
Developing computational tools to aid the
design of CRISPR/Cas9 gene editing

experiments

Candidate no. 1058939
Word count: 15,228 by Overleaf Word Counter

A thesis submitted for the degree of
Msc Computer Science

I hereby certify that this is entirely
my own work unless otherwise stated.

2022 August 29th

Acknowledgements

This graduate thesis has come to an end. Here, I would like to express my heartfelt
thanks to Professor Peter Minary for his supervision and guidance to me I met
many difficulties at the beginning of my graduation thesis, but Professor Minary
gave me a lot of encouragement and effective guidance. He made me learn to
face difficulties positively and solve them. In addition, the spirit of his academic
research is also worth my forever learning.

In addition, I would also like to thank Xi Xiang et al., the founder of CRISPRon,
who helped me with the data for training, as well as my teacher Evangelos, my
classmates and my family who gave me countless care, encouragement and help.
Without their help, the completion of this graduation thesis would be difficult. They
have given me many valuable opinions and suggestions in the process of completing
my thesis. I would like to express my heartfelt thanks to them.

Abstract

CRISPR-Cas9, as a new generation of gene editing technology, has been widely
used in biological sciences. The design of a key component of CRISPR-Cas9, the
guide RNA, is important for the effectiveness and safety of the technology. In recent
years, with the rise of machine learning, especially deep learning algorithms, lots
of computational tools are developed to be used to assist guide RNA design. This
paper aims at a difficulty in guide RNA design, which is to predict the efficiency of
guide RNA. Although many tools can aid the gRNA efficiency prediction, there is
still big space to improve the prediction accuracy of current tools. In this paper, a
structure optimization algorithm is designed for the guide RNA efficiency prediction
model and tools. The algorithm is used on an advanced existent model, CRISPRon.
With my algorithm, the performance of the optimized version of the model achieves
state-of-the-art performance when tested on multiple datasets.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution . 4
1.3 Dissertation Structure Overview . 4

2 Background 6
2.1 CRISPR Background . 6

2.1.1 The Emergence of CRISPR-Cas System 6
2.1.2 Structure of the CRISPR-Cas System 8
2.1.3 Mechanism of CRISPR-CAS System 9
2.1.4 The Different CRISPR Systems 10
2.1.5 The Mechanism of CRISPR-Cas9 System in Practice 11

2.2 Machine Learning Background . 13
2.2.1 Traditional Machine learning Models 14
2.2.2 Deep Learning Models . 18
2.2.3 Implementation Details of Models 25

3 Literature Review 33
3.1 The Tools and Datasets Before CRISPRon 34

3.1.1 Tools Based on Traditional Machine Learning Algorithms or
Biological Features . 34

3.1.2 DeepCRISPR . 35
3.1.3 DeepHF . 36
3.1.4 DeepSpCas9 . 38
3.1.5 DeepSpCas9variants . 38

3.2 CRISPRon and Xi et al.’s Dataset 39
3.2.1 Data Generation . 39
3.2.2 Model Architecture and Training Process 40

iv

Contents v

4 Methodology 42
4.1 Methodology Analysis of Previous Work 42
4.2 The Adaptive CRISPRon Algorithm 46

5 Experiments and Results 51
5.1 Data Analysis . 51
5.2 Data Pre-processing . 53

5.2.1 ∆GB Biological Feature Computation 53
5.2.2 Training Data Split . 54
5.2.3 Test Data Pre-processing . 56

5.3 Model Reproduction . 57
5.4 Model Structure Optimizing . 61

5.4.1 Hyperparameter Search Tool 61
5.4.2 Implementation of the Adaptive CRISPRon Algorithm . . . 63
5.4.3 The Adaptive CRISPRon Structure 64

5.5 Adaptive CRISPRon Training and Testing 65

6 Discussion and Conclusion 71
6.1 Discussion and Future Work Suggestion 71
6.2 Conclusion . 74

References 75

Chapter 1

Introduction

Contents
1.1 Motivation . 1
1.2 Contribution . 4
1.3 Dissertation Structure Overview 4

1.1 Motivation

Gene editing technology refers to the technology of targeted modification (knockout,

insertion, replacement, etc.) of genes to obtain new features or functions. As an

important research field with rapid development of life science, the development and

application of gene editing technology enables the genetic modification of organisms

to enter an unprecedented depth and breadth, and it is also the next generation

core biotechnology with the most fierce competition in the world. Early gene

editing techniques include homing endonuclease (HEs) [1], zinc finger endonuclease

(ZFN) [2] and transcription activator-like effector nucleases (TALENs) [3], but

off-target effects or assembly complexity limit the application of these technologies

in gene editing. In recent years, new gene editing technologies represented by

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated

protein 9 (Cas9) [4] have developed rapidly and started to be widely used in

1

1. Introduction 2

many biological fields, including gene function research, drug development, disease

treatment and crop breeding, etc.

CRISPR-Cas9 is the third generation of gene editing technology after the

introduction of ZFNs, TALENs, and other gene editing technologies. The use of

CRISPR-Cas as a tool for genome editing is based on the action of the Cas9-gRNA

complex. Artificial guide RNA (gRNA), which is created when CRISPR RNA

(crRNA) binds to transactivating crRNA (tracrRNA), is intended to match and

direct the Cas protein (typically Cas9) toward specific gene targets that can be

inactivated or modified depending on subsequent DNA repairing pathways. In

just a few years, CRISPR-Cas9 has become popular all over the world, becoming

one of the most efficient, simplest, and cheapest technologies in existing gene

editing and gene modification and becoming the most mainstream gene editing

system today. Selecting highly efficient gRNAs is a critical process in CRISPR

gene editing tool design.

However, this technology still faces many challenges. The biggest two challenges

are how to accurately predict the guide RNA (gRNA) on-target knockout efficacy

and off-target profile, which would facilitate the optimized design of sgRNAs with

high efficiency and specificity. This task is a tedious and extremely time-consuming

process in biological experiments. The experimental design of the CRISPR-Cas

system has several variables, including guide RNA design, Cas protein choice,

and system delivery technique. All these factors may cause the instability of the

experiment, aggravate the complexity of the experiment, and affect the success

rate of the experiment. Fortunately, advances in computer science and machine

learning in recent decades, especially the emergence of deep learning, have made

computer-aided tools of great help for gRNA design and effect prediction.

The first step for computational tools to help gRNA design is to pick appropriate

gRNAs from online gRNA libraries, which gives information on gRNAs targeting

common genetic sequences. The use of computer algorithms therefore enables

for an efficient high-throughput large-scale screening of the performance of the

1. Introduction 3

gRNAs, considerably accelerating the design process. These tools would generally

look for acceptable candidates for gRNA and predict the quality of the chosen

gRNA based on its efficiency and specificity of cleavage, which require machine

learning algorithms and statistical computations.

Early computer-aided tools, such as the sgRNA Scorer [5] and CHOPCHOP [6],

used traditional machine learning algorithms or statistical algorithms, including

Linear Regression, Support Vector Machine, Random Forest, or simple scoring

algorithms that require the data to contain features related to the performance of

the corresponding gRNA. The latent correlations between these features of the gRNA

sequence and their efficacy (or specificity) are normally proposed by various studies.

For example, the sequence GC contents, one of the features of gRNA generated, is

implemented in both methods created by Doench et al. [7] and Morenno-Mateos et

al. [8], where a linear regression model is trained to predict the activity of gRNAs.

The emergence of deep learning models, such as Convolutional Neural Network

(CNN) and Recurrent Neural Network (RNN), and their success in image analysis

and natural language processing make researchers try to apply these algorithms

to some cutting-edge computer-aided tools to help gRNA design. Compared with

traditional methods that rely on manual feature extraction, deep learning can

automatically extract features by data-driven. In addition, it can also learn the

specific feature representation of the data set according to a large number of

samples, which is more efficient and accurate in the expression of the data set, and

the generalization ability of the extracted abstract features is better. DeepCRISPR,

presented by Chuai et al. [9], is a landmark model which utilized the CNN to

predict both on-target and off-target activity of gRNAs. Subsequently, more and

more deep learning-based computational tools, such as DeepSpCas9 [10], DeepHF

[11], and CRISPRon [12], are proposed, continuously improving the efficiency

and specificity of gRNA design.

1. Introduction 4

Although these existing tools have achieved good results in terms of on-target

and off-target prediction of gRNA (i.e. efficiency and specificity) 1, there is still room

for improvement with the rapid update and iteration of deep learning algorithms.

1.2 Contribution

This paper focused on improving the accuracy of predicting gRNA on-target activity

(i.e., gRNA efficiency). The achievements and contributions of this paper can

be summarized as follows.

1. This paper proposes a deep learning model structure optimization search

algorithm specifically for predicting gRNA on-target activity.

2. The model structure obtained based on the optimization algorithm based

in this paper achieved the state-of-the-art performance for predicting the

on-target activity of gRNA on most data sets.

3. This paper proves that the structure of convolutional layers (especially the

number of convolutional layers and size of convolutional kernels) has a great

influence on the effect of CNN-based computational tools.

4. This paper summarized the most advanced models and computational tools

used for predicting the on-target activity of gRNA of the CRISPR-Cas9 gene

editing technology.

5. This paper provided insight for future researchers into the perspective of

model architecture optimization.

1.3 Dissertation Structure Overview

This dissertation has six chapters.
1See more in Chapter 2

1. Introduction 5

• Introduction. This chapter summarized the origin and development of

computer-aided tools for gene editing and summarized the motivation, contri-

bution, and general structure of this paper.

• Background. This chapter provides the reader with the clear and detailed

background knowledge of CRISPR technology and machine learning involved

in this paper.

• Literature Review. This chapter introduces the detailed information of

several models compared in this thesis, as well as the data set the previous

researchers obtained and used.

• Methodology. This chapter firstly analyzes the previous work and models,

then proposes the model structure optimization algorithm.

• Experiments and Results. This chapter includes the experiments carried

out, the structure of the model obtained after using the structure optimization

algorithm, and the performance of the new model, Adaptive CRISPRon,

compared to previous models on different data sets.

• Discussion and Conclusion. This chapter analyzes the results obtained

before, discusses the direction of future work, and summarizes the content

and work of the paper.

Chapter 2

Background

Contents
2.1 CRISPR Background . 6

2.1.1 The Emergence of CRISPR-Cas System 6
2.1.2 Structure of the CRISPR-Cas System 8
2.1.3 Mechanism of CRISPR-CAS System 9
2.1.4 The Different CRISPR Systems 10
2.1.5 The Mechanism of CRISPR-Cas9 System in Practice . . 11

2.2 Machine Learning Background 13
2.2.1 Traditional Machine learning Models 14
2.2.2 Deep Learning Models 18
2.2.3 Implementation Details of Models 25

2.1 CRISPR Background

The development and iteration of CRISPR technology has brought great value to

gene editing engineering and research, which is also the main biotechnology involved

in this paper. This section will begin with the origin and development of CRISPR,

through to the application mechanism of CRISPR-Cas9 technology in practice.

2.1.1 The Emergence of CRISPR-Cas System

Gene editing technology plays an important role in the understanding of metabolic

processes in living organisms by biologists, studying gene function in living organisms

and improving modern gene therapy. It plays a role in educating the biologist on the

6

2. Background 7

Figure 2.1: Illustration of ZFN and TALEN technologies [13]

function of genes in life. Previous genome editing technologies, such as Zinc Finger

Proteins Nucleases(ZFNs) [2] and Transcription Activator-like Effectors Nucleases

(TALENs) [3], have made indelible contributions to the development of genome

editing. In both cases, gene editing tools are based on the interaction between

proteins and DNA to position themselves on the genome, and the Fokl protein 1 to

splice the genome. As shown in Fig. 2.1, The anchoring of the target position by

ZFNs and TALENs technique is accomplished by anchoring proteins represented

by ellipses to the corresponding nucleotides (or nucleotides triplets).

However, a significant disadvantage of the anchoring process that relies on

DNA-protein interaction is that the anchoring protein needs to be redesigned and

synthesized when a new gene location is to be anchored, which greatly increases

the workload of gene editing and makes it difficult for these technologies to adapt

to high-throughput genome editing projects.

The emergence of the CRISPR (Clustered regularly interspaced short Palin-

dromic Repeats)-Cas(CRISPR-associated) system as an innovative, powerful genome-
1Fokl is an unusual class of enzymes that recognize a specific DNA sequence and cleave a short

distance away from that sequence.

