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Abstract

The monads used to model effectful computations traditionally con-
centrate on the ‘destination’—the final results of the program. However,
sometimes we are also interested in the ‘journey’—the intermediate course
of a computation—especially when reasoning about non-terminating in-
teractive systems. In this article we claim that a necessary property of a
monad for it to be able to describe the behaviour of a program is com-
plete iterativity. We show how an ordinary monad can be modified to
disclose more about its internal computational behaviour, by applying an
associated transformer to a completely iterative monad. To illustrate this,
we introduce two new constructions: a coinductive cousin of Cenciarelli
and Moggi’s generalised resumption transformer, and States—a State-like
monad that accumulates the intermediate states.

1 Introduction

In this article we are concerned with semantics of programs like the following
Haskell fragment:

echo :: IO ()

echo = do { x <- getChar ; putChar x ; echo }

More precisely, we are interested in programs that (1) have side-effects, and (2)
depend on a (not necessarily terminating) recursion—or a corecursion, if you
will. In the example, echo performs observable actions and then calls itself,
‘unfolding’ the whole infinite series of events.

Since Moggi’s groundbreaking work [20], monads have become the standard
model for computational effects. A popular choice for I/O is to employ the
State monad A 7→ (A × S)S , model the outside world as an object S, and see
the program semantics as a function transforming an initial state into a final
state [7, 15]. Alternatively, we could consider side-effects as communication
with the environment, so no assumption about semantics of effects needs to be
made at this point: the program semantics is a free structure generated by the
‘effectful’ constructs (getChar and putChar), which is then interpreted by an
external handler [13, 25, 28].

The situation becomes much more complicated in the context of (2). For
example, the State monad does not build the final state incrementally, so in
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case of non-terminating programs, such as echo, it is useless. The free struc-
ture, on the other hand, sometimes needs to be infinite, so in general the free
monad Σ∗ (for an endofunctor Σ representing the signature) is ‘too small’. Ev-
idently, to encompass these examples we need monads that capture not only
the final results of the program, but rather its behaviour, for example in the
form of execution traces. In this article we identify this property as complete
iterativity. A monad is completely iterative (‘is a cim’) if it is equipped with a
certain corecursion scheme that is coherent with its monadic structure (for the
full definition see Section 2). In particular, the free cim Σ∞ generated by an
endofunctor Σ captures both finite and infinite Σ-terms.

Nevertheless, we should not discard the ‘usual’ monads too hastily. For
example, if we program a divergent computation in the State monad, the inter-
mediate states are physically ‘put’ and ‘gotten’ somewhere in the memory of the
computer, so the internal behaviour of the computation is, in a sense, accurate.
The point is to reify it as a mathematical model. An interesting fact is that the
IO monad in the Haskell Glasgow Compiler (GHC) is implemented as the State
monad [17], so whatever its mathematical model, the two have to be related.

Our idea is to use transformers associated with the ‘usual’ monads to trace
computations. For a cim T and an adjunction F a U that gives rise to a monad
M (that is UF = M), we use the monad UTF to trace computations in M .
Clearly, UTF supports M -computations (via the canonical monad morphism
M → UTF ), but it can also store some observations about the course of the
computation in the inner cim. The choice of the monad T and the adjunction
reveals different aspects of computations in M . As our main technical result,
we prove that UTF is completely iterative.

As an example, we use the currying adjunction to derive what we call the
States monad, which behaves like State, but it also gathers the intermediate
states in a stream. This way, the result of the computation is not a single, final
state, but rather a possibly infinite trace consisting of intermediate states.

Then we introduce the Coinductive Generalised Resumption transformer
M(ΣM)∞, where Σ is an endofunctor. It is a coalgebraic cousin of Cenciarelli
and Moggi’s Generalised Resumption transformer M(ΣM)∗ [9]. We characterise
it as the composition of a free cim in the category of free Eilenberg-Moore M -
algebras with the standard free-underlying adjunction, which yields that it is
itself a cim.

2 Completely iterative monads

2.1 Initial assumptions and notations

For the entire article, we assume that we are working in a base category B with
coproducts and all the necessary final coalgebras. We denote the composition of
a natural transformation with a functor by a subscript; for example, for functors
H and J , if ξ : F → G is natural, then ξH : FH → GH. If ξ is natural in two
variables, by ξH,J we mean a natural transformation ζA = ξHA,JA. We define
grA = [idA, idA] : A+A→ A.

Working with infinite computations means working also with infinite data
structures. To set the notation, we recall a few standard definitions. For an
endofunctor F , an F -coalgebra is a pair 〈A, f : A→ FA〉. We call A the carrier
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of the coalgebra. A morphism h : A → B is an F -coalgebra homomorphism,
denoted as h : 〈A, f〉 → 〈B, g〉, if g · h = Fh · f . An F -coalgebra 〈νF, β〉 is
final if for every F -coalgebra 〈A, f〉 there exists precisely one homomorphism
〈A, f〉 → 〈νF, β〉, called an anamorphism and denoted as [(f)].

2.2 Ideal and idealised monads

In this article we deal with monads that support corecursion: infinite compu-
tations are described by single steps. However, a step might not produce any
observable behaviour, for example if it is a pure computation constructed with
the unit, or we want to be more selective about which monadic actions are ob-
servable. To formalise productive computations, we need the notion of (right)
ideals of monads. These are analogous to ideals in a ring or a semigroup—
subsets closed under the operations. (All the definitions in this section are as
given by Adámek, Milius, and Velebil [2].)

Definition 1. For a monad 〈M,η, µ〉, let M together with a natural transfor-
mation σ : M → M with monomorphic components be a subfunctor of M . We
call M an ideal of M if there exists a natural transformation µ : MM → M
such that the following diagram commutes.

MM M2

M M

σM

µµ

σ

We call a pair of a monad and its ideal an idealised monad. An idealised
monad M is called an ideal monad if M = Id + M with η = inlId,M and σ =
inrId,M .

Examples of ideal monads include: free monads, exceptions, interactive out-
put, and nonempty lists.

We also need morphisms that respect the internal structure of idealised mon-
ads. If Σ is an endofunctor, then a natural transformation ξ : Σ → M is ideal
if its codomain contains only productive computations. Intuitively, this means
that an interpretation of a symbol from the signature should never yield a pure
computation. An ideal monad morphism r : M → N always maps productive
computations in M to productive computations in N . Formally:

Definition 2. Let 〈M,σM 〉 and 〈N, σN 〉 be idealised monads. A natural trans-
formation ξ : Σ → M is ideal if it factors through σM . A monad morphism
r : M → N is idealised if it preserves the ideals, that is there exists r such that
r · σM = σN · r, for a natural transformation r : M → N .

2.3 Cims defined

For an idealised monad M , we describe a step of a computation by a morphism
of type e : X → M(A + X), called an equation morphism. The object X
represents (a set of) variables—the seeds of the corecursion. The object A
represents (a set of) parameters, which are final values of the computation.
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An equation morphism is guarded if it always produces effects (in the sense of
idealised monads) or a final value, but not a variable:

Definition 3. A morphism e : X →M(A+ Y ) is guarded if it factors through
the morphism [σA+Y , ηA+Y · inlA,Y ], that is there exists a morphism j such that
the following diagram commutes.

X M(A+ Y )

M(A+ Y ) +A

e

j
[σA+Y , ηA+Y · inlA,Y ]

If X = Y , we call e a guarded equation morphism.

We use a guarded equation morphism e to unfold a computation e†, called a
solution. Intuitively, a solution is an infinite iteration of parameter-preserving
Kleisli-compositions of e. A monad is a cim if such a composition always exists
and is unique. Formally:

Definition 4. Let e : X → M(A + X) be a morphism. We call a morphism
e† : X →MA a solution of e if the following diagram commutes.

