
Departmental Coversheet

MSc in Computer Science 2018-19

Project Dissertation

Project Dissertation title: Deep Learning models for the analysis of short
tandem repeats in DNA sequences

Term and year of submission: Trinity 2021
Candidate Number:1048808
Words counted using Overleaf: 21620

1

Deep Learning models for the
analysis of short tandem repeats in

DNA sequences

Candidate Number: 1048808

University of Oxford

A dissertation submitted for the degree of

Master of Science in Computer Science

Trinity 2021

Abstract

The emergence of short tandem repeats (STRs) as functional genomic

elements associated with various diseases, has highlighted the need for

efficient methods aiming at their identification and analysis. Recently,

deep learning has emerged as an important tool in analyzing and capturing

characteristics of genomic data.

In this work, we explore for the first time the use of deep learning architec-

tures for STR prediction, identification, and analysis. For that purpose,

we train neural networks to predict if a sequence contains STRs as well

as to predict their exact starting and ending position. We investigate

the ability of the models to detect the repeats in cases of extensive mu-

tations, i.e. when their repeated units are imperfect, a highly desirable

property that is usually difficult to be achieved by other software and al-

gorithms. Subsequently, we attempt to correlate the repeat presence with

the genomic composition of their flanking sequence by training models to

predict if a sequence comprises a flanking sequence of a repeat. We use

both supervised and unsupervised deep learning architectures, like Con-

volutional Neural Networks and Variational Autoencoders. To achieve all

these, we firstly design different ways of creating training data from the

raw human genome and evaluate how the design of the datasets affects the

model performance. We show that the implemented models can achieve

high performance in most of these tasks.

This work, introduces a new approach of analysing STRs and lays the

foundation for future capitalization of the power of deep learning for this

complex task.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Identification of repetitive elements – Related work 4

1.3 Contributions . 6

1.4 Dissertation Structure . 7

2 Problem Definition 8

2.1 Input format . 8

2.1.1 Dataset types . 9

2.2 Output format . 10

2.3 Evaluation metrics . 10

2.4 Project Focus . 12

3 Background 14

3.1 Genomics preliminaries . 14

3.1.1 Tandem repeats . 14

3.1.1.1 Origin of tandem repeats flanking sequence 18

3.2 Deep Learning preliminaries . 19

3.2.1 Neural networks and Backpropagation 19

3.2.2 Convolutional Neural Networks 20

3.2.2.1 CNNs in genomics 22

3.2.3 Variational Autoencoders . 23

3.2.3.1 Variational Autoencoder framework 26

3.2.3.2 Reparameterization trick and Gumbel-Softmax . . . 28

4 Dataset Creation 31

4.1 Dataset Creation . 31

4.2 Creation of Train/Test splits . 32

i

5 Methods 34

5.1 Implementation . 34

5.2 Model Architecture: CNN . 36

5.3 Model Architecture: VAE . 38

5.3.1 Optimization configuration . 38

5.3.2 Classification on the latent space 40

5.3.3 Discrete latent variables: Reasoning behind Gumbel-Softmax

VAE . 40

5.3.4 Selected architecture . 41

6 Results 44

6.1 Experiment I & II . 45

6.1.1 Experiment I . 45

6.1.2 Experiment II . 50

6.1.3 Comparison of type I and type II models 53

6.2 Experiment III . 59

6.3 Experiment IV . 63

7 Discussion 71

7.1 Assessing the results . 72

7.2 Limitations and Future work . 75

Bibliography 79

ii

List of Figures

1.1 Tandem repeat mutations. 3

2.1 DNA is packed in structures called chromosomes. It is comprised of 4 chem-

ical bases A, C, T and G, called nucleotides. Nucleotides bound in a com-

plementary way A-T and C-G. 9

3.1 Unit size and number of units are factors that characterize tandem repeats.

Microsatellites (Short tandem repeats), are comprised of repeated motifs of

1-9 bp, while minisatellites of ≥ 10 bp. 15

3.2 Convolution operation. The dot product between the patch of the

input image (shaded blue part) and the filter is calculated (left corner

of the green box). 21

3.3 Pooling operation. Maximum pooling is applied with pool size (2,2)

and stride (2,2). Figure taken from [1] 22

3.4 Convolutional neural networks applied to DNA sequences. Figure

taken from [2]. 23

3.5 Variational autoencoder model: Solid lines correspond to the generative

model pθ(x|z)pθ(z) and dashed to the inference model qφ(z|x). Figure taken

from [3]. 26

3.6 The forward pass of a VAE is comprised of encoding the datapoints through

the inference network to a latent distribution, then, sampling from this

distribution and decoding them through the generative network. Figure

taken from [4]. 28

3.7 Reparameterization trick Left: for continuous latent varaibles Right: for

categorical latent variables Figure taken from [5]. 29

6.1 Examples of 80 bp samples. 46

6.2 t-SNE of the high dimensional latent space. Negative samples (non-

repeats) are shown with orange and positive samples (repeats) are

shown with blue. 48

iii

6.3 Accuracy over the repeat length contained in the samples (type I models).

We separated 100,000 sequences containing repeats from chr 1 based on the

length of the repeat contained in the samples and measured the models’

accuracy for each. The groups considered repeat lengths 6-10, 11-15 and so

on. At the x-axis the upper limit of the range of each group is denoted. All

models are more accurate when longer part of the repeat is contained in the

input sample . 49

6.4 Modelling performance on mutated repeats (type I models): We contami-

nate the repeat sequences by iteratively changing one bp of the repeat to a

random one to create artificial mutations. The no. of bp changed is denoted

on the x-axis. (a) Average model output (b) No. of repeats identified, for

different contamination levels. 51

6.5 Modelling performance on mutated repeats (type II models): We contami-

nate the repeat sequences by iteratively changing one bp of the repeat to a

random one to create artificial mutations. The no. of bp changed is denoted

on the x-axis. (a) Average model output (b) No. of repeats identified, for

different contamination levels. 54

6.6 Percentage of positive repeats found for different repeat lengths contained

in the samples. Comparison between type I and type II models. 55

6.7 Example of an 80bp window sliding over an input sequence to generate a

heatmap. The 80bp window is given to the model as input and the output

of the model corresponds to an element of the heatmap. Top: The output

of the model corresponds to position 1 (x-axis) of the heatmap. Down: The

output of the model corresponds to position 10 (x-axis) of the heatmap. . 57

6.8 Heatmap for CNN, type I model. Each row corresponds to a sample se-

quence and each column corresponds to the output of the model when it

takes as input an 80bp part of the sequence. That is, an 80 bp window

slides over the input sequence and at each position the output of the model

is given in the heatmap. x-axis corresponds to the position of the rightmost

part of the sliding window. Here, we have denoted as 0 in the x-axis the

part where the first bp of the repeat is placed in the 50 samples used to

generate the heatmap. 57

6.9 Heatmap for CNN, type II model. 58

6.10 Heatmap for GS VAE, type I model. 58

6.11 Heatmap for GS VAE, type II model. 59

iv

6.12 Table taken from [6] showing the performance of a range of software on the

five different curated datasets. 64

6.13 Heatmaps of 5,000 sequences containing a repeat and its flanking region.

(a) CNN (b) Gumbel-Softmax VAE . 67

6.14 Blue: Binarized output averaged among 5,000 sequences containing a repeat

and its flanking region (positives). Green: Binarized output averaged among

5,000 sequences non containing a repeat (negatives). (a) CNN model trained

immediate flanking sequences (b) CNN model trained on flanking sequences

with a 10 bp gap . 68

6.15 Binarized output averaged among 5,000 sequences containing a repeat

and its flanking region (positives). Green: Binarized output averaged

among 5,000 sequences non containing a repeat (negatives). (a) GS

VAE model trained immediate flanking sequences (b) GS VAE model

trained on flanking sequences with a 10 bp gap 69

v

Chapter 1

Introduction

1.1 Motivation

In the last decade, huge progress has been made in the genomics field, which has

led to a better understanding of the genetics of various diseases. A central topic of

research is the correlation of DNA variants with phenotypic variations, namely the

exploration of how different variants in the DNA sequence are associated with human

diseases and traits. Eukaryotic genomes are composed of both repetitive and unique

components. However, for many years, the repetitive part of the genome has been

considered as non-important and, thus, the above studies have only focused on the

exploration of genetic variation and mutations in the non-repetitive part.

Nonetheless, the repetitive elements of the DNA account for more than half of the

human genome. Repetitive DNA can be divided in tandem and interspersed repeats.

While in tandem repeats the repeated sequences are adjacent to one another, in

interspersed repeats, they are dispersed throughout the genome [7]. Short tandem

repeats (STRs), consisting of 1–9 bp motifs, are usually found in the non-coding

regions and are one of the most polymorphic and abundant repeat classes [8]. Their

repetitive structure causes frequent errors during DNA recombination and replication,

leading to STR mutation rates that are 10 to 104-fold higher than those of non-

repetitive loci [9].

The direct association of tandem repeats expansion with certain diseases has been

proven. The term repeat expansion is referring to repeat mutations in which the

number of repeated units, and thus the total length of the repeat, become unstable

[10]. Certain tandem repeat expansions have been proven to cause Huntington dis-

ease, spinocerebellar ataxias, Friedreich ataxia (FRDA), fragile X syndrome (FXS),

myotonic dystrophy, and other diseases [11] [12]. These are monogenic diseases, which

means that they are caused by mutations in a single gene [13]. Although the role of

1

1.1. Motivation 2

the tandem repeats in some of these monogenic diseases is known since the 1990s,

the perception that most tandem repeats are ”genomic junk” and are reflecting the

fallibility of DNA replication but do not affect the differences in complex phenotypic

features, such as the occurrence of polygenic diseases, was held for many years. This

changed when the revolution in genomic sequencing and functional genomics allowed

the identification of tandem repeats as functional sequences with complex roles in

DNA, RNA, and protein levels, many of which are still unexplored.

Specifically, latest evidence suggests that STRs are contributing to gene regula-

tion and expression [14] [12] [15] [16]. This is of high importance since research has

suggested that the way non-coding variants influence traits and phenotypes is by

changing gene expression, which determines the diversity of cell types and states in

multi cellular organisms [17]. Therefore, STR expansions, the majority of which are

found in non-coding regions, by influencing gene expression could potentially be the

source of variants in phenotypes, e.g., different traits or existence of a disease.

The fact that emerging data indicate that STRs influence gene expression could

potentially mean that they control gene products associated with polygenic disor-

ders. Polygenic disorders are caused by mutations in multiple genes and, thus, the

identification of their sources is more complex. Tandem repeats’ involvement in dis-

orders with complex genetics is mostly unknown but recently efforts have been made

to identify tandem repeat expansions that are associated with complex diseases e.g.

autism [18]. The evidence of the association of tandem repeats with polygenic dis-

orders indicates that a potential source of the “missing heritability” problem is the

non-inclusion of tandem repeats polymorphisms in the analysis, which focuses only

on the polymorphisms of the non-repetitive part of the genome, mainly the single

nucleotide polymorphisms (SNPs) [19].

The so called “missing heritability” problem observed in most complex traits or

diseases is a problem that researchers have been trying to explore for years, and it

condenses to the fact that all the SNP variations taken together confer less disease

risk than expected and cannot account for most of the heritability of a given trait

or disease [20]. Literature suggests that one of the potential causes for these heri-

tability gaps in polygenic disorders could be the fact that the relevant studies do not

capture polymorphisms of the repeatome, particularly tandem repeat polymorphisms

(TRPs) or tandem repeat variants [15] [12]. As tandem repeats have quite higher mu-

tation rates than single nucleotides, SNPs do not identify the vast majority of TRPs.

Therefore, to discover TRs that are associated with complex polygenic diseases, an

approach that views tandem repeats as potentially functional polymorphisms should

1.1. Motivation 3

Figure 1.1: Tandem repeat mutations.

be taken. After identifying the tandem repeats that influence and contribute to a

range of disorders, these can be targeted to prevent and treat the disease.[12].

Having underlined the importance of tandem repeats and their influence on gene

regulation and expression, as well as their effect on phenotypes, the importance and

need of a method for their identification and discovery is clear. The definition of

tandem repeats as adjacent copies of a small motif is not strict and substitution

mutations, while also insertions and deletions exist in motifs. In line 1 of Fig. 1.1,

substitution mutations where a base pair is replaced by a different base pair are

shown. Another type of mutation in TRs are insertion and deletions, which can

concern a repeat unit or single nucleotides as shown at line 3 of Fig. 1.1. Thus, the

repeated units are usually not identical leading to heterogeneity between the copies.

This heterogeneity makes TR detection complicated and challenging.

In the last years, deep learning (DL) has emerged as an important tool in analyzing

genomic data, learn motifs and capture characteristics of the input DNA sequences.

One key application of DL in genomics is the prediction of phenotypes ab initio

from DNA sequences. In line with this direction of research, in the last 5 years,

researchers have attempted to predict gene expression levels, which can be viewed as

an intermediate phenotype, ab initio from DNA sequences using DL models. These

efforts were met with high success with models evolving over the years and achieving

higher performance [21], [22], [23], [22], [24].

In [25], the authors used a DL model to confirm the hypothesis that STRs influ-

ence gene expression by showing that a significant fraction of Cap Analysis of Gene

Expression (CAGE) peaks initiate at STRs. To that end, they trained a convolutional

neural network (CNN) that predicts CAGE signal from STRs. That is, instead of

using the whole DNA sequence as in the previous models [21], [22], [23], [22], [24],

they used as input only the STRs. The importance of that is two-fold. Firstly, it

highlights the contribution of STRs in gene expression, as discussed at the start of this

Chapter, but also underpins the ability of DL models to analyse STRs and discern

their effect on gene expression.

1.2. Identification of repetitive elements – Related work 4

Inspired by these studies, while also the general emergence of DL as a bioinformat-

ics tool that enables the better understanding of DNA functionality, in this work, we

explore the use of deep learning architectures for STR prediction and identification.

In more detail, we test both supervised and unsupervised architectures and compare

our results with other software and algorithms proposed in literature. In addition,

we use DL models to explore the correlation between the presence of repeats with the

genomic composition and underlying characteristics of their flanking sequences. In

more detail, we investigate whether DL models can predict the initiation of a repeat,

namely that a repeat is coming, purely from its flanking sequence. This constitutes a

fist step towards the association of certain genomic composition or other factors with

the initiation and, potentially, the origin of tandem repeats. The origin of microsatel-

lites is a quite complex issue and is still not completely clear among the research

community [26], [27]. More details on that are given in Section 3.1.1.1.

1.2 Identification of repetitive elements – Related

work

Many different algorithms and software have been proposed for the identification

and detection of TRs. These can be divided in two broad categories based on the

general strategy they follow. The first group consists of algorithms that exhaustively

search for known repeat units throughout the input sequence. These algorithms use

pre-existing knowledge on known TRs, provided by relevant databases. The second

group consists of ab initio/de novo methods that do not require any pre-existing

knowledge on known TRs. This enables them to identify instances of unknown TRs.

The amount of works is vast and some of the software use quite complicated algo-

rithms and concepts. Here we will mention mainly the algorithms with which we will

compare our models. As it will be described in Section 2.4, we will compare our mod-

els in terms of their performance on a manually curated dataset created in [6]. In that

work the authors have evaluated the performance of a number of algorithms on their

manually curated dataset of non-naive, biologically relevant TRs. The authors in their

work have noted that despite the vast amount of works on TR detection tools, they

were able to only use in practice the ones that they eventually compared evaluated

and reported on their work. For that reason we will mainly focus on presenting these

algorithms which are Dot2dot ([6]), RepeatMasker (https://www.repeatmasker.org/),

Tandem Repeats Finder (TRF) [28], TRStalker [29], Mreps [30], Troll [31]. Along

with them, we will also briefly mention some other works.

1.2. Identification of repetitive elements – Related work 5

RepeatMasker is an instance of the first group of software that rely on already

known repeat candidates and extensively searches for instances of them. Repeat-

Masker is widely used for locating both tandem and interspersed repeats. Tandem

Repeats Finder (TRF [28]), models the alignment of tandem copies as a series of

Bernoulli trials, whose probability of success depends on the average percent identity

between the copies. TRF is fast and is considered accurate in finding repeat loca-

tions. Dot2dot is an ab-initio method inspired by graphical methods used to visually

display local alignments between pairs of sequences. The algorithm exploits the fact

that aligning a TR with itself forms a regular patterns, and uses visual search tech-

niques to detect TRs. The method allows for a degree of divergence between repeat

copies.

TRStalker [29] is a heuristic algorithm aiming to find long repeats that have

been subject of extensive mutations. The authors deal with on a Steiner version of

the problem of detecting fuzzy TR repeats for which the fuzziness is measured with

respect to a motif string not necessarily present in the input string. This is equivalent

to an NP problem and, thus, the algorithm cannot guarantee that all NP-Complete

Tandem Repeats satisfying the target definition in the input sequence will be found.

The aim is to detect highly mutated repeats that are hard to find my other algorithm

Mreps [30] is an algorithm based on the concept of maximal repeats. These are

repeats that can be extended as much as possible to the right/left without breaking

the periodicity of the motif. Mreps finds all maximal repeats in an input sequence.

It includes a resolution parameter allowing for a certain flexibility in order to find

approximate repeats, i.e. mutated repeats. The detection of approximate repeats

is done by computing the so-called runs of k-mismatch tandem repeats, i.e. repeats

that allow at most k mismatches between two adjacent repeated units. Troll [31] is

an algorithm that is extensively searching for pre-determined lists of motif patterns

using Aho–Corasick [32] algorithm used to solve the equivalent dictionary problem,

which it to find all occurrences from a list of patterns in a text string.

TANTAN [33] and Look4TRs [34] are two algorithms using hidden Markov mod-

els. TANTAN uses simple hidden Markov model (HMM) to quickly compute the

probability that each residue is part of a tandem repeat. The generative model in-

cludes a state for non–repetitive sequence, with transitions into states for repeats of

various periodicity. Look4TRs is a self-supervised Hidden Markov Model (HMM),

which converts the sequence of nucleotides to a sequence of scores indicating whether

each one of them is part of a repeat. The model is trained using self-generated scores

of repeat regions and non-repeat regions. To generate the scores, look4TRs, generates

1.3. Contributions 6

two random/synthetic chromosomes based on a real chromosome of the input genome

and inserts artificially generated repeats in these data. Then, the HMM is trained on

the scores of the generated MS and the scores of the regions in between.

1.3 Contributions

In this dissertation, we explore the use of deep learning for the prediction of regions

that contain short tandem repeats, as well as for their exact localization. In addition,

we use deep learning models to explore the correlation between the genomic compo-

sition of the flanking sequence of the repeats with their presence. The contributions

presented in this work are the following:

1. We explore what type of dataset is more appropriate for the proposed problem.

That is, we investigate two different ways of creating training data from the

raw human genome sequence. In more detail, we design two different ways

of creating training samples and explore how this different design affects the

performance of the models trained on them. Given the fact that we are not

aware of any previous work using deep learning to predict broader regions where

tandem repeats are located or to annotate input sequences by finding the exact

starting and ending position of tandem repeats, the most appropriate way to

create the training data from the available raw human genome sequence is

unexplored.