2. Background 8

editing tool addresses the difficulty mentioned above. The CRISPR-Cas system

is an acquired immune system in bacteria, which is used to fight against foreign

DNA, plasmids and bacteriophages. Unlike the General immune system of ordinary

prokaryotes, the CRISPR-Cas system is an acquired immune system, which means

it has "memory". It can remember foreign DNA and phages that have invaded, and

when they invade again, it can cut off their genomes. The severed genomes become

linear, unable to be replicated and expressed, and are degraded by enzymes in the

bacteria. This immune system is simple, but very useful and powerful.

Different from ZFNs and TALENs, the CRISPR-Cas system uses RNA-DNA

interaction for gene localization on the genome, and only a small piece of new

RNA sequence is needed for anchoring new gene positions, which greatly reduces

the workload of new protein synthesis. The CRISPR-Cas system has become the

new favorite of the genome editing community because it offers many advantages

that other tools do not, such as ease of synthesis, ease of use, low cost, and

high specificity [14].

2.1.2 Structure of the CRISPR-Cas System

The CRISPR-Cas system consists of two parts: the first part is the genes encoding

Cas related proteins, as shown by the white square arrows in Fig. 2.2, which play an

important role in both obtaining and splicing foreign gene fragments. The second

part is called CRISPR array, which contains repeat sequence and Spacer sequence.

These two different sequences are separated, and a Spacer sequence is sandwiched

between two repeat sequences. As shown in Fig. 2.2, the black diamond represents

a repeat sequence and the different colored squares represent different Spacer

sequences. The base composition and length of repeat sequences in the same

bacteria are relatively conserved and basically unchanged. It is slightly different

from one bacterium to another. Spacer sequences are used to anchor foreign genes.

Because they come from different foreign genes, the base composition of Spacer

sequences is quite different. The Spacer gene contains highly specific conserved

2. Background 9

Figure 2.2: General Structure of the CRISPR-Cas System [15]

sequences in the anchored genome, ensuring that the subsequent transcribed RNA

can be accurately paired with the anchored genome. CRISPR arrays are usually

preceded by an Adenine-Thymine-rich leader sequence, which contains promoters

and is used to initiate repeat and Spacer sequence transcription.

2.1.3 Mechanism of CRISPR-CAS System

The mechanism of CRISPR-Cas can be divided into two main parts: Adaptation

and Interference.

Adaptation can be divided into two steps, namely the acquisition of Spacer

sequence and CRISPR RNA (CrRNA) synthesis and processing. When a bacterio-

phage or a foreign gene invades a bacterium, protospacer in its genome is cleaved

by Cas related genes in the CRISPR-Cas system. The identification and acquisition

of Spacer by Cas protein is based on the downstream Protospacer Adjacent Motif

(PAM) sequence, which plays a crucial role in Spacer acquisition and CRISPR

system design in vitro. The PAM recognition sequences of different CRISPR-Cas

systems are also different. When a Spacer is selected by Cas related proteins, its

2. Background 10

gene will be cut down and inserted into the middle of the leader sequence and

the adjacent repeat to form a new Spacer. In this way, the next time the same

foreign gene invades, its genome can be snipped.

The second step of Adaptation is the formation of CRISPR RNA (CrRNA). As

mentioned in section 3.1.4, there is a promoter in the leader sequence, which can

initiate the transcription of the subsequent CRISPR array, and this transcription is

continuous. So the transcribed RNA product is a long strand that contains all the

spacers and repeats in the CRISPR array. This long strand is called the precursor

transcript (pre-crRNA). The long pre-crRNA is then cleaved by enzymes expressed

by bacterial housekeeping genes or CAS-related proteins (depending on the CRISPR

system) to become mature, single-Spacer containing crRNA. The transcribed Spacer

RNA sequence is complementary to the target anchor gene, and crRNA can guide

Cas related proteins to shear genes in the target genome.

After the formation of a mature single Spacer crRNA, the interference step

starts. The Spacer crRNA forms a complex with Cas protein and other RNA

components. The crRNA can complement the gene in the foreign gene and guide

the Cas protein or protein complex to splice the foreign gene fragment. The general

Adaptation and Interference stages are shown in Fig. 2.3.

2.1.4 The Different CRISPR Systems

As shown in Fig. 2.4, the CRISPR-Cas system can be broadly divided into two

classes, Class 1, which includes Type I, III, and IV, and Class 2, which includes

Type II and Type V and Type VI. In Class 1, splicing of the foreign genome

requires a protein complex consisting of more than one Cas protein and a guide

RNA. In Class 2, splicing of foreign genes requires only a single splicing protein,

such as the Cas9 protein in TypeII.

The Class 2 CRISPR system is most commonly used in the synthesis of Cas

systems because only a single Cas9 or CpF1 protein is required for DNA splicing.

2. Background 11

Figure 2.3: The Adaptation and Interference Stages of the CRISPR-Cas System [16]

2.1.5 The Mechanism of CRISPR-Cas9 System in Practice

The CRISPR-Cas9 mechanism is shown in Fig. 2.5. CRISPR-Cas9 belongs to the

TypeII CRISPR system and is the most commonly used system. It is also the gene

editing method studied in this paper. In this system, crRNA pairs complementing

with noncoding trans-activating CRISPR RNA (tracrRNA) and forms a complex

with Cas9 protein for DNA cleavage. This complex is called guide RNA. In practice,

the guide RNA is artificially designed and is called single guide RNA (sgRNA),

which combines a molecule incorporating both crRNA and trRNA.

We will also need to select genes for anchoring splicing based on PAM sequences,

as described earlier. The PAM sequence of Type II system is NGG (where N

is any base and G is guanine). In other words, there must be a NGG sequence

after the target spliced gene fragment.

2. Background 12

Figure 2.4: Functional Classifications of Cas Proteins [17]

After this, the sgRNA and Cas9 will be delivered into the cell to cause a cut in

the designated spot. This may be accomplished by employing lentiviruses, which are

viruses that insert a copy of their genome into the DNA of the cell into which they

infiltrate. Encoding the production of Cas9 and sgRNA into the DNA of lentiviruses

and infecting the cell with these modified viruses causes this encoding to be passed

to the cell’s genome, leading the cell to create both Cas9 and sgRNA. Once created,

they may now connect to and cleave the specific location in the cell’s DNA.

The only configurable portion of the Cas9 and gRNA complex is the crRNA,

which may be altered to target different sites, since the trRNA is determined by

the Cas enzyme utilized. As a result, when it comes to creating a sgRNA, the focus

is on the 20-nucleotide-long crRNA. Designing guides is equal to selecting target

DNA bases, since the crRNA is intended to complement the target DNA location.

When a DNA double strand is cut, there are two ways to repair it. The first type is

Non-homologous End Joining (NHEJ). This is the joining of broken DNA duplexes

that happens spontaneously in living organisms. However, this connection method

is random, which can cause base insertion, deletion, and frameshift of the reading

frame. The other is Homology-directed Repair (HDR), which provides a small

DNA fragment with the same sequence at both ends as the broken gene, and this

2. Background 13

Figure 2.5: The CRISPR-Cas9 mechanism [18]

DNA fragment can be homologous recombination with the broken gene, so that

genes can be inserted and deleted purposefully.

2.2 Machine Learning Background

How to improve the efficiency and specificity of the CRISPR-Cas9 system for genome

editing has always been a difficult problem in this field. In recent years, machine

learning has provided new ideas to solve the problems faced by CRISPR-Cas9

system. CRISPR-Cas9 system based on machine learning has gradually become

a research hotspot. This section will introduce the background knowledge of the

traditional machine learning models, deep learning models, and the implementation

details of these models that will be discussed in later chapters in this paper.

2. Background 14

2.2.1 Traditional Machine learning Models

2.2.1.1 Linear Regression

A linear approach to modelling the connection between a scalar answer and one

or more explanatory variables is known as linear regression. Mathematically, if

the data points are vectors x ∈ RD, the output is y ∈ R, and N observations,

⟨(xi, yi)⟩N
i=1 are given. A linear model assumes that y can be expressed as a

linear function of the input x.

y = w0 + x1w1 + · · · + xDwD + ϵ (2.1)

where w0 is the independent bias term and the term ϵ is noise or uncertainty

[19]. Linear regression models can be fitted using least squares or by minimizing a

penalized version of the least squares cost function, as in ridge regression (L2-norm

penalty) 2 and lasso regression (L1-norm penalty) 3.

2.2.1.2 Random Forest

In machine learning, random forest is a classifier that contains multiple decision

trees, and its output category is determined by the mode of the category output by

the individual tree. Figure 2.6 shows the process of this algorithm.

2Ridge regression is a method of estimating the coefficients of multiple-regression models in
scenarios where the independent variables are highly correlated [20].

3Lasso is a regression analysis method that performs both variable selection and regularization
in order to enhance the prediction accuracy and interpretability of the resulting statistical model
[21]

2. Background 15

Figure 2.6: Random Forest Algorithm [22]

The first step is to partition the training data into n bags, and each of the bags

will be used to train a individual decision tree. The regressor will then takes of

decision of all trees into account and makes the prediction [23].

Random forest algorithm has three main hyperparameters, which need to be

set before training. These include node size, the number of trees, and the number

of features sampled.

One of the benefits of Random Forest is that it is not easy to overfit. When

a random forest has a large number of decision trees, the classifier will not

overfit the model, since averaging uncorrelated trees reduces overall variance

and prediction error.

2.2.1.3 Gradient Boosting Decision Tree Regressor

The Gradient Boosting Decision Tree Regressor(GBDT) is an iterative decision

tree algorithm that belongs to the boosting family [24]. Boosting is a family of

algorithms that can promote a weak learner to a strong learner, which belongs

to the category of Ensemble learning. Boosting is based on the idea that, for a

2. Background 16

complex task, properly combining the judgments of multiple experts yields a better

judgment than the judgments of any one expert alone.

GBDT algorithm for regression can be considered an addition model composed

of M trees, and its corresponding algorithm is as follows [24].

F (x, w) =
M∑

m=0
amhm(x, wm) =

M∑
m=0

fm(x, wm) (2.2)

where x is the input samples, w is the model parameter, h is a classified regression

tree, a is the weight of each tree, and F (x, w) is the prediction of the regressor.

The algorithm is as follows.

1. Initialize the weak model.

f0(x) = arg min
c

N∑
i=1

L (yi, c) (2.3)

2. For m = 1...M ,

• For each sample i = 1, 2, . . . , N , calculate residual

rim = −
[

∂L (yi, f (xi))
∂f (xi)

]
f(x)=fm−1(x)

(2.4)

• Use the residual of the last step as the true value of the samples, train

the next tree on the data (xi, xim) , i = 1, 2, . . . , N and obtain the new

tree fm(x). Its corresponding leaf node region is Rjm, and j = 1, 2, . . . , J

where j is the number of leaf nodes of the regression tree.

• Calculate the best fitting value

γjm = arg min
γ

∑
xi∈Rjm

L (yi, fm−1 (xi) + γ) (2.5)

for j = 1, 2, . . . J

• Update the model

fmx = fm−1(x) +
J∑

j=1
γjmI (x ∈ Rjm) (2.6)

3. Obtain the model

f(x) = fMx = f0(x) +
M∑

m=1

J∑
j=1

γjmI (x ∈ Rjm) (2.7)

2. Background 17

2.2.1.4 Support Vector Machine

Support Vector machines (SVM) is a binary classification model. Its basic model

is a linear classifier defined in the feature space with the largest separation. The

basic idea of SVM learning is to obtain a hyperplane that can correctly partition

the training dataset and maximize the geometric spacing.

As shown in Figure 2.7, w · x − b = 0 is the separating hyperplane and

w · x − b = ±1 are margins. For linearly separable data sets, there are infinitely

many such hyperplanes, but the separating hyperplane with the largest geometric

interval is unique.

Figure 2.7: Maximum-margin Hyperplane and Margins for an SVM [25]

Mathematically, the input training dataset of SVM is T = {(x1, y1) , . . . , (xN , yN)}

where xi ∈ Rn,yi ∈ {+1, −1}, i = 1, 2, . . . N , and the outputs are the separation

hyperplane and the classification decision function. The algorithm is as follows.

1. Choose the hyperparameter C > 0, construct and solve the convex quadratic

programming problem:

minα
1
2
∑N

i=1
∑N

j=1 αiαjyiyj (xi · xj) −∑N
i=1 αi

s.t. ∑N
i=1 αiyi = 0

0 ≤ αi ≤ C, i = 1, 2, . . . , N
(2.8)

2. Background 18

and obtain the optimal solution α∗ = (α∗
1, α∗

2, . . . , α∗
N)T where αi is the

lagrange multiplier.