X MA

M(A+X) M2A

e†

M [ηA, e
†]

e µA

An idealised monad M is completely iterative if every guarded equation mor-
phism has a unique solution.

Cims make it possible to separate the corecursion guarded by invocation of
effects from a recursive structure of the base category, like order or metric en-
richment. This separation is important conceptually. Consider a server dealing
with some requests: though it is non-terminating, it probably does not require
unbounded recursion in between handling two requests.

Conversely, in a language with unbounded recursion, M -computations con-
sisting of guarded steps are necessarily solutions: An infinite computation can
be seen as the colimit of the ω-chain consisting of single steps. Consider an
ω-chain {fi : Xi →MXi+1}i∈N of Kleisli morphisms that factor through σMXi+1

.
In a category with countable coproducts, we define a guarded equation mor-
phism e = [(id0 +M ini+1) · fi]i∈N :

∐
i∈NXi →M(0 +

∐
i∈NXi). One can show

that the family of morphisms {e† · ini : Xi →M0}i∈N is the colimit of the chain
in the Kleisli category of M .

2.4 The free cim

An example of a cim is a generalisation of the infinite term monad generated
by an endofunctor (intuitively, a signature) Σ. Its functorial part is given by a
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family of final coalgebras Σ∞A = νX.A + ΣX. Below we define the unit, η∞,
and a natural transformation emb : Σ → Σ∞ that embeds Σ in Σ∞. For an
explicit definition of the multiplication µ∞ refer to Section ??, and put Id for
M in the definition of µK .

Id

Id + ΣΣ∞ ∼= Σ∞

η∞ = inlId,ΣΣ∞

Σ

Id + ΣΣ∞ ∼= Σ∞

emb = inrId,ΣΣ∞ · Ση∞

As discussed by Aczel et al. [1], Σ∞ is the free cim generated by Σ. In-
tuitively, this means that every interpretation of Σ in a cim M extends in a
unique way to an interpretation of the entire (possibly infinite) term Σ∞ in M .
Formally, for an ideal natural transformation ξ : Σ→M , there exists a unique
monad morphism ι(ξ) : Σ∞ →M such that the following diagram commutes.

Σ Σ∞

M

emb

ι(ξ)
ξ

The monad morphism ι(ξ) is given by [ηM , ξ†Σ∞ ]. Diagrammatically:

ΣΣ∞

MΣ∞ ∼= M(Id + ΣΣ∞)

ξΣ∞

ΣΣ∞

M Id = M

ξ†Σ∞

Σ∞ ∼= Id + ΣΣ∞

M

ι(ξ) = [ηM , ξ†Σ∞ ]

Apart from the free cim and the Exception monad A 7→ A + E, there are
hardly any examples of cims commonly used in programming or semantics. This
paper aims to fill this void in a rather generic fashion.

3 Cims and adjunctions

Let M be a monad, and let 〈F,U, η, ε〉 : B → C be a factorization of M as
an adjunction, that is M = 〈UF, η, UεF 〉. Let 〈T, ηT , µT , σT 〉 be a cim with
solutions -†. It is standard that UTF is a monad with ηUTF = UηTF · η and
µUTF = UµTF ·UTεTF , and that lift = UηTF : UF → UTF is a monad morphism.
We prove that UTF inherits complete iterativity from T .

Theorem 5. The functor UTF together with the natural transformation UσTF :
UTF → UTF form an ideal. The monad UTF is completely iterative with
respect to this ideal.

Proof. Right adjoints preserve monomorphisms, hence the components of nat-
ural transformation UσTF are monic, and so UTF is a subfunctor. We define µ

to be UµTF · UTεTF . It satisfies the condition for ideals:
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UTFUTF UTFUTF

UTTF UT 2F

UTF UTF

UσTFUTF

UσTTF

UTεTF

UµTF

UTεTF

UµTF

UσTF

µ µ

The top square is the naturality of σT . The bottom square is the U -image of
the ideal condition for T .

Let e : X → UTF (A + X) be a UσTF -guarded equation morphism. By
b-c : C[FA,B] ∼= B[A,UB] : d-e we denote the natural isomorphism associated
with the adjunction. Recall that left adjoints preserve coproducts, that is F (A+
B) ∼= FA+ FB. We calculate:

e = [σUTFA+X , η
UTF
A+X · inlA,X ] · j

⇔ { definitions }

e = [UσTF (A+X), Uη
T
F (A+X) · ηA+X · inlA,X ] · j

⇔ { F -image and F preserve coproducts }

Fe = [FUσTF (A+X), FUη
T
F (A+X) · FηA+X · F inlA,X ] · Fj

⇒ { coposing both sides with ε }

εTF (A+X) · Fe = [εTF (A+X) · FUσTF (A+X),

εTF (A+X) · FUηTF (A+X) · FηA+X · F inlA,X ] · Fj

⇔ { right adjunct and naturality }

dee = [σTF (A+X) · εTF (A+X), η
T
F (A+X) · εF (A+X) · FηA+X · F inlA,X ] · Fj

⇔ { zig-zag equalities }

dee = [σTF (A+X) · εTF (A+X), η
T
F (A+X) · F inlA,X ] · Fj

⇔ { coproducts }

dee = [σTF (A+X), η
T
F (A+X) · F inlA,X ] · (εTF (A+X) + idA) · Fj

⇔ { F preserves coproducts }

dee ∼= [σT(FA+FX), η
T
(FA+FX) · inl(FA,FX)] · (εTF (A+X) + idA) · Fj

This means that dee : FX → TF (A+X) ∼= T (FA+FX) is a guarded equation
morphism in T with a unique solution dee† : FX → TFA.
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We define the solution of e as bdee†c. The following diagram commutes:

UFX UTFA

UTF (A+X)
∼= UT (FA+ FX) UT 2FA

X

(UTF )2A

Udee†

UT [ηTFA, dee†]

Udee UµTFA

ηX

UTεTFA

µUTFA

UTF [ηUTFA , Udee† · ηX ]

e

bdee†c = Udee† · ηX

The inner square is the U -image of the solution diagram for dee†. The outer
triangles commute due to properties of adjunctions and the definition of µUTF .

For uniqueness, let g : X → UTFA be a solution of e. Substitute dge for
dee† in the above diagram. The outer square commutes, because bdgec = g
is a solution, and the triangles commute, because of properties of adjunctions,
hence the inner square precomposed with ηX also commutes. For all morphisms
f, f ′ : FB → C, if Uf · ηB = Uf ′ · ηB then f = f ′. Therefore, dge is a solution
of dee, so dge = dee†, hence g = bdgec = bdee†c.

3.1 Tracing

Intuitively, T collects observations about a computation in M . Thus, we need
a new operation that allows us to actually observe the current state of the
computation, for example the current state in the State monad (this example is
elaborated in the next section). It could be given as a natural transformation
olift : M → UTF with components that factor through UσTF . It will not in
general be a monad morphism; on the contrary, performing two actions and then
observing the effect differs in general from observing the effect of each action
individually. More formally, let f ◦ g be a computation in the Kleisli category
of M . We can decorate it with observers in two different ways: olift · (f ◦ g)
or (olift · f) ◦ (olift · g). For example, when tracing a computation in State, we
may want to observe only ‘set’ operations, as long as we are certain that there
are only finitely many invocations of ‘get’ in between every two invocations
of ‘set’. In the rest of the paper we always define olift as Uobs for a natural
transformation obs : F → TF . For convenience, we define a ‘save the current
state of computation’ operation save = olift · η : Id→ UTF .