2. We experiment with, evaluate and compare three different, supervised and unsu-

pervised, deep learning architectures to predict tandem repeat locations, namely

fixed length windows that contain repeats. We investigate how the model per-

formance is influenced by different factors, such as the length of the repeat

observed by the model. We also test the ability of our models to predict the

repeats at different mutation levels, which is a highly desired property, since

mutated repeats are often associated with diaseases.

3. We test the performance of the models in annotating sequences. That is, to find

the exact starting and ending position of repeats. For that purpose, we adapt

and extend an existing algorithm [35] to be used as an extra processing step,

in combination with the model’s prediction of the exact starting and ending

positions.

1.4. Dissertation Structure 7

4. We experiment with the deep learning architectures for the task of predicting

if a sequence comprises a flanking sequence of a repeat. This way, we attempt

to correlate the repeat presence with the genomic composition of their flanking

sequence. That is a first step towards exploring the flanking sequence composi-

tion and characteristics as potential contributor to the origin and emergence of

repeats, which constitute still unclear and complicated issues.

5. We design different experiments and use different evaluation datasets to fulfill

the aforementioned objectives. We analyse our results and propose different

lines of future work.

1.4 Dissertation Structure

This dissertation is structured as follows:

• Chapter 2 (Problem Definition) formulates the problems targeted in this work.

We discuss the format of the input and output of the implemented models and

the details of the experiments designed and performed.

• Chapter 3 (Background) Gives the genomic background around tandem repeats

and the theoretical background of deep learning models that are used in this

work.

• Chapter 4 (Dataset Creation) discusses the nature of the data, the pre-processing

steps, and the creation of the datasets used in the experiments.

• Chapter 5 (Methods) describes the specific architectures and optimization set-

tings that were selected and discusses related challenges.

• Chapter 6 (Experiments) describes the different experiments performed, presents,

compares and analyses the results.

• Chapter 7 (Conclusions) performs a structured assessment of the results. Then,

it describes the limitations of our work and suggests potential future directions

to address them and further improve the performance of our models.

Chapter 2

Problem Definition

In this Chapter, we will discuss the description of the problem addressed in the current

work. The detailed problem definition, input and output format of the models used,

while also the evaluation metrics used to assess the performance of the models will be

given. In addition, details on the dataset nature and metrics will be discussed before

a more detail description is given in Chapter 4.

2.1 Input format

The input of our models will be a human DNA sequence. DNA consists of two chains

(strands) that form a double helix Fig. 2.1. Each polynucleotide chain consists of

monomeric units called nucleotides, corresponding to one of the four chemical bases:

adenine (A), guanine (G), cytosine (C), and thymine (T). Each nucleotide binds with

its respective counterpart, forming a base pair (bp), according to the base pairing

rules (A is bound with T and G is bound with C) [36]. The complementarity of DNA

results in the two strands of DNA containing the same biological information. For

that reason, only one strand will be used as input to our models. Thus, the input

consists of a sequence of A,G,T,C letters.

Around 30% of the genome consists of repetitive sequences while 3% of it consists

of short tandem repeats (STRs). STRs are sequences where a short motif (1-9 bp)

is repeated a number of times, with the repeats being adjacent to each other. More

details on STRs are discussed in Section 3.1.1. From the human genome, we created

sequences containing STRs, which constitute the positive samples of our dataset.

Negative samples were selected to be sequences that did not contain any repetitive

element (tandem repeat or interspersed repeats). In Section 2.1.1, we will introduce

the different types of datasets as well as the objectives targeted by each of them.

8

2.1. Input format 9

Figure 2.1: DNA is packed in structures called chromosomes. It is comprised of 4 chemical
bases A, C, T and G, called nucleotides. Nucleotides bound in a complementary way A-T
and C-G.

More details on the way these datasets were created will be given in Chapter 4. In

Section 2.4, the different experiments related to each dataset type are presented.

2.1.1 Dataset types

Three different dataset types were created.

1. The first dataset contains 80bp windows where the starting point of the repeat

is found between positions 0-20. This ensures that the window contains a sub-

stantial part of the repeat that will allow the model to identify it. This dataset

contains each repeat only one time.

2. The second dataset contains 80bp windows where the starting point of the

repeat could be in any position. Each repeat is contained in more than one

sample, in a different position in each of them.

3. The third dataset consisted of sequences flanking the repeat, meaning that they

were met just before the start of the repeat.

The first two datasets were used in experiments that aim to identify repeats. We

will refer to this aim as objective I. Firstly, we aim to predict if a window contains

a repeat (objective I.I). Subsequently, apart from predicting windows containing re-

peats, the models were also tested on their performance on annotating sequences

with repeats. That is, on their ability and precision on finding the exact starting and

ending position of repeats (objective I.II).

2.2. Output format 10

The third dataset was used in experiments that aim to predict if a sequence

constitutes a flanking sequence of a repeat, namely if a repeat is following immediately

after it. We will refer to this aim as objective II. The idea behind these experiment is

to test the ability of the models to identify patterns that are potentially signaling and

initiating the repeats. More details on the importance of that are given in Section

3.1.1.1.

2.2 Output format

The experiments related to both the objectives discussed above constitute a two-class

classification problem. For each window the output of the model can be interpreted

as the probability of it belonging to the positive class. The positive class depends

on the specific experiment and dataset used. For the first group of experiments,

targeting objective I, the positive class constitutes of samples containing repeats,

while for the second group, targeting objective II, he positive class constitutes of

samples containing the flanking sequence. To make the class prediction we define a

threshold of 0.5. Thus, for outputs of the model higher than 0.5 we consider the input

window belonging to the positive class.

We face the annotation task (objective I.II), again as a two-class classification

problem. To annotate a certain sequence, we slide a window of 80bp over it. For each

such window, the model predicts if it contains a repeat or not. In each position, the

nucleotide that is on the ending part of the window (last position) is annotated. That

is, as the window slides over a sequence with step equal to one, one extra nucleotide

is annotated as being contained in a repeat or not. The goal is for the model to be

able to predict the start of the repeat as early as possible.

2.3 Evaluation metrics

This section discusses the evaluation metrics used to assess the performance of the

models. For the experiments related to the prediction of an input sequence as con-

taining a repeat (objective I.I) or as being a flanking sequence before the repeat

(objective II), we use two main metrics: accuracy and F1-score. These are standard

metrics used for the evaluation of the quality of classification performed by machine

learning models.

For the experiments involving the exact annotation of sequences (objective I.II),

a measure indicating the similarity/matching between the sequence annotated by the

2.3. Evaluation metrics 11

model as a repeat and the ground-truth repeat should be used. For this purpose,

Jaccard coefficient was used. It provides an efficient way to measure the similarity

between the model’s annotation, namely the part of the sequence the model has

masked as the repeat and the ground truth. Jaccard coefficient is generally used to

measure the similarity of two intervals and, in our case of two genomic intervals. It is

defined as the ratio between the length of the intersection of the two intervals divided

by the size of their union. It takes values in the range of [0, 1] and is one only when

the two sequences exactly match.

Apart from the different evaluation metrics used in the experiments for the exact

annotation of sequences, different evaluation datasets were used. That is, although

the models were trained using the datasets discussed above in Section 2.1.1, the

performance of the models was evaluated in different datasets. In more detail, for the

training data, RepeatMasker has been used to annotate the DNA sequence, namely,

to identify the repeats so that the labelled samples can be created. More details on

the creation of the labelled data using RepeatMasker are given in Chapter 4. Thus,

when evaluating the model’s performance on the left-out data using the accuracy, f1,

precision and recall metrics, we consider RepeatMasker annotation of the DNA as

the ground truth.

However, RepeatMasker is imperfect. The contribution of annotating the repeats,

which is one of the main objectives of this work, would be important in two cases.

The first aim is that our models can annotate the DNA with higher accuracy than

RepeatMasker or other software. The second aim would be for our models to be

able to achieve comparable performance with RepeatMasker or other software and

produce similar annotation of tandem repeats, while being significantly faster.

In relation to the first aim, in order to compare the performance of our models

with other software and RepeatMasker, we need a test dataset manually curated,

where the location of the repeats has been independently found and verified. That

is, we need to compare our models’ performance on a dataset that can be considered

accurate and that is not the result of another software’s annotation. For that reason,

we use a manually curated collection of five datasets containing biologically relevant,

non-näıve repeats, created in [6]. In more detail, the authors collected:

• 45 verified disease-related TRs,

• 21 TRs relevant to DNA profiling,

• 86 TRs located in the Y-chromosome commonly used for paternity or genealog-

ical tests,

2.4. Project Focus 12

• 600 TRs distributed across the autosomes each of which containing a short and

highly polymorphic TR and,

• 15,326 TRs located in upstream regulatory regions.

2.4 Project Focus

Initially, we explored what type of dataset is more appropriate for the proposed

problem. We have designed two different ways to create the training datasets from

the raw genomic data and, also, designed experiments to evaluate the performance of

our models in different tasks. We aim to use our models to make predictions about the

location of repeats, and also analyse the genomic data to give as insights about their

presence that will allow us to draw biological conclusions. Thus, we have designed

the following experiments:

• Experiment I: We create the dataset so that the starting point of the repeat

is placed on the initial part of the sample by randomly selecting a position in

a prespecified range. The dataset is comprised of samples containing repeats

(positive class) and random sequences that do not contain repeats (negative

class). We train our models to perform 2-class classification predicting which

samples contain the repeats.

We investigate how the models’ performance is influenced by different factors,

such as the length of the repeats observed by the model and the repeats mutation

levels.

• Experiment II: We create the dataset so that the starting position of the

repeat can be in any position of the input sample. Again, we train our models

to perform 2-class classification predicting which samples contain the repeats.

We investigate how the performance of the second type of models is influenced

the by the length of the repeats and the repeats mutation levels.

Then we compare the performance of the models of this experiment with the

ones from Experiment I, in order to conclude on the most appropriate dataset.

• Experiment III: We use our models to find the exact starting and ending

position of the repeats in sequences containing biologically-relevant repeats.

We design an extra processing step to make the prediction of our models more

precise. We compare our models with other software/algorithms proposed in

the literature.

2.4. Project Focus 13

• Experiment IV: We create the dataset so that it contains the upstream flank-

ing sequence of repeats (positive class) and random sequences that do not com-

prise repeat flanking sequence (negative class). We train our models to perform

2-class classification predicting which samples comprise flanking sequence of re-

peats. That way we aim to correlate the genomic composition of the flanking

sequence with the presence and potentially the genesis of repeats.

Chapter 3

Background

The current chapter provides an overview of the theoretical background related to

this work. In Section 3.1, the genomics background related to tandem repeats is

given. Information on the structure of TRs, their hypermutability, and potential

sources accounting for it are introduced. In addition, their established association

with monogenic diseases as well as their potential role in polygenic diseases according

to latest evidence is discussed. Then, in Section 3.2, initially, the general theoretical

background of deep neural networks is introduced. Then, we discuss the theoretical

background of convolutional neural networks (CNNs) and variational autoencoders

(VAEs), the two main architectures used in this work.

3.1 Genomics preliminaries

Chromosomes are long DNA molecules containing part of the genetic material of

organisms. Human cells have 23 pairs of chromosomes. Each chromosome contains

a different number of genes, which are made of DNA. DNA consists of two chains

that form a double helix. Each of the chains consists of monomeric units called

nucleotides, corresponding to one of the four chemical bases: adenine (A), guanine

(G), cytosine (C), and thymine (T). The chains are bound together through their

nucleotides and are complementary (A is bound with T and G is bound with C).

DNA can be distinguished in repetitive and non-repetitive.

3.1.1 Tandem repeats

Repetitive DNA constitutes of patterns of one or more nucleotides that are repeated.

Repetitive elements are constituted of two groups: tandem repeats and interspersed

repeats. Interspersed repeats are specific patterns that are dispersed in multiple loci

14

3.1. Genomics preliminaries 15

Figure 3.1: Unit size and number of units are factors that characterize tandem repeats.
Microsatellites (Short tandem repeats), are comprised of repeated motifs of 1-9 bp, while
minisatellites of ≥ 10 bp. .

throughout the genome, while tandem repeats are characterized by the repeated pat-

terns being adjacent to each other. The number of times the motif is repeated varies

from a small number to more than a hundred [37]. Although definitions vary, short

tandem repeats (STRs), also called microsatellites, are the tandem repeats where

the repeated motif is 1-9 bp and comprise 3% of the human genome. Based on

the length of the major repeated motif, STRs can be classified into mono-, di-, tri-,

tetra-, penta-, and hexanucleotide repeats. Longer tandem repeats, also called min-

isatellites, have a motif from 10-100bp and long tandem repeats, also called satellite

DNA have a repeated motif longer than 100 bp [38]. In Fig 3.1 taken from [39], the

repeat GTACGTACGTACGTAC is constituted of the repeat motif GTAC repeated

four times.

3.1. Genomics preliminaries 16

Tandem repeat mutations

DNA replication is the biological process by which a double-stranded DNA molecule

makes a copy of itself and produces two identical DNA replicas. During DNA replica-

tion, the repetitive nature of tandem repeats can induce slippage replication events,

namely the misalignment of two DNA strands during replication, which leads to ge-

netic rearrangements such as microsatellite instability [40]. In more detail, replication

slippage causes the generation of deletions or insertions within repeat regions lead-

ing to varying number of copies of the repeated motif. These variations are called

“dynamic mutations” [41]. Research has shown that the slippage replication events

are influenced by the repeat unit length, with lower repeat lengths corresponding

to higher slippage rates. In addition, studies suggest a positive correlation between

repeat number and mutation rates [8]. Mutation rates are also influenced by external

factors, e.g., during transcription of a tandem repeat, higher transcription levels could

result in mutations [39]. Recombination events [42], which is the biological process

by which pieces of DNA are broken and recombined to produce new combinations of

alleles, can also lead to contraction and expansions of TR sequences. Strand-slippage

replication is considered as the main mechanism of STR mutation process, while re-

combination is considered the main mechanism causing the mutation of minisatellites

[43].

Since the repetitive nature of tandem repeats favors the occurrence of such events,

tandem repeats are hypermutable [44], with mutation rates 10–105 times higher than

the average DNA polymorphisms rates throughout the genome [39] and, thus, con-

stitute a large part of the genetic variation across humans. Apart from the insertion

and deletions of one or several repeat units, STRs are also affected by “non-specific”

mutations as shown in Fig 1.1, such as insertions/deletions of single nucleotides, while

also transition, where a single (two ring) purine (A or G) is changed for a (one ring)

pyrimidine (T or C) or vice versa, and transversion, where a purine nucleotide is

changed to another purine (A ←→ G), or a pyrimidine nucleotide to another pyrim-

idine (C ←→ T).

Position of STRs and how it affects their importance

Most STRs are located in non-coding regions, while around 8% of them are located

in coding regions. While 3% of the human genome constitutes of STRs, 6% of the

coding regions are considered to contain STR variations [9]. As mentioned in [9], in the

coding regions, STRs tend to be located in genes whose products affect transcriptional

3.1. Genomics preliminaries 17

regulation, DNA binding, protein–protein binding, and developmental processes. It

is also known that in non-coding regions, many STRs are located in promoters and

enhancers and other regions having a role in gene regulation and gene expression [45].

The location of TRs suggests that they have a functional role in gene regulation,

expression and in phenotypic variants. As described in the Section 1.1, for many years,

repetitive DNA was considered as non-functional and “junk” [46], [47]. However, the

last years, the importance of STRs has been highlighted through many studies. STRs

variations have proven to have an important role in regulation, e.g., by modulating the

binding of transcription factors [48], having the capacity to inhibit promoter activity

[49]. In addition, latest studies have highlighted STRs play a key role in regulating

gene expression [15] [16]. All this evidence has underlined the biological importance

of STRs and their role in genetic and phenotypic variation and indicates the need to

investigate their yet unexplored association with diseases.

TR expansions associated with diseases

As briefly mentioned in the Section 1.1, the determinant role of TR expansions in

some monogenic diseases was already uncovered since the 1990’s. Over 40 mendelian

disorders, which result from a mutation at a single genetic locus have been attributed

to STR expansions. Huntington disease, spinocerebellar ataxias, Friedreich ataxia

(FRDA), fragile X syndrome (FXS), myotonic dystrophy are some prominent exam-

ples of diseases caused by STR expansions [Hannan, 2018]. For example, Huntington

disease is caused by the expansion of a CAG repeat in exon 1 of the IT15 gene. While

the repeats in healthy individuals vary from 6 to 35, 36-39 repeat units indicate an

increased risk of developing the disease and individuals with more than 40 repeats

have the disease.

Apar from the contribution in monogenic disorders, the emerging data discussed

above that indicate the functional role of STRs and their determinant role in gene

expression, indicate that STRs have the potential to contribute to the missing heri-

tability of polygenic disorders by controlling gene products that are associated with

certain polygenic disorders [12].

The recent findings that highlight the importance of STRs have increased the in-

terest in them, with some studies identifying associations between STR expansion and

polygenic disorders. In [18], the correlation between tandem repeats with a motif of

2-20 bp and autism spectrum disorder was investigated and it was observed that tan-

dem repeat expansions at 2,588 gene-associated loci were significantly more prevalent

among individuals with the disorder, while it was rare among the health population.

3.1. Genomics preliminaries 18

In various studies, short tandem repeat instability, also called microsatellite instabil-

ity (MSI) has been highlighted as a molecular phenotype for different types of cancer,

e.g. endometrial, and colorectal tumors [50], [51]. In [52], the authors identified

MSI-positive tumors in 14 of the 18 cancer types explored, while also observed a cor-

relation of patient survival rates with the number of unstable sites. Tandem repeat

polymorphism has been associated with various other complex diseases, e.g. diabetes

[53].

3.1.1.1 Origin of tandem repeats flanking sequence

The origin of microsatellites is a complex matter that has concerned the research

community for years. [26]. Their genesis appears to be non-random [27]. They can

arise de novo, spontaneously within unique sequences, while also brought to a genomic

location by transposable elements.

Many theories have been proposed for the microsatellite’s origin. Recombination

and replication slippage, as it was described previously in the current section 3.1, are

considered two of them. However, several studies have suggested that a minimum

number of repeats is needed before DNA slippage can extend the repeat [54], [55]. A

number of studies have been conducted to correlate the origination of microsatellites

with the presence of specific genomic elements, e.g. mobile genetic elements [56],

[57], [58]. However, other studies have shown that the high density of transposable

elements does not always correlate with the presence of microsatellites [59], [60], and

thus, their contribution in microsatellite genesis remains unconfirmed.

The amount of studies exploring the origin of TRs, and the fact that these oc-

casionally come to conflicting conclusions, highlight the complexity of the issue of

microsatellite origin. The investigation of this issue could lead to a better under-

standing of the function and organization of the genome, the evolution of species and

the population genetic studies [26].

The flanking sequence of the repeat is defined as the sequence immediately up-

stream and downstream of the repeat locus and is of high importance. Its genomic

composition has been proven to significantly influence the mutability of the repeat

[61], an assumption that was first made in [62]. The flanking region’s GC content

and type of DNA (e.g. if it is gene-related) are a few factors that have been proposed

as ones that potentially affect the mutation rates of the repeat [27].