2. Compute

w∗ =
N∑

i=1
α∗

i yixi (2.9)

Then choose α∗
j which satisfies 0 < α∗

j < C to compute

b∗ = yj −
N∑

i=1
α∗

i yi (xi · xj) (2.10)

3. Compute the hyperplane w∗ ·x+b∗ = 0 and the classification decision function

f(x) = sign (w∗ · x + b∗)

SVM can be a non-linear classifier by using the kernel tricks. For the non-

linear classification problem in the input space, it can be transformed into a

linear classification problem in a certain dimensional feature space by non-linear

transformation, and a linear SVM can be learned in the high-dimensional feature

space. In SVM, the objective function and the classification decision function

only involve the inner product between instances, therefore the inner product can

be replaced with the kernel function.

Support Vector Regression (SVR) is an application of SVM to regression problem.

For SVR, as long as f(x) and y are close enough (between the margins and the

hyperplane), the prediction is a correct prediction [26].

2.2.2 Deep Learning Models
2.2.2.1 Artificial Neural Network (ANN)

Deep learning (DL), a branch of machine learning, is an algorithm based on ANN

(sometimes abbreviated as NN) for representation learning4. ANN, which consists

of a large number of artificial neurons connected to each other, is a model that

mimics the structure and function of the biological central nervous system and is
4It is a collection of techniques which converts raw data into a form that can be efficiently

exploited by machine learning, and replaces manual feature engineering.

2. Background 19

Figure 2.8: Structure of An Artificial Neuron [28]

used to estimate or approximate functions. The structure of an artificial neuron,

also called a perceptron, is shown in Figure 2.8. The calculation process of a neuron

is to obtain the inner product of the input vector and weight vector, and then

obtain a scalar result through a nonlinear activation function. Mathematically,

with input x1 . . . xn, we can calculate o = f(∑n
1 xiwi + b) using a perceptron, where

f(·) is a non-linear activation function, and b is a bias term. There are many

options for activation functions, the common ones are Sigmoid: f(x) = 1
1+e−x

and Relu: f(x) = max(0, x)5.

Multiple neurons connected to each other can form a shallow neural network

or a deep neural network, both are neural networks, as shown in Figure 2.9. The

problem with the deep neural network was the lack of a learning algorithm, which

was later proposed as the backpropagation algorithm (BP) [29]. BP is a method

used in conjunction with optimization methods, such as gradient descent6, to train

ANN. It computes the gradients for all weights in the network and return them to

the optimization method, which updates the weights to minimize a loss function. A
5Relu is often chosen as the activation function except for the output layer because it can

reduce the problem of gradient vanishing and exploding [27]
6A first-order optimization algorithm, which, with a specified step size, iteratively searches the

distance point in the opposite direction of the current point gradient on the function to find the
local minima.

2. Background 20

Figure 2.9: Shallow Neural Network and Deep Neural Network [30]

loss function is a mathematical function designed to compute the difference between

the true output and the output of the neural network, according to the target task

or the network structure. The mean square error: 1
n

∑n
i=1 (yi − pi)2 is often used for

the regression task, and the binary cross-entropy: −(y log(p) + (1 − y) log(1 − p))

is often used for the binary classification, where y is the true output or label and

p is the predicted output or label of the NN.

The universal approximation theorem points out the ability of deep neural

networks to approximate arbitrary functions, which cannot be achieved by traditional

machine learning methods.

2.2.2.2 Autoencoder

Autoencoder is a kind of neural network that uses backpropagation algorithm to

make the output value equal to the input value. It first compresses the input

into a latent spatial representation, and then reconstructs the output through this

representation, as shown in figure 2.10.

The autoencoder consists of two parts:

• Encoder: This part can compress the input into a latent spatial representa-

tion, which can be represented by the encoding function h = f(x).

2. Background 21

Figure 2.10: The Structure of Auto-encoder [31]

• Decoder: This part can reconstruct the input from the latent spatial

representation, which can be represented by the decoding function r = G(h).

Thus, the entire autoencoder can be described by the function G(f(x)) = r,

where the output r is close to the original input x.

Autoencoders can learn automatically from data samples, which means that it is

easy to train a specific encoder for a given class of inputs. The main applications of

autoencoder are data denoising and dimensionality reduction. The trained Encoder

can compress the new data and retain the most important features.

2.2.2.3 Convolutional Neural Networks (CNN)

CNN is a class of neural networks with a specific network architecture. Its artificial

neurons can respond to part of the surrounding units within the coverage area

and have excellent performance in large-scale image processing. Each hidden layer

of CNN has two stages, convolution and pooling.

Convolution. Suppose input is a 36 × 36 tensors shown in figure 2.11 and

a kernel is a smaller 9 × 9 × 1 tensor. The kernel will take the dot product with

a 9 × 9 patch in the image. For the first hidden layer, starting from the most

left up corner (1, 1) in the input, the filter slides horizontally to (1, 27). Then, it

moves to (3, 1) and is repeated iteratively until all patches are convoluted. The

2. Background 22

Figure 2.11: Architecture of CNN [32]

convolution operation is the same for all hidden layers. Mathematically, consider a

convolutional layer between layer l and l + 1, suppose the output of the lth layer is

of shape mlnlFl and the elements of this tensor is al
i,j,f , Suppose Fl+1 filters each of

shape WfHfFl are applied, then we can write the entries zl+1
i′ ,j′ ,f ′ as

zl+1
i′,j′,f ′ = bl+1,f ′ +

Wf ′∑
i=1

Hf ′∑
j=1

Fl∑
f=1

al
i′+i−1,j′+j−1,fwl+1,f ′

i,j,f (2.11)

where wl+1,f ′

i,j,f is the parameter for the f
′
th filter between the layer l and the index

l + 1 by (i, j, f). The gradients with respect to the parameter can be computed as :

∂ℓ

∂wl+1,f ′

i,j,f

=
∑
i′,j′

∂ℓ

∂zl+1
i′,j′,f ′

· al
i′+i−1,j′+j−1,f (2.12)

where ∂ℓ

∂zl+1
i′,j′,f ′

has been calculated in advance.

For backpropagation, we need compute ∂ℓ
∂zl

i,j,f

, which is:

∂ℓ

∂zl
i,j,f

= f ′
(
zl

i,j,f

)
·
∑

i′,j′,f ′

∂ℓ

∂zl+1
i′,j′,f ′

· wl+1,f ′

i−i′+1,j−j′+1,f (2.13)

where f ′
(
zl

i,j,f

)
is the derivative of the non-linear activation function.

Pooling. Pooling operation is used to reduce the redundancy information being

convoluted and to extract the most important information. There are many pooling

options that can be chosen, such as max-pooling or average pooling. The max-pool

2. Background 23

operation is the most common one, which looks at a small matrix in the input and

chooses the largest value of the entries. Mathematically, suppose Ω (i′, j′) is the set

of all input indices that contribute to the specific patch where the pool operation is

applied. The forward and backward equations for max-pooling are:

sl+1
i′,j′ = max

i,j∈Ω(i′,j′)
al

i,j (2.14)

∂sl+1
i′,j′

∂al
i,j

= 1
(

(i, j) = argmax
i,j∈Ω(i′,j′)

al
i,j̃

)
(2.15)

After convolution and pooling, the output will usually be aggregated through a

fully connected layer. There are many variants based on CNN that can improve

performance, such as VGG Net [33], Resnet [34], and Inception Net [35].

2.2.2.4 Recurrent Neural Networks (RNN)

DNN and CNN are both Feedforward Neural Networks, since there are no ’loops’

in their architectures. However, RNN is a kind of neural network where the hidden

layer is a function of both the input x and the previous hidden layer ht−1 as

shown in Figure 2.12, where t is the time step. It is often used for temporal

data and time series forecasting.

Figure 2.12: LSTM and RNN Unit Architecture [30]

2. Background 24

Suppose wo and wh are the weights of the hidden layer and the output layer,

respectively. The hidden states and outputs at each time step are:

ht = f (xt, ht−1, wh)

ot = g (ht, wo)
(2.16)

where f and g are activation functions of hidden layer and the output layer.

The application of backprogration to unrolled recurrent networks is called

the Backpropagation Through Time (BPTT) algorithm. The gradients of the

with respect to the parameters wh of the objective function L can be calculated

using the following equations:

∂L

∂wh

= 1
T

T∑
t=1

∂l (yt, ot)
∂wh

= 1
T

T∑
t=1

∂l (yt, ot)
∂ot

∂g (ht, wo)
∂ht

∂ht

∂wh

(2.17)

where T is the total time steps, l is the lost with regard to output ot and true

label yt, and ∂ht

∂wh
can be computed by :

∂ht

∂wh

= ∂f (xt, ht−1, wh)
∂wh

+
t−1∑
i=1

 t∏
j=i+1

∂f (xj, hj−1, wh)
∂hj−1

 ∂f (xi, hi−1, wh)
∂wh

(2.18)

Recursive Neural Networks are a generalization of RNN. It is structured in a

tree-like form and can model hierarchical structures in input.

RNN has difficulty learning long-term dependencies and may have gradient

vanishing or gradient exploding problem. Therefore, a special kind of RNN, Long

Short Term Memory Network(LSTM), is introduced by Hochreiter and Schmidhuber

[36]. LSTM has three gates:

1. forgot gate: ft = σ (Wf · [ht−1, xt] + bf)

2. input gate: it = σ (Wi · [ht−1, xt] + bi)

3. output gate: ot = σ (Wo · [ht−1, xt] + b0)

2. Background 25

Therefore, on the current time step, the state of unit is ct = ft ◦ ct−1 + it ◦

tanh (Wc · [ht−1, xt] + bc) and the output of layer is ht = ot ◦ tanh (ct). The unit

structure of LSTM allows gradient to be transmitted well, which greatly reduces

the problem of gradient vanishing and exploding.

2.2.3 Implementation Details of Models
2.2.3.1 Metrics

Trained machine learning models need metrics to measure how well they perform

on test sets. Metrics for measuring model performance vary for different tasks.

This subsection will discuss several metrics used to measure the performance of

models that will later be mentioned in this paper.

1. Mean Square Error(MSE).

One of the common metrics used for regression tasks is MSE. It is a measure

reflecting the degree of difference between the estimated value and the true

value. It gives an absolute number on how much the predicted results deviate

from the actual number.

Mathematically,

MSE = 1
n

n∑
t=1

(ytrue − ypred)2 (2.19)

where:

n = number of data points

ypred = the prediction value of model

ytrue = the actual value

2. Mean Absolute Error(MAE)

MAE is another common metric that can be used for regression tasks.

Mathematically

MAE = 1
n

n∑
t=1

|ytrue − ypred| (2.20)

2. Background 26

where:

n = number of data points

ypred = the prediction value of model

ytrue = the actual value

3. Pearson’s Correlation Coefficient

Pearson’s correlation coefficient, usually denoted by the letter r or ρ, measures

the linear relationship (or degree of linear correlation) between two random

variables. The Pearson correlation coefficient of the population between two

variables is defined as the quotient of the product of the covariance and

standard deviation between two variables, as follows:

ρX,Y = E [(X − µX) (Y − µY)]
σXσY

(2.21)

The sample Pearson correlation coefficient is defined as follows:

r =
∑n

i=1

(
xi − X̄

) (
yi − Ȳ

)
√∑n

i=1

(
xi − X̄

)2
√∑n

i=1

(
xi − Ȳ

)2
(2.22)

where:

σX and σY are the the standard deviation of X and Y , respectively

µX and µY are the mean of X and Y , respectively

X̄ and Ȳ are the sample mean of X and Y , respectively

E is the expectation

Pearson’s coefficient equals 1 indicates perfect positive linear correlation

between two variables, equal to -1 indicates perfect negative linear correlation

between variables, and equal to 0 indicates no linear correlation between

variables.

2. Background 27

4. Spearman’s Coefficient of Correlation

Spearman’s correlation can be regarded as the non-parametric version of

Pearson’s correlation. Pearson’s correlation is a statistical measure of the

strength of the linear relationship between two random variables, while

Spearman’s correlation examines the strength of the monotonic relationship

between them. Pearson’s correlation coefficient is calculated using the data

sample value itself, while Spearman’s correlation coefficient is calculated using

the data sample rank value.

For a sample of size n, the n raw scores Xi, Yi are converted to ranks

R (Xi) , R (Yi), and rs is computed as

rs = ρR(X),R(Y) = cov(R(X), R(Y))
σR(X)σR(Y)

, (2.23)

where:

ρ denotes the usual Pearson correlation coefficient, but applied to the rank

variables

cov(R(X), R(Y)) is the covariance of the rank variables

σR(X) and σR(Y) are the standard deviations of the rank variables.