Though we do not use this property directly in the rest of the article, ob-
servations should not modify the computation. This could be captured by
the following cancellation property: for all morphisms f, f ′ : A → MB and
g, g′ : B → MC, if (lift · g) ◦ saveB ◦ (lift · f) = (lift · g′) ◦ saveB ◦ (lift · f ′) then
g ◦ f = g′ ◦ f ′.
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4 The States monad

Our first example is a monad we call States. Consider the currying adjunction
− × S a −S that gives rise to the State monad on cartesian closed categories.

We choose (−×S)∞, for which we write
−→
S , to be the inner cim, and the result

is the monad A 7→ (
−→
S (A× S))S . Intuitively,

−→
S is a possibly infinite stream of

states of type S. The ‘base’ of the exponential is the trace of the computation:
a stream that, if finite, is terminated with an answer A and a current state S.
The latter is used only to compose two computations and is not stored in the
stream.

We define ‘put’ and ‘get’ operations as standard liftings of ‘put’ and ‘get’ for
State. The natural transformation obs duplicates the current state and puts it
in the stream as follows.

A× S (A× S)× S −→
S (A× S)

〈〈outl, outr〉, outr〉 embA×S

For example, consider the following computation in States on Set for S = N
(using Haskell syntax):

let f = do {put 2; save; put 3; save; put 5}

g = do {x <- get; put (x+1); save; g}

in do {f; g}

For any initial state, f evaluates to the trace (2, 3, 〈?, 5〉), while the whole com-
putation evaluates to (2, 3, 6, 7, 8, 9, . . .).

4.1 Example: Control structures for While

Consider a generalised While language, as given by Rutten [26]:

P,Q ::= A | P ;Q | if b then P else Q | while b do P

For a monad M , the symbol A represents a set of actions (denoted as a), that
is morphisms of type 1 → M1. The symbol b represents a set B of Boolean
expressions, that is a set of morphisms of type 1→ M(1 + 1). We parametrise
the semantics with a ‘guard’ operation γ : 1 → M1, which allows the addition
of behaviour on every choice point of a control structure. The denotation of
a program P is given by [[P ]] : 1 → M1, defined as follows, where ◦ is Kleisli
composition.

[[a]] = a

[[P ;Q]] = [[Q]] ◦ [[P ]]

[[if b then P else Q]] = [[[P ]], [[Q]]] ◦ b ◦ γ
[[while b do P ]] = ([M inr1,1 · [[P ]], M inl1,1 · ηM1 ] ◦ b ◦ γ)†

Actions denote themselves, and compositions of programs are just Kleisli compo-
sitions of morphisms. The denotation of if statements first performs the guard γ,
then b, and then the appropriate branch is chosen (we use the left component
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of 1 + 1 to represent ‘true’). The denotation of while first builds an equation
morphism by composing the guard, the condition, and the choice between re-
turning the left component of the coproduct (a constant, which means ‘stop
the iteration’), or performing the body, and right-injecting the result (which
makes it a ‘continue the iteration’ variable). The denotation of the entire while
expression is a solution to that morphism. The solution might not exist, or
might not be unique; hence, depending on the choice of M , A, B, and γ, the
denotation might not be well-defined. This semantics specialises to a couple of
known cases:

If we choose the regular State monad on Dcppo (the category of pointed
directed-complete partial orders and continuous functions) for M and its unit on
1 for γ, the solution diagram simplifies to the familiar equation for denotation
of While [23, Chapter 4]. So, if we assume -† to be the least fixed point, we
yield the standard denotational semantics.

If we instantiate M with a cim, we can ensure that unique solutions always
exist by an appropriate γ-guarding of while loops. (Note that it is not sufficient
to ask for the A actions to be guarded, since while true do while false do a
diverges without invoking an action.) In case of the States monad, this means
that every iteration stores its initial state in the stream, that is γ = save.
Additionally, if we assume that ‘put’ operations are always guarded and ‘get’
are not, we obtain a semantics trace-equivalent to Nakata and Uustalu’s trace
operational semantics [22].

5 Resumptions

5.1 Monadic structure

Let 〈M,ηM , µM 〉 be a monad, and Σ be an endofunctor on the base category B.
In this section we give a monadic structure to M(ΣM)∞ and examine its basic
properties. We proceed by first giving a monadic structure to the endofunctor

KA = νX.M(A+ ΣX),

which is isomorphic to M(ΣM)∞ through the coalgebraic version of the rolling
rule [5]:

Lemma 6. Let F , G be endofunctors. Then νFG ∼= FνGF .

Proof. Let 〈νFG, β : νFG→ FGνFG〉 be the final FG-coalgebra, and 〈νGF, γ :
νGF → GFνGF 〉 be the final GF -coalgebra. We define the following mor-
phisms (subscripts for the lens brackets indicate the functor for the final coal-
gebra):

r : νFG→ FνGF

r = F [(Gβ)]GF · β

r−1 : FνGF → νFG

r−1 = [(Fγ)]FG

To prove that r is an isomorphism, with r−1 being its inverse, we show that
β · r−1 · r = FGr−1 · FGr · β, which means that r−1 · r is an FG-coalgebra
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homomorphism, r−1 · r : 〈νFG, β〉 → 〈νFG, β〉. By uniqueness and reflexion,
r−1 · r = [(β)] = idνFG.

β · r−1 · r = β · [(Fγ)]FG · F [(Gβ)]GF · β

= { computation }

β · β−1 · FG[(Fγ)]FG · Fγ · Fγ−1 · FGF [(Gβ)]GF · FGβ · β

= { cancellation of γ and γ−1, and β and β−1 }

FG[(Fγ)]FG · FGF [(Gβ)]GF · FGβ · β

= { definitions of r and r−1 }

FGr−1 · FGFr · β

To prove the converse, we notice the following.

r · r−1 = F [(Gβ)]GF · β · [(Fγ)]FG

= { computation }

F [(Gβ)]GF · β · β−1 · FG[(Fγ)]FG · Fγ

= { cancellation of β and β−1 }

F [(Gβ)]GF · FG[(Fγ)]FG · Fγ

= { (see below) }

F idνGF = idFνGF

The left-hand side of the penultimate equation is an F -image of r−1 · r, but
with F and G swapped. Thus, we can prove similarly to the previous case that
it is equal to the identity on νGF .

For convenience, we define two auxiliary natural transformations. The first
one, flatA,B : M(MA+B)→M(A+B), flattens a computation that may return
a value or a new computation.

M(MA+B)

M(MA+MB)

M2(A+B)

M(A+B)

M(idMA + ηMB )

M [M inlA,B ,M inrA,B ]

µMA+B

flatA,B =
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The second one, unf, unfolds and flattens two levels of structure of K. In the
following, α is the final coalgebra map α : K →M(Id + ΣK).

K2

M(K + ΣK2)

M(M(Id + ΣK) + ΣK2)

M(Id + ΣK + ΣK2)

αK

M(α+ idΣK2)

flatId+ΣK,ΣK2

unf =

The unit (return) of the monad K, ηK , is given below. The multiplication
(join) is defined as a anamorphism µK = [(m)] of the following transformation
m.

Id

Id + ΣK

M(Id + ΣK)

K

inlId,ΣK

ηMId+ΣK

α−1

ηK = K2

M(Id + ΣK + ΣK2)

M(Id + ΣK2 + ΣK2)

M(Id + ΣK2)

unf

M(id + ΣηKK + idΣK2)

M(id + grΣK2)

m =

Also, for any natural transformation u : K2 → K, we define the transforma-
tion ũ to be the following composition.