However, conflicting results have been observed. For example, in [62], the rich-

ness in GC content in flanking sequence of microsatellites has been negatively corre-

lated with their genetic diversity. However, one study in shrews [63] and another in

3.2. Deep Learning preliminaries 19

Drosophila melanogaster [64] did not find any such positive or negative correlation.

Studies have suggested that the influence of flanking regions on repeats should be

further explored [27].

One objective of the current work (objective II as introduced in Section 2.1.1), is to

investigate the correlation between the genomic composition of the repeats’ flanking

sequence with their presence. We will use NNs to capture patterns and characteristics

that are present in the flanking regions of repeats and could potentially be a factor

contributing to their genesis/origin.

3.2 Deep Learning preliminaries

In this Section, we summarise some machine learning background that is relevant in

the current work. Initially, we introduce the general ideal behind neural networks

(NNs) and we continue by describing the specific architectures that we have imple-

mented in this work’s experiments, the convolutional neural networks (CNNs) and

the variational autoencoders (VAEs).

3.2.1 Neural networks and Backpropagation

A feed-forward neural network (FNN) is an artificial neural network(ANN) in which

the nodes do not come in circular forms. These networks can only process information

in one direction. These can be single-layer networks (i.e. consisting only of input and

output layers) or multi-layer networks with multiple hidden layers. In a feedforward

neural network, every perceptron in one layer is connected with each node in the next

layer. The general idea is that the FNN receives an input, propagates its information

through the layers by computing an ‘activation’ for each neuron, and finally outputs

the activations in the output layer. In between, it assigns each input a learnable

weight, and adds a learnable bias term to produce a pre-activation value. Typically,

all the nodes are fully connected. More formally, given a k-dimensional input vector

x ∈ Rk the output y ∈ R of a perceptron can be calculated as:

y = f(W x + b)

where W ∈ Rk are weight parameters of the perceptron, b ∈ R is a bias term which

provides an independent constant added to the input and f : R −→ R is an activation

function. Typically, every unit has a linear function followed by a non-linear activation

function. There are no back-loops in the feed-forward network. These networks are

3.2. Deep Learning preliminaries 20

mostly used for supervised machine learning tasks, where the model learns to predict

outputs y from inputs x.

Backpropagation algorithm is a widely used technique for training neural net-

works, in which the two more essential factors are the loss function and gradient

descent optimization algorithm. On a training dataset, the loss function evaluates

a model with kernels and weights through forward propagation, which next, are up-

dated, in respect to the loss value, through backpropagation and gradient descent.

More specifically, through forward propagation, the model, takes a certain input

x, whose true label is y, and predicts a label z. Comparing those two labels, true

and predicted, the loss value is calculated. Concerning the backpropagation phase,

gradient descent optimization is used, in order to determine in what direction the

learnable weights should be adjusted to decrease the loss. The procedure is called

backpropagation, since the loss value is fed backwards in order to, fine-tuned the

weights of the network. In order to finish the training procedure through backpropa-

gation, a stopping criterion is applied, which typically refers to a number of epochs,

a loss value threshold etc.

3.2.2 Convolutional Neural Networks

In this Section, we will introduce convolutional neural networks (CNNs). The fol-

lowing introduction is based on the the notes of the Machine Learning course at the

University of Oxford [1] and [65]. In Section 3.2.2.1, we will discuss CNNs in the

context of genomics and DNA sequences.

Convolutional neural networks, firstly introduced in [66], is a class of neural net-

works that has been introduced for the analysis of imaging data and its successful

application has expanded in multiple other domains. As the feedforward NNs intro-

duced in the previous Section, CNNs are also comprised of neurons that have learn-

able weight ans biases. However, their layers have neurons arranged in 3 dimensions:

width, height, depth. Their distinct feature are two main operations, convolution and

pooling.

Convolution Operation

The parts of the network where the convolution operation takes place are called

convolutional layers. These layers are comprised of learnable filters, also known as

kernels, which scan the input, i.e. are moved over the image. At each position, the

dot product between the filter and the same size patch of the input at that position

is computed, as shown in Fig. 3.2. The aim is to discover spatial patterns in patches.

3.2. Deep Learning preliminaries 21

Figure 3.2: Convolution operation. The dot product between the patch of the input
image (shaded blue part) and the filter is calculated (left corner of the green box).

In more detail, let the input be a 2-dimensional tensor of shape m × n, and

the convolutional filter a real-valued 2-dimensional tensor of shape W × H. While

the filter is scanning the input over all possible dimensions (width and height), the

element-wise product of it with each input patch of shape W × H is calculated.

The tensor occurring from the element-wise multiplication is summed and the result

corresponds to an element of a 2-dimensional feature map. That feature map (green

box in Fig. 3.2) corresponds to the responses of that filter at every spatial position.

Each filter scanning the input image produces a feature map. The filters are learnable

parameters, that are learned through backpropagation. Filters of initial convolutional

layers typically learn to detect less complex patters, such as edges, while filters in later

layers learn more complex patterns.

Different ways of how the filter is scanning the input can be selected, i.e. which

patches of the input are considered. The parameters that determine the way the

input is scanned are stride and padding. For a 2D convolution, the stride parameter

controls the step towards each direction. For example, one could select to not scan

every possible input patch, but every other one, i.e using a stride of 2. Pixels in the

corners are not treated in the same way as pixels at the inside parts of the input, since

the filter cannot move to some positions at the corners of the input. Although, this is

usually not a problem, especially for large inputs, padding is a way to eliminate this

behavior by adding a frame of zero-valued pixels at the boundary of the input data.

Typically multiple filters are applied at each convolutional layer, each one produc-

ing a different feature map. The feature maps generated when the filters slide over

the input, correspond to identified simple or complex features present in the image.

3.2. Deep Learning preliminaries 22

Pooling Operation

Another operation that is often used in CNNs is pooling. After the convolutional

layer, the dimensionality of feature maps is typically getting reduced. This is done

by applying a certain operation on all patches. That operation is typically taking

the maximum, average or minimum among all elements for each input patch, i.e.

pooling the pixels together. The aim is to decrease the size of the feature maps but

at the same time preserve important features detected before the pooling layer. Since

we typically want to decrease the dimension of the feature maps, pooling is usually

applied with a stride of 2 or higher.

By using only the maximum, average or minimum activation through the pooling

layer, the convolutional layers become more invariant to distortions of the target in

extracted feature maps. In Fig. 3.3 the case of max pooling is shown, where the

maximum value in each patch of the feature map is calculated. Different patches of

the feature map are shown with different colours. This way, the feature map, showed

in the left part of Fig. 3.3 is down-sampled and the outcome is comprised of the most

highlighted feature of each patch volume.

Figure 3.3: Pooling operation. Maximum pooling is applied with pool size (2,2) and
stride (2,2). Figure taken from [1]

.

3.2.2.1 CNNs in genomics

CNNs is one of the main architectures that is applied to genomic data. Fig. 3.4

shows the procedure of applying a CNN model to one-hot encoded DNA sequences

for the different layers of the model. In the first convolutional layer, the sequence is

scanned by several filters, with each filter application outputting a scalar value, as

shown in Fig. 3.4b. This value corresponds to a measure of similarity between the

filter and the part of the sequence it was applied to. In the example of Fig. 3.4b,

the learned filters correspond to transcription factors GATA1 and TALI1. After each

3.2. Deep Learning preliminaries 23

convolutional layer, a non-linear activation function, typically a ReLU, usually follows

(Fig. 3.4c). In part d of Fig. 3.4, a pooling layer is applied, reducing the dimension

of its input.

Different numbers of convolutional layers are appropriate for different tasks. After

the total number of convolutional layers, the output is flattened (Fig. 3.4h) and used

as an input to a series of fully-connected layers. The output of the last fully-connected

layer is the final prediction of the CNN and its size depends on the nature of the

problem.

Figure 3.4: Convolutional neural networks applied to DNA sequences. Figure taken
from [2].

CNNs have been widely used to detect motifs in DNA sequences. In initial layers,

the CNN captures simpler motifs, while in deeper layers the network captures com-

binations of them and is able to learn more abstract representations and underlying

characteristics of the sequence. An advantage of the end-to-end neural networks is

that there is no need to prespecify any feature, since they adaptively extract features

to map the raw input data to meaningful internal representations through backprop-

agation.

3.2.3 Variational Autoencoders

Machine Learning models can be grouped into generative versus discriminative mod-

els. While discriminative models aim to predict some output based on the observed

3.2. Deep Learning preliminaries 24

data, the generative models aim to learn the underlying joint distribution over the

variables, which include the inputs and outputs, both of which are modelled as prob-

ability distributions. [4].

Variational autoencoders [3] [67] are an instance of generative models that aim to

jointly learn a deep-latent variable model and corresponding inference models using

stochastic gradient descent. In the following sections, firstly, the ideas of a proba-

bilistic models, latent variable models and variational inference will be introduced,

as they are core concepts in the VAE framework. Secondly, the basics of VAE will

be introduced. The following introduction on VAEs is based on the original paper

introducing the Variational autoencoders [3] and the authors’ follow up notes [4].

Probabilistic models, Latent Variable Models and Variational Inference

Probabilistic models are mathematical descriptions that model events and phenomena

through random variables and probability distributions. They aim to capture the

correlations between the variables of interest in the form of the joint probability over

them.

Let x be the vector denoting all the observed variables of a model. We assume

that these are generated through an underlying process p∗(x), which we aim to model

with an approximate probabilistic model pθ(x). The learning consists in searching

the value of θ that leads to the best approximation of the true underlying distribution

of the data p∗(x), such that for the observed x: pθ(x) ≈ p∗(x).

Latent variable models (LVMs) are probabilistic models that incorporate latent

variables z corresponding to the observed variables x. Latent variables z are not

observed but are part of the model and, in conjunction with the global parameter θ,

can help explain the observed variables x. They are often lower-dimensional and more

interpretable than x and are usually supposed to capture some underlying, complex,

or conceptual characteristics of the generative process, which cannot be measured and

observed directly. The joint distribution over both the observed and latent variables

is given by pθ(x, z), while the marginal distribution over the observed variables x is

given by:

pθ(x) =

∫
pθ(x, z)dz

LVMs are connected to two main purposes: model learning and inference. Model

learning is focused on finding the best configuration for θ, while inference aims to

calculate the posterior p(z|x) for a given fixed θ. In the case of model learning, latent

variables are useful to capture the high-ordered dependencies between the observed

3.2. Deep Learning preliminaries 25

variables, whereas in the inference case, latent variables are the important unobserved

features that we want to retrieve. The inference problem focuses on finding the

posterior distribution, namely the conditional distribution of the latent variables given

the observations, which is given by:

p(z|x) =
p(z,x)

pθ(x)

For most models, the denominator, also called normalizing constant, is intractable.

Even in cases where the denominator is tractable, the posterior distribution can be

complex, which makes it impossible to characterize it, sample from it etc.

Variational inference (VI) tackles this issue by attempting to approximate the

posterior in a functional, simpler form. Thus, the inference problem is reformulated

into an optimization problem. A variational family qφ(z) is introduced and the set

of parameters φ, which characterize it, are optimized in terms of the quality of ap-

proximation of p(z|x) with qφ(z). Kullback-Leiber divergence between qφ(z) and the

target p(z|x), which is typically used to measure the quality of the approximation, is

given by:

KL (qφ(z)‖pθ(z | x)) = Eq

[
log

q(z)

p(z|x)

]
· (3.1)

This proves to be equivalent to maximizing an evidence lower bound (ELBO) with

respect to the parameters φ. More details on this will be discussed in Section 3.2.3.1.

By maximizing the ELBO instead of minimizing the KL divergence, the optimization

does not involve the posterior in its normalized form, which is usually intractable.

Instead, only the unnormalized version of the posterior is needed.

Deep latent variable models (DLVMs) are LVMs where the probability distribu-

tions are parameterized by flexible deep neural networks. The most common DLVM

used is specified as the factorization of the prior distribution, pθ(z), and the likeli-

hood pθ(x|z), which is parameterized by a neural network. This is mathematically

formulated as follows: pθ(x, z) = pθ(z)pθ(x|z) Typically, pθ(z) is considered fixed,

e.g. pθ(z) = N(0, 1). DLVMs are LVMs, as shown in Fig. 3.5, with the arrows

corresponding to neural networks. Thus, θ, which, from a probabilistic perspective,

corresponds to the parameters of the distribution pθ(x|z), from the NN perspective,

corresponds to the NN parameters, e.g. weight, biases etc.

3.2. Deep Learning preliminaries 26

Figure 3.5: Variational autoencoder model: Solid lines correspond to the generative model
pθ(x|z)pθ(z) and dashed to the inference model qφ(z|x). Figure taken from [3].

3.2.3.1 Variational Autoencoder framework

After having introduced the above relevant ideas of DLVMs and VI, variational au-

toencoders combine these ideas by providing a principled method for optimizing

a DLVM with its corresponding inference model using stochastic gradient descent

(SGD) [4]. In other words, VAEs jointly address the inference problem of approx-

imating the posterior of the latents pθ(z|x) and the model learning problem of ap-

proximating the parameters θ.

For this purpose, VAEs introduce an inference model qφ(z|x), which approximates

the true intractable posterior pθ(z|x). The VAE framework provides a computation-

ally efficient way to jointly learn the inference model’s parameters φ and the gen-

erative model parameters θ. qφ(z|x) is also referred to as encoder and pθ(x|z) as

decoder.

The goal is to maximize the log-probability of the data under the model log p(x).

However, as mentioned above. VAEs use as optimization objective the ELBO, a lower

bound for the log marginal likelihood log p(x) that can be derived as follows:

3.2. Deep Learning preliminaries 27

log pθ(x) = Eqφ(z|x) [log pθ(x)]

= Eqφ(z|x)
[
log

[
pθ(x, z)

pθ(z | x)

]]
= Eqφ(z|x)

[
log

[
pθ(x, z)

qφ(z | x)

qφ(z | x)

pθ(z | x)

]]
= Eqφ(z|x)

[
log

[
pθ(x, z)

qφ(z | x)

]]
︸ ︷︷ ︸

=Lθ,φ(x)

+Eqφ(z|x)
[
log

[
qφ(z | x)

pθ(z | x)

]]
︸ ︷︷ ︸

KL(qφ(z|x)‖pθ(z|x))

Indeed, we have KL (qφ(z | x)‖pθ(z | x)) ≥ 0 which is equal to zero only if q = p,

and, thus, the ELBO is a lower bound for log p(x) that is given by:

Lθ,φ(x) = log pθ(x)−KL (qφ(z | x)‖pθ(z | x)) ≤ log pθ(x) (3.2)

This convenient mathematical formulation describes the VAE framework. By

maximizing the ELBO w.r.t the parameters θ and φ, we jointly:

1. Approximately maximize log pθ(x), which comprises the model learning proce-

dure. Thus, we learn a generative model, namely the joint distribution pθ(x, z),

which can be factorized as pθ(x, z) = pθ(z)pθ(z|x). p(z) corresponds to the

prior distribution and pθ(z|x) to the decoder.

2. We minimize the KL divergence, leading to a better approximation of pθ(z|x)

by qφ(z|x). Thus, we learn an approximation qφ(z|x) of the true intractable

posterior of the decoder pθ(z|x) through the encoder.

Conveniently, the ELBO allows for the joint stochastic gradient descent optimiza-

tion with respect to both the parameters φ and θ. The gradients of the ELBO are

typically intractable but we can derive unbiased estimators of them which allows us

to perform SGD. For gradient of the Eq. (3.2) w.r.t the generative parameters θ,

an unbiased estimator of the gradient is straightforward [Appendix]. The problem-

atic part is the gradient w.r.t. the variational parameters φ, because the ELBO’s

expectation is w.r.t. qφ(z|x).

In the case of continuous latent variables, the reparameterization trick, which will

be discussed in the next section, is typically used to obtain unbiased estimators of the

ELBO’s gradient w.r.t φ. In the case of discrete variables, different approaches have

been proposed. In the following section, we will discuss one of them, the Gumbel-

Softmax trick introduced in [5] and [68]. This is relevant for this work, since one of

3.2. Deep Learning preliminaries 28

Figure 3.6: The forward pass of a VAE is comprised of encoding the datapoints through
the inference network to a latent distribution, then, sampling from this distribution and
decoding them through the generative network. Figure taken from [4].

the models implemented was a VAE with discrete latent variables using the Gumbel-

Softmax trick.

3.2.3.2 Reparameterization trick and Gumbel-Softmax

In the case of continuous latent variables and differentiable encoder/decoder models,

the ELBO’s gradient is computed through the change of variables. The initial problem

is that we cannot backpropagate gradients through the random/stochastic variable z.

To solve that, we re-express the random variable z as a deterministic and differentiable

function of φ, namely, z = g(φ, x, ε), and make the randomness derive from another

auxiliary variable ε as in Fig. 3.5. The distribution p(ε) is independent of φ and

θ. This allows the backpropagation through z and the computation of the gradients

w.r.t φ with a simple Monte Carlo estimator.

In the case of discrete latent variables (the stochastic node that we want to back-

propagate through is discrete), an efficient way to backpropagate has been proposed in

[5]. Jang et al. introduced an efficient way to replace a non-differentiable sample from

a categorical distribution with a differentiable sample from a novel Gumbel-Softmax

distribution. This is feasible due to the fact that the Gumbel-Softmax distribution

can be smoothly annealed into a categorical distribution.

Let z be a categorical variable with class probabilities π1, . . . πk, whose samples are

(k − 1)-dimensional one-hot encoded vectors. A way to sample from the categorical

3.2. Deep Learning preliminaries 29

Figure 3.7: Reparameterization trick Left: for continuous latent varaibles Right: for cate-
gorical latent variables Figure taken from [5].

3.2. Deep Learning preliminaries 30

distribution is the Gumbel-max trick which is described in the following formulation:

z = one hot
(

arg max
i

[gi + log πi]
)

(3.3)

Where g1, ..., gk are i.i.d samples drawn from Gumbel(0, 1) 1. By taking the

argmax of these we have sampled from the categorical distribution. However, since

we cannot backpropagate through the not differentiable argmax, Jang et al. proposed

approximating it with the continuous differentiable softmax. The output of this

sampling mechanism is yi, a continuous soft variable instead of an one-hot encoded

vector.

yi =
exp ((log (πi) + gi) /τ)∑k
j=1 exp ((log (πj) + gj) /τ)

for i = 1, . . . , k (3.4)

Temperature τ determines how close the sample yi, is to one-hot encoded, for τ →
0, the Gumbel-Softmax distribution becomes identical to the categorical distribution

that we are approximating, and the samples become one-hot encoded. Thus, in the

backward pass of the VAE with discrete latent variables, the gradients are taken

w.r.t. the soft samples yi, allowing for backpropagation. For completeness, we give

the Gumbel Softmax distribution density:

pπ,τ (y1, . . . , yk) = Γ(k)τ k−1

(
k∑
i=1

πi/y
τ
i

)−k k∏
i=1

(
πi/y

τ+1
i

)
(3.5)

1Gumbel(0,1) distribution can be sampled using inverse transform sampling. Firstly, we draw
u ∼ Uniform(0,1) and then compute g = − log(− log(u))

Chapter 4

Dataset Creation

This chapter discusses the nature of the data, the pre-processing steps, and the cre-

ation of the datasets used in the experiments.