Spearman’s correlation coefficient is suitable when the data have nonlinear

relationships, when one side of the data is ordinal, or when there are significant

outliers in the data.

5. Classification Metrics:

Accuracy, precision, recall, F1 score, and Area Under Receiver Operating

Characteristic Curve (AUROC) are commonly used to evaluate classification

tasks. Accuracy is the proportion of the total number of predictions that

were correct. Precision is the proportion of positive cases that were correctly

identified. Recall is the proportion of actual positive cases which are correctly

identified. F1 score = 2
1

Precision + 1
Recall

. The ROC curve is the plot between

2. Background 28

Figure 2.13: Dropout Neural Net Model [39]

true positive rate and false positive rate of the model, and AUROC is just

the area under the ROC curve.

2.2.3.2 Performance Improvement

A competent deep learning model may reliably anticipate results while requiring

little training time. Preventing overfitting with regularization strategies such as

dropout [37] and weight decay [38] is a key strategy to enhance model accuracy.

Dropout means random dropping of some units for each layer of the network, as

shown in figure 2.13. Since the dropout strategy randomly drops some units at each

layer, the trained network is relatively small. Moreover, since every feature is likely

to be dropped, the whole network will not be biased to a certain feature, which

can alleviate overfitting. weight decay is another way to prevent overfitting. In

the loss function, weight decay is a coefficient placed in front of the regularization

term. The regularization term generally indicates the complexity of the model,

so the effect of weight decay is to regulate the impact of model complexity on

the loss function. If weight decay is large, then the value of the loss function

of the complex model is also large.

To reduce the training time cost, the model convergence speed can be accelerated

by using techniques such as batch normalization [40] or Adaptive Moment Estimation

2. Background 29

(Adam) optimizer [41]. Batch normalization is a technique for making neural

network training quicker and more stable by normalizing the inputs of the layers

by re-centering and re-scaling. It was thought to alleviate the problem of internal

covariate shift, in which parameter initialization and changes in the distribution

of each layer’s inputs alter the network’s learning rate. Some researchers have

recently claimed that batch normalizing enhances performance. [25, 42, 43] Adam

is a more advanced function optimization method than the traditional Stochastic

Gradient Descent or Min-batch Gradient Descent. It can make the function fit

the high dimensional data quickly.

2.2.3.3 Hyperparameters Searching Algorithms

Hyperparameters are parameters that are used to control the behavior of an

algorithm when building a model. These parameters cannot be learned from

the normal training process. They need to be assigned before training the model.

One of the hardest parts of a machine learning workflow is finding the best

hyperparameters for the model. The performance of machine learning models is

directly related to hyperparameters. Hyperparameter tuning can be performed

in the following four methods:

• Manual Tuning:

The random hyperparameter set is checked manually to train the model, and

the most appropriate parameter set is selected. This time-consuming method

requires a lot of experimentation and does not guarantee the best combination

of parameters.

• Grid Search:

Grid search is similar to manual tuning. It builds a model for each permutation

of all given hyperparameter values specified in the grid and evaluates and

2. Background 30

selects the best model. However, since it tries every combination of hyper-

parameters and chooses the best combination based on the cross-validation

score, it is extremely time-consuming.

• Random Search:

The motivation for using a random search instead of a grid search is that

in many cases, all hyperparameters may not be equally important. Random

search randomly selects a combination of parameters from the hyperparameter

space, and the parameters are selected according to a given number of

iterations. Random search is faster than grid search, but its problem is

that it is not guaranteed to give the best combination of parameters.

• Bayesian Optimization:

Bayesian optimization belongs to a class of optimization algorithms called

Sequential Model-based optimization (SMBO) [44]. These algorithms use

previous observations of losses to determine the next best point to sample.

Its general steps are as follows:

1. According to the existing tuning history H = (x1:k, f (x1:k)), where H is

the history, the record of all previous records of {x, f(x)}, the probability

distribution model M is established.

2. Acquisition function is used to select the next hyperparameter xk+1;

3. Add the new observation (xk+1, f (xk+1)) to H.

4. Repeat steps 1-3 until the maximum number of iterations is reached

Therefore, the main difference between different Bayesian optimization meth-

ods is which probabilistic model is used to model the history and how to

choose the acquisition function.

2. Background 31

The Tree-structured Parzen Estimator (TPE) algorithm [45] that will be involved

later in this paper is a kind of Bayesian optimization algorithm. As mentioned

earlier, two of the key steps in Bayesian optimization are:

• To model the objective function to be optimized, obtain the distribution of the

function p(y | x) (x is the hyperparameter value, y is the objective function),

and thus understand the range in which the function is likely to fluctuate.

• To design an acquisition function to help us make the judgment. Expected

Improvement (EI) is the most common design plan, which deals with a

compromise between Exploration 7 and Exploitation 8. The formula of EI is:

EIy∗(x) =
∫ +∞

−∞
max (y∗ − y, 0) pM(y | x)dy (2.24)

where y∗ is a threshold, EI is the expectation that measures how much y

is improved on average relative to the threshold y∗. Therefore, the next

hyperparameter we are looking for is:

xnew = argmax xxEIy∗(x) (2.25)

The formula of EI reflects the exploration and exploitation trade-off [46].

TPE adopts a special way of thinking to model probability distributions.

According to Bayes’ theorem: p(y | x) = p(x|y)p(y)
p(x) . TPE dividing p(y | x) into

p(x | y) and p(y), and the p(x | y) is divided into:

p(x | y) =
l(x), y < y∗

g(x), y > y∗ (2.26)

As shown in equation 2.26, TPE constructs different distributions for the observation

points x on both sides of the threshold y∗, which can be considered as hyperparameter

probability distributions for good grades and for bad grades. The hyperparameter
7The likelihood of a algorithm to search the unexplored space
8The likelihood of a algorithm to search around the found optimal value.

2. Background 32

γ is used to select the threshold, which is the quantile of y∗, and therefore

p (y < y∗) = γ. The division gives:

p(x) =
∫

R
p(x | y)p(y)dy

=
∫ y∗

−∞
p(x | y)p(y)dy +

∫ +∞

y∗
p(x | y)p(y)dy

= γl(x) + (1 − γ)g(x)

(2.27)

and
EIy∗(x) =

∫ +∞

−∞
max (y∗ − y, 0) pM(y | x)dy

=
∫ y∗

−∞
(y∗ − y) p(y | x)dy

=
∫ y∗

−∞
(y∗ − y) p(x | y)p(y)

p(x) dy

=
∫ y∗

−∞
(y∗ − y) l(x)p(y)

γl(x) + (1 − γ)g(x)dy

=
∫ y∗

−∞ (y∗ − y) p(y)dy

γ + (1 − γ)g(x)
l(x)

(2.28)

From the above equations, EIy∗(x) ∝
(
γ + (1 − γ)g(x)

l(x)

)−1
. When γ is certain,

the denominator depends only on the ratio of l(x)
g(x) , and the x the algorithm looking

for is the x that maximize l(x)
g(x) .

Chapter 3

Literature Review

Contents

3.1 The Tools and Datasets Before CRISPRon 34
3.1.1 Tools Based on Traditional Machine Learning Algorithms

or Biological Features 34
3.1.2 DeepCRISPR . 35
3.1.3 DeepHF . 36
3.1.4 DeepSpCas9 . 38
3.1.5 DeepSpCas9variants . 38

3.2 CRISPRon and Xi et al.’s Dataset 39
3.2.1 Data Generation . 39
3.2.2 Model Architecture and Training Process 40

On-target activity (efficiency) prediction of sgRNA is an important task in the

CRIPSR-Cas9 gene editing. Before this paper, there have been a lot of computational

models and tools that can predict on-target activity of sgRNAs, so as to assist the

design and screening of sgRNAs. In this chapter, I will first introduce computational

models and tools with leading effects. Then, I will introduce the CRISPRon model

proposed by Xi et al. [12] and data they generated in detail, since CRISPRon is

the mainly referenced work for my model in this paper.

33

3. Literature Review 34

3.1 The Tools and Datasets Before CRISPRon

3.1.1 Tools Based on Traditional Machine Learning Algo-
rithms or Biological Features

Before the current optimal CRISPRon model was proposed, many computational

tools have been available to assist the design of sgRNA, including those based

on traditional machine learning algorithms (or biological indicators) and those

based on deep learning models.

Computing tools based on traditional machine learning algorithms or biological

indicators are mainly as follows:

• CHOPCHOP [6]: a tool to score sgRNA efficiency based on several scoring

indicators, including G20 1, as well as the scoring methods proposed by Xu et

al. [47], Doench et al. [7], and Moreno-Mateos et al. [8].

• Wu-CRISPR [48]: a tool to score sgRNA efficiency that identified 310

characteristics, including the classic characteristics in bioinformatics such as

GC content 2, alignment results 3, purine and pyrimidine content, etc., that

are characteristic of highly potent sgRNAs.

• Tuscan [49]: a tool to score sgRNA efficiency built by random forest

algorithm considering features based on counts and positions for nucleotides

and dinucleotides.

• PhytoCRISP-Ex [50]: a tool that accepts or rejects a sgRNA base on the

guanine position and off-target activity.

• FlashFry [51]: A tool that considers the Doench et al. [7], and Moreno-

Mateos et al. [8] scoring methods as well as some other features such as

GC-content
1the metric that accepts sgRNA with guanine at the 20th position
2the percentage of nitrogenous bases that are guanine (G) or cytosine (C)
3a way of arranging sequences to identify regions of similarity

3. Literature Review 35

• sgRNA Scorer 2.0 [5]: A tool to score the efficiency of sgRNA based on

the support vector machine.

• SSC [47]: A tool to score sgRNA efficiency that based on 28 sequence features

that are highly related to the efficiency.

• Azimuth: [52] One of the state-of-the-art predictive approaches to modeling

which RNA guides will effectively perform a gene knockout by way of the

CRISPR/Cas9 system. The team firstly identified features that are important

for prediction such as nucleotide identity, which are helpful such as thermody-

namics, and which are redundant such as microhomology; then they combined

their insights of useful features with exploration of different model classes,

settling on one model which performs best, which is the GBDT. Azimuth

project is sponsored by Microsoft and cited Donech et al.’s work in 2016 [53]

as reference for the useful features.

These tools do not use deep learning algorithms, and most of the tools are based

on biological features related to the efficiency of sgRNA derived from experimental

data and traditional machine learning algorithms. The disadvantages of these models

are that the features used for modeling may not be comprehensive and accurate

enough, and the complexity of the algorithms used for modeling is too simple.

However, modeling by a deep learning algorithm can avoid manual selection of

model features. Moreover, due to the universal approximation theorem mentioned in

Chapter 2, most deep learning models have higher model complexity and expressive

ability and will have better performance when the data are sufficient.

3.1.2 DeepCRISPR

DeepCRISPR [9] is a comprehensive computational tool that uses deep learning

to predict sgRNA on-target and off-target activity. It completely automates the

identification of sequences and characteristics that may impact the efficiency of

sgRNA. As shown in figure 3.1, to predict activity on target, DeepCRISPR will

3. Literature Review 36

Figure 3.1: DeepCRISPR for sgRNA On-target Activity Prediction [9]

first take unlabeled sgRNA sequences as input to train an autoencoder. It will then

use the trained encoder to compress the labeled on-target training sequences to get

the critical feature representations. Finally, it will use these feature representations

of the training inputs to train a CNN classifier with a backpropagation algorithm,

which can be used to classify whether an sgRNA is efficient. DeepCRISPR can

complete both the classification task and the regression task. It has a variant on

GitHub 4 that can be used to score a given sgRNA.

3.1.3 DeepHF

Wang et al. measured gRNA activity for two highly specific SpCas9 variants 5

and wild-type SpCas9 in human cells, and generated new data sets [11]. They

also measure and pick the most important features for sgRNA efficiency. Their

generated data sets are used to train their model, and the features they obtained

are later concatenated in their DeepHF model structure.
4Please check https://github.com/bm2-lab/DeepCRISPR
5SpCas9 is the S. pyogenes Cas9, which can be used interchangeably as Cas9. SpCas9 variants

are often used instead of SpCas9, as there may be problems such as off-target effects or PAM
sequence lack that SpCas9 cannot handle

https://github.com/bm2-lab/DeepCRISPR

3. Literature Review 37

Figure 3.2: DeepHF architecture for the prediction of sgRNA on-target activity [11]

The architecture of their model is shown in figure 3.2. Their model is to handle

the regression problem and the output is the indel frequency 6 in range [0,1]. With

a new input sgRNA sequence, their model first used the one-hot encoding method

to encode the input sequences. Then it projected the input matrix x ∈ RL×4 to the

dense real-valued space E ∈ RL×m by the embedding weight matrix Wm, following

a Bidirectional long short-term memory neural network (BiLSTM). The BiLSTM

can take advantage of LSTM (as mentioned in Chapter 2) and processes input data

both in the forward and backward orders, allowing to combine the gRNA sequence

information from both directions in every time step. The output of the BiLSTM

will then be flattened, concatenated with the critical features they found and passed

through a fully connected network to get the efficiency prediction.