K2

M(Id + ΣK + ΣK2)

M(Id + ΣK)

K

unf

M(id + [idΣK ,Σu])

α−1

Theorem 7. The following hold:

1. The triple 〈K, ηK , µK〉 is a monad.

2. For a transformation u : K2 → K that cancels ηKK on the left (that is
u · ηKK = idK), the following universal property holds: u = ũ if and only if
u = µK .

Proof. Right unit. The equations below prove that m·KηK = M(id+ΣKηK)·
α, which means that KηK is a coalgebra homomorphism KηK : 〈K,α〉 →
〈K2,m〉, and so is [(m)] · KηK : 〈K,α〉 → 〈K,α〉, since composition of two
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homomorphisms is a homomorphism. By uniqueness, µK ·KηK = [(m)] ·KηK =
[(α)] = idK . Diagrammatically:

〈K,α〉

〈K2,m〉

〈K,α〉

KηK

µ = [(m)]

idK = [(α)]

m ·KηK

= { definitions }

M(id + grΣK2) ·M(id + ΣηKK + idΣK2) · flatId+ΣK,ΣK2

·M(α+ idΣK2) · αK ·Kα−1 ·KηMId+ΣK ·KinlId,ΣK

= { naturality of α }

M(id + grΣK2) ·M(id + ΣηKK + idΣK2) · flatId+ΣK,ΣK2

·M(α+ idΣK2) ·M(α−1 + ΣKα−1)

·M(ηMId+ΣK + ΣKηMId+ΣK) ·M(inlId,ΣK + ΣKinlId,ΣK) · α

= { cancellation of α and α−1 }

M(id + grΣK2) ·M(id + ΣηKK + idΣK2) · flatId+ΣK,ΣK2

·M(idM(Id+ΣK) + ΣKα−1) ·M(ηMId+ΣK + ΣKηMId+ΣK)

·M(inlId,ΣK + ΣKinlId,ΣK) · α

= { naturality of flat }

M(id + grΣK2) ·M(id + ΣηKK + idΣK2) ·M(idId+ΣK + ΣKα−1)

· flatId+ΣK,ΣKM(Id+ΣK) ·M(ηMId+ΣK + ΣKηMId+ΣK)

·M(inlId,ΣK + ΣKinlId,ΣK) · α

= { monad laws }

M(id + grΣK2) ·M(id + ΣηKK + idΣK2) ·M(idId+ΣK + ΣKα−1)

·M(idId+ΣK + ΣKηMId+ΣK) ·M(inlId,ΣK + ΣKinlId,ΣK) · α

= { istributivity of composition over coproduct }

M(id + grΣK2) ·M(id + ΣηKK + idΣK2) ·M(inlId,ΣK + ΣKα−1)

·M(id + ΣKηMId+ΣK) ·M(id + ΣKinlId,ΣK) · α

= { associativity of coproducts }

12



M(id + grΣK2) ·M(id + inrΣK2,ΣK2) ·M(id + ΣKα−1)

·M(id + ΣKηMId+ΣK) ·M(id + ΣKinlId,ΣK) · α

= { properties of coproducts }

M(id + ΣKα−1) ·M(id + ΣKηMId+ΣK) ·M(id + ΣKinlId,ΣK) · α

= { definition of ηK }

M(id + ΣKηK) · α

Left unit. Similarily to the previous case, we prove that m · ηKK = M(id +
ΣηKK ) · α, which means that ηKK is a coalgebra homomorphism ηKK : 〈K,α〉 →
〈K2,m〉. By uniqueness and reflexion, µK · ηKK = [(m)] · ηKK = [(α)] = idK .
Diagrammatically:

〈K,α〉

〈K2,m〉

〈K,α〉

ηKK

µ = [(m)]

idK = [(α)]

m · ηKK

= { definitions }

M(id + grΣK2) ·M(id + ΣηKK + idΣK2) · flatId+ΣK,ΣK2

·M(α+ idΣK2) · αK · α−1
K · η

M
K+ΣK2 · inlK,ΣK2

= { cancellation of αK nad α−1
K , and naturality of ηM }

M(id + grΣK2) ·M(id + ΣηKK + idΣK2) · flatId+ΣK,ΣK2

·M(α+ idΣK2) ·M inlK,ΣK2 · ηMK

= { naturality of inl }

M(id + grΣK2) ·M(id + ΣηKK + idΣK2) · flatId+ΣK,ΣK2

·M inlM(Id+ΣK),ΣK2 ·Mα · ηMK

= { naturality of ηM }

M(id + grΣK2) ·M(id + ΣηKK + idΣK2) · flatId+ΣK,ΣK2

·M inlM(Id+ΣK),ΣK2 · ηMM(Id+ΣK) · α

= { monad laws }

13



M(id + grΣK2) ·M(id + ΣηKK + idΣK2) ·M inlId+ΣK,ΣK2

· µMId+ΣK · ηMM(Id+ΣK) · α

= { monad laws }

M(id + grΣK2) ·M(id + ΣηKK + idΣK2) ·M inlId+ΣK,ΣK2 · α

= { naturality of inl }

M(id + grΣK2) ·M inlId+ΣK2,ΣK2 ·M(id + ΣηKK ) · α

= { properties of coproducts }

M(id + ΣηKK ) · α

Universal property of µ. Let u : K2 → K be a natural transformation
such that u = ũ. We prove below that M(id + Σu) ·m = α · u, which means
that u is a coalgebra homomorphism u : 〈K2,m〉 → 〈K,α〉. By uniqueness,
u = [(m)] = µK .

M(id + Σu) ·m

= { definition }

M(id + Σu) ·M(id + grΣK2) ·M(id + ΣηKK + idΣK2)

· flatId+ΣK,ΣK2 ·M(α+ idΣK2) · αK

= { naturality of gr and flat, and u = ũ }

M(id + grΣK) · flatId+ΣK,ΣK ·M(M(id + Σũ) + Σu)

·M(M(id + ΣηKK ) + idΣK2) ·M(α+ idΣK2) · αK

= { ũ · ηKK = idK }

M(id + grΣK) · flatId+ΣK,ΣK ·M(idM(Id+ΣK) + Σu) ·M(α+ idΣK2) · αK

= { naturality of flat }

M(id + grΣK) ·M(idId+ΣK + Σu) · flatId+ΣK,ΣK2 ·M(α+ idΣK2) · αK

= { introduction of α · α−1 on the left and definition of u }

α · u

Conversely, assume that u = µK = [(m)], which gives us M(id + Σu) ·m = α · u,
since [(m)] is by definition a coalgebra homomorphism. We prove that u = ũ as
follows.

u = α−1 · α · u = α−1 ·M(id + Σu) ·m

= { definition of m }

α−1 ·M(id + Σu) ·M(id + grΣK2) ·M(id + ΣηKK + idΣK2)

· flatId+ΣK,ΣK2 ·M(α+ idΣK2) · αK
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= { gr is natural }

α−1 ·M(id + grΣK) ·M(id + Σu+ Σu) ·M(id + ΣηKK + idΣK2)

· flatId+ΣK,ΣK2 ·M(α+ idΣK2) · αK

= { u cancels ηKK , definition of ũ }

ũ

Associativity. To prove that µK · µKK = µK ·KµK , we introduce an auxiliary
transformation w : K3 →M(Id + ΣK3) defined as the following composition:

K3

M(K2 + ΣK3)

M(M(K + ΣK2) + ΣK3)

M(K + ΣK2 + ΣK3)

M(M(Id + ΣK) + ΣK2 + ΣK3)

M(Id + ΣK + ΣK2 + ΣK3)

M(Id + ΣK3 + ΣK3 + ΣK3)

M(Id + ΣK3 + ΣK3)

M(Id + ΣK3)