The human DNA sequence data for each chromosome was obtained from the

USCS Genome Browser in the FASTA format, a text-based format commonly used

in bioinformatics to represent nucleotide or amino acid sequences. The version of the

USCS data used was hg38 (GRCh38 Genome Reference Consortium Human Reference

38), which was released on December 2013.

To create the labelled dataset, RepeatMasker was used to mask the parts of the

sequence corresponding to the repeats of interest. A version of all the chromosomes

with the repetitive regions masked can be obtained from the USCS server, where

the masking contains both the tandem and the interspersed repeats. However, in

this work, we have focused on the analysis and identification of short tandem repeats

(STRs). Thus, to create the appropriate dataset containing only the tandem repeats

as positive examples, the RepeatMasker was run with the -noint (no interspersed)

option to include only the tandem repeats. Tandem repeats were masked with lower-

case letters. Using the masked data we created the datasets with the format explained

in the following section.

4.1 Dataset Creation

This section will describe how the different datasets that were used to train our models

were created. As described in Section 2.1.1, we aim to explore two different objectives

with our models. The first one is to detect and identify the STRs. The second one is to

explore the capability of our models to find patterns in the flanking sequence, namely

the sequence that is adjacent to the repeat that would enable them to accurately

31

4.2. Creation of Train/Test splits 32

predict the emergence of a repeat. For the training towards the fulfillment of the first

objective, the identification of the STRs, we created two different datasets.

1. The first dataset contains 80bp windows where the starting point of the repeat

is found between positions 0-20. This ensures that the window contains a sub-

stantial part of the repeat that will allow the model to identify it. This dataset

was created by firstly separating each chromosome into 80bp windows. Then in

each positive window the starting point of the repeat was identified. A number

between 0-20 was randomly sampled and the starting point of the repeat was

placed there. This dataset contains each repeat one time. We will refer to this

dataset as Non-overlapping windows Dataset.

2. The second dataset contains 80bp windows where the starting point of the

repeat could be in any position. This dataset was created by sliding a 80bp

window over the chromosome. Each window was labelled as positive (containing

a repeat) if at least one bp of the repeat was contained in it. Any window not

containing at least one bp of a repeat was labelled as negative. The sliding

window scanned the chromosome with a step of 10. The step was required

to reduce the amount of resulting data. From the above procedure, it can be

inferred that, in this dataset, each repeat was contained more than once. In

other words, different samples of the dataset could contain the same repeat at

different positions. We will refer to this dataset as Sliding windows Dataset.

For the models targeting the second objective, we have created a dataset where

positive samples are comprised of the 60bp windows met exactly before a repeat

starts. For negative samples, we ensured that no repeat existed for at least 60bp of

the sequence following the sample. We also created a dataset in the same way but

leaving a 10 bp gap between the repeat and the windows labelled as positive samples.

This is to account for potential mistakes in annotation of the RepeatMasker, e.g.

RepeatMasker misannotating the initial part of a repeat. This way, we ensure that

there is no misannotated part of the repeat included in the positive samples.

4.2 Creation of Train/Test splits

Naturally, the amount of negative data is much larger than the amount of positive

since positive data are restricted to the locations of TRs, which comprise around 3%

of the whole genome. Since accuracy and f1 score are the main metrics that we used

4.2. Creation of Train/Test splits 33

for the evaluation of our models, we balanced the classes and used the same amount of

negative samples as positives. For that purpose, we applied random under-sampling

on the negative class. Under the assumption that the critical part of information

that we want the model to capture lies on the positive samples that contain the

repeated patterns, under-sampling the negative class does not involve any risk of

loosing potentially useful or critical information.

For all other experiments, apart from the ones on the datasets coming from sliding

windows, we used two different train/test splits schemes. We trained our models

using data from chromosome 2-22 and 10% of the data were left-out of the training

procedure and were used as test data. The second testing dataset was comprised

of repeats coming from chromosome 1. Chromosomes 1 was left out of the training

procedure to evaluate how the models performed on identifying repeats from never-

before-seen chromosomes. In both cases, testing data did not overlap training or

validation data.

For the experiments on the datasets coming from sliding windows, the vast amount

of data resulting from each chromosome does not allow for the use of the data from all

chromosomes. The amount of positive samples resulting from scanning chromosome

19 with a 80bp sliding window and a step equal to 10 is larger than 500,000 samples.

For that reason, we used only data from chromosome 19 for the models trained on

sliding window data and the models’ performance was measured on data coming from

chromosomes 1. We selected chromosome 19 since in humans, it is the one with the

highest density of STRs [8].

Chapter 5

Methods

This Chapter discusses the specific architectures and optimization settings that were

explored for targeting the different objectives of this work and describes the ones that

were eventually selected. The theoretical background of the proposed architectures

has been extensively covered in Section 3.2. In Chapter 2, the input and output format

of the models, which is determined by the problem definition for each objective, has

been introduced. The current chapter focuses on the specific architectures explored,

the optimization settings, e.g. loss functions used, and the hyperparameter tuning

procedure.

5.1 Implementation

The DNA data as explained in Chapter 2 consists of a sequence of A,G,T,C letters.

Before training, the input raw data are one-hot encoded. That is, A is encoded to (1

0 0 0), C is encoded as (0 1 0 0), G is encoded as (0 0 1 0), T is encoded as (0 0 0 1).

Recall that every letter actually denotes a base pair (bp), as A always binds with T,

G always binds with C, and vice versa. The letter N, which is contained in the input

data in positions where the nucleic acid is unknown, was encoded as (0 0 0 0). As a

result, the input to our models is a 4× l matrix, where l is the chosen length of the

input sequences. In our case, l is equal to 80.

The hyperparameters for each architecture were chosen with random search among

the hyperparameter space selected. The hyperparameter space for the CNN architec-

ture is shown in Table 5.1 and 5.2, for the Gumbel-Softmax VAE in Table 5.3 and

in Table 5.4, and for the vanilla VAE in Table 5.5 and Table 5.6. 150 models were

trained for each architecture for each of the Experiments I, II and IV. For Experi-

ment III, the models trained in Experiment II were used, since Experiment III aims

34

5.1. Implementation 35

at evaluating the performance of the already trained models on the task of exactly

annotating the sequence.

The hyperparameters were selected based on the accuracy and F1 score among

the models trained on the testing set, which comprised 10% of the overall data. For

the CNN model this is straightforward. For the VAE models, the accuracy and F1

score concern the classification performed in the latent space after the training of

the VAE. As will be further discussed in Section 5.3.2, the way we use the VAE

architecture to target our objective of predicting the repeats is the following. First,

the VAE is trained in the standard unsupervised setting. Our aim is for the model to

learn meaningful representations of the data in the latent space. That is, we aim at

creating a latent space where positive samples, i.e. the ones containing repeats, will

be encoded in a different way than negative samples. Thus, after having trained the

VAE, we use its encoder part to encode the (positive and negative) input data into

the latent space before performing classification using a feedforward NN.

We note that when we refer to hyperparameter tuning for the VAE case, we refer

to the hyperparameters of the VAE model and not of the feedforward NN that was

used to perform classification in the VAE’s latent space. The classification in the

latent space is a relatively easy task for any powerful enough NN and, thus, we

did not perform any hyperparameter tuning for it. For the classification in the latent

space, we selected a feedforward NN with 2 hidden layers, each comprising 128 hidden

units. When we refer to the best model selected during the hyperparameter tuning

procedure, we refer to the one that resulted in the best combination of accuracy and

F1 score in the classification performed in the latent space. More details on that will

be given in Section 5.3.2, after some discussion of theoretical background.

All the experiments involved a 2-class classification problem. For that purpose,

binary-cross entropy was used as the loss function. We note that for the VAE case, we

distinguish the 2-class classification performed in the latent space with the training

of the VAE. More on the loss function selected for the training of the VAE will be

discussed in Section 5.3.1. The optimizer used was Adam [69] and the learning rate

was one of the tuned hyperparameters (between the values 1e-5 and 1e-4). The batch

size was also tuned, with the values explored being 32, 64, and 128 for CNN and

64, 128, and 256 for VAE models. For the CNN case, the number of epochs was

selected to be 100. The number of epochs for training the VAE was selected to be

200, while for the classification in its latent space, the feedforward NN was trained

for a maximum of 50 epochs. Early stopping was performed in case the validation

accuracy was non-increasing for 10 continuous epochs to prevent overfitting to the

5.2. Model Architecture: CNN 36

training data. All models were implemented in Pytorch [70] and run on NVIDIA

GeForce GTX 1080 Ti GPUs machines with 12GB memory.

5.2 Model Architecture: CNN

For the CNN, both the case of 1D and 2D convolutions were explored. In the first

case, we view the input as a 1D matrix, of size 1× l with four input channels. In the

second case, we view the input as a 2D matrix of size 4× l, with one input channel.

Also, in the case of 2D convolutions, for the first convolutional layer, we explored

sizes of filters (1 × n) and (n × n). This was because filters of size (1 × n) were

considered a more natural choice for the task of identifying repeats in sequences. In

more detail, (n × n) filters on the first convolutional layer typically correspond to

letter combinations and motifs, as explained in Section 3.2.2.1. We consider that,

in the first convolutional layer, filters of size (1 × n) scanning both the vertical and

horizontal direction (for the case of 2D convolution) are more likely to correspond to

repeat patters. In Table 5.2, the search space for the hyperparameters related to this

2D versus 1D convolutions exploration can be seen. In Table 5.1, the hyperparameter

search space for the rest of the parameters is shown. Padding was selected to be 2.

In both tables the best identified hyperparameters for each experiment are shown.

For example, for Experiment II, the selected architecture consists of 2 convolu-

tional layers. The first layer is comprised of 25 filters of size (1 × 6) and the second

layer of 32 filters of size (6× 6). The stride was selected to be 1. Each convolutional

layer is followed by a Rectified Linear Unit activation function (ReLU). Then after

each ReLU, a max pooling layer is following with a kernel size of (2× 2) and a pool

stride of (2× 2). After the second convolutional layer, two fully connected layers fol-

low. The number of units in the first fully connected layer is determined by the size

of the output of the last convolutional layer. The number of units in the second fully

connected layer was selected to be 64. After each of the convolutional layers, dropout

[71] with a rate of 0.2 is applied to avoid overfitting. Finally, a sigmoid function is

applied to the output to obtain a probability for the 2-class classification problem.

The network’s output then corresponds to the probability that the input belongs to

the positive class.

5.2. Model Architecture: CNN 37

Hyperparameter Search Space
Selected
Exp I

Selected
Exp II

Selected
Exp IV

Batch size [32, 64, 128] 64 32 32
Learning rate [1e-3, 1e-4, 5e-5] 5e-5 5e-5 5e-5
No. conv. layers [1,2,3] 2 2 2
No. conv. filters [8, 16, 25, 32] 32 25 25
No. Fully connected layers (fcl) [1,2] 2 2 2
No. of neurons in fcl [32, 64, 128] 128 128 64
Dropout [0.0, 0.2, 0.5] 0.2 0.2 0.2

Table 5.1: Part I of the hyperparameter Search Space for CNN. The first column lists the
hyperparameters tuned and the second column the corresponding values explored. Columns
four to six denote the best choice identified for each experiment.

2D 1D
Selected
Exp I

Selected
Exp II

Selected
Exp IV

Size of conv.
filters layer 1

[(5, 5), (7, 7),

(1, 5), (1, 6), (1, 7)]
[5, 6, 7] 6 (1, 6) 5

Size of conv.
filters layer 2

[(5, 5),(6, 6),(7x7)] [5, 6, 7] 6 (6, 6) 5

Conv. layer
stride

[(1, 1), (1, 2)] [1, 2] 1 (1, 1) 1

Max pooling
kernel size

[(2, 2), (3, 3)] [2, 3] 2 (2, 2) 2

Max pooling
stride

[(2, 2), (3, 3)] [1,2] 2 (2, 2) 2

Table 5.2: Part II of the hyperparameter Search Space for CNN. The first column lists the
hyperparameters tuned and the second column the corresponding values explored. Columns
four to six denote the best choice identified for each experiment.

5.3. Model Architecture: VAE 38

5.3 Model Architecture: VAE

In the following section, we will first highlight some of the different options we have for

the VAE training configuration. Then, we will discuss some main challenges related

to the training of VAEs and connect them to our choice of exploring the Gumbel-

Softmax VAE, in addition to the standard vanilla VAE. Finally, we will give the

specific details on the hyperparameter search space and on the architecture we used

for each experiment, taking into account all the aforementioned issues and challenges.

5.3.1 Optimization configuration

For the VAEs, two different optimization configurations have been explored in terms

of the loss function. As discussed in Section 3.2, variational autoencoders are trained

by maximizing a lower bound for log p(x), the ELBO introduced in Eq. 3.2, which

we restate here in Eq. 5.1 for convenience.

Lθ,φ(x) = log pθ(x)−KL (qφ(z | x)‖pθ(z | x)) ≤ log pθ(x) (5.1)

The maximization of the ELBO both approximately maximizes log pθ(x) and min-

imizes the KL divergence leading to a better approximation of pθ(z|x) by qφ(z|x).

This equation can be reformulated as follows:

Lθ,φ(x) = −Ez∼q(z|x)[log p(x | z)]︸ ︷︷ ︸
reconstruction error

+ KL (qφ(z | x)‖p(z))︸ ︷︷ ︸
regularization

(5.2)

The first term corresponds to a reconstruction loss, measuring how effectively the

decoder has learned to reconstruct the data. The second term acts as a regularizer to

the way the encoder is encoding the input data in the latent space, namely encouraging

the approximate posterior qφ(z|x) to be close to a prior p(z), which is typically

the (multivariate) standard Gaussian distribution N(0, 1) in the case of VAE with

continuous latent variables.

For the reconstruction error term, we have explored two different options. The

standard one, used in Variational Autoencoders trained on binarized data, is the

binary cross entropy (BCE). When BCE is used, a sigmoid function is applied on the

last layer of the decoder, which transforms each element of the output to a probability,

i.e. to a value between 0 and 1. However, in our case the inputs are not just binarized,

but correspond to one-hot encoded data. Because of that, we have explored the use of

the categorical-cross entropy. In that case, instead of the sigmoid function, a softmax

function is applied over the vertical direction of the final layer of the decoder. We

5.3. Model Architecture: VAE 39

will make the reason behind this more clear. In the VAE setting, where the NN is

aiming at reconstructing the 4× l one-hot encoded input, every four output elements

on the first (vertical) dimension correspond to an one-hot encoded character. Thus,

applying softmax over these 4 elements of the output of the decoder is equivalent to

creating a prediction for this character. Then, the reconstruction error of Eq. 5.2 is

taken as the sum of all the categorical cross entropies between the softmax-activated

prediction for each character and the true class label, i.e the true character.

This modification of the reconstruction error term of the objective function has

been used in various works in the literature when the input is a sequence of one-hot

encoded elements [72], [73]. During our architecture exploration, we explored both

aforementioned options. The loss function that produced better results was BCE.

Challenges on training VAEs: Posterior Collapse

The aim of our VAE model is to learn meaningful latent representations. A model

that achieves that will have a nonzero KL divergence term and a relatively small

reconstruction term [74] in Eq. 5.2. However, the training of VAE is complex and

issues may occur. Such an issue is the ”posterior collapse” [74] [75] where the model’s

variational distribution qφ(z|x) closely matches the uninformative prior p(z) [76].

This is an issue that emerges because we are trying to minimize the KL term in Eq.

5.2. In the case that posterior collapse occurs, the KL term of the cost function goes

to zero. Despite that, the model is still able to achieve likelihoods that are close

to the optimal [74], meaning high values of ELBO. However, that by itself does not

guarantee the usefulness of the model, but should be accompanied by a nonzero KL

term. As a result, both of these two terms should be investigated to evaluate the

usefulness of the model. Various workarounds have been proposed to alleviate the

issue of posterior collapse. Some works have proposed less powerful encoder-decoder

architectures to direct the model towards making greater use of the latent space [3]

while others to artificially weaken the decoder e.g. through the use of word-dropout

[75].

Another solution that has been proposed in [74] is the annealing of the KL term

in Eq. 5.2. A variable weight is added to the KL term in the cost function. This

weight is annealed from a zero value, at the start of the training to a maximum value

of one. This way the model is encouraged to encode as much information as possible

in the latent space. Then, as the KL annealing weight increases, the encodings in

the latent space are smoothed according to the prior, since the KL term between the

5.3. Model Architecture: VAE 40

approximate posterior and the prior is starting be taken fully into account in the loss

function.

During the selection of the architecture, of the hyperparameters explored and

of the optimization configuration we have taken all the above into account. In

more detail, we have avoided particularly deep and powerful architectures in the

encoder/decoder that could potentially contribute to the posterior collapse. Also, we

apply KL annealing for the first 50 epochs, with the weight of the KL term in Eq.

5.2 equal to 0 at the start of the training and then progressively increasing, reaching

reaching a value of 1 in epoch 50.

5.3.2 Classification on the latent space

The goal of unsupervised training of the VAE is to extract a meaningful representation

in the latent space. As a next step, we perform classification over it. In more detail,

the trained encoder is used to encode the negative and positive samples into the

latent space. These lower-dimension encodings in the latent space that correspond

to the higher-dimensional initial positive and negative data, are fed as an input to a

simple feedforward neural network. This NN is trained to perform classification and

the performance is evaluated in terms of the accuracy and F1 score. Note that we

selected the hyperparameters that led to the best classification in the latent space in

terms of the accuracy and F1 score rather than the hyperparameters leading to the

maximum ELBO. That is because, as discussed before, maximum ELBO does not

always coincide with meaningful latent representations; e.g. in case posterior collapse

occurs, the ELBO can have a high value without meaningful latent representations

and, thus, without good classification performance on the latent space. For example,

we observed that the choice of extremely powerful encoder and decoder can easily

lead to posterior collapse but will also lead to a high value of the ELBO.

5.3.3 Discrete latent variables: Reasoning behind Gumbel-
Softmax VAE

In this Section, we will provide the reasoning behind the usefulness of discrete latent

variable models and, as a result, the reasoning behind our choice to explore the

Gumbel-Softmax VAE for our problem.

In language models, we have sequences of words or character tokens, which are in-

herently discrete. In the same way, genomic data are represented as discrete sequences

5.3. Model Architecture: VAE 41

of symbols. This inherent nature of the genomic data suggests the exploration of mod-

els with discrete latent variables as a natural choice. As a result, many works using

generative models on genomic data have used discrete latent representations [77], [78],

[77], [79].

Discrete variables are more interpretable and have a natural correspondence to

classes/categories of the data [80]. While using discrete latent variables has been

proven to be challenging, mainly because of issues with backpropagation, many ap-

proaches have been proposed to work around these issues. An example is the Gumbel-

Softmax reparameterization trick introduced in [5], that we described in Section

3.2.3.2. Many works have proposed different ways and architectures to train VAEs

to allow for discrete latent variables [81], [80], [82]. Modifications of the variational

autoencoder framework where the encoder outputs discrete, rather than continuous

latent representations have been shown to alleviate the problem of “posterior col-

lapse” [80], [83], [84]. This is of high importance since, as described above, posterior

collapse is a serious and complex issue where many latent variables are ignored and,

thus, latent representations are rendered useless.