6A metric for efficiency which will be introduced in detail later in next section

3. Literature Review 38

Figure 3.3: General structure of DeepSpCas9 variants for the prediction of sgRNA
on-target activity [54]

3.1.4 DeepSpCas9

DeepSpCas9 [10] is another model that can be used to predict SpCas9 activity on

target. DeepSpCas9 is based on a CNN architecture that has one convolutional

layer and one pooling layer at the front, as well as three fully connected layers with

a dropout rate of 0.3 in each layer. The adopted convolutional layer includes an

inception module with a total of 210 filters (100, 70, and 40 filters at 3, 5, and

7nt in length, respectively). The pooling layer and three fully connected layers

use ReLU activation functions. This architecture was later referenced and used

in the design of the CRISPRon model.

3.1.5 DeepSpCas9variants

DeepSpCas9variants [54] is very similar to DeepSpCas9 except it is used to predict

the on-target activity of sgRNA with SpCas9 variants. Kim et al. compared the

efficiency and specificity of thousands of sequences and trained their model on the

data set they generated. The model structure is similar to DeepSpCas9 except

that they only used one fully connected layer at the end of the model. The general

structure of DeepSpCas9variants is shown in figure 3.3.

3. Literature Review 39

3.2 CRISPRon and Xi et al.’s Dataset

One serious problem with pre-Crispron models is that because they are trained and

tested on different data sets, their performance on new data can be significantly

affected. However, due to the different experimental procedures and standards,

these independent datasets have poor compatibility with each other, so they cannot

be used to train the model uniformly. In order to create more precise prediction

algorithms, it is crucial to produce more data from gRNA activity that is consistent

with earlier research.

In 2021, Xi Xiang et al. generated on-target gRNA activity data for 10,592

SpCas9 gRNAs [12]. Then they integrated them with the dataset generated by Kim

et al. [10, 54] and obtained 23,902 gRNAs. They used these data to train a deep

learning model, CRISPRon. CRISPRon performs the best Spearman’s correlation

score at multiple datasets on on-target sgRNA activity score predictions with its

special model structure and the high-quality data trained it. In this section, I will

introduce the details of CRISPRon and the dataset they generated.

3.2.1 Data Generation

Xi et al. developed a high-throughput technique for measuring sgRNA activity in

cells to obtain high-quality CRISPR on-target gRNA activity data. Xi Xiang et

al. created a pool of 12,000 sgRNA oligos targeting 3834 human protein-coding

genes and transduced the sgRNA library into SpCas9-expressing and wild-type

HEK293T cells. The pipeline was then built to analyze the CRISPR-induced

indels. Since SpCas9 will cause insertions and deletions, the length of the edited

sequence is expected to change from its original 37 base pairs (bp) 7. Therefore,

the equation of indel frequency is defined as:

Indel Frequency = (Number reads with length ̸= 37bp)
(Total number of reads) % (3.1)

7The length of the sequences used to be edited by the sgRNA in the experiments.

3. Literature Review 40

Figure 3.4: Architecture of CRISPRon [12]

Targeted deep sequencing was used to examine the frequency of indels in cells 2,

8, and 10 days after transduction. The frequency of indel (on-target activity) of

gRNAs on days 8 and 10 was highly associated. For future investigations and

model development, the average gRNA activity of days 8 and 10 was used. As a

consequence, Xi et al. were able to gather high-quality gRNA activity data for 10,592

gRNAs, which is a great resource to improve the quality of CRISPR-gRNA designs.

3.2.2 Model Architecture and Training Process

Xi Xiang et al. employed a one-hot encoding of the input sequence with length

30 8 which was fed into a number of 3, 5, and 7-sized filters acting directly on the

one-hot encoded sequence. The convolutions, which are the outputs of the filters,

were flattened and pass to two fully connected layers before output the gRNA

on-target activity was output, as shown in figure 3.4.

The number of weights and arrangement of the convolutions, as well as those

of the two final fully linked layers, are the same as in DeepSpCas9. [10]. They

did not further tune the hyperparameters. However, trained a gradient boosting

regression tree (GBRT) 9 model and applied two methods, the Shapley Additive
8The inputs are the complementary DNA sequence to 20 nucleotides (nt) sgRNA, 3nt

PAM and 7nt context
9It is identical to GBDT mentioned in Chapter 2 except it is used for regression task

3. Literature Review 41

exPlanations (SHAP) 10 and the Gini importance 11, for feature analysis. Through

several features including GC content and folding energy of the spacer gRNA, they

found the gRNA-target-DNA binding energy, ∆GB [57], is a far better biological

feature of on-target activity for sgRNA than others. Concatenation of ∆GB with

the output of the convolutional layers improved the MSE from 144.73 to 140.83.

The model in figure 3.4 thus became their final CRISPRon model.

Using 6-fold cross-validation, CRISPRon was trained on the combined dataset

with 23,902 gRNAs that had been divided into six parts. After 10 iterations,

the top models from each of the six validation sets are averaged to obtain the

final CRISPRon result.

For comparison, they also trained other three models, pre-CRISPRon-v0, pre-

CRISPRon-v1, and CRISPR-v0 with different utilization of their dataset, where:

• pre-CRISPRon-v0 is trained on the dataset generated by themselves (not

the combined one with Kim et al.’s) with a 5-fold cross-validation while using

the 6th partition as an internal independent test set.

• pre-CRISPRon-v1 is trained on the dataset generated by themselves as

well, with all six partitions with 6-fold cross-validation.

• CRISPRon-v0 is trained on the combined data set with a 5-fold cross-

validation (not the 6-fold cross-validation as in CRISPRon) to evaluate the

model on 6th the internal independent test set.

10SHAP seeks to explain the prediction made for that data point by calculating how much each
feature contributed to the prediction produced for a given input datapoint[55]

11an index that determines the likelihood that a certain feature would be erroneously categorized
when chosen at random. [56]

Chapter 4

Methodology

Contents
4.1 Methodology Analysis of Previous Work 42
4.2 The Adaptive CRISPRon Algorithm 46

4.1 Methodology Analysis of Previous Work

By generating high-quality training data, combining data from predecessors, and

meticulous screening of biological features, Xi et al. enabled their trained deep

learning model CRISPRon to achieve state-of-the-art performance. However, they

did not spend efforts on optimizing the model architecture, which is critical to

biological sequence analysis.

One of the advantages of deep learning models over traditional machine learning

models is that the deep learning models can automatically extract representations

from the inputs. With different model architectures, the extracted representations

in the hidden layers of deep learning models can vary on a large scale. Therefore,

different architectures of models can lead to huge gaps in model performance for

a particular type of input. As shown in figure 3.4, in the first convolutional layer,

CRISPRon used many convolutional 1D filters with different kernel sizes to extract

the features from the one-hot embedding of the input sequence. Unlike the 2D or

3D convolution filters mentioned in Chapter 2, the 1D convolution filter used in

42

4. Methodology 43

CRISPRon is rectangular and only slides in a one-dimensional direction to extract

features. In each calculation, these convolution filters will take the dot product

of the one-hot encoding information of a certain number of nucleotides with their

weights according to their different convolution kernel sizes. This means that filters

with different nuclear sizes extract information from different nucleotide lengths

per calculation. Biologically, certain nucleotide lengths may contain important

features. For example, codons are triplet sequences of nucleotide residues on mRNA

(or DNA) that encode a specific amino acid. For such sequences, if only filters

whose convolution kernel size is not three are used to complete the convolution

operation, they may not be able to extract the important features in the sequence

well, so that the weights in the hidden layer may deviate from the optimal weights

(or it is difficult to converge to the optimal weights in the training process), and

finally affect the performance of the model.

As mentioned in Chapter 3, the CRISPRon model structure adopts the model

structure of DeepSpCas9 [10] without further optimization. Although for DeepSp-

Cas9, Kim et al. interrogated the hyperparameters of structures, they only interro-

gated a very small hyperparameter space. Their search procedure was as follows:

1. They first decided to use three separated 1D convolution filter types (each

type has a different kernel size and has many filters) at the first layer as shown

in figure 3.4. This number is fixed, which means that they did not search for

any space of convolutional filter with different kernel sizes other than three.

2. Then they used a random search algorithm to search through the structural

hyperparameter space, where the first convolutional filter kernel size is from

range 2 to 4, the second filter kernel from range 5 to 6, and the third filter

kernel is from range 7 to 9. For the number of the filters and for the nodes

in the fully connected layers, they also searched through a chosen number of

combinations.

4. Methodology 44

3. They finally picked the structure described in section 3.1.4 according to the

optimized hyperparameters.

The pseudocode in Algorithm 1 describes the optimization process for Deep-

SpCas9, and hence for CRISPRon.

Algorithm 1 Algorithm for Optimizing Hyperparameters for DeepSpCas9 and
CRISPRon

1: Input: A dataset D, A number M = 3, The grid searching algorithm A
2: Output: A optimized convolutional neural network architecture S∗

3: Set S∗ = Null
4: Generate variables V1, V2, V3
5: for K1 ∈ [2, 4],K2 ∈ [5, 6],K3 ∈ [7, 9] do
6: for F1 ∈ [20, 100, step10],F2 ∈ [50, 70, step10],F3 ∈ [20, 100, step10] do
7: for FC1 ∈ [80, 120, step20],FC2 ∈ [40, 80, step20] do
8: Use A to search the best hyperparameters (K∗

i , F ∗
i) where i = 1, 2, 3,

and FC∗
1 , FC∗

2 , based on D
9: Set Vi = (K∗

i , F ∗
i), where i = 1, 2, 3

10: end for
11: end for
12: end for
13: for ∀Vi do
14: Add convolutional type (kernel size K∗, filter number F ∗) and pooling layer

to the new convolutional block.
15: end for
16: Add the convolutional block to architecture S∗

17: Add a fully connect layer with FC∗
1 neurons to architecture S∗.

18: Add a fully connect layer with FC∗
2 neurons to architecture S∗.

19: Return S∗

The following key points can be helpful in understanding the algorithm.

• Kim et al. fixed the M = 3 as shown in the inputs of Algorithm 1 which

means that they fixed the number of convolutional type (The different

types of parallel convolutional filters with different kernel size, and

each of them can have many filters) as 3

• The grid searching algorithm, A, is used for searching the best hyperparameters

(the kernel size and the number of filters) for each convolutional type of the only

4. Methodology 45

convolutional block (each convolutional block has one convolutional

layer consisting of multiple convolutional types and corresponding

pooling layers) they used, and the hyperparameters FC1, FC2 (neurons)

for the two fully connected layers after the convolutional block.

• The red highlighted parts are used to optimize the structure of the fully

connected part of the model.

Although this search procedure allows Kim et al. to explore the hyperparameter

space of the model structure to some extent, there are several limitations that

constrained the model structure to be optimized.

1. They only used one convolutional block and may miss features that can be

extracted by a deeper convolutional layer.

2. They did not search for the number of convolutional blocks in the first layer.

More convolutional filters with different kernel sizes may lead to a higher

expressiveness of the model, and hence may improve the model performance

if the training data are sufficient.

3. They searched the filter kernel size in a very small range, where the kernel size

ranges from small to medium, and did not search for a kernel with a larger

size, which can capture the global features from the longer sequence segment.

4. The total search space is limited, and the random search algorithm they used

for hyperparameter searching is not good enough to handle an extensive search

space.

In conclusion, Kim et al. have made some explorations of the structure of

DeepSpCas9, but these explorations are limited. Xi et al. used more high-quality

data to train their CRISPRon model and added ∆GB, an important feature, to

the hidden layer of the model. However, they took the structure directly from

DeepSpCas9 without any further optimization. The structure of the model is

4. Methodology 46

critical to its performance. Therefore, further optimization of the structure of

the CRISPRon model is necessary.