αK2

M(αK + idΣK3)

flatK+ΣK2,ΣK3

M(α+ idΣK2+ΣK3)

flatId+ΣK,ΣK2+ΣK3

M(idId + Σ(ηKK2 · ηKK ) + ΣηKK2 + ΣidK3)

M(idId+ΣK3 + grΣK3)

M(id + grΣK3)

Below, we prove that m·µKK = M(id+ΣµKK)·w and m·KµK = M(id+ΣKµK)·w,
which means that both µKK and KµK are coalgebra homomorphisms µKK ,Kµ

K :
〈K3, w〉 → 〈K2,m〉. By uniqueness, µK ·µKK = [(m)] ·µKK = [(w)] = [(m)] ·KµK =
µK ·KµK . Diagrammatically:

〈K3, w〉

〈K2,m〉〈K2,m〉

〈K,α〉

µKK KµK

[(m)][(m)]

[(w)]
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m · µKK

= { definition of m, universal property of µK }

M(id + grΣK2) ·M(id + ΣηKK + idΣK2) · flatId+ΣK,ΣK2

·M(α+ idΣK2) · αK · α−1
K ·M(idK + grΣK2) ·M(idK + idΣK2 + ΣµKK)

· flatK+ΣK2,ΣK3 ·M(αK + idΣK3) · αK2

= { cancellation of αK and α−1
K , and naturality of α }

M(id + grΣK2) ·M(id + ΣηKK + idΣK2) · flatId+ΣK,ΣK2

·M(idM(Id+ΣK) + grΣK2) ·M(idM(Id+ΣK) + idΣK2 + ΣµKK)

·M(α+ idΣK2+ΣK3) · flatK+ΣK2,ΣK3 ·M(αK + idΣK3) · αK2

= { naturality of flat }

M(id + grΣK2) ·M(id + ΣηKK + idΣK2) ·M(idId+ΣK + grΣK2)

·M(idId+ΣK + idΣK2 + ΣµKK) · flatId+ΣK,ΣK2+ΣK3

·M(α+ idΣK2+ΣK3) · flatK+ΣK2,ΣK3 ·M(αK + idΣK3) · αK2

= { distributivity of composition over coporduct }

M(id + grΣK2) ·M(idId+ΣK2 + grΣK2)

·M(idId + ΣηKK + idΣK2 + ΣµKK) · flatId+ΣK,ΣK2+ΣK3

·M(α+ idΣK2+ΣK3) · flatK+ΣK2,ΣK3 ·M(αK + idΣK3) · αK2

= { naturality of gr, right unit for K }

M(id + ΣµKK) ·M(id + grΣK3) ·M(idId+ΣK3 + grΣK3)

·M(idId + Σ(ηKK2 · ηKK ) + ΣηKK2 + ΣidK3) · flatId+ΣK,ΣK2+ΣK3

·M(α+ idΣK2+ΣK3) · flatK+ΣK2,ΣK3 ·M(αK + idΣK3) · αK2

= { definition of w }

M(id + ΣµKK) · w

∗ ∗ ∗

m ·KµK

= { definition of m }

M(id + grΣK2) ·M(id + ΣηKK + idΣK2) · flatId+ΣK,ΣK2

·M(α+ idΣK2) · αK ·KµK

= { naturality of α }

M(id + grΣK2) ·M(id + ΣηKK + idΣK2) · flatId+ΣK,ΣK2

·M(α+ idΣK2) ·M(µK + ΣKµK) · αK2
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= { properties of coproducts }

M(id + grΣK2) ·M(id + ΣηKK + idΣK2) · flatId+ΣK,ΣK2

·M(α+ idΣK2) ·M(idK + ΣKµK) ·M(µK + idΣK3) · αK2

= { universal property of µK }

M(id + grΣK2) ·M(id + ΣηKK + idΣK2) · flatId+ΣK,ΣK2

·M(α+ idΣK2) ·M(idK + ΣKµK) ·M(α−1 + idΣK3)

·M(M(id + grΣK) + idΣK3) ·M(M(id + idΣK + ΣµK) + idΣK3)

·M(flatId+ΣK2,ΣK2 + idΣK3) ·M(M(α+ idΣK2) + idΣK3)

·M(αK + idΣK3) · αK2

= { cancellation of α and α−1 }

M(id + grΣK2) ·M(id + ΣηKK + idΣK2) · flatId+ΣK,ΣK2

·M(idM(Id+ΣK) + ΣKµK)

·M(M(id + grΣK) + idΣK3) ·M(M(id + idΣK + ΣµK) + idΣK3)

·M(flatId+ΣK2,ΣK2 + idΣK3) ·M(M(α+ idΣK2) + idΣK3)

·M(αK + idΣK3) · αK2

= { naturality of flat }

M(id + grΣK2) ·M(id + ΣηKK + idΣK2) ·M(idId+ΣK + ΣKµK)

·M(id + grΣK + idΣK3) ·M(id + idΣK + ΣµK + idΣK3)

· flatId+ΣK2+ΣK2,ΣK3 ·M(flatId+ΣK2,ΣK2 + idΣK3)

·M(M(α+ idΣK2) + idΣK3) ·M(αK + idΣK3) · αK2

= { monad laws }

M(id + grΣK2) ·M(id + ΣηKK + idΣK2) ·M(idId+ΣK + ΣKµK)

·M(id + grΣK + idΣK3) ·M(id + idΣK + ΣµK + idΣK3)

· flatId+ΣK,ΣK2+ΣK3 ·M(α+ idΣK2 + idΣK3)

· flatK+ΣK2,ΣK3 ·M(αK + idΣK3) · αK2

= { naturality of gr }

M(id + grΣK2) ·M(id + grΣK2 + idΣK2)

·M(id + ΣηKK + ΣηKK + idΣK2) ·M(idId+ΣK+ΣK + ΣKµK)

·M(id + idΣK + ΣµK + idΣK3) · flatId+ΣK,ΣK2+ΣK3

·M(α+ idΣK2 + idΣK3) · flatK+ΣK2,ΣK3 ·M(αK + idΣK3) · αK2

= { properties of coproducts }

M(id + grΣK2) ·M(id + grΣK2 + idΣK2)

·M(id + ΣηKK + Σ(ηKK · µK) + ΣKµK) · flatId+ΣK,ΣK2+ΣK3

·M(α+ idΣK2 + idΣK3) · flatK+ΣK2,ΣK3 ·M(αK + idΣK3) · αK2
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= { naturality of ηK }

M(id + grΣK2) ·M(id + grΣK2 + idΣK2)

·M(id + ΣηKK + Σ(KµK · ηKK2) + ΣKµK) · flatId+ΣK,ΣK2+ΣK3

·M(α+ idΣK2 + idΣK3) · flatK+ΣK2,ΣK3 ·M(αK + idΣK3) · αK2

= { right unit for K, naturality of gr }

M(id + ΣKµK) ·M(id + grΣK3) ·M(id + grΣK2 + idΣK3)

·M(id + Σ(ηKK2 · ηKK ) + ΣηKK2 + idΣK3) · flatId+ΣK,ΣK2+ΣK3

·M(α+ idΣK2 + idΣK3) · flatK+ΣK2,ΣK3 ·M(αK + idΣK3) · αK2

= { definition of w }

M(id + ΣKµK) · w

The fact that µK = µ̃K serves as an efficient definition of µK in a program-
ming language: µK can be defined as the greatest fixed point of the operation −̃.
The middle component of the coproduct in the codomain of unf in a step of
computation of µK is already the final result of the computation, and is always
preserved. That is why Vene and Uustalu’s apomorphism may seem to provide
a more accurate level of abstraction for a definition of µK , since they allow
to give a short-cut answer in a single step. In this case µK can be defined as
[〈M(id+[ΣinrK,K2 ,ΣinlK,K2 ])·unf〉]. Nevertheless, we stick to the definition with
an anamorphism, since we have found that it makes the present proofs much
simpler—instead of pushing the short-cut answers through coproducts, we can
push them with ηK , which gives us, in this case, more flexibility, especially in
the proof of the associativity of µK , where we need to deal with ΣK2, which is
neither the final structure (K), nor the seed for unfolding (K3).