In the current work, taking into account the inherently discrete nature of genomic

data and inspired by these studies, we have implemented a VAE with discrete latent

variables using the Gumbel-Softmax reparameterization trick, which will be referred

to as Gumbel-Softmax VAE. We note that for the Gumbel-Softmax VAE, the KL

term in Eq. 5.2 corresponds to the KL divergence between categorical distributions,

since the latent variable z is discrete. Thus, the prior selected is the discrete uniform

distribution instead of the standard Gaussian used in the vanilla VAE case. Also, in

Gumbel-Softmax VAE, we have two different parameters for the latent dimension.

5.3.4 Selected architecture

Tables 5.3 and 5.4 describe the hyperparameter space explored and the best hyper-

parameter choice for each experiment for the model of Gumbel-Softmax VAE. Tables

5.5 and 5.5 describe the hyperparameter space explored and the best hyperparameter

choice for each experiment for the model of vanilla VAE. Both models of VAE contain

one or two convolutional layers. Again, like in the case of CNNs, both the case of 1D

and 2D convolutions were explored for the convolutional layers of the VAE.

5.3. Model Architecture: VAE 42

Hyperparameter Search Space
Selected
Exp I

Selected
Exp II

Selected
Exp IV

Batch size [64, 128, 256] 128 128 128
Learning rate [1e-4, 1e-5] 1e-5 1e-5 1e-5
No. conv. layers [1, 2] 2 1 2
No. conv. filters [8, 16, 25, 32] 8 16 25
No. Fully connected layers (fcl) [1, 2] 2 2 2
No. of neurons fcl [32, 64, 128] 128 128 128
Latent dimension [4, 6, 8, 10] 6 6 8
Dropout [0.0, 0.2, 0.5] 0.2 0.2 0.2

Table 5.3: Part I of the hyperparameter Search Space for Gumbel-Softmax VAE. The first
column lists the hyperparameters tuned and the second column the corresponding values
explored. Columns four to six denote the best choice identified for each experiment.

Hyperpar. 2D 1D
Selected

Exp I

Selected

Exp II

Selected

Exp IV

Size of conv.
filters layer 1

[(5, 5), (7, 7),

(1, 5), (1, 6), (1, 7)]
[5, 6, 7] 6 (1,7) 5

Size of conv.
filters layer 2

[(5,5),(6x6),(7x7)] [5, 6, 7] 6 - 5

Conv. layer
stride

[(1,2), (1,3)] [1, 2] 1 (1,1) 1

Max pooling
kernel size

[(2x2), (3x3)] [2, 3] 2 (4,3) 2

Max pooling
stride

[(1,2), (1, 3)] [1,2] 2 (1,3) 2

Table 5.4: Part II of the hyperparameter Search Space for Gumbel-Softmax VAE. The first
column lists the hyperparameters tuned and the second column the corresponding values
explored. Columns four to six denote the best choice identified for each experiment.

5.3. Model Architecture: VAE 43

Hyperparameter Search Space
Selected
Exp I

Selected
Exp II

Selected
Exp IV

Batch size [64, 128, 256] 128 256 128
Learning rate [1e-4, 1e-5] 1e-5 1e-5 1e-5
No. conv. layers [1, 2] 2 2 2
No. conv. filters [8, 12, 16, 25] 12 16 12
No. Fully connected layers [1, 2] 2 2 2
No. of neurons fcl [32, 64, 128] 128 128 128
Latent dimension [4, 6, 8, 10] 8 10 8
Dropout [0.0, 0.2, 0.5] 0.2 0.2 0.2

Table 5.5: Part I of the hyperparameter Search Space for vanilla VAE. The first column
lists the hyperparameters tuned and the second column the corresponding values explored.
Columns four to six denote the best choice identified for each experiment.

Hyperpar. 2D 1D
Selected

Exp I

Selected

Exp II

Selected

Exp IV
Size of conv.

filters layer 1

[(5, 5), (7, 7),

(1 × 5), (1 × 6), (1 × 7)]
[5, 6, 7] 7 5 5

Size of conv.
filters layer 2

[(5,5),(6x6),(7x7)] [5, 6, 7] 7 5 5

Conv. layer
stride

[(1,2), (1,3)] [1, 2] 1 1 1

Max pooling
kernel size

[(2x2), (3x3)] [2, 3] 2 2 2

Max pooling
stride

[(1, 2), (1, 3)] [1, 2] 2 2 2

Table 5.6: Part II of the hyperparameter Search Space for vanilla VAE. The first column
lists the hyperparameters tuned and the second column the corresponding values explored.
Columns four to six denote the best choice identified for each experiment.

Chapter 6

Results

In Section 3.2, the theoretical background of the deep learning models, which are im-

plemented in this work, has been introduced. In Chapter 5, the specific architectures

and implementation details have been discussed. In the current chapter, we present

the results using the aforementioned models in different experiments. The different

objectives, the experiments associated with each, while also the different training and

evaluation datasets and metrics are summarized in Table 6.1.

As discussed in Section 2.1.1, the first objective of this work is to create models

that are able to identity short tandem repeats (STR). We note that throughout this

section when we use the word repeats, we refer to short tandem repeats, which is the

type of data we aim to detect and analyse in the current work. The objective of iden-

tifying STRs is further split in two parts. The first part, referred to as objective I.I, is

for the models to be able to predict if a certain window contains a repeat. The second

part, referred to as objective I.II, is for the models to be able to exactly annotate

a sequence in terms of the presence of an STR. That is, the models should find the

exact starting and ending position of the repeat contained in an input sequence. The

second objective, which will be referred to as objective II, is to explore if the flanking

sequence before the repeat, signals the repeat coming, that is, to investigate if the

NN can predict the emergence of a repeat only from its upstream flanking sequence.

Experiment I and Experiment II both deal with the 2-class classification problem

of predicting if a window contains a repeat (objective I.I). The difference between

them lies in the dataset that is investigated. In Experiment III, we use the models to

attempt the exact annotation of input sequences (objective I.II). Lastly, Experiment

IV again constitutes a 2-class classification problem, where the models are used to

predict if the input sequence is a flanking sequence of a repeat or not, that is, if after

this sequence a repeat is immediately following.

44

6.1. Experiment I & II 45

Objective Description Experiments Training Dataset Evaluation Dataset Evaluation Metrics

Obj. I.I
Predict if an input window
contains an STR

Exp. I “Non-Overlapping windows” / type I Held-out part of the training Dataset Acc., F1

Exp. II “Sliding windows”/ type II

Obj. I.II
Annotate STRs
(find the start/end position)

Exp. III “Sliding windows”/ type II Curated dataset Jaccard

Obj. II
Predict if a window comprises
upstream flanking sequence

Exp. IV “Flanking seq.” Held-out part of the training Dataset Acc., F1

Table 6.1: Table summarizing the different experiments, training/evaluation datasets and
metrics used for each objective.

6.1 Experiment I & II

Experiment I and Experiment II both deal with objective I.I. The difference between

the two experiments is that they involve different types of datasets during training

and testing. The dataset used in Experiment I is the Non-overlapping windows

Dataset (where the repeats are placed on the initial positions of the samples), which

will also be referred to as type I dataset. The dataset used in Experiment II is the

Sliding windows Dataset (where the starting position of the repeats is placed

randomly), which will also be referred to as type II dataset. The nature of these

datasets and the way they were created was discussed in detail in 2.1.1 and Chapter

4, respectively. In both Experiment I and II, the model predicts if a window contains

a repeat or not. The evaluation metrics used to assess the model’s performance are

Accuracy, F1 score, Precision and Recall. The models of Experiment I will be referred

to as type I models, since they were trained on the type I dataset, and the models

of Experiment II as type II models.

We present the results for Experiment I in Section 6.1.1, and the results of Ex-

periment II in Section 6.1.2. Since both experiments target the same objective but

make use of different training datasets, we will compare their results and identify the

type of training dataset that is more appropriate to use. This is of high importance,

since the nature of the training dataset greatly affects the model performance.

6.1.1 Experiment I

The Non-overlapping windows Dataset, as explained in Chapter 4, contains 80

bp samples, where the starting position of the repeats is placed randomly in position

0-20 of the samples. That means that for a certain sample, if the start of the repeat

is randomly placed at the 10th position, then the sample will contain 9 nucleotides

(nt) of the flanking sequence before the repeat. Then, on the 10th position, the

repeat’s first nt will be placed. Depending on the length of the repeat the sample

could contain part of the downstream flanking sequence that follows the repeat. For

6.1. Experiment I & II 46

Figure 6.1: Examples of 80 bp samples.

CNN Vanilla VAE GS VAE
Seq Length Acc F1 Acc F1 Acc F1
80bp 0.957 0.956 0.838 0.823 0. 906 0.903

Table 6.2: Performance on Experiment I on 10% of the data from chr 2-22 that was
held-out of training

example, in the first row of Fig. 6.1, an 80 bp sample where the starting point of the

repeat has been placed on the 10th position is shown; since the length of the repeat

is smaller than the remaining 70 bp, a part of the sequence that follows the repeat is

also contained in the sample. The second row of Fig. 6.1 depicts a sample that would

not be contained in the Non-overlapping windows Dataset, since the starting point of

the repeat is not placed on positions 0-20 of the sample. This type of dataset ensures

that a substantial part of the repeat is included in the sample.

We ran the three model architectures to classify the dataset sequences in terms of

if they contain a repeat or not. Table 6.2 shows the results in terms of the accuracy

and F1 score for our three different architectures: CNN, vanilla VAE and Gumbel-

Softmax VAE. For the variational autoencoder models, the evaluation metrics are

referred to the 2-class classification performed in the latent space, as was explained

in Chapter 5.

The metrics in Table 6.2 concern the test dataset, which is 10% of the total

dataset, that was left out of training and was used only for testing. The training and

testing dataset included samples from chromosomes 2-22. We did not include samples

from chromosome 1 in the training procedure, so that we also test the performance

of our models on data from never-before seen chromosomes. The performance on the

never-before-seen chromosome 1 is shown in Table 6.3. We observe that the models

can achieve the same level of performance on the never-before-seen chromosomes.

We observe that our models, especially the supervised CNN, achieve high simi-

larity to RepeatMasker in terms of predicting whether a repeat is contained in the

6.1. Experiment I & II 47

CNN Vanilla VAE GS VAE
Chr Acc F1 Acc F1 Acc F1

1 0.957 0.956 0.83 0.818 0.905 0.902

Table 6.3: Performance on Experiment I on never-before-seen chromosome 1

input window. CNN achieves better performance in comparison to the unsupervised

VAE models. However, we must consider the fact that in evaluating the performance,

we accept as ground truth the RepeatMasker annotation. Thus, we expect the su-

pervised model, which has been trained on labelled data annotated in the same way

as the testing dataset, to achieve better performance. The possible advantage of the

VAE is that, since it does not rely on any labelled data during training, it could

potentially be more flexible. In more detail, the idea behind explorating the appli-

cabilty of VAEs is to create a structured latent space where repeats are separated

(encoded in a different way) than non-repeats. The way the data are encoded in the

latent space is independent of any labels, since VAEs are unsupervised models, and

thus, any fallibility of the RepeatMasker annotation does not influence the model.

One way in which this flexibility could be exploited would be the ability to discover

repeats not found by RepeatMasker.

Despite the lower performance in comparison with the CNN, both VAE archi-

tectures are able to create a latent space where the negative samples are separated

from the positives. In Fig. 6.2a, the t-distributed stochastic neighbor embedding

(t-SNE) of the latent space encodings of the GS VAE is shown. t-SNE is a technique

commonly used for the visualization of high-dimensional data in lower-dimensional

spaces. To construct this figure, after the VAE model has been trained, we use the

trained encoder to map the input samples to latent space encodings. In the case

of the specific VAE model, the latent space is 6-dimensional. Then, the t-SNE of

these 6-dimensional representations is taken. In Fig. 6.2b, the t-SNE [85] for the

vanilla VAE is shown. The GS-VAE distinguishes more clearly between repeats and

non-repeats in the latent space, which explains its better performance in Table 6.2.

Length of repeat in samples vs Accuracy

To explore how the length of the repeat included in the sample affects the accuracy of

each model, we separated 100,000 positive, randomly selected, samples from chromo-

some 1 in terms of the amount of nt of the repeat that are included in the samples.

For example, the sample shown in the top of Fig. 6.1, includes 36 nt that are con-

tained in the repeat, while the sample on the bottom row contains 11 such nt. In Fig.

6.1. Experiment I & II 48

(a) Gumbel-Softmax VAE

(b) vanilla VAE

Figure 6.2: t-SNE of the high dimensional latent space. Negative samples (non-
repeats) are shown with orange and positive samples (repeats) are shown with blue.

6.1. Experiment I & II 49

�� �� �� �� �� �� �� �� �� �� �� �� 	� 	�
������

���

���

���

���

��

��
��
��
��

���
�����

����������

Figure 6.3: Accuracy over the repeat length contained in the samples (type I models).
We separated 100,000 sequences containing repeats from chr 1 based on the length of the
repeat contained in the samples and measured the models’ accuracy for each. The groups
considered repeat lengths 6-10, 11-15 and so on. At the x-axis the upper limit of the range
of each group is denoted. All models are more accurate when longer part of the repeat is
contained in the input sample

6.3, the accuracy of the three different architectures over the length of the repeat

contained in the sample is shown. While for a low number of nt contained in the

window, GS VAE performs better than the CNN, namely it identifies more repeats,

for larger length of the repeat contained in the window, CNN slightly outperforms

it. We note that only positive samples have been used for this figure, so that we can

monitor how the repeat length contained in positive samples affects the prediction.

Effects of mutation in type I model performance: Identifying mutated
repeats

As described in Section 3.1, repeats are hypermutable. Thus, the repeat unit is,

typically, impure, containing different insertions, deletions, or changes of nucleotides

(nt). These repeat polymorphisms are quite important to detect, since in many cases

they are associated with diseases, as described in Section 3.1.

6.1. Experiment I & II 50

To explore the tolerance of our models in polymorphisms, namely their ability to

detect the repeats when these have been subject to mutations, we contaminate some

of the samples with noise and monitor the models’ prediction. Noise contamination

is done by iteratively changing one nt at a random position and is a way to simulate

mutations in the repeats. Fig. 6.4a shows the average model output among 10,000

sequences that contain a repeat, for different contamination/mutation levels. In more

detail, the input sequences are 80bp repeats and we successively contaminate one extra

bp of the repeat, namely we change it to another base. Thus, the y-axis indicates the

(average) model output among the 10,000 repeat sequences, while the x-axis indicates

the number of nucleotides that have been contaminated in each repeat sample. In

6.4a, we observe that all three models can identify the repeats even when they have

been subject of extensive mutations. For example, we observe that even for 25 nt

mutated, all models average output is above 0.6, indicating that the models still

detect the repeats in a substantial part of the samples.

We note that in Fig. 6.4a, for each model, the average output among only the

sequences that were identified as repeats for zero nt contaminated has been calculated.

That is, for each type of model only the sequences that were initially predicted as being

repeats have been considered, since we want to compare how the prediction changes

when we mutate the sequences. We report that for zero contamination level, namely

the initial samples, the CNN model identified 9,360 out of the 10,000 sequences as

repeats, GS VAE identified 8,744, while vanilla VAE, 6,140. In Fig. 6.4b, we monitor

how this initial number changes. That is, the number of sequences identified as repeats

(out of the total 10,000) for different contamination levels, is reported for each model.

We observe that CNN and Gumbel-Softmax VAE can detect a substantial part of the

repeats despite the high contamination level. For example, for 30nt mutated, CNN

and GS-VAE can detect around half of the repeats.

6.1.2 Experiment II

Experiment II uses the Sliding windows Dataset, which constitutes a more chal-

lenging dataset since the starting position of the repeat could be placed in any position

of the window. Thus, there is no guarantee that the model will be able to observe

a substantial part of the repeat in certain samples. This type of dataset implicitly

connects with the objective III. In more detail, by training the model with this type

of dataset, our aims are twofold. On the one hand, we aim to allow the model to

explicitly learn to distinguish the repeat patterns from samples that contain a sub-

stantial part of the repeat, in the same way that this was done in Experiment I. On

6.1. Experiment I & II 51

(a) Model average output (y-axis) among repeats from chr1 for different contamination
levels (x-axis). The average for each model is calculated among the number of sequences
each one identified as repeats for zero contamination level (x=0). Total number of sequences
considered was 10,000.

(b) Number of repeats identified among 10,000 repeats from chr1, for different contamination
levels (x-axis).

Figure 6.4: Modelling performance on mutated repeats (type I models): We contaminate
the repeat sequences by iteratively changing one bp of the repeat to a random one to create
artificial mutations. The no. of bp changed is denoted on the x-axis. (a) Average model
output (b) No. of repeats identified, for different contamination levels.

6.1. Experiment I & II 52

CNN Vanilla VAE GS VAE
Seq Length Acc F1 Acc F1 Acc F1
80bp 0.893 0.890 0.76 0.736 0.792 0.814

Table 6.4: Performance on Experiment II on 10% of the data from chr 19 that was
held-out of training.

CNN Vanilla VAE GS VAE
Chr. num Acc. F1 Acc. F1 Acc. F1

1 0.84 0.832 0.708 0.691 0.799 0.770

Table 6.5: Performance on Experiment II on never-before-seen chromosome 1

the other hand, by including samples which contain a small part of the repeat and

are comprised mostly of the flanking sequence before the repeat, we aim to allow the

model to capture patterns that are potentially signaling the repeat and use them to

make an accurate and early prediction of the repeat region.

Table 6.4 shows the results in terms of the accuracy and F1 score for our three

different architectures on the test dataset, which is 10% of the total dataset that was

left out of training and was used only for testing. The training and testing dataset

for this experiment included samples only from chromosome 19. The reason for this

is that the nature of the dataset, and the way it was created using sliding windows,

which was described in Section 4.1, results in a vast amount of data coming just from

one chromosome. As in Experiment I, we also test the performance of our models on

data from never-before seen chromosomes. Table 6.5 shows the performance of the

models on the never-before-seen chromosome 1.

As expected, the performance is lower in comparison with the results of type I

models shown in Table 6.2. However, this lower performance is due to the more

difficult nature of the evaluation dataset and does mean that type II models perform

worse than type I models. To compare the two types of models we should evaluate

them on a common testing dataset. The comparison between type I and type II

models will be discussed in Section 6.1.3.

Effects of mutation in type II model performance: Identifying mutated
repeats

Again, as in Section 6.1.1, we evaluate the performance of our models when we con-

taminate the repeats. The results are shown in in Fig 6.5a. All models are able to

detect the repeat even when they are subject of many mutations. We report that for

zero contamination level, the CNN model identified 9,744 out of the 10,000 sequences

6.1. Experiment I & II 53

as repeats, GS VAE identified 8,926, while vanilla VAE 7,800. In Fig. 6.5b, we mon-

itor how this initial number changes. That is, the number of sequences identified as

repeats (out of the total 10,000) for different contamination levels, is reported for

each model. We observe that all models can detect a substantial part of the repeats

despite the high contamination level. For example, for 30nt mutated, vanilla VAE

and GS-VAE can detect around half of the repeats, while the CNN model can detect

more than 7,000 repeats.