4.2 The Adaptive CRISPRon Algorithm

As mentioned in the previous section, we need to further optimize the CRISPRon

model architecture. Suppose there are L layers and each layer have N possibilities

of neurons. Although the search space complexity is O(NL), for a fully connected

neural network model with a small fixed number of hidden layers and range of

possibilities of neurons, it is possible to search the hyperparameters of the number

of neurons for each layer, as shown in the red highlights of Algorithm 1. However,

when the number of neural network layers increases, the search space will expand

rapidly. To make matters worse, for a convolutional neural network with multiple

convolutional types per convolutional block, the number of convolutional types

used in each convolutional layer T , the size of convolutional kernels for each

convolutional type K, and the number of filters for each convolutional kernel F

should be taken into account. Suppose there are C convolutional layers, and L fully

connected layers, the space complexity will be O((TKF)CNL). There are many

possibilities of T , K, and F , so it is very difficult to search for the hyperparameters

to optimize the overall structure.

In order to make it possible to optimize the overall structure of the model to

some extent, my algorithm will be based on an important assumption.

Assumption 1 The optimal hyperparameters of each layer of convolutional neural

network have Markov property to a certain extent. Their values depend heavily on

the output of the previous layer.

The definition for Markov property is:

For any positive integer n and possible states i0, i1, . . . , in of the random variables,

P (Xn = in | Xn−1 = in−1) = P (Xn = in | X0 = i0, X1 = i1, . . . , Xn−1 = in−1)

(4.1)

4. Methodology 47

In other words, the assumption means that, for convolutional blocks, the

optimized value of the hyperparameters of each convolutional block only depends

on the features extracted from the formerly convolutional block (or input layer if it

is the first hidden layer). For example, the best hyperparameters (the kernel size,

number of convolutional type, and the number of filters) of the first convolution

layer only depend on the input sequences, and the best hyperparameters of the

second convolutional layer only depend on the output of the first pooling layer,

and so on. This assumption allows me to optimize the structure of the model

layer by layer, and thus greatly reduces the search space. The space complexity

will be O(TKFC + NL) now.

Moreover, for sgRNA prediction, the input sequence length is limited. Therefore,

the maximum number of convolutional types used in each convolutional layer T and

the size of convolutional kernels for each convolutional type K will both be limited.

The maximum number of convolutional blocks C will be limited as well, since the

convolutional layer and pooling layer in the next convolutional block will reduce

the dimensions of the output from the last block, and this process is recursively

layer by layer, from maximum dimension K to dimension 1.

The input dimension is only 30nts for CRISPRon, which means the maximum

number of T and K are 30. The number of convolutional blocks C will be less

than 5 depends on the kernel size of the filters, since the average pooling layer in

CRISPRon will reduce the dimensions of the output from the last block at least

by half. My algorithm will focus on optimizing the structures of the convolutional

blocks, and hence the structure of the fully connected layers are kept the same

as in CRISPRon without further optimizing.

To optimize the convolutional blocks in CRISPRon, I propose an algorithm,

the Adaptive CRISPRon Algorithm, to optimize the structure of the convolutional

blocks in CRISPRon as follows:

1. Keep the structure of the fully connected layers of CRIPSRon, the convolu-

tional blocks will be added before these layers

4. Methodology 48

2. Set n = 1, where n is the nth block currently under optimization and prepared

to be added to the model.

3. Generate M variables, where M is the max number of parallel 1D convolution

filter types with different kernel sizes at the first block. It can be only chosen

from 1 to 30 (since there are only 30nts for the input sequence for CRISPRon)

4. For each of the variables, set a max kernel size. It will be 30 for the first

convolutional block, and for nth convolutional block other than 1st, it depends

on the output of (n − 1)th the block.

5. Use an optimizing algorithm (I used the Tree-structured Parzen Estimator

algorithm) to find the optimized structural hyperparameters on a dataset D.

For each variable at the nth block, the kernel size search range is from 0 (0

means to ignore this type of filter forever on) to the max kernel size of the

variable, and the search range of the number of filters is pre-determined (I

searched from 20 to 140 with 20 steps). Input the found hyperparameters to

the M variables generated.

6. For each variable, check the optimized value. If it is not equal to 0, then add

a type of convolutional filter to the next convolutional layer according to the

variables (the optimized structural hyperparameters). If it is 0, then stop

adding any convolutional layer or pooling layer for this type to any of the

convolutional blocks, forever on.

7. Add the corresponding pooling layer for each of the convolutional type added.

8. Reset the variables, and also the number M . M is the number of parallel 1D

convolution filter types at the newly added convolutional layer.

9. Reset n = n + 1, and the max kernel size to the length of the output of the

newly added pooling layer.

4. Methodology 49

10. Run steps 4 - 9 recurrently until a new convolutional block cannot be added

(all parallel types abandoned because of step 6, or the outputs of the previous

block for all types are 1).

The pseudocode of the algorithm is presented in Algorithm 2. Notice that The

blue shadowed places are different from Algorithm 1.

Algorithm 2 Adaptive CRISPRon Algorithm
1: Input: A dataset D, A number M where M ∈ [1, 30], A fully connected neural

network structure S, A search range R, the Tree-structured Parzen Estimator
algorithm A, the dimension of dataset L

2: Output: A optimized convolutional neural network architecture S∗

3: Set n = 1
4: Set S∗ = S
5: while M ̸= 0 do
6: Generate M variables V n

1 . . . V n
m , and M cooresponding variables

V n,max
1 . . . V n,max

m

7: Initialize ∀On
1 . . . On

m = Null
8: If n = 1: Set all of V n,max

1 . . . V n,max
m to L. Else: Set based on On−1

1 . . . On−1
m

9: for Ki ∈[0, V n,max
i]where i = 1 . . . m do

10: for Fi ∈R where i = 1 . . . m do
11: Use A search best (K∗

i , F ∗
i) based on D and S∗

12: Set V n
i = (K∗

i , F ∗
i)

13: end for
14: end for
15: Initialize Counter = 0
16: for ∀V n

i do
17: If K∗ ∈ V n

i ̸= 0 do:
18: Add convolutional type (kernel size K∗, filter number F ∗) and pooling

layer to nth convolutional block.
19: Counter = Counter + 1
20: Else: Continue
21: end for
22: Reset M = Counter
23: Add the nth block, before fully connected structure S, to architecture S∗

24: n = n + 1
25: Set On−1

1 . . . On−1
m to the output dimensions of the pooling layer for each V n

i

26: end while
27: Return S∗

There are four notable differences with Algorithm 1 worth highlighting:

4. Methodology 50

• I used the TPE optimization algorithm rather than grid search.

• The number of convolutional types of the first convolutional block is no longer

fixed as 3. It can be 1 to M (depending on the outcome of the TPE algorithm),

where M is the max value that is chosen manually from 1 to 30, which means

the TPE algorithm may explore a bigger space.

• Unlike Kim et al. using only one convolutional block, I added a while

loop that iteratively for searching each convolutional block with the Markov

property assumption that the optimized value of the hyperparameters of each

convolutional block only depends on the features extracted from the formerly

convolutional block (or input layer if it is the first convolutional block)

• There is a while loop which will terminate when the descendants of all

convolutional types of the first convolutional block stop growing deeper.

In general, compared with the model optimization method of Kim et al., Adaptive

CRISPRon Algorithm can explore a larger hyperparameter space, which is conducive

to finding the global optimal hyperparameter, so as to realize the optimization

of model structure.

Chapter 5

Experiments and Results

Contents
5.1 Data Analysis . 51
5.2 Data Pre-processing . 53

5.2.1 ∆GB Biological Feature Computation 53
5.2.2 Training Data Split . 54
5.2.3 Test Data Pre-processing 56

5.3 Model Reproduction . 57
5.4 Model Structure Optimizing 61

5.4.1 Hyperparameter Search Tool 61
5.4.2 Implementation of the Adaptive CRISPRon Algorithm . 63
5.4.3 The Adaptive CRISPRon Structure 64

5.5 Adaptive CRISPRon Training and Testing 65

5.1 Data Analysis

As mentioned in Chapter 3 subsection 3.2.1, Xi et al. obtained the high-quality

gRNA activity data for 10,592 gRNAs through experiments. They found that

the frequency of indel (on-target activity) of gRNAs on days 8 and 10 was highly

associated. Therefore, they first used the average gRNA activity of days 8 and

10 for the development of two models: pre-CRISPRon-V0 and pre-CRISPRon-v1.

The day 8 and day 10 indel frequency were later used to test and compare with

different models. The histogram of average indel frequency distribution of these

10,592 gRNAs is shown in figure 5.1.

51

5. Experiments and Results 52

0 20 40 60 80 100
Average Indel Frequency

0

25

50

75

100

125

150

175
N

um
be

r
Histogram of Xi's Dataset Average Indel Frequency

Figure 5.1: The Histogram of Xi’s Dataset Average Indel Frequency

It can be seen that the value range of indel frequency is from 0.04 to 95.85,

because the result in formula 3.1 is in the form of percentage. In addition, it can

be seen that this distribution is not balanced. Therefore, when using them for

training, especially when choosing to split the training set and the validation set, it

is necessary to ensure that the data distribution is relatively balanced. The data

preprocessing methods will be discussed in the next section.

After they trained the above two models, Xi et al. combined their dataset with

Kim et al.’s by linear rescaling on the common 30mer sequences that are found

in both theirs and Kim et al.’s dataset (in 2019), resulting in a dataset of 23,902

gRNAs. This data is used to train and test CRISPRon-V0 and CRISPRon. It is

also used in my experiments to optimize the structure of CRISPRon and to train

Adaptive CRISPRon (both version 0 and version 1, see 5.5). The histogram of the

average indel frequency distribution of these 23,902 gRNAs is shown in figure 5.2.

Again, the distribution is not balanced and needs careful pre-processing. However,

the range now runs from -4.41 to 95.10. Scores less than 0 are due to rescaling.

Note that both the Xi et al. data set, and the combined data set, were not

published. I obtained these data by contacting Xi et al.

5. Experiments and Results 53

0 20 40 60 80 100
Average Indel Frequency

0

100

200

300

400

500
N

um
be

r
Histogram of Combined Dataset Average Indel Frequency

Figure 5.2: The Histogram of the Average Indel Frequency of the Combined Dataset

In addition to the above two data sets, this paper also uses some external data

sets. These datasets are only used for model testing and comparison and do not

participate in model training. These data also play a similar role in the CRISPRon

test by Xi et al. They are from: Doench et al. (in 2014 and 2016) [7, 53], Xu et

al. (in 2015) [47], Chari et al. (in 2015) [58], Hart et al. (in 2015) [59], Wang

et al. (in 2019) [11], Kim et al. (in 2020)[54]. The data is published and can be

downloaded from relevant papers. For convenience, from now on I will use the

first author name as the name of the data set.

5.2 Data Pre-processing

5.2.1 ∆GB Biological Feature Computation

An important feature used in CRISPRon model training is RNA-DNA binding

energy ∆GB. This feature is not provided in the data of Xu et al. and needs

to be calculated through Alkan et al.’s CRISPRoff pipeline 1. The RNA-DNA
1I used the CRISPRoff (version 1.1.2) which can be downloaded from https://rth.dk/

resources/crispr/crisproff/download

https://rth.dk/resources/crispr/crisproff/download
https://rth.dk/resources/crispr/crisproff/download

5. Experiments and Results 54

binding energy ∆GB is calculated by equation 5.1.

∆GB = δPAM (∆GH − ∆GU − ∆GO) (5.1)

Where ∆GH is the position-weighted binding energy between gRNA and target

DNA, ∆GO is the free energy of the DNA duplex, ∆GU is the folding energy

of gRNA alone and δP AM is a correcting factor according to the type of PAM

sequence. Therefore, given a gRNA sequence, the CRISPRoff pipeline outputs

a file with four features: ∆GH , ∆GO, ∆GU , and ∆GB, in which only ∆GB is

used. The range of ∆GB of the combined dataset is from -13.11 to 51.20, and

the distribution is shown in figure 5.3. The distribution is fairly uniform, with

most sgRNA scores clustered between 20 and 30.

10 0 10 20 30 40 50
Score

0

100

200

300

400

500

600

700

800

N
um

be
r

Distribution of the Combined Dataset RNA-DNA Binding Energy Score

Figure 5.3: Distribution of the Combined Dataset RNA-DNA Binding Energy Score

5.2.2 Training Data Split

In this paper, the training data (Xi generated and combined dataset) are divided

into six splits with reference to the classification method mentioned in the paper

by Xi et al. before training. The size difference of these six parts of data is within

1 gRNA. The data is separated as follows:

5. Experiments and Results 55

1. Use SciPy’s pdist function to calculate the pairwise Hamming distance between

all gRNAs based on their 30mer one-hot encoded sequences (gRNA plus

context).