5.2 Distributive law

Theorem 8 (Distributive law). There exists a monad distributive law λ :
(ΣM)∞M →M(ΣM)∞, given by λ = µK · ηM(ΣM)∞M(ΣM)∞ · (ΣM)∞Mη∞.

Proof. It is sufficient to check that the monads M and (ΣM)∞ are compatible
(see Barr and Wells’ book [6, Chapter 6]) with K ∼= M(ΣM)∞. In this case the
compatibility conditions specialise to:

1. ηK = ηM(ΣM)∞ · η
∞ = Mη∞ · ηM

2. Mµ∞ = µK ·M(ΣM)∞ηM(ΣM)∞

3. µM(ΣM)∞ = µK ·Mη∞M(ΣM)∞

(Note that Barr and Wells give five conditions for compatibility, but the last
two are redundant, and follow from the first three. See [10] for discussion.)

Equalities (1) and (2) are trivial. To prove (3) we introduce a morphism
w : M(ΣM)∞(ΣM)∞ →M(Id + ΣM(ΣM)∞(ΣM)∞) defined as:
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M(ΣM)∞(ΣM)∞

M((ΣM)∞ + ΣM(ΣM)∞(ΣM)∞)

M(Id + ΣM(ΣM)∞ + ΣM(ΣM)∞(ΣM)∞)

M(Id + ΣM(ΣM)∞(ΣM)∞)

Mα∞(ΣM)∞

M(α∞ + idΣM(ΣM)∞(ΣM)∞)

M(id + [ΣMη∞(ΣM)∞ + idΣM(ΣM)∞(ΣM)∞ ])

Below we prove that α·µK ·M(ΣM)∞ηM(ΣM)∞ = M(id+Σ(µK ·M(ΣM)∞ηM(ΣM)∞))·
w, which means that µK ·M(ΣM)∞ηM is a coalgebra homomorphism
〈M(ΣM)∞(ΣM)∞, w〉 → 〈M(ΣM)∞, α〉, and that α ·Mµ∞ = M(id+ΣMµ∞) ·
w, which means thatMµ∞ is a coalgebra homomorphism 〈M(ΣM)∞(ΣM)∞, w〉 →
〈M(ΣM)∞, α〉. By uniqueness, Mµ∞ = [(w)] = µK ·M(ΣM)∞ηM(ΣM)∞ . Dia-
grammatically:

〈M(ΣM)∞(ΣM)∞, w〉

〈M(ΣM)∞, α〉

[(w)] Mµ∞µK ·M(ΣM)∞ηM(ΣM)∞

α · µK ·M(ΣM)∞ηM(ΣM)∞

= { universal property }

α · α−1 ·M(id + [idΣK ,Σµ
K ]) · unf ·M(ΣM)∞ηM(ΣM)∞

= { cancellation, unf }

M(id + [idΣK ,Σµ
K ]) ·M(α∞ + idΣM(ΣM)∞M(ΣM)∞)

· flat(ΣM)∞,ΣM(ΣM)∞M(ΣM)∞ ·Mα∞ ·M(ΣM)∞ηM(ΣM)∞

= { monad laws }

M(id + [idΣK ,Σµ
K ]) ·M(α∞ + idΣM(ΣM)∞M(ΣM)∞)

·M(id(ΣM)∞ + ΣM(ΣM)∞ηM(ΣM)∞) ·Mα∞(ΣM)∞

= { coproducts }

M(id + [idΣK ,Σµ
K ]) ·M(α∞ + ΣM(ΣM)∞ηM(ΣM)∞) ·Mα∞(ΣM)∞

= { coproducts }
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M(id + [idΣK ,Σ(µK ·M(ΣM)∞ηM(ΣM)∞)]) ·M(α∞ + idΣM(ΣM)∞(ΣM)∞)

·Mα∞(ΣM)∞

= { monad laws }

M(id + [Σ(µK ·M(ΣM)∞ηM(ΣM)∞) · ΣMη∞(ΣM)∞ ,

Σ(µK ·M(ΣM)∞ηM(ΣM)∞)]) ·M(α∞ + idΣM(ΣM)∞(ΣM)∞) ·Mα∞(ΣM)∞

= { coproducts }

M(id + [Σ(µK ·M(ΣM)∞ηM(ΣM)∞),Σ(µK ·M(ΣM)∞ηM(ΣM)∞)])

·M(id + ΣMη∞(ΣM)∞ + idΣM(ΣM)∞(ΣM)∞) ·M(α∞ + idΣM(ΣM)∞(ΣM)∞)

·Mα∞(ΣM)∞

= { coproducts }

M(id + Σ(µK ·M(ΣM)∞ηM(ΣM)∞))

·M(id + [ΣMη∞(ΣM)∞ + idΣM(ΣM)∞(ΣM)∞ ]) ·M(α∞ + idΣM(ΣM)∞(ΣM)∞)

·Mα∞(ΣM)∞

= { definition }

M(id + Σ(µK ·M(ΣM)∞ηM(ΣM)∞)) · w

∗ ∗ ∗

α ·Mµ∞

= { universal property }

α ·Mα∞−1 ·M(id + [idΣM(ΣM)∞ ,ΣMµ∞]) ·M(α∞ + idΣM(ΣM)∞(ΣM)∞)

·Mα∞(ΣM)∞

= { cancellation }

M(id + [idΣM(ΣM)∞ ,ΣMµ∞]) ·M(α∞ + idΣM(ΣM)∞(ΣM)∞)

·Mα∞(ΣM)∞

= { monad laws }

M(id + [ΣMµ∞ · ΣMη∞(ΣM)∞ ,ΣMµ∞]) ·M(α∞ + idΣM(ΣM)∞(ΣM)∞)

·Mα∞(ΣM)∞

= { coproducts }

M(id + ΣMµ∞) ·M(id + [ΣMη∞(ΣM)∞ + idΣM(ΣM)∞(ΣM)∞ ])

·M(α∞ + idΣM(ΣM)∞(ΣM)∞) ·Mα∞(ΣM)∞

= { definition }

M(id + ΣMµ∞) · w
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5.3 Free Eilenberg-Moore M-algebras

Definition 9. We call M -Fema the category of free Eilenberg-Moore algebras,
that is algebras 〈MA, µMA : M2A → MA〉, where A is an object in the base
category. We identify 〈MA,µMA 〉 with MA.

A morphism in M -Fema (called a homomorphism) is a morphism f : MA→
MB in B such that the following diagram commutes.

M2A MA

M2B MB

µMA

Mff

µMB

The category M -Fema is equivalent to the more widely used Kleisli category of
M . We prefer to use M -Fema over Kleisli for two reasons: it is a subcategory
of the base category B, which makes a commuting diagram in M -Fema a com-
muting diagram in B, and it makes a clearer connection with the monad K, as
can be seen in the next section. We use the following properties of morphisms
and functors:

Lemma 10. The following hold:

• For an object A in the base category, µMA : M2A → MA is a homomor-
phism.

• For a morphism f : A→ B in the base category, Mf is a homomorphism.

• For an endofunctor F over the base category, the composition MF is an
endofunctor over M -Fema.

