. Problems, a Result and an Example

V. Explanation and Proof Idea

VI. Further Directions

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 34

Transforming a 2-grammar to a 2PDA

Recall [KNU02]: a Σ-tree is generated by a safe 2-grammar iff it is generated by a

2PDA.

Given a 2-grammar G. Define a 2PDA AG:

• Stack alphabet: subterms of rhs of G-rules

• Control states: q0, q1, · · · , qm where m is largest arities of Σ-symbols.

• Configurations

{ (q0, s) meaning “evaluating top1(s) i.e. working out the head symbol of

top1(s)”

{ (qi, s), i ≥ 1: meaning “working out (the head symbol of) the i-th argument of

top1(s)”

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 35

Rules of 2PDA AG (KNU ’02)

Every variable that occurs in a stack item is a formal parameter of the head symbol

(which must be a non-terminal) of the item just below in the stack.

(q0, Dt) ε−→ (q0, push1rhs(D))

(q0, ft)
[f,i]−→ (qi, id) if 0 < i ≤ ar(f)

(q0, a) a−→ accept if ar(a) = 0

(q0, xj)
ε−→ (qj , pop1)

(q0, ϕjt1 · · · tn) ε−→ (qj , push2 ; pop1)

j ≥ 1, (qj , $t1 · · · tn) ε−→

(q0, tj) if j ≤ n (argument present)

(qj−n, pop2) if j > n (argument missing)

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 36

Example: An unsafe grammar

S -> Dgab

D@xz -> h (D(D@x)z(@z)) (H(fz)x) (@z)

H@x -> @x

(To save writing, leave state q0 and ε-transition out.)

[[Dgab,S]]

h1 [[D(D@x)z(@z),Dgab,S]]

h3 [[@z,D(D@x)z(@z),Dgab,S]]

[[D@x,Dgab,S],[@z,D(D@x)z(@z),Dgab,S]]

h2 [[H(fz)x,D@x,Dgab,S],[@z,D(D@x)z(@z),Dgab,S]]

[[@x,H(fz)x,D@x,Dgab,S],[@z,D(D@x)z(@z),Dgab,S]]

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 37

D@xz -> h (D(D@x)z(@z)) (H(fz)x) (@z)

H@x -> @x

[[fz,D@x,Dgab,S],[@x,H(fz)x,D@x,Dgab,S],

[@z,D(D@x)z(@z),Dgab,S]]

f1 [[z,D@x,Dgab,S],[@x,H(fz)x,D@x,Dgab,S],

[@z,D(D@x)z(@z),Dgab,S]]

q3 [[D@x,Dgab,S],[@x,H(fz)x,D@x,Dgab,S],

[@z,D(D@x)z(@z),Dgab,S]]

q1 [[@x,H(fz)x,D@x,Dgab,S],[@z,D(D@x)z(@z),Dgab,S]]

...

q2 [[Dgab,S],[@z,D(D@x)z(@z),Dgab,S]]

[[a,S],[@z,D(D@x)z(@z),Dgab,S]]

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 38

2PDAL: 2PDA with Links

The word h1.h3.h2.f1.a is not in the branch language of [[G]]. Transformation

works only for safe n-grammars.

How to remedy it? Idea:

We do a push2 (followed by a pop1) on account of a level-1 head variable φ of the top

of stack.

Why? So that the missing arguments of φ, if needed later, can be accessed from the

associated 1-store buried somewhere in the stack.

After the push2, make an explicit (and fresh) link from the subterm pointed to by φ, to

the 1-store just below. So that subsequently when we do a corresponding pop2, we

will do as many pop2 as required to reach the 1-store thus linked.

Indicate start and end of a link by superscripts 〈n+ 〉 and 〈n−〉 respectively, for

n ≥ 0.

Of course, we will need an unbounded(!) number of such links.

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 39

Example: Running 2PDAL

S → Dgab

Dφxz → h (D(Dφx)z(φz)) (H(fz)x) (φz)

Hφx → φx

[[Dgab, S]]

h1−→ [[D(Dφx)z(φz), Dgab, S]]

h3−→ [[φz,D(Dφx)z(φz), Dgab, S]]

−→ [[Dφx〈1−〉, Dgab, S], [φz〈1+〉, D(Dφx)z(φz), Dgab, S]]

h2−→ [[H(fz)x, Dφx〈1−〉, Dgab, S], [φz〈1+〉, D(Dφx)z(φz), Dgab, S]]

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 40

{
Dφxz → h (D(Dφx)z(φz)) (H(fz)x) (φz)
Hφx → φx

−→ [[φx,H(fz)x, Dφx〈1−〉, Dgab, S], [φz〈1+〉, D(Dφx)z(φz), Dgab, S]]

−→ [[fz〈2−〉, Dφx〈1−〉, Dgab, S], [φx〈2+〉,H(fz)x,Dφx〈1−〉, Dgab, S],
[φz〈1+〉, D(Dφx)z(φz), Dgab, S]]

f1−→ [[z, Dφx〈1−〉, Dgab, S], [φx〈2+〉,H(fz)x,Dφx〈1−〉, Dgab, S],
[φz〈1+〉, D(Dφx)z(φz), Dgab, S]]

−→ q3 [[Dφx〈1−〉, Dgab, S], [φx〈2+〉,H(fz)x, Dφx〈1−〉, Dgab, S],
[φz〈1+〉, D(Dφx)z(φz), Dgab, S]]

−→ q1 [[φz〈1+〉, D(Dφx)z(φz), Dgab, S]]

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 41

−→ [[z, D(Dφx)z(φz), Dgab, S]]

−→ q3 [[D(D(φz)z(φz), Dgab, S]]

−→ [[φz, Dgab, S]]

−→ [[g〈3−〉], [φz〈3+〉, Dgab, S]]

g1−→ [[z, Dgab, S]]

−→ [[b]]

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 42

Simulating 2PDALs by non-deterministic safe 2PDAs

In some cases of push2, we will never ever go back down to the associated 1-store

(because no missing argument of that type-1 item is required in that particular run).

If we guess that some missing argument of the type-1 item in queston will be accessed

(later in that particular run), we make an explicit link as before, but always using the

same pair of start-of-link (−) and end-of-link (+) markers.

However we would be penalised (i.e. force to abort) if at some point a present (as

opposed to missing) argument of a 〈− 〉-marked is accessed instead.

This will turn out to be enough if we maintain an invariant:

Assume the top 1-store contains at least one item marked with a start marker. If the

stack item is closest to the top, then the corresponding + will be found in the first

1-store beneath it whose topmost item is marked +.

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 43

Further directions

Extension to level-3 and beyond.

The case of level-2 pushdown trees.

Kasai’s Hierarchy of context-sensitive languages.

{ an
1 · · · an

l+1 : n ≥ 1 } ∈ Kl \Kl−1

WoLLiC ’04, Paris, 19-22 July 2004. Pushdown Hierarchies and the Safe Lambda-Calculus. Page 44