2. A list of all gRNAs with a Hamming distance of 8 or less in the one-hot space,

which translates to a sequence difference of 4 nt, was considered "similar" to

each gRNA x.

3. gRNAs that were similar to at least one other gRNA in the data set were the

first to be randomly distributed in the partitions; when a gRNA was assigned

to a partition, all gRNAs that were similar to it (and recursively those that

were similar to these gRNAs) were also added to the same partition.

4. After exhausting all similar gRNAs, the remaining gRNAs were divided into

three subsets based on their efficiency (inefficient: up to the percentile of

efficiency 25 (25p), medium efficient: from 25 to 75p, and highly efficient:

above 75p), and the gRNAs in these three subsets were distributed to the

partitions pseudo-randomly by assigning a balanced amount of inefficient,

medium efficient, and highly efficient gRNAs to each partition until the

predesigned size was reached.

Note that when training and testing the CRISPRon-V0 and my Adaptive

CRISPRon-V0, the data annotated as the test set in Kim et al. (2019) (526

in total) of the combined dataset, was treated as an initial partition before any

splitting and any gRNAs similar to the initial group in the combined are assigned

to this partition. In other words, the independent test set for CRISPRon-V0 and

Adaptive CRISPRon-V0 is the test set of Kim et al. (2019) after train and test

set preprocessing (see section 5.2.3).

In addition to the above segmentation methods, this paper also uses sklearn’s

train-test-split tool to randomly split the training set for training. The performance

of the CRISPRon-Extra model trained in this way will be slightly worse than that

of CRISPRon, which will be mentioned in section 5.3.

5. Experiments and Results 56

5.2.3 Test Data Pre-processing

The gRNA similar to the training data should be removed from all the test

data sets to ensure that they are completely independent. All test sets are

preprocessed as follows:

1. Calculate the pairwise hamming distance between the gRNAs in the test

and training datasets with the one-hot encoded 20 nt protospacer and cdist

function in Scipy.

2. gRNAs that had a sequence difference of less than three nucleotides (nt) and

a Hamming distance of less than six in the one-hot space were eliminated.

The preprocessing method of the test set (and the separation method of the

training set) is completely consistent with that of Xi et al., in order to ensure that

the models in my paper and Xi et al.’s paper are comparable.

In addition, external data sets require some additional preprocessing during

selection. All data sets can be divided into two categories: one is used to complete

the study of gene loss, including Xu (2015), Hart (2015), and Doench (2014-2016);

the other is based on the Indel frequency, including: Kim (2019–2020), Wang

(2019), Chari (2015), and Xi (2021). The preprocessing of the data sets involved

the elimination of gRNAs that fit one of the following descriptions. Notice that

points 2, 4, and 7 are only for the studies of gene loss.

1. Not in hg382.

2. GENCODE annotations did not match target gene expression.

3. High inter-experimental variability in efficiency, over the threshold:upper

quartile + 1.5 × variance interquartile range.

4. The gene with less than ten gRNA.
2hg38 is the ID used for GRCh Build 38 in the context of the UCSC Genome Browser.

5. Experiments and Results 57

5. The corresponding PAM is not 5’-NGG-3’.

6. Expressed from a tRNA system.

7. Targeting the final 10% of a combined gene’s identified coding sequences.

Note that for Doench (2014), I only used human cell data. For Doench (2016)

the gRNAs marked for low early time point (ETP) are eliminated. For Wang (2019),

gRNAs without any context information are also eliminated.

The external datasets now have the following number of sequences after the

processing mentioned above: Kim (2020): 8742; Xu(2015): 971; Chari (2015): 1,224;

Hart (2015): 4001; Doench (2014): 781; Doench(2016): 2145; Wang (2019): 55,022;

The preprocessing method of external data is also completely consistent with

that of Xi et al. The preprocessed external data can be obtained by asking Xi et al.

5.3 Model Reproduction

This paper mainly reproduced the results for four models: pre-CRISPRon-V0 and

pre-CRISPRon-V1 with Xi et al.’s dataset, CRISPRon-V0 and CRISPRon with the

combined dataset. I also trained a CRISPRon-Extra by randomly splitting the same

training set as CRISPRon rather than the carefully split stated in subsection 5.2.2.

The other four models’ (DeepHF, DeepSpCas9, Azimuth, and DeepSpCas9Variants)

results are reproduced by Xi et al. and their codes are directly available in GitHub

link in the respective papers.

The codes for CRISPRon3 cannot be directly used to reproduce the results, since

the code is embedded into a software, takes different inputs, and output predictions

of a given gRNA instead of Spearman’s correlation. Therefore, I modified the input

and output interfaces and the functions for read files and data preprocessing. The

model structure constructed by Keras (TensorFlow API) is unchanged for all the

reproduced models, since they adopted the same structure but different training

data. The structure is shown in figure 5.4.
3https://github.com/RTH-tools/crispron

https://github.com/RTH-tools/crispron

5. Experiments and Results 58

Figure 5.4: The Structure of Reproduced Models

The structure of the model is the same as the structure in figure 3.4. Each input

to the model is a one-hot encoded sequence vector with length 30, and 4 dimensions

to represent each nucleotide. The input first passes through three parallel filter types

with kernel size 3, 5, and 7. Then, it passes through the corresponding dropout

layer, pooling layer and flatten layer, and then be concatenated in to one long vector

5. Experiments and Results 59

with length 4190. After the first dense layer (and the corresponding dropout layer),

the ∆GB is then concatenated with the output to pass through two more dense

layers and dropout layers to get a final value. This value is then used to calculated

Spearman’s correlation with the true value if the model is used for prediction, or to

compute the MSE and propagated back to update the weight if the model is training.

All reproduced models use the same set of hyperparameters when training, which

is consistent with that used by Xi et al. The learning rate of the model is 0.0001,

the optimizer is Adam and the batch size is 500. The model also adopts the early

stop technique to mitigate the overfitting problem. The training epoch is set as 3000

while the performance on the validation set did not improve for 100 consecutive

epochs, the training was terminated, and the MSE best performing model on the

validation set was retained. When cross-validating, the training of each fold was

done ten times using random seeds, and the best model from the ten was picked.

The first two reproduced models are pre-CRISPRon-V0 and pre-CRISPRon-V1.

As mentioned in subsection 5.2.2, the dataset generated by Xi et al. were divided

into 6 partitions. pre-CRISPRon-V0 is trained with a 5-fold cross-validation, while

the partition 6th is used as an independent internal set to measure performance

together with external data sets. After training and measuring the pre-CRISPRon-

V0, all six partitions are used to train the pre-CRISPRon-v1 model with six-fold

cross-validation, and the model is tested on the external independent test sets. The

comparison between the performance of the reproduced version with the original

version for these two models is shown in table 5.1.

As can be seen in the table, the results of the repeated model are almost the

same as those of the original model, except for slight differences in some data

sets, which may be caused by the selection of random seeds. The pre-CRISPR-V1

is generally better than the pre-CRISPR-V0, since more high-quality data are

used in training for pre-CRISPR-V1. Note that for the pre-CRISPRon-V1 model,

the data from Xi et al. cannot be used for model evaluation because they have

already been used for model training.

5. Experiments and Results 60

Pre-V0 (Ori) Pre-V0 (Repr) Pre-V1 (Ori) Pre-V1 (Repr)
Chari 2015 0.436 0.434 0.442 0.439
Doench 2014 0.608 0.606 0.615 0.615
Doench 2016 0.330 0.327 0.354 0.354
Hart 2015 0.468 0.467 0.469 0.467
Kim 2019 0.732 0.732 0.737 0.734
Kim 2020 0.346 0.345 0.346 0.346
Wang 2019 0.722 0.721 0.727 0.727
Xu 2015 0.564 0.563 0.567 0.565
Xi 2021 day10 0.825 0.825 NA NA
Xi 2021 day8 0.800 0.797 NA NA

Table 5.1: The Spearman’s Correlation of Reproduced and Original Version of pre-
CRISPRon-V0 and pre-CRISPRon-V1.

The next two models to be reproduced are CRISPR-V0 and CRISPRon. The

combined data set of Xi (2021) and Kim (2019) was divided into 6 partitions.

CRISPRon-V0 is trained with a five-fold cross-validation, while the 6th partition

is used as an internal independent set for measuring the performance together

with the external datasets. After CRISPRon-V0 is trained and measured, the

six partitions are used to train the CRISPRon model with 6-fold cross-validation,

and the model is tested on the external independent test sets. The comparison

between the performance of the reproduced version with the original version for

these two models is shown in table 5.2

Similarly, the replicated model and the original model produced almost identical

results, except for a few minor differences. Compared to the two pre-CRISPRon

models, CRISPRon and CRISPRon-V0 were tested on the average Indel frequency

of DAY8 and DAY10 of the combined data set. The CRISPRon results are far

better than the performance of other existing models on the same dataset (the

results are reported in Supplementary Table 2 in their paper [12]), which is the

main contribution of Xi et al. Note that for CRISPRon the Kim et al. (2019)

and Xi et al. (2021) datasets have been used for training and cannot be used

to measure model performance.

5. Experiments and Results 61

V0 (Ori) V0 (Repr) CRISPRon(Ori) CRISPRon (Repr)
Chari 2015 0.464 0.464 0.464 0.464
Doench 2014 0.676 0.676 0.681 0.680
Doench 2016 0.439 0.436 0.448 0.448
Hart 2015 0.500 0.498 0.499 0.498
Kim 2019 0.805 0.805 NA NA
Kim 2020 0.451 0.451 0.462 0.461
Wang 2019 0.682 0.681 0.683 0.683
Xu 2015 0.583 0.581 0.577 0.575
Xi 2021 day10 0.810 0.810 NA NA
Xi 2021 day8 0.779 0.779 NA NA
Combined Avg 0.804 0.804 NA NA

Table 5.2: The Spearman’s Correlation of Reproduced and Original Version of CRISPRon-
V0 and CRISPRon.

In addition to these four models, I trained a CRISPR-Extra model. This model

is only used to compare the impact of different data segmentation on the model.

I get CRISPRon-Extra by randomly splitting the combined data into training

and validation sets using the train-test split function in Sklearn and training

the model with a five-fold cross-validation. Its performance is worse than that

of CRISPRon-V0, by the least 2 percents on all datasets, which represents the

importance of data pre-processing.

5.4 Model Structure Optimizing

5.4.1 Hyperparameter Search Tool

In order to be able to optimize the model structure using Algorithm 2, the search tool

should be selected to find the best hyperparameters (line 11 of Algorithm 2). I chose

to use the tool Hyperopt. Hyperopt is a distributed asynchronous hyperparameter

optimization tool and one of the most commonly used Bayesian optimizers. Multiple

optimization algorithms including random search, simulated annealing and Tree-

structured Parzen Estimator (TPE) algorithm are embedded in Hyperopt. Hyperopt

is a more advanced, modern and better maintained optimizer than other tools such

5. Experiments and Results 62

as Bayesopt, and is one of the most commonly used optimizers to implement the TPE

algorithm, which is used by Algorithm 2 to search for the structure of the model.

The process of using the Hyperopt tool consists of five steps:

1. Define the objective function. When performing this step, note that the input

to the objective function must be a Hyperopt-compliant dictionary.

2. Defining the hyperparameter space. Hyperparameters combination can be

input into the defined objective function in step 1.

3. Define the specific process of optimizing the objective function. In Hyperopt,

the basic feature that can be used for optimization is called fmin. In fmin,

one can select the algorithm used for the search. There are two options:

TPE.suggest and Rant.suggest. The former refers to the TPE method, and

the latter refers to the random grid search method. One also need to set the

number of evaluation the tool will search, and then stop.

4. Define validation functions (not always necessary).

5. Perform the optimization process.

Note that Hyperopt only supports finding the minimum value of the objective

function, but does not support finding the maximum value. Therefore, when the

defined objective function is some positive evaluation metric (such as Spearman’s

correlation), the value of the metric needs to be negated. If the objective function is

defined as a negative loss, one needs to take the absolute value of the negative loss.

Hyperopt has an early stop function earlystopfn(). When the loss does not

fall many times in a row, it can cause the algorithm to stop early. Due to the

high randomness of the Bayesian method, it may take a lot of iterations to find

the optimal solution when the sample size is insufficient. Therefore, in general, the

value of the parameters in earlystopfn() cannot be set too low.