The inclusion functor U : M -Fema → B has a left adjoint F defined as
FA = MA and Ff = Mf , with the unit and counit defined as η = ηM and
ε = µM respectively. It means that M -Fema has coproducts, which we denote
as MA⊕MB, given as M(A+B), with M inlA,B and M inrA,B as the left and
right injections respectively. For two homomorphisms f : MA → MC and
g : MB → MC, their mediator, denoted by [[f, g]], is given by the following
composition:

MA⊕MB = M(A+B)

M2C

MC

M [f · ηM , g · ηM ]

µM

Lemma 11. For morphisms f : A → C and g : B → C, the mediator of their
M -images [[Mf,Mg]] : MA⊕MB →MC is equal to M [f, g].
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As discussed by Mulry [21], liftings of an endofunctor T on B to M -Fema
are in one-to-one correspondence with distributive laws TM →MT . Moreover,
a simple calculation shows that if T has a monadic structure and the distributive
law respects this structure, the corresponding lifting 〈T 〉 is also a monad.

More precisely, let λ : TM → MT be a monad distributive law. We define
an endofunctor 〈T 〉 on M -Fema as:

〈T 〉MA = MTA

〈T 〉(f : MA→MB) = µMTB ·MλB ·MTf ·MTηMA : MTA→MTB

We define a monadic structure for 〈T 〉 as:

η
〈T〉
MA : MA→ 〈T 〉MA (= MA→MTA)

η
〈T〉
MA = MηTA

µ
〈T〉
MA : 〈T 〉2

MA→ 〈T 〉MA (= MTTA→MTA)

µ
〈T〉
MA = MµTA

It is an easy calculation to show that 〈T 〉 is an endofunctor and that η〈T〉 and
µ〈T〉 are natural transformations and that monad laws hold.

Lemma 12. The monad induced by the distributive law (that is, 〈MT, ηMT ·
ηT , MµT · µMT 2 ·MλT 〉) is equal to U〈T 〉F .

Proof. Since 〈T 〉 is a lifting, that is 〈T 〉F = FT , we reason that U〈T 〉F =
UFT = UMT = MT , so they are equal as functors.

Unit:

η
U〈T〉F
A = Uη

〈T〉
FA · ηA = Uη

〈T〉
MA · ηA

= { definition of η〈T〉 and η }

UMηTA · ηMA

= { definition of U }

MηTA · ηMA

= { naturality of ηM }

ηMTA · ηTA = ηMT
A

Multiplication:

µ
U〈T〉F
A = Uµ

〈T〉
FA · U〈T 〉ε〈T〉FA

= { definitions of U , F , and 〈T 〉 }

µ
〈T〉
MA · 〈T 〉εMTA

= { definition of ε }

µ
〈T〉
MA · 〈T 〉µ

M
TA
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= { definition of 〈T 〉 }

µ
〈T〉
MA · µ

M
TTA ·MλTA ·MTµMTA ·MTηMMTA

= { monad laws }

µ
〈T〉
MA · µ

M
TTA ·MλTA

= { definition of µ〈T〉 }

MµTA · µMTTA ·MλTA = µMT
A

5.4 Complete iterativity of K

Consider the monad (ΣM)∞. The monad distributive law λ from Theorem 8
gives rise to a lifting 〈(ΣM)∞〉, defined on objects as

〈(ΣM)∞〉MA = M(ΣM)∞A ∼= KA.

The following theorem states that the lifting is also a free cim. Note that MΣ
is an endofunctor also over M -Fema (Lemma 10):

Theorem 13. The monad 〈(ΣM)∞〉 is the free cim generated by MΣ in M -Fema.

We denote it as (MΣ)
∞̂

.

Proof. For an M -Fema homomorphism f : MX → M(A + ΣMX), consider
the following diagram in the base category. It commutes, because KA is the
carrier of the final M(A+ Σ−)-coalgebra.

KA M(A+ ΣKA)

MX M(A+ ΣMX)

αA

f

[(f)] M(idA + Σ[(f)])

It is easy to see that αA and M(A + Σ[(f)]) are also homomorphisms, and [(f)]
is a homomorphism as a composition of homomorphisms via the computation
law: [(f)] = α−1

A ·M(A + Σ[(f)]) · f . This means that this diagram commutes
also in M -Fema. Expanding the definition of coproducts we get the following
commutative diagram in M -Fema:

〈(ΣM)∞〉MA M(A+ Σ〈(ΣM)∞〉MA) = MA⊕MΣ〈(ΣM)∞〉MA

MX M(A+ ΣMX) = MA⊕MΣMX

αA

f

[(f)] M(idA + Σ[(f)]) = idMA ⊕MΣ[(f)]

Note that in M -Fema, M(A + Σ−) = MA ⊕MΣ− is a functor (Lemma 10),
hence 〈(ΣM)∞〉MA is the carrier of the final (MA⊕MΣ−)-coalgebra, and so,
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according to [18, Corollary 6.3], 〈(ΣM)∞〉 is the functorial part of the free cim
generated by MΣ, understood as a functor in M -Fema. We denote free cims

in M -Fema as -∞̂, so 〈(ΣM)∞〉 ∼= (MΣ)
∞̂

as functors.

It is left to see that 〈(ΣM)∞〉 ∼= (MΣ)
∞̂

also as monads. It is easy to
see that the units are equivalent. For multiplications, compare the universal
properties from Theorem 7 (for the identity monad and ΣM and MΣ as respec-
tive functors). In case of 〈(ΣM)∞〉 the multiplication is equal to Mµ∞. The
M -image of the universal property of µ∞ simplifies to:

〈(ΣM)∞〉2M ∼= M(ΣM)∞(ΣM)∞

∼= M(Id + ΣM(ΣM)∞ + ΣM(ΣM)∞(ΣM)∞)

M(Id + ΣM(ΣM)∞) ∼= M(ΣM)∞

M(id + [idΣM(ΣM)∞ ,ΣMµ∞])

In case of (MΣ)
∞̂

, the universal property can be simplified using Lemma 11 as
follows:

(MΣ)
∞̂

(MΣ)
∞̂
M ∼= (MΣ)

∞̂
M ⊕MΣ(MΣ)

∞̂
(MΣ)

∞̂
M

∼= M ⊕MΣ(MΣ)
∞̂
M ⊕MΣ(MΣ)

∞̂
(MΣ)

∞̂
M

= M(Id + Σ(MΣ)
∞̂
M + Σ(MΣ)

∞̂
(MΣ)

∞̂
M)

M ⊕MΣ(MΣ)
∞̂
M ∼= (MΣ)

∞̂
M

= M(Id + Σ(MΣ)
∞̂
M) ∼= M(ΣM)∞

id⊕ [[idMΣ(MΣ)∞̂ ,MΣµ∞̂]]

= M(id + [idΣ(MΣ)∞̂M ,Σµ
∞̂])

It means that the multiplicationMµ∞ satisfies the universal property of µ∞̂.

Theorem 5 and the above characterisation yields that K is completely iter-
ative. The guardedness specialises as:

X K(A+X)

MΣK(A+X) +A

e

j

[α−1
A+X ·M inrA+X,ΣK(A+X), η

K
A+X · inlA,X ]

5.5 A more robust cim-like property of K

We can define a more general notion of iterativity for K than one provided by
Theorem 5. It states that an equation morphism X → K(A+X) has a unique
solution as long as every ‘value’ of the outer monad M is a parameter or at
least one level of the Σ-guarded recursive structure, but not a variable. (The
guardedness of Theorem 5 needs the result of an equation morphism to be either
a parameter or an M where all the ‘values’ are Σ-guarded.)
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Theorem 14. Let e : X → K(A + X) be a morphism such that it factorizes
through α−1 ·M(inlA,X + idΣK(A+X)), that is there exists a morphism j such
that t.f.d.c.