6.1.3 Comparison of type I and type II models

The comparison between Table 6.2 and Table 6.4 is not a fair indicator of the dif-

ferences in performances between type I and type II models. The lower performance

of type II models, shown in Table 6.4, in comparison with the performance of type

I models, shown in Table 6.2, is expected due to the more difficult nature of the

evaluation dataset used for the results in Table 6.4. In other words, it is not due to

the models performing worse in identifying the repeats, but because of the nature of

the type II dataset, which includes a significant number of samples containing only a

few bp of the repeat. These samples are harder to identify as positive samples and,

thus, their inclusion in evaluating type II models lowers their performance.

To quantitatively assess and confirm these assumptions, in Fig. 6.5a, the accuracy

as a function of the length of the repeat included in the window (for 80 bp window)

is given. With dotted lines are the curves from Fig. 6.3, which correspond to the

type I models trained on the Non-overlapping windows Dataset, while the full lines

correspond to type II models trained on the Sliding windows Dataset. The data

used for this figure are the same as in Fig. 6.3, 100,000 positive, randomly selected,

samples from chromosome 1 separated in terms of the amount of nt of the repeat that

are included in the samples. This evaluation dataset, contains the repeats in random

positions in the samples.

It is shown that for all lengths, type II models outperform type I models. The

higher performance is particularly striking in cases where a small part of the repeat

is included. A potential explanation would be that the model captures motifs and

characteristics of the flanking sequence, namely the sequence just before the repeat

and, thus, by exploiting this information is able to predict the repeat even when

seeing a few bp. More on the capability of the model to capture characteristics of the

upstream flanking sequence of the repeat and predict its emergence will be discussed

in Experiment IV, in Section 6.3.

6.1. Experiment I & II 54

� � �� �� �� �� �� �� ��
��������!����!�����!��

���

���

���

��	

��

���

�#
�

��
��

�
"!

�"
!

��
������
#����������

(a) Model average output (y-axis) among repeats from chr1 for different contamination
levels (x-axis). The average for each model is calculated among the number of sequences
each one identified as repeats for zero contamination level (x=0). Total number of sequences
considered was 10,000.

� � �� �� �� �� �� �� �� ��
��������!����!�����!��

����

����

����

����

	���

���

����

�����

�#
�

��
��

�
"!

�"
!

��
������
#����������

(b) Number of repeats identified among 10,000 repeats from chr1, for different contamination
levels (x-axis).

Figure 6.5: Modelling performance on mutated repeats (type II models): We contaminate
the repeat sequences by iteratively changing one bp of the repeat to a random one to create
artificial mutations. The no. of bp changed is denoted on the x-axis. (a) Average model
output (b) No. of repeats identified, for different contamination levels.

6.1. Experiment I & II 55

Figure 6.6: Percentage of positive repeats found for different repeat lengths contained in
the samples. Comparison between type I and type II models.

6.1. Experiment I & II 56

Heatmaps

The comparison between type I and type II models can be presented qualitatively

through the heatmaps shown in Fig. 6.8 – Fig 6.11. The heatmaps depict the models’

prediction for 50 randomly selected samples. Fig. 6.8 and Fig. 6.10 show the heatmap

for CNN and GS VAE type I models, while Fig. 6.9 and Fig. 6.11 for CNN and GS

VAE type II models.

Each row corresponds to a sequence sample, and each column corresponds to the

output of the model for an 80 bp window. The output of the model can be viewed as

the probability of the input window containing a repeat. The window slides, namely is

moved base-wise over the sequence and, at each position, we monitor how the output

of the model changes. In the sequence samples used to create these heatmaps the

starting position of the repeat has been placed in the same position for visualization

purposes. However, the repeats are of different length and, thus, their ending position

varies between samples. At position 1 of the x-axis, the window contains the first bp

of the repeat. As the window slides over the sequence, at each step it contains one

more bp belonging to the repeat.

To make the heatmap generation procedure clearer, we include an example of a

window sliding over an input sequence in Fig. 6.7. In the example, the repeat region

of the input sequence is shown with lower case letters, while the non-repeat region

is indicated with uppercase letters. For the heatmap generation we slide an 80 bp

window across that input sequence and, at each position, indicated by the position

where the rightmost part of the window is we monitor the model output. In the first

row the position of the window corresponds to the position 1 of the x-axis, while the

sliding window in the second row of the image corresponds to the position 10 of the

x-axis of the heatmap. Thus, ideally, we would want the model to start predicting

the repeat at position 1 of the heatmap. However, realistically, the model will need

to take as input at least a few bp of the initial part of the repeat before it can predict

the presence of the repeat.

From the heatmaps in Fig. 6.8 – Fig 6.11, it is evident that the models from

Experiment II can identify the presence of the repeat much earlier, namely when

the window contains only a few bp of the repeat on its rightmost part as it slides

the sequence. In more detail, models from Experiment I start identifying the repeat

when the first bp of the repeat is placed around position 50-60 of the input window.

On the other hand, models from Experiment II, in most cases, identify the start of

the repeat when the first bp of the repeat is placed around position 0-10 of the input

window, namely after seeing only 0-10 bp of the repeat.

6.1. Experiment I & II 57

Figure 6.7: Example of an 80bp window sliding over an input sequence to generate a
heatmap. The 80bp window is given to the model as input and the output of the model
corresponds to an element of the heatmap. Top: The output of the model corresponds to
position 1 (x-axis) of the heatmap. Down: The output of the model corresponds to position
10 (x-axis) of the heatmap.

Figure 6.8: Heatmap for CNN, type I model. Each row corresponds to a sample sequence
and each column corresponds to the output of the model when it takes as input an 80bp
part of the sequence. That is, an 80 bp window slides over the input sequence and at
each position the output of the model is given in the heatmap. x-axis corresponds to the
position of the rightmost part of the sliding window. Here, we have denoted as 0 in the
x-axis the part where the first bp of the repeat is placed in the 50 samples used to generate
the heatmap.

6.1. Experiment I & II 58

Figure 6.9: Heatmap for CNN, type II model.

Figure 6.10: Heatmap for GS VAE, type I model.

6.2. Experiment III 59

Figure 6.11: Heatmap for GS VAE, type II model.

From the above experiments (I&II), it is clear that the models trained on the Slid-

ing windows or type II Dataset can predict the start of the repeat much earlier

than the model trained on the Non-overlapping windows or Type I Dataset.

This means that the model of Experiment II performs better in classifying windows

where a small part of the repeat is included and, thus, is more appropriate to be

used for the annotation of a sequence, since during annotation the model needs to be

accurate in terms of the starting position of the repeat.

6.2 Experiment III

Experiment III deals with the objective I.II, which is to annotate the sequence in terms

of the presence of repeats. Since the performance of the model trained on the Sliding

windows Dataset was proven to be much more appropriate for the exact annotation

of the starting point of a repeat, we used this model for the annotating purposes. We

omit results for the models trained on Non-overlapping windows Dataset since they

are considered inappropriate for the specific task.

The selection of the dataset used for the evaluation of the exact annotation is

of high importance. The evaluation of ab initio methods on a dataset which is the

6.2. Experiment III 60

output of another algorithm is complex, since we need to accept the other algorithm’s

output as the gold standard. However, even in that case, although true positives and

false negatives are easily found by comparing with the output of the gold standard

algorithm, the case of false positives is more complex. It is difficult to determine if a

model’s positive output that is not included in the gold standard positive outputs is

a false positive or if it is a novel TR (either not previously known or one that the gold

standard algorithm is incapable of finding). For that reason, for the evaluation of our

model in the task of sequence exact annotation, we used a manually curated dataset

created in [6]. In addition, the use of this dataset has the advantage of comparing

our models with other algorithms and software used, since the authors in [6] have

evaluated the performance of a great selection of other software, along with their own.

The dataset consists of 5 different smaller datasets containing biologically relevant,

non-näıve repeats. More details on the nature of these datasets were discussed in

Section 2.3. The evaluation metric used is Jaccard coefficient, introduced in Section

2.3, which provides a way to measure the similarity between the sequence output of

our model and the gold ground truth repeats contained in the dataset.

Most of the repeats contained in the dataset are short in length (<100 bp). This

poses a problem to our model. As shown in Section 6.1, type II models are much

more accurate than type I models in predicting the start of the repeat. However, type

II models need, indeed a smaller, but, still substantial part of the sequence to be seen

by the 80bp window, before it is able to predict the starting point of the repeat. The

extent to which this initial part is substantial depends on the total repeat length.

In other words, since, the evaluation dataset is comprised of small length repeats,

the model missing some initial parts of the repeat will greatly affect the evaluation

metric, Jaccard coefficient. For example, whereas in the case of a 200 bp repeat, if

the model misses the initial 10 bp and the last 5 bp, the Jaccard coefficient would

be 0.925, in the case of a 40 bp repeat, the Jaccard coefficient will be 25/40 = 0.625.

Thus, the nature of the dataset requires a precise annotation of the exact starting

and ending position.

For that reason, we designed an algorithm containing an extra processing step,

which aims in finding the exact starting and ending positions more accurately. In more

detail, the DL model is initially used to identify the region that contains the repeat

identifying the potential starting and ending positions. Then, we accept the model’s

prediction with a flexibility range of a few bp (in our case +− 15 bp). To identify

the starting/ending positions more accurately within that range, the similarity of

subsequent substrings (k-mers) around this position is analyzed. The addition of

6.2. Experiment III 61

this extra step has improved the performance of our model, since, as it was explained

above, the precision of a few bp is quite important for annotating TRs of small length.

It was observed that this extra step helps increasing the Jaccard coefficient in cases

where the initial region is identified correctly (in some range) by the model. In some

samples, where the model failed to identify the starting ending position with relative

accuracy, the inclusion of the processing step (kmers) did not improve the Jaccard

coefficient. Below, we will give a brief explanation of the k-mers-related processing

step.

k-mers

In bioinformatics, the term k-mers refers to all substrings of length k of a sequence.

For example, the sequence AGTACA, has six monomers (A, G, T, A, C, A), five

2-mers (AG, GT, TA, AC, CA) four 3-mers (AGT, GTA, TAC, ACA), three 4-mers

(AGTA, GTAC, TACA), two 5-mers (AGTAC, GTACA) and one 6-mer (AGTACA).

The total number of possible k-mers for a DNA sequence is 4k. To determine if a

window contains the start of a repeat we check its similarity to the previous and

subsequent window. In more detail, in our extra processing step, we form windows

of length w and, for a fixed k, we estimate the frequency vector f of that window,

which is comprised of the number of occurrences of each k-mer. Thus, f is given by

the following vector:

~fwi = (f0, . . . , fj, . . . , f4k−1) (6.1)

where fj denotes the number of occurrences of the jth possible k-mer. By comparing

the frequency vectors of subsequent windows, we aim to adjust the boundary of the

repeat. The metric that is used to measure the similarity between the frequency

vectors of two windows, f and h, is taken as the normalized Pearson correlation

coefficient between them, given by:

ρ(~f,~h) =

∑n
i=1

(
~fi − f̄

)(
~hi − b̄

)
√∑n

i=1

(
~fi − f̄

)2√∑n
i=1

(
~hi − h̄

)2 (6.2)

where f̄ =
∑n

i=1
~fi/n and h̄ =

∑n
i=1

~hi/n, for n = 4k. Firstly, the similarity S1 of

two subsequent windows is calculated and then, this measure S1 is compared with

the similarity S2 of the two subsequent windows that follow. In more detail, let

S1 = Sw(i−w,i) be the similarity measure between two windows W(i-w) and W(i),

6.2. Experiment III 62

then S2 = Sw(i,i+w) is calculated as the similarity measure between the two windows

that follow which are W(i) and W(i+w). In other words, the frequency vector of

the window W(i) is compared with the frequency vectors of windows W(i-w) and

W(i+w), resulting in similarity measures S1 and S2, respectively. The assumption

is that if the window W(i) is the one containing the first repeated unit, then the

similarity measure S2, denoting the similarity with the window W(i+w), will be close

to 1, since window W(i+w) is also part of the repeat and thus, would be quite similar

with window W(i). In addition, since W(i) is the first window containing part of the

repeat, the similarity measure S1 with its previous window, W(i-w), will be lower. As

a result, we expect measure:

B(i, w) = Sw(i,i+w) − Sw(i−w,i) (6.3)

which depends on the triplet of windows windows W(i-w) - W(i) - W(i+w), to be

high on the position that the repeat starts. Following the same procedure, with

the difference of scanning the sequence from right to left, will denote the window

containing the ending position of the repeat. This idea was adapted from [35], where

it was used to find the boundaries of long repeats, namely cases where the repeat

unit is repeated a hundred or thousand times. The authors used quite wide windows,

using the fact that long repeats have hundred or thousands of repeated units. In

[35], the authors noticed that using small length windows leads to a noisy B signal

in broad regions, making it impossible to detect peaks of the TRs.

In our case, however, the model can already identify the starting and ending

position with some precision. Therefore, we only use the additional step with smaller

windows to increase the accuracy even further. Thus, the B signal is calculated only

for a small region around the previously identified starting/ending position. As a

result, B is not noisy since it is calculated only for a small number of triplets of

windows.

In Table 6.6, the results for our models and other software and algorithms used

for the annotation of TRs, are given. The performance of other software/algorithms

reported in Table 6.6 is taken from [6]. Most of the software used for the annotation

of repeats output many different results for a given location of interest. For that

purpose, in [6], the authors define two extra measures, the average precision and the

average recall. Let T = t1;; tn be a dataset of TRs, and R the set of results of a

given algorithm, with R(ti) being the subset of R overlapping with ti by at least 1 bp.

That is, R(ti) contains the multiple different results for a given location of interest,

6.3. Experiment IV 63

CNN Vanilla VAE GS VAE
Disease 0.667 35 26 0.03 1 1 0.541 28 17
Codis 0.77 19 15 0.33 5 3 0.747 19 16
Y 0.776, 82 69 0.51 50 35 0.722 78 67
Marshfield 0.747 564 465 0. 343 238 176 0.724, 544 480
Promoters 0.587 11534 5910 0.253 5032 2432 0.545 10884 5780

Table 6.6: Performance on Experiment III. Model performance on different datasets created
in [6]. Compare with Fig. 6.12. The three columns for each model denote the following
measures: [average Jaccard, #TR j=0.5, #TR j=0.7] Since our models have a single output
per location, the average precision and average recall of Fig. 6.12 are both equal with the
average Jaccard coefficient.

namely the location of ti. Then the average precision and recall for the given dataset

of n TRs, are given by the following mathematical formulas:

σP (T,R) =
1

n

(
n∑
i=1

∑
x∈R(ti)

jac (x, ti)

|R (ti)|

)

σR(T,R) =
1

n

(
n∑
i=1

max
x∈R(ti)

jac (x, ti)

)
However, our models give a unique result for each region of interest and, thus,

the average precision and average recall are both equal with the average Jaccard

coefficient. A high recall in the expense of a small precision can render the algorithm

considerably less useful. For example, the extreme case of TRStalker, as shown in

Table 6.6, achieves a high recall in all datasets (above 0.9), but produces an extremely

high number of results covering a target locus (RPL), varying from 116 to 205 for

the different datasets. Covering the same locus with many different outputs creates

output redundancy and poses the problem that, since in the real case scenario the

ground truth will not be known, there will be no way to select among the multiple

outputs. Thus, a high recall is important when it is accompanied by a high precision.

We can see that our models perform comparably with other established software and

have the advantage of giving only one output for a locatino of interest.

6.3 Experiment IV

Experiment IV deals with the objective II, which is to explore if the neural networks

can capture characteristics of the flanking sequence of the repeat, and use them to

predict when a repeat is coming, thus associating them with the presence of repeats.

This constitutes a first step towards the identification of specific genomic composition

6.3. Experiment IV 64

Figure 6.12: Table taken from [6] showing the performance of a range of software on the
five different curated datasets.

or other factors as contributing factors to the initiation and, potentially, the origin

of tandem repeats. The importance of repeats’ flanking sequences and their effect on

repeats’ mutation rates have been described in Section 3.1.1.1. In this experiment, we

explore whether the composition of the repeat’s flanking sequence can be distinguished

from random sequences by our DL models. This way, we attempt to take a first step

towards exploring the flanking sequence composition and characteristics as potential

contributing factors to the origin and emergence of repeats. The origin and mutational

dynamics of microsatellites is yet not completely clear [27]. Details on that and the

importance of their exploration have been discussed in Section 3.1.1.1.

As discussed in Chapter 4, in this experiment we use a dataset where positive

samples are comprised of the 60bp flanking sequence before the repeat. Negative

samples are random parts of the genome, whose subsequent 60bp do not include

a repeat. We train the models in a 2-class classification setting, where the model

predicts if a certain input sequence comprises a flanking sequence of a repeat. The

models’ performance is evaluated in terms of the Accuracy and F1 score. The dataset

is balanced, and, thus, the baseling random prediction accuracy is 0.5 for in the 2-class

6.3. Experiment IV 65

CNN vanilla VAE GS VAE
Acc. F1 Acc. F1 Acc. F1
0.797 0.79 0.65 0.451 0.759 0.76

Table 6.7: Performance on Experiment IV. The model predict if an input sequence com-
prises a flanking sequence of a repeat or not.

classification setting. In Table 6.7, the performance of the three model architectures

explored in this work, CNN, vanilla VAE and Gumbel-Softmax VAE, is presented.

We observe that CNN and Gumbel-Softmax VAE, can predict which sequences

are flanking sequences of a repeat with accuracy considerably above the baseline

random prediction accuracy of 0.5 and that vanilla VAE performs poorly. As a sanity

check, we tested the trained models on sequences that were shuffled, to distort any

information. Namely, we permuted the letters in the testing sequences in order to

destroy any patterns that the network had capture during training. For both the

CNN and the Gumbel-Softmax VAE models the accuracy on the permuted sequences

dropped around the baseline random prediction accuracy of 0.5. In Fig. 6.13 the

heatmaps for the current experiment are shown. Fig. 6.13 (a) corresponds to the

heatmap for the CNN, while Fig. 6.13 (b) to the heatmap for the Gumbel-Softmax

VAE architecture.

To produce these heatmaps, for each sample we slide a 60 bp window over the

sequence with a step of 1 bp. At each position (x-axis) the output of the model

among the 5,000 sequences (y-axis) is denoted. The samples have been created to

contain 100 bp part of the flanking sequence before the repeat, while they also include

the repeat and some part of the flanking sequence after the repeat. The amount of

bp after the repeat varies among samples, since the number depends on the length

of the repeat. To make the numbering on x-axis clear, we note that position 0 of

the heatmaps corresponds to the output of the model that takes as input the 60 bp

window that are immediately before the first repeat bp. That is, on position 1 the 60

bp window scanning the sequence contains 59 bp of the flanking sequence and only

the first bp of the repeat etc.