5. Experiments and Results 63

5.4.2 Implementation of the Adaptive CRISPRon Algo-
rithm

The following input is required to execute Algorithm 2: A dataset D, A number

M ∈ [1, 30], A fully connected neural network structure S, A search range R,

and the dimension of the dataset L.

In order to compare with the CRISPRon model, I selected the combined dataset

of Xu et al. and Kim et al. as input data D, where the data annotated as the

test set in Kim et al. (2019) of the combined dataset, was not participated in

the structure optimizing and treated as an independent test set as mentioned in

subsection 5.2.2. A number M represents the number of convolutional type is set

as three, which is the same as in Algorithm 1, the algorithm Kim et al. used for

optimizing DeepSpCas9 (see Chapter 4 for details). This is to ensure that the

optimized structure is not too different from the CRISPRon structure for comparison.

At the same time, if M is too high, the search space may be large and the best

hyperparameter searching will be time-consuming. (However, changes in the value

of M may further improve the model’s performance, see section 6.1). S is kept

the same as the fully connected neural network structure in CRISPRon and the

search range R of number of filters for each convolutional type is from 20 to 140

with 10 steps. The dimension of dataset L is fixed as 30.

The algorithm is executed using the Hyperopt tool mentioned in subsection 5.4.1.

According to Algorithm 2, the Hyperopt tool needs to be run several times until the

new convolutional layer can no longer be added. Also, for each run, the Hyperopt

objective function and search space need to be redefined based on the previous

results. The objective function of Hyperopt at each time is the current model being

optimized (the model is optimized layer by layer, from the first convolutional layer),

and the target search space, as shown in Algorithm 2, shrink for each run (for the

first run, the search space is the kernel size, from 1 to 30, and the number of filters,

from 20 to 140 with 10 steps, at the first convolutional layer). The algorithm used

in searching is TPE and the number of evaluation for each run is 200, with the early

5. Experiments and Results 64

stopping number 50. The hold-out validation method, rather than five-fold cross

validation, is used during structure optimizing for lowing the searching time cost.

5.4.3 The Adaptive CRISPRon Structure

For a given input in subsection 5.4.2, Hyperopt ran a total of three times until

termination. The optimal three kernel sizes searched in the first convolutional layer

are 5, 6 and 24, and the number of filters are 140, 60 and 20.

For the second run, the best kernel size of the second (kernel size 6 at the

first layer) and third (kernel size 24) convolutional types are zero, and hence

the descendants of these two convolutional types stop growing. For the first

convolutional types, the optimal kernel size of the second convolutional layer is

3 and number of filters is 60.

For the third run, the optimal kernel size of the first convolutional type in the

third convolutional layer is 5 and the number of filters is 60.

After the third run, the output dimension of the pooling layer of the first

convolutional type is 1, and hence the descendants of these all convolutional

types stop growing.

The optimized structure is shown in figure 5.5. The fully connected layer of the

new model structure is consistent with the structure of CRISPRon, but there are

two obvious differences in the structure of the convolutional layers.

• Compared with CRISPRon, the convolutional layer structure of the new model

is not symmetric. The first convolution type has two descendants, and the

second and third convolution types don’t have any descendants.

• The convolution kernel size of one of the convolution types in the first layer of

the new model is 24, which is very large and almost covers the entire gRNA

sequence length (30nt).

These differences indicate that for some extracted features, it is necessary to carry

out further feature extraction (adding descendants for corresponding convolution

5. Experiments and Results 65

types), and it is also necessary to carry out global feature extraction for gRNA

sequences (high kernel size).

In addition, it is worth noting that a convolution type has the same kernel

size as CRISPRon. This may indicate that for gRNA, five consecutive nucleotides

contain some special features, so that the convolution type with kernel size of

5 can extract the key features.

5.5 Adaptive CRISPRon Training and Testing

According to the Adaptive CRISPRon structure obtained in section 5.4, I trained

two models, Adaptive CRISPRon-v0 and Adaptive CRISPRon. Similarly to the

way Xi et al. trained CRISPRon-V0 and CRISPRon, my two models share the same

structure while using different splits of data sets for training. Adaptive CRISPRon-

V0 is trained with a five-fold cross-validation on the partitioned data 1th to 5th of

the combined data set of Xi (2021) and Kim (2019), while the partition 6th (the

test set indicated by Kim et al.) is used as an independent internal set to measure

performance together with the external datasets. After Adaptive CRISPRon-V0 is

trained and measured, the six partitions are used to train the CRISPRon model

with 6-fold cross-validation, and the model is tested on the external independent

test sets. All the hyperparameters used in training are completely consistent with

CRISPRon and CRISPRon-V0. The learning rate of the model is 0.0001, the

optimizer is Adam, the batch size is 500, the training epoch is 3000 and the early

stopping number is 100. When cross-validating, the training of each fold was done

ten times using random seeds, and the best model from the ten was pick.

5. Experiments and Results 66

0 100 200 300 400 500
Epoch

100

120

140

160

180

200

220

240

260
M

SE
 L

os
s

CRISPRon-V0 and Adaptive CIRSPRon-V0 Epochs VS Loss
CRISPRon-V0 Training
CRISPRon-V0 Validataion
Adaptive CRISPRon-V0 Training
Adaptive CRISPRon-V0 Validation

Figure 5.6: CRISPRon-V0 and Adaptive CIRSPRon-V0 Epochs VS Loss

The epochs versus loss graph of both validation set and training set for Adaptive

CRISPRon-V0 is shown in figure 5.6, drawn by Matplotlib from the log exported by

tensor board. For comparison, the figure shows that for CRISPRon-V0 as well. As

can be seen from the figure, the loss of Adaptive CRISPRon-V0 on the validation

set starts to be lower than that of CRISPRon-V0 on the validation set at the

35th epochs, and the loss gap continues to expand after that. CRISPRon-V0 has

a minimum loss of 140.5 on the validation set (140.7 as reported by Xi et al.),

while Adaptive Crispron-V0 has a minimum loss of only 130.9 on the validation

set. Although there is no significant difference between the two models in terms of

the loss on the training set before Crispron-V0 stops early, it can still be seen that

Adaptive CRISPRon-V0 has a lower loss. Another point worth noting is that the

early stop time of Adaptive Crispron-V0 is 102 epochs later than CRISPRon-V0.

This is as expected, because the model structure of Adaptive CRISPRon-V0 is

more complex and requires more time to train.

5. Experiments and Results 67

The performance of Adaptive CRISPRon-V0 is tested on internal indepen-

dent dataset and other external datasets, and the results, with comparison with

CRISPRon-V0, in shown in table 5.3. As can be seen, Adaptive CRISPRon-

V0 outperforms CRISPRon-V0 on 9 of the 11 datasets tested, with only Hart

(2015) and Chari (2015) slightly lower than CRISPRon, where the difference is

within 0.001. The difference between the two models in the prediction of Indel

frequency on the eighth and tenth day on Xi (2021) dataset is the largest. Adaptive

CRISPRon-V0 has reached the lead of 21 percentage and 14 percentage respectively.

The differences in performance on the Chari (2015) and Doench (2014, 2016)

datasets are relatively small, with 3 percentage lags, 4 percentage leads and 4

percentage leads, respectively.

AdaptiveCRISPRonV0 CRISPRonV0
Chari 2015 0.461 0.464
Doench 2014 0.685 0.681
Doench 2016 0.452 0.448
Hart 2015 0.490 0.499
Kim 2019 0.820 0.805
Kim 2020 0.471 0.462
Xi 2021 day10 0.832 0.810
Xi 2021 day8 0.793 0.779
Wang 2019 0.690 0.683
Xu 2015 0.581 0.577
Combined Avg 0.815 0.804

Table 5.3: The Spearman’s Correlation of Adaptive CRISPRon-V0 Compared with
CRISPRon-V0

Figure 5.6 and table 5.3 indicates that adopting the Adaptive CRISPRon

structure have huge potential to obtain a model has great performance, and

surpass that of CRISPRon.

After that, I trained Adaptive CRISPRon using 6-fold cross-validation on

the combined dataset.

5. Experiments and Results 68

0 100 200 300 400 500
Epoch

100

120

140

160

180

200

220

240

260
M

SE
 L

os
s

CRISPRon and Adaptive CIRSPRon Epochs VS Loss
CRISPRon-V0 Training
CRISPRon-V0 Validataion
Adaptive CRISPRon-V0 Training
Adaptive CRISPRon-V0 Validation

Figure 5.7: CRISPRon and Adaptive CRISPRon Epochs VS Loss

Figure 5.7 shows the epochs versus loss graph of both validation set and training

set for Adaptive CRISPRon and CRISPRon. It can be seen that more data leads

to more training epochs. CRISPRon stops at about 405 Epochs, while Adaptive

CRISPRon requires about 675 Epochs.

In addition, it can be noticed that the loss does not decrease significantly

when CRISPRon (also Adaptive CRISPRon) is compared with CRISPRon-V0

(Adaptive CRISPRon-V0), as shown in table 5.2. The MSE for CRISPRon is

139.1 (not reported by Xi et al.) and for Adaptive CRISPRon is 130.1. This

is normal, as mentioned earlier, the extra data CRISPRon used for training is

only the Kim et al. annotated as the test set (and the gRNAs in combined set

that are similar to them), which is the sixth partition used for testing in training

CRISPRon-V0 (see section 5.2.2).

Figure 5.7 indicates that Adaptive CRISPRon has better performance than

CRISPRon on validation set. For testing the performance and robustness of

Adaptive CRISPRon, I run Adaptive CRISPRon on the external datasets and

5. Experiments and Results 69

the results, compared to the models with advanced performance, are shown in

table 5.4. As you can see from the table, Adaptive CRISPRon performs extremely

AdaptiveCRISPRon CRISPRon DeepSpCas9 Azimuth DeepSpCas9variants DeepHF
Chari 2015 0.461 0.464 0.439 0.356 0.252 0.416
Doench 2014 0.688 0.681 0.591 NA 0.309 0.653
Doench 2016 0.449 0.448 0.418 NA 0.330 0.370
Hart 2015 0.497 0.499 0.470 0.381 0.307 0.455
Kim 2019 cannotbetested cannotbetested 0.771 0.574 0.389 0.716
Kim 2020 0.476 0.462 0.483 0.344 0.697 0.372
Xi 2021 day10 cannotbetested cannotbetested 0.717 0.560 0.259 0.755
Xi 2021 day8 cannotbetested cannotbetested 0.693 0.547 0.248 0.725
Wang 2019 0.695 0.683 0.525 0.454 0.248 NA
Xu 2015 0.581 0.577 0.527 0.429 0.212 0.613
Combined Avg cannotbetested cannotbetested 0.727 0.563 0.295 0.738

Table 5.4: The Spearman’s Correlation of Adaptive CRISPRon Compared with Advanced
Models

well. It leads CRISPRon across almost all data sets. Except for Chari (2015) and

Hart (2015), they performed slightly worse, but the difference was within 0.002.

What’s more exciting is that Adaptive CRISPRon achieves state-of-the-art results

on Donech (2014, 2016) and Wang (2019).

Note that Kim 2019, Xi 2021 and the combined dataset of these two, cannot

be used to test CRISPRon since they have participated in the training process of

the model. However, Adaptive Crispron-V0 also achieves state-of-art performance

on these datasets. This revealed that the optimized structure produced better

performance than the CRISPRon structure.

5. Experiments and Results 70

Figure 5.5: The Structure of Adaptive CRISPRon

Chapter 6

Discussion and Conclusion

Contents
6.1 Discussion and Future Work Suggestion 71
6.2 Conclusion . 74

6.1 Discussion and Future Work Suggestion

The excellent performance of Adaptive CRISPRon can be used to develop a new

tool that can be used to accurately predict the on-target activity of gRNAs, helping

biologists design more efficient gRNAs. In addition, the Adaptive CRISPRon

Algorithm makes it possible to optimize the model based on the CNN structure.

Many models based on CNN structures, especially those used in the field of biological

sequence analysis, suffer from trade-off problems of expressiveness and robustness.

On the one hand, an overly complex structure may lead to overfitting of the trained

model due to insufficient data. On the other hand, an overly simple model structure

may fail to capture important patterns from sufficient data due to lack of flexibility,

resulting in underfitting. This problem can be alleviated by optimizing the model

structure. The adaptive CRISPRon Algorithm that I proposed can provide a certain

degree of regularization effect. In the optimization process of the model structure,

the convolution kernel size of each convolution type in each layer can be equal

to zero. This reduces the complexity of the model to some extent, similar