X K(A+X)

M(A+ ΣK(A+X)) M((A+X) + ΣK(A+X))

e

j

M(inlA,X + idΣK(A+X))

α−1

There exists a unique morphism e‡ for which t.f.d.c.

X KA

K(A+X) K2A

e‡

K[ηK , e‡]

e µK

Lemma 15. 1. Every morphism f : X → MY factors as f ′ · ηMX for some
homomorphism f ′ : MX →MX.

2. The natural transformation ηM is epic for homomorphisms, that is, for
two homomorphisms f, g : MA→MB, if f · ηMA = g · ηMA then f = g.

Proof. (i) It is easy to check that f = µMX · Mf · ηMX . By Lemma 10, the
morphism µMX ·Mf is a homomorphism. For (ii) we calculate:

f

= { monad laws }

f · µMA ·MηMA

= { f is a homomorphism }

µMC ·Mf ·MηMA

= { assumprion }

µMC ·Mh ·MηMA

= { h is a homomorphism }

h · µMA ·MηMA

= { monad laws }

h

Proof of Theorem 14. Let f : MX → (MΣ)
∞̂

(MA⊕MX) be a guarded equa-
tion morphism in M -Fema. Then there exists a unique homomorphism f† such
that t.f.d.c.
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MX
(MΣ)

∞̂
MA

= M(ΣM)∞A

(MΣ)
∞̂

(MA⊕MX) (MΣ)
∞̂

(MΣ)
∞̂
MA

= 〈(ΣM)∞〉(MA⊕MX)

= 〈(ΣM)∞〉M(A+X)

= 〈(ΣM)∞〉 (MΣ)
∞̂
MA

= 〈(ΣM)∞〉 〈(ΣM)∞〉MA

= M(ΣM)∞(A+X) = M(ΣM)∞(ΣM)∞A

M2(ΣM)∞(ΣM)∞A

M(ΣM)∞M(ΣM)∞AM(ΣM)∞M(A+X)

M(ΣM)∞M(MA+MX) M(ΣM)∞M2(ΣM)∞A

f†

f
µ(MΣ)∞̂ = Mµ(ΣM)∞

(MΣ)
∞̂

[[η, f†]]

〈(ΣM)∞〉[[η, f†]]

M(ΣM)∞ηM

M(ΣM)∞M2ηM

M(ΣM)∞M [η, f†]

M(ΣM)∞µM

M(ΣM)∞[[η, f†]]

M(ΣM)∞[ηK , f† · ηM ]

Mλ

µM

µK

(A)

(B)

(C)

(D)

(E)

(A) solution property for (MΣ)
∞̂

, (B+C) definition of lifting to M -Fema for
morphisms, (D) definition of mediator for coproducts in M -Fema, (E) defini-
tion of µK via the distributive law. The ‘diagonal’ M(ΣM)∞[ηK , f† · ηM ] is a
simplification of the outer edges of (C+D).

Note that the longer path of the outer edges of (A + B + E) is a composition
of homomorphisms, so f† is unique also among all morphisms in B.

The following diagram also commutes. Reading the outer edges it states that

the morphism µM ·Me is a guarded equation morphism in the monad (MΣ)
∞̂

in M -Fema.
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M
A
⊕
M

Σ
(M

Σ
)∞̂

(M
A
⊕
M
B

)
=
M

(A
+

Σ
M

(Σ
M

)∞
(A

+
X

))

M
(M

A
+
M

Σ
M

(Σ
M

)∞
(A

+
X

))

M
2
(Σ
M

)∞
(A

+
X

)

M
(Σ
M

)∞
(A

+
X

)

=
(M

Σ
)∞̂

(M
A
⊕
M
X

)

M
2η
M

M
[η

(M
Σ

)∞̂
·M

in
l,
M
σ

]
=

M
[M

η
(Σ
M

)∞
·M

in
l,
M
σ

]

µ
M

[[
η

(M
Σ

)∞̂
·M

in
l,
σ

]]
M

(A
+
X

+
Σ
M

(Σ
M

)∞
(A

+
X

))

M
(i

n
l+

id
) α
−

1

M
2
(A

+
X

+
Σ
M

(Σ
M

)∞
(A

+
X

))

M
2
(Σ
M

)∞
(A

+
X

)

M
2
(A

+
Σ
M

(Σ
M

)∞
(A

+
X

))

M
X M

α
−

1

µ
M

M
2
(i

n
l+

id
)

µ
M

M
j

M
e
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Define e‡ to be (µM ·Me)† · ηM . The following diagram also commutes:

MX

MM(ΣM)∞(A+X)

M(ΣM)∞A

M(ΣM)∞(A+X) M(ΣM)∞M(ΣM)∞A

X

(µM ·Me)†

M(ΣM)∞[ηK , (µM ·Me)† · ηM ]

Me

µM

ηM
e‡ = (µM ·Me)† · ηM

e

µK

The bottom pentagon is the (A+B+E) square from the diagram above for f =
µM(ΣM)∞(A+X) ·Me.

For uniqueness, assume that g : X → M(ΣM)∞A substituted for e‡ also
commutes the diagram. By Lemma 15, g factors as g′ ·ηMX for a homomorphism
g′. Substituting g′ for (µM ·Me)† in the diagram yields that the bottom pen-
tagon precomposed with ηMX commutes. Since ηM is epic for homomorphisms
(Lemma 15), the pentagon commutes, so g′ is a solution of µM ·Me. This means
that that g′ = (µM ·Me)†, hence g = g′ · ηMX = (µM ·Me)† · ηMX = e‡.

6 Related and future work

Cims were introduced by Elgot [11], and recently brought to attention by Aczel
et al. [1, 18]. Milius and Moss [19] consider recursive program schemes in terms
of solutions in Elgot algebras [3] (that is, Eilenberg-Moore algebras for free
cims).

Cenciarelli and Moggi [9] introduced the Generalised Resumption trans-
former M(ΣM)∗, which decomposes a monadic computation into a series of
steps (layers of free structure). Hyland, Plotkin, and Power [16] proved it to
be the coproduct M + Σ∗ in the category of monads. The monad M(ΣM)∞

captures also potentially infinite computations. In some categories—and so
programming languages like Haskell—the limit-colimit coincidence [27] identi-
fies M(ΣM)∗ and M(ΣM)∞, but the explicit use of the free cim is signifi-
cant in Set and in type theories with guarded (co)recursion. Interleaving data
and monadic actions is a powerful abstraction studied recently also by Filinski
and Støvring [12], Atkey et al. [4], and the present authors [24]. The monad
M(ΣM)∞ is also a categorical model for datatypes built around resumptions,
like Haskell pipes (for ΣA = AI +A×O). The fact that we use the free cim is
crucial, since programming patterns for pipes rely heavily on infinite computa-
tions.

Since the free cim is a final coalgebra [18], we can see (MΣ)∞ in M -Fema
from Theorem 13 as an example of Hasuo, Jacobs, and Sokolova’s generic trace
semantics [14], which models state-based systems as F -coalgebras in a Kleisli
category (or, equivalently, a Fema). The coalgebra represents transitions (for
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example, with ΣA = A × O for labelled transitions), and the monad repre-
sents the underlying effect (like the Powerset monad for nondeterminism or the
Probability Distribution monad for probabilistic systems).

In this paper we concentrate on the monads and tracing, and we only sketch
potential applications in defining semantics and reasoning about programs.
The natural next step is to formalise a language like Moggi’s computational
λ-calculus [20] with recursion provided by a background cim. It is also an in-
teresting question whether the presented theory could be used to develop a
practical framework for reasoning about effectful programs in type theories, like
those implemented by the Coq or Agda proof systems. So far, Capretta [8]
represented general recursion by the free cim generated by the identity functor.
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