In Fig. 6.14 (a) and Fig. 6.15 (a), the average binarized output of the network

among the 5,000 positive sequences is shown for the CNN and the Gumbel-Softmax

VAE respecitvely. That is, for each sample we binarize the predictions of the model

shown in the heatmaps, using the standard 0.5 threshold for the positive prediction

and, then, average among the 5,000 samples. We observe that the model output

peaks when the scanning window contains the part immediately before the repeat.

6.3. Experiment IV 66

A decrease in the average binarized output occurs when the window contains the

repeat. We note that the length of the repeat influences the minimum size of flanking

sequence (before or after the repeat) that is contained in the input window at any

point. To make this clear for the reader, we explain that, for example, for a repeat of

30 bp length, the 60bp window that scans the repeat and its flanking sequence will

contain a minimum of 30 bp of the flanking sequence before or after the repeat at any

point. For larger repeat sizes ≥ 60 bp there are points where the window does not

contain any part of the flanking sequence, leading to a larger decrease in the model

output. Thus, in Fig. 6.14 (a) and Fig. 6.15 (a), the decrease in positions where the

scanning window contains the repeat is small accounting for the samples that contain

small length repeats, since the curve is the average output among 5,000 sequences.

After this small decrease, a rise in the curve denotes that the networks detect the

patterns and characteristics used to predict the flanking sequence before the repeat,

in the flanking sequence after the repeat. That is, even though the NNs were trained

using data from the flanking sequences before the repeat, the characteristics that are

captured by the NNs and enable the accurate prediction of a sequence as flanking/non-

flanking are also present in the flanking sequence after the repeat in many samples.

This is more evident in the case of Gumbel-Softmax VAE (Fig. 6.15 (a)). Comparing

6.14 (a) and Fig. 6.15 (a), we observe that the unsupervised Gumbel-Softmax VAE is

more able to capture patterns that are present in the flanking sequences both before

and after the repeat despite being trained only on data from the upstream (before)

part. This could potentially mean that the unsupervised setting is more appropriate

for this experiment.

We also trained the models using the same type of dataset comprising of repeat’s

flanking sequences (positive class) and random sequences not comprising repeats (neg-

ative class) but we created the data leaving a 10 bp gap between the repeat and the

windows labelled as positive samples. This is to account for potential mistakes in

annotation of the RepeatMasker, e.g. RepeatMasker misannotating the initial part

of a repeat. This way, we ensure that there is no misannotated part of the repeat

included in the positive samples. The results for the CNN and Gumbel-Softam VAE

are shown in Table 6.8. The performance of the models drops a little but the models

can still predict which sequences are flanking sequences of a repeat with high accu-

racy. In Fig. 6.14 (b) and Fig. 6.15 (b), the average binarized output of the network

among the 5,000 positive sequences is shown for the CNN and the Gumbel-Softmax

VAE respectively.

6.3. Experiment IV 67

(a)

(b)

Figure 6.13: Heatmaps of 5,000 sequences containing a repeat and its flanking region. (a)
CNN (b) Gumbel-Softmax VAE

6.3. Experiment IV 68

��� ��� �� �� ��
� ��� ���
��������

����

����

����

����

����

����

��	�

��	�

��
�

��
��

�
��

��
��

�
��

��
��

��
��

�

��������
���
����

(a)

��� ��� �� �� ��
� ��� ���
��������

����

����

����

����

����

����

��	�

��	�

��
�

��
��

�
��

��
��

�
��

��
��

��
��

�

��������
���
����

(b)

Figure 6.14: Blue: Binarized output averaged among 5,000 sequences containing a re-
peat and its flanking region (positives). Green: Binarized output averaged among 5,000
sequences non containing a repeat (negatives). (a) CNN model trained immediate flanking
sequences (b) CNN model trained on flanking sequences with a 10 bp gap

6.3. Experiment IV 69

��� ��� �� �� ��
� ��� ���
��������

����

����

����

����

����

��	�

��	�

��
�

��
��

�
��

��
��

�
��

��
��

��
��

�

��������
���
����

(a)

��� ��� �� �� ��
� ��� ���
��������

����

����

����

����

����

��	�

��	�

��
�

��
��

�
��

��
��

�
��

��
��

��
��

�

��������
���
����

(b)

Figure 6.15: Binarized output averaged among 5,000 sequences containing a repeat
and its flanking region (positives). Green: Binarized output averaged among 5,000
sequences non containing a repeat (negatives). (a) GS VAE model trained immediate
flanking sequences (b) GS VAE model trained on flanking sequences with a 10 bp gap

6.3. Experiment IV 70

CNN GS VAE
Acc. F1 Acc. F1
0.765 0.767 0.74 0.738

Table 6.8: Performance on Experiment IV. The model predict if an input sequence
comprises a flanking sequence of a repeat or not. Model trained on flanking sequences
that are 10 bp away from the repeats starting point.

Chapter 7

Discussion

The aim of this project was two-fold. The first objective (Objective I) was to ex-

plore the use of deep learning models for the identification of tandem repeats. The

second objective (Objective II) was to use deep learning models to correlate the ge-

nomic composition of repeats’ upstream flanking sequences, namely sequences that

are placed immediately before and after the repeat, with their presence. Both ob-

jectives were fueled by the importance of tandem repeats and latest evidence that

reinforce their functional role and great contribution in gene expression, regulation,

and phenotypes, as discussed in 1.1 and 3.1. This latest evidence has led to an in-

creasing interest around tandem repeats, a fact that renders their identification and

analysis highly important.

Objective I, which aimed at identifying the repeats was split in two subtasks,

referred to as Objective I.I and Objective I.II. Objective I.I aimed for the models

to predict if a certain 80bp window contains a repeat or not. Objective I.II aimed

for the models to perform exact annotation of the input sequence in terms of the

presence of repeats. That is, to identify the exact starting and ending positions of

the repeat while scanning an input sequence that contained a repeat at a random

location. Objective II, which was related to the exploration of a potential correlation

of the presence of repeats with the genomic composition of their upstream flanking

sequence, aimed for the models to predict if a 60bp window comprises part of the

flanking sequence of a repeat or not.

To target the aforementioned objectives, we adapted and implemented state-of-

the-art methods in the domain of deep learning for application in genomic DNA

sequences. We explored both supervised and unsupervised methods to identify the

more appropriate of these settings for our targeted tasks. In particular, we explored

the application of the supervised convolutional neural networks (CNNs) and unsu-

pervised variational autoencoders (VAEs). In the framework of VAEs, we explored

71

7.1. Assessing the results 72

both the vanilla VAE, which is comprised of continuous latent variables, while also

the Gumbel-Softmax VAE, a fully discrete latent space VAE. The exploration of dis-

crete latent variable emerged as a natural choice taking into account the inherently

discrete nature of the genomic data and also that discrete latent variable VAEs have

been shown to alleviate issues, e.g. posterior collapse, in the complex procedure of

training the VAE.

To train these deep learning models, we tried different optimization settings and

architectures and we performed extensive hyper-parameter tuning as discussed in

5. To train and evaluate our models the whole genome sequence DNA data from

all chromosomes was obtained from USCS Genome Browser. For the labelling of

the repeats in training data, we used RepeatMasker, which is one of the most used

software for the identification of repetitive elements. During the evaluation of the

models’ performance, RepeatMasker’s labelling was admitted as the ground truth for

the experiments targeting all objectives, with the exception of Objective I.II. For

Objective I.II, the evaluation of the task of annotating the repeats, namely finding

their starting and ending position, requires high precision. That is, finding the exact

starting and ending position of a repeat is more difficult than predicting its presence

in an input window. Thus, the evaluation of this task should involve a highly precise

evaluation dataset where the annotated repeats are verified. For that purpose, a

manually curated dataset created in [6], consisting of biologically non-näıve short

tandem repeats was used to evaluate the models performance in the task related to

Objective I.II.

7.1 Assessing the results

The results achieved by the models are promising, with the CNN architecture and

the Gumbel-Softmax VAE achieving the best performances.

For the Objective I.I we, firstly, investigated the use of two different training

datasets. Type I dataset consisted of samples where the repeat was placed on their

initial part, namely the starting position was randomly placed on positions 0-20 of the

samples. Type II dataset contained samples where the initial position of the repeat

could be placed in any possible position. Type I dataset guarantees that the training

samples contain a substantial part of the repeat pattern, while type II dataset provides

no such guarantee. It was observed that models trained on the type II dataset could

more accurately predict if a window contains a repeat and their accuracy depended

less on the length of the repeat that is contained on the window in comparison with

7.1. Assessing the results 73

the models trained on type I dataset. That is, the type I models (for all architectures)

were more accurately predicted a repeat even in cases where only a small part of it

was contained on the rightmost part of the window, in contrast with type I models,

which achieved a low accuracy in such cases. After these comparisons, we concluded

that type II dataset is more appropriate in cases where we need the models to be able

to predict if any, larger or smaller, part of the repeat is contained in a window.

For both model types, we analyzed how the performance varies for testing samples

containing different lengths of a repeat and how the detection of repeats is influenced

when we contaminate them with noise. All models were able to identify the repeats

even when these were subject of considerable contamination. This is of high impor-

tance since, as discussed in 3.1, tandem repeats are hypermutable, meaning that they

are usually subject of subsequent mutations, which leads to their impurity. That

is, the repeated motif is usually not perfect, a fact that renders the identification of

the repeats more complicated. However, the mutated repeats are critical to detect

since they are associated with various diseases, as discussed in Section 3.1. Thus,

the ability of our models to discern the existence of repeats in sequences, even when

these are contaminated with noise (corresponding to artificial mutations) is critical

and attaches extra importance to our models’ performance.

In the more difficult task of annotating the input sequence in terms of the pres-

ence of repeats, constituting Objective I.II, our models performed comparably with

other established software. The sequence annotation was performed by scanning the

input sequence, namely by moving the input window along it with a step equal to 1

bp. At any point, the position corresponding to the rightmost window position was

annotated. Thus, since we aim to accurately predict the starting point of the repeat,

e.g. when ideally only the first, but realistically only a few bp of the repeat are in-

cluded in the input window, we used type II models. This choice is motivated by the

conclusions of experiments related to Objective I.I mentioned above. These indicate

that type II models have been identified as the ones which are appropriate for the

detection of repeats in cases when only a small part of them is contained in the win-

dow. The curated dataset used for the evaluation of the repeat annotation contains

short length tandem repeats, namely repeats where the repeated unit is repeated

some tens of times. As a result, extreme precision is needed in the identification of

the starting/ending point of the repeats. To increase the accuracy of our models,

we added an extra processing step, aiming in adjusting the models’ prediction. That

is, we analyzed the similarity of subsequent substrings (k-mers) around this position.

This extra step is based on the assumption that the window containing the initial

7.1. Assessing the results 74

part of the repeat will be much more similar to subsequent windows, also containing

parts of the repeat, than to previous windows containing random sequences.

CNN and Gumbel-Softmax VAE are performing comparable with other software,

while vanilla VAE performance is quite low in some of the datasets. The CNN has

a consistent performance among all five datasets, and achieves a performance com-

parable with other software even for the Diasease Datasets, which can be identified

as the more difficult one based on the software performances. Most of the software

cover a certain location with many outputs, namely for every given location various

potential repeats are output by the software. For that reason, the authors in [62]

introduced two different measures, recall corresponding to the maximum Jaccard co-

efficient among the multiple outputs for the locus and precision corresponding to the

average Jaccard coefficient of the output for the given locus. As our models give one

output for each location, both these measures correspond to the average Jaccard coef-

ficient. Thus, the comparison with software that have a high recall and low precision

is not exactly fair. A high recall in the expense of a small precision can render the

algorithm considerably less useful, since there is no way of selecting one among the

potential outputs.

For the Objective II, we tested the ability of the models to predict the emer-

gence of a repeat only by having as input their flanking sequence. CNN achieved an

accuracy and F1-score of over 79%, Gumbel-Softmax VAE an accuracy and F1-score

around 76%, while vanilla VAE performed poorly achieving an accuracy of 65% but

an F1-score of 45%. The ability of models to predict when an input sequence com-

prises a flanking sequence of a repeat indicates that the networks are able to capture

certain genomic composition and underlying characteristics of the flanking sequence

of repeats that correlate with their presence.

The influence that flanking sequences have on repeats have been reported in liter-

ature, e.g. on the repeats mutation rates [61], [27]. The relation between the flanking

sequence and the repeat is a complex one that is not yet completely clear and as sug-

gested in the literature should be further explored. [27]. Also, the origin of tandem

repeats is a complex issue and many theories have been suggested for their genesis.

The investigation of the tandem repeats origin could lead to a better understand-

ing of the function and organization of the genome, the evolution of species and the

population genetic studies [26]. The fact that our models are able to predict with

high accuracy which sequences constitute flanking sequences of the repeats indicates

a positive correlation between certain genomic compositions or underlying character-

istics of the flanking sequences and their presence. That could potentially comprise

7.2. Limitations and Future work 75

a first step towards exploring the flanking sequence composition and characteristics

as potential contributor to the origin and emergence of repeats.

7.2 Limitations and Future work

In the current work, we have for the first time explored the use of deep learning for

the analysis of tandem repeats. Our results are promising, indicating that further

work would be valuable in that direction. However, our current work has limitations

that should be addressed in future work.

Our models have performed well in terms of predicting fixed-length windows con-

taining the repeats. This is a really useful task that can be used to locate the repeats

with relative accuracy and also indicates the capability of deep learning models to

analyse tandem repeats. However, the ability to find the exact starting and ending

position of the repeats is a property that is needed to render our models useful tools

for the annotation of the genome. The task of finding tandem repeats is complex,

and this is evident by the fact that software that have been introduced years ago and

are frequently used in multiple applications for the annotation of the sequence, like

RepeatMasker, are imperfect and in cases inaccurate. As seen in Experiment III, our

models have performed comparably with some of the other software, however, some

of them have surpassed our models’ performance on all datasets used for the evalua-

tion. This is on some extent related to the nature of the curated datasets used for the

evaluation of the exact annotation task (Experiment III). As we described in Section

6.2, these datasets contain mostly small length repeats and, thus, the precision of

the models on finding the exact starting and ending position greatly influences the

evaluation metric. Since our models work on a fixed-length window basis, i.e. they

are trained to predict if a window contains a repeat, finding the exact starting and

ending position is not their strength. The fixed-length window characteristic of our

models, also makes them incapable of distinguishing repeats that are close together

and are separated only by a few base pairs. In relation to the above problems, we

propose the following two different routes.

1. The first one is to focus on using our models for the prediction of longer short

tandem repeats, e.g. repeats in which the small motif is repeated, for example,

hundreds of times. That is because in such cases finding the exact starting and

ending position of the repeat is not of great importance. Thus, in an experiment

similar to Experiment III, but with a dataset that would contain longer repeats,

our models could potentially perform better than the other software.

7.2. Limitations and Future work 76

A justified comment at this point would be that the other software could also

potentially perform better in finding larger length repeats. However, most of the

other’s software problem in finding the repeats is not related to their imprecision

in finding the starting and ending position, since they don’t work on a window-

basis as our models. The variability of the repeats due to mutations is what, in

most cases, renders their detection a challenge. In the case of our models, we

have tested their ability to detect mutated repeats by artificially introducing

noise to the sequence and, we observed that our models are able to detect

a substantial part of the repeats despite the fact that they were subject of

extensive mutations (Fig. 6.4b, Fig. 6.5b). Thus, we believe that our models

have the potential to overpass the performance of other software in detecting

mutated repeats. For the software that work on a candidate search base, the

difficulty to detect mutated repeats has been noted in the literature. However,

for other de novo algorithms, this ability would depend on the exact algorithm

they use to find the repeats. Thus, although the ability of our models to detect

mutated repeats has been explored in this work, their comparative performance

in this task against other software should be tested.

2. The second route involves the combination of our models with another ex-

tra processing step, which would allow our overall algorithm comprised by the

deep learning model and the extra processing step to be more precise. A first

step toward this direction has already been implemented by incorporating the

k-mers-related processing step in Experiment III. This is a relatively simple

processing step. Further work should be done on this direction, in terms of

exploring different processing steps. As potential alternatives for the processing

steps, the algorithms proposed by other software, e.g. the algorithm of [6], could

be explored. In other words, we could explore the potential combination of deep

learning models aiming at identifying the broader region containing the repeat

with the other algorithms that have been proposed in the literature. That could

potentially lead to an improvement in performance by exploiting each model’s

advantages. Connecting that again with the the fact that the NNs showcased

a flexibility in detecting mutated repeats, the combination of NNs with an al-

gorithm that is precise at finding the starting and ending position of repeats

but is not good at detecting mutated repeats could potentially increased their

respective performances.

7.2. Limitations and Future work 77

Apart from combining our models with an extra processing algorithmic step, we

could also attempt to increase their precision in detecting the exact starting and

ending points by training them in a different problem setting more appropriate

to the task. For example, we could train the models to predict the exact point

where a repeat starts in an input window. This comprises a different training

scheme than the 2-class classification training scheme we attempted in this work.

Apart from the issue of the exact annotation of the sequence, further work should

be done towards exploring the potential improvement of the performance of our mod-

els. Towards that we can:

1. Investigate different ways of creating the dataset. Given the fact that there is no

previous work on deep learning models used to predict tandem repeats, the most

appropriate way to create the training dataset from the available raw human

genome sequence is unexplored. We have taken an initial step on exploring

that in the current work by designing two different ways to create the training

dataset from the raw genome data obtained from the USCS Genome Browser.

According to the experiments designed and performed in this work, we have

concluded that the nature of the training dataset greatly affects the performance

of the models. The reasoning behind that is that we observed considerably

different performance between the models trained on the two different dataset

we created. Thus, we believe that the further exploration of this aspect of

that work is of high importance. During this exploration, we could potentially

attempt to combine different types of datasets, e.g. type I and type II datasets

used in this work. Also, apart from the way of creating the training dataset, we

should experiment with different input lengths.

2. Explore different architectures and combinations of them. Deep learning of-

fers a range of different architectures with some more appropriate than others

for specific tasks. In this work we have covered both supervised and unsuper-

vised methods. A further exploration of architectures could potentially increase

the model performance. Train our models using labelled data from other algo-

rithms. Experiment III has shown that even though RepeatMasker is a widely

used software, other more recently proposed algorithms outperform it. Thus,

using labelled data from these algorithms to train our models could potentially

increase their performance.

7.2. Limitations and Future work 78

In relation to the VAE model, we can further explore the latent space encodings.

Since the model is able to create meaningful representation of the data that enable

their classification in the latent space with high accuracy, it could potentially have

also incorporated other useful information in the latent space. For example, we could

explore if samples with repeats of different lengths are encoded in a different way or

if the position where the repeat starts in the input sample influences its the latent

space encoding. In addition, different VAEs could be explored., e.g. beta-VAE [86],

which has been proven to improve the disentanglement of different classes in the

latent space. Another idea would be to train the VAE in a semi-supervised setting to

attempt to exploit the existence of labelled data [87]. That could potentially help in

creating a more structured latent space.

In relation to the results from Experiment IV, our results are promising. The

high accuracy with which our models predict which sequences are flanking sequences

of the repeats indicates a positive correlation between certain genomic compositions

or underlying characteristics of the flanking sequences and the repeats’ presence.

However, this does not by itself proves that elements in the flanking sequence act as

contributors to the genesis of repeats. Since the genesis/origin of the repeats is a

matter that concentrates a lot of research interest, further experiments attempting

to correlate of the flanking sequence composition with repeat’s genesis should be

designed.

We hope to investigate these ideas systematically in future work.

Bibliography

[1] Machine learning course notes, university of oxford, michaelmas term 2020.

https://www.cs.ox.ac.uk/teaching/materials20-21/ml/lectures/lecture14.pdf.

Accessed: 2021-08-25.

[2] Gökcen Eraslan, Žiga Avsec, Julien Gagneur, and Fabian J Theis. Deep learning:

new computational modelling techniques for genomics. Nature Reviews Genetics,

20(7):389–403, 2019.

[3] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv

preprint arXiv:1312.6114, 2013.

[4] Diederik P Kingma and Max Welling. An introduction to variational autoen-

coders. arXiv preprint arXiv:1906.02691, 2019.

[5] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with

gumbel-softmax. arXiv preprint arXiv:1611.01144, 2016.

[6] Loredana M Genovese, Marco M Mosca, Marco Pellegrini, and Filippo Geraci.

Dot2dot: accurate whole-genome tandem repeats discovery. Bioinformatics,

35(6):914–922, 2019.

[7] Interspersed repeats. https://en.wikipedia.org/wiki/Interspersedrepeat.Accessed :

2021− 08− 10.

[8] Hao Fan and Jia-You Chu. A brief review of short tandem repeat mutation.

Genomics, proteomics & bioinformatics, 5(1):7–14, 2007.

[9] Maximilian O Press, Keisha D Carlson, and Christine Queitsch. The overdue

promise of short tandem repeat variation for heritability. Trends in Genetics,

30(11):504–512, 2014.

79

Bibliography 80

[10] Russell L Margolis, Melvin G McInnis, Adam Rosenblatt, and Christopher A

Ross. Trinucleotide repeat expansion and neuropsychiatric disease. Archives of

general psychiatry, 56(11):1019–1031, 1999.

[11] Henry Paulson. Repeat expansion diseases. Handbook of clinical neurology,

147:105–123, 2018.

[12] Anthony J Hannan. Tandem repeats mediating genetic plasticity in health and

disease. Nature Reviews Genetics, 19(5):286, 2018.

[13] Monogenic Diseases. https://www.nature.com/scitable/topicpage/rare-genetic-

disorders-learning-about-genetic-disease-979/. Accessed: 2021-08-10.

[14] David Jakubosky, Matteo D’Antonio, Marc Jan Bonder, Craig Smail, Mar-

garet KR Donovan, William W Young Greenwald, Hiroko Matsui, Agnieszka

D’Antonio-Chronowska, Oliver Stegle, Erin N Smith, et al. Properties of struc-

tural variants and short tandem repeats associated with gene expression and

complex traits. Nature communications, 11(1):1–15, 2020.

[15] Melissa Gymrek, Thomas Willems, Audrey Guilmatre, Haoyang Zeng, Barak

Markus, Stoyan Georgiev, Mark J Daly, Alkes L Price, Jonathan K Pritchard,

Andrew J Sharp, et al. Abundant contribution of short tandem repeats to gene

expression variation in humans. Nature genetics, 48(1):22–29, 2016.

[16] Javier Quilez, Audrey Guilmatre, Paras Garg, Gareth Highnam, Melissa Gym-

rek, Yaniv Erlich, Ricky S Joshi, David Mittelman, and Andrew J Sharp. Poly-

morphic tandem repeats within gene promoters act as modifiers of gene expres-

sion and dna methylation in humans. Nucleic acids research, 44(8):3750–3762,

2016.

[17] Matthew T Maurano, Richard Humbert, Eric Rynes, Robert E Thurman, Eric

Haugen, Hao Wang, Alex P Reynolds, Richard Sandstrom, Hongzhu Qu, Jennifer

Brody, et al. Systematic localization of common disease-associated variation in

regulatory dna. Science, 337(6099):1190–1195, 2012.

[18] Brett Trost, Worrawat Engchuan, Charlotte M Nguyen, Bhooma Thiruvahin-

drapuram, Egor Dolzhenko, Ian Backstrom, Mila Mirceta, Bahareh A Mojarad,

Yue Yin, Alona Dov, et al. Genome-wide detection of tandem dna repeats that

are expanded in autism. Nature, 586(7827):80–86, 2020.

Bibliography 81

[19] J Craig et al. Complex diseases: Research and applications. Nature Education,

1(1):184, 2008.

[20] Teri A Manolio, Francis S Collins, Nancy J Cox, David B Goldstein, Lucia A

Hindorff, David J Hunter, Mark I McCarthy, Erin M Ramos, Lon R Cardon,

Aravinda Chakravarti, et al. Finding the missing heritability of complex diseases.

Nature, 461(7265):747–753, 2009.

[21] Jian Zhou and Olga G Troyanskaya. Predicting effects of noncoding variants with

deep learning–based sequence model. Nature methods, 12(10):931–934, 2015.

[22] David R Kelley, Yakir A Reshef, Maxwell Bileschi, David Belanger, Cory Y

McLean, and Jasper Snoek. Sequential regulatory activity prediction across

chromosomes with convolutional neural networks. Genome research, 28(5):739–

750, 2018.

[23] Jian Zhou, Chandra L Theesfeld, Kevin Yao, Kathleen M Chen, Aaron K Wong,

and Olga G Troyanskaya. Deep learning sequence-based ab initio prediction of

variant effects on expression and disease risk. Nature genetics, 50(8):1171–1179,

2018.

[24] Ziga Avsec, Vikram Agarwal, Daniel Visentin, Joseph R Ledsam, Agnieszka

Grabska-Barwinska, Kyle R Taylor, Yannis Assael, John Jumper, Pushmeet

Kohli, and David R Kelley. Effective gene expression prediction from sequence

by integrating long-range interactions. bioRxiv, 2021.

[25] Mathys Grapotte, Manu Saraswat, Chloé Bessière, Christophe Menichelli, Jor-

dan A. Ramilowski, Jessica Severin, Yoshihide Hayashizaki, Masayoshi Itoh,

Michihira Tagami, Mitsuyoshi Murata, Miki Kojima-Ishiyama, Shohei Noma,

Shuhei Noguchi, Takeya Kasukawa, Akira Hasegawa, Harukazu Suzuki, Hiromi

Nishiyori-Sueki, Martin C. Frith, FANTOM consortium, Clément Chatelain,

Piero Carninci, Michiel J.L. de Hoon, Wyeth W. Wasserman, Laurent Bréhélin,

Charles-Henri Lecellier, Michael Detmar, Lothar C. Dieterich, Filip Roudnicky,

and et al. Discovery of widespread transcription initiation at microsatellites

predictable by sequence-based deep neural network. Nature Communications,

12(1):3297, 2021.

[26] Deepti Srivastava, Malik Mobeen Ahmad, Md Shamim, Rashmi Maurya, Neha

Srivastava, Pramila Pandey, Saba Siddiqui, and Mohd Haris Siddiqui. Mod-

ulation of gene expression by microsatellites in microbes. In New and Future

Bibliography 82

Developments in Microbial Biotechnology and Bioengineering, pages 209–218.

Elsevier, 2019.

[27] Atul Bhargava and FF Fuentes. Mutational dynamics of microsatellites. Molec-

ular biotechnology, 44(3):250–266, 2010.

[28] Gary Benson. Tandem repeats finder: a program to analyze dna sequences.

Nucleic acids research, 27(2):573–580, 1999.

[29] Marco Pellegrini, M Elena Renda, and Alessio Vecchio. Trstalker: an efficient

heuristic for finding fuzzy tandem repeats. Bioinformatics, 26(12):i358–i366,

2010.

[30] Roman Kolpakov, Ghizlane Bana, and Gregory Kucherov. mreps: efficient and

flexible detection of tandem repeats in dna. Nucleic acids research, 31(13):3672–

3678, 2003.

[31] Adalberto T Castelo, Wellington Martins, and Guang R Gao. Troll—tandem

repeat occurrence locator. Bioinformatics, 18(4):634–636, 2002.

[32] Alfred V. Aho and Margaret J. Corasick. Efficient string matching: An aid to

bibliographic search. Commun. ACM, 18(6):333–340, June 1975.

[33] Martin C Frith. A new repeat-masking method enables specific detection of

homologous sequences. Nucleic acids research, 39(4):e23–e23, 2011.

[34] Alfredo Velasco, Benjamin T James, Vincent D Wells, and Hani Z Girgis.

Look4trs: a de novo tool for detecting simple tandem repeats using self-

supervised hidden markov models. Bioinformatics, 36(2):380–387, 2020.

[35] Shinichi Morishita, Kazuki Ichikawa, and Eugene W Myers. Finding long tandem

repeats in long noisy reads. Bioinformatics, 37(5):612–621, 2021.

[36] Nucleobase. https://en.wikipedia.org/wiki/Nucleobase. Accessed: 2021-08-10.

[37] P Myers and M Sebaihia. Tandem repeats and morphological variation. Nature

Education, 1(1):1, 2007.

[38] Ole K Tørresen, Bastiaan Star, Pablo Mier, Miguel A Andrade-Navarro, Alex

Bateman, Patryk Jarnot, Aleksandra Gruca, Marcin Grynberg, Andrey V Ka-

java, Vasilis J Promponas, et al. Tandem repeats lead to sequence assembly

Bibliography 83

errors and impose multi-level challenges for genome and protein databases. Nu-

cleic acids research, 47(21):10994–11006, 2019.

[39] Rita Gemayel, Marcelo D Vinces, Matthieu Legendre, and Kevin J Verstrepen.

Variable tandem repeats accelerate evolution of coding and regulatory sequences.

Annual review of genetics, 44:445–477, 2010.

[40] Melissa Gymrek. A genomic view of short tandem repeats. Current opinion in

genetics & development, 44:9–16, 2017.

[41] Robert I Richards and Grant R Sutherland. Dynamic mutations: a new class of

mutations causing human disease. Cell, 70(5):709–712, 1992.

[42] Recombination. https://www.nature.com/scitable/definition/recombination-

226/. Accessed: 2021-08-10.

[43] Guy-Franck Richard and Frédéric Pâques. Mini-and microsatellite expansions:

the recombination connection. EMBO reports, 1(2):122–126, 2000.

[44] Unnur A Valdimarsdóttir, Donghao Lu, Sigrún H Lund, Katja Fall, Fang Fang,

órur Kristjánsson, Dańıel Gubjartsson, Agnar Helgason, and Kári Stefánsson.

The mother’s risk of premature death after child loss across two centuries. Elife,

8:e43476, 2019.

[45] Marcelo D Vinces, Matthieu Legendre, Marina Caldara, Masaki Hagihara, and

Kevin J Verstrepen. Unstable tandem repeats in promoters confer transcriptional

evolvability. Science, 324(5931):1213–1216, 2009.

[46] Leslie E Orgel and Francis HC Crick. Selfish dna: the ultimate parasite. Nature,

284(5757):604–607, 1980.

[47] W Ford Doolittle and Carmen Sapienza. Selfish genes, the phenotype paradigm

and genome evolution. Nature, 284(5757):601–603, 1980.

[48] Patricia Martin, Katherine Makepeace, Stuart A Hill, Derek W Hood, and

E Richard Moxon. Microsatellite instability regulates transcription factor bind-

ing and gene expression. Proceedings of the National Academy of Sciences,

102(10):3800–3804, 2005.

Bibliography 84

[49] Stefan Rothenburg, Friedrich Koch-Nolte, Alexander Rich, and Friedrich Haag.

A polymorphic dinucleotide repeat in the rat nucleolin gene forms z-dna and

inhibits promoter activity. Proceedings of the National Academy of Sciences,

98(16):8985–8990, 2001.

[50] Albert de la Chapelle and Heather Hampel. Clinical relevance of microsatellite

instability in colorectal cancer. Journal of Clinical Oncology, 28(20):3380, 2010.

[51] Tae-Min Kim, Peter W Laird, and Peter J Park. The landscape of microsatellite

instability in colorectal and endometrial cancer genomes. Cell, 155(4):858–868,

2013.

[52] Ronald J Hause, Colin C Pritchard, Jay Shendure, and Stephen J Salipante.

Classification and characterization of microsatellite instability across 18 cancer

types. Nature medicine, 22(11):1342–1350, 2016.

[53] S Aslani, A Hossein-Nezhad, K Mirzaei, Z Maghbooli, SN Asgarabad, and

F Karimi. Tandem repeats of the catt element of macrophage migration in-

hibitory factor gene may predict gestational diabetes mellitus severity. European

Journal of Inflammation, 9(2):185–191, 2011.

[54] Owen Rose and Daniel Falush. A threshold size for microsatellite expansion.

Molecular biology and evolution, 15(5):613–615, 1998.

[55] Walter Messier, Shou-Hsien Li, and Caro-Beth Stewart. The birth of microsatel-

lites. Nature, 381(6582):483–483, 1996.

[56] Patrick C Gallagher, Teri L Lear, Linda D Coogle, and Ernest Bailey. Two

sine families associated with equine microsatellite loci. Mammalian Genome,

10(2):140–144, 1999.

[57] LJ Alexander, GA Rohrer, RT Stone, and CW Beattie. Porcine sine-associated

microsatellite markers: evidence for new artiodactyl sines. Mammalian Genome,

6(7):464–468, 1995.

[58] Eyal Nadir, Hanah Margalit, Tamar Gallily, and Shmuel A Ben-Sasson. Mi-

crosatellite spreading in the human genome: evolutionary mechanisms and

structural implications. Proceedings of the National Academy of Sciences,

93(13):6470–6475, 1996.

Bibliography 85

[59] Xiaoying Lin, Samir Kaul, Steve Rounsley, Terrance P Shea, Maria-Ines Benito,

Christopher D Town, Claire Y Fujii, Tanya Mason, Cheryl L Bowman, Mary

Barnstead, et al. Sequence and analysis of chromosome 2 of the plant arabidopsis

thaliana. Nature, 402(6763):761–768, 1999.

[60] Christian Schlötterer. Evolutionary dynamics of microsatellite dna. Chromo-

soma, 109(6):365–371, 2000.

[61] Emmanuel Buschiazzo and Neil J Gemmell. The rise, fall and renaissance of

microsatellites in eukaryotic genomes. Bioessays, 28(10):1040–1050, 2006.

[62] Travis C Glenn, Wolfgang Stephan, Herbert C Dessauer, and Michael J Braun.

Allelic diversity in alligator microsatellite loci is negatively correlated with gc

content of flanking sequences and evolutionary conservation of pcr amplifiability.

Molecular Biology and Evolution, 1996.

[63] Doris Bachtrog, Martin Agis, Marianne Imhof, and Christian Schlötterer. Mi-

crosatellite variability differs between dinucleotide repeat motifs—evidence from

drosophila melanogaster. Molecular Biology and Evolution, 17(9):1277–1285,

2000.

[64] François Balloux, Eric Ecoffey, Luca Fumagalli, Jérôme Goudet, Andreas Wyt-

tenbach, and Jacques Hausser. Microsatellite conservation, polymorphism, and

gc content in shrews of the genus sorex (insectivora, mammalia). Molecular

Biology and Evolution, 15(4):473–475, 1998.

[65] Karpathy, a. (2021). c2231n convolutional neural networks for visual recognition.

https://cs231n.github.io/convolutional-networks/. Accessed: 2021-08-25.

[66] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images,

speech, and time series. The handbook of brain theory and neural networks,

3361(10):1995, 1995.

[67] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic back-

propagation and approximate inference in deep generative models. In Interna-

tional conference on machine learning, pages 1278–1286. PMLR, 2014.

[68] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distri-

bution: A continuous relaxation of discrete random variables. arXiv preprint

arXiv:1611.00712, 2016.

Bibliography 86

[69] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[70] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-

gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,

et al. Pytorch: An imperative style, high-performance deep learning library.

Advances in neural information processing systems, 32:8026–8037, 2019.

[71] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Rus-

lan R Salakhutdinov. Improving neural networks by preventing co-adaptation of

feature detectors. arXiv preprint arXiv:1207.0580, 2012.

[72] Yaxiong Wu, Craig Macdonald, and Iadh Ounis. A hybrid conditional variational

autoencoder model for personalised top-n recommendation. In Proceedings of

the 2020 ACM SIGIR on International Conference on Theory of Information

Retrieval, pages 89–96, 2020.

[73] Sean M Colby, Jamie R Nuñez, Nathan O Hodas, Courtney D Corley, and Ryan R

Renslow. Deep learning to generate in silico chemical property libraries and can-

didate molecules for small molecule identification in complex samples. Analytical

chemistry, 92(2):1720–1729, 2019.

[74] Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz,

and Samy Bengio. Generating sentences from a continuous space. arXiv preprint

arXiv:1511.06349, 2015.

[75] Artidoro Pagnoni, Kevin Liu, and Shangyan Li. Conditional variational autoen-

coder for neural machine translation. arXiv preprint arXiv:1812.04405, 2018.

[76] James Lucas, George Tucker, Roger Grosse, and Mohammad Norouzi. Under-

standing posterior collapse in generative latent variable models. 2019.

[77] Yuqi Gu and David B Dunson. Identifying interpretable discrete latent structures

from discrete data. arXiv preprint arXiv:2101.10373, 2021.

[78] Qiao Liu, Shengquan Chen, Rui Jiang, and Wing Hung Wong. Simultaneous

deep generative modelling and clustering of single-cell genomic data. Nature

Machine Intelligence, 3(6):536–544, 2021.

Bibliography 87

[79] Francesco Bartolucci, Francesca Chiaromonte, Prabhani Kuruppumullage Don,

and Bruce G Lindsay. Composite likelihood inference in a discrete latent variable

model for two-way “clustering-by-segmentation” problems. Journal of Compu-

tational and Graphical Statistics, 26(2):388–402, 2017.

[80] Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete

representation learning. arXiv preprint arXiv:1711.00937, 2017.

[81] Arash Vahdat, William Macready, Zhengbing Bian, Amir Khoshaman, and

Evgeny Andriyash. Dvae++: Discrete variational autoencoders with overlap-

ping transformations. In International Conference on Machine Learning, pages

5035–5044. PMLR, 2018.

[82] Jason Tyler Rolfe. Discrete variational autoencoders. arXiv preprint

arXiv:1609.02200, 2016.

[83] Yang Zhao, Ping Yu, Suchismit Mahapatra, Qinliang Su, and Changyou Chen.

Improve variational autoencoder for text generationwith discrete latent bottle-

neck. arXiv preprint arXiv:2004.10603, 2020.

[84] Tiancheng Zhao, Kyusong Lee, and Maxine Eskenazi. Unsupervised discrete

sentence representation learning for interpretable neural dialog generation. arXiv

preprint arXiv:1804.08069, 2018.

[85] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.

Journal of machine learning research, 9(11), 2008.

[86] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot,

Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae: Learn-

ing basic visual concepts with a constrained variational framework. 2016.

[87] Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max

Welling. Semi-supervised learning with deep generative models. In Advances

in neural information processing systems, pages 3581–3589, 2014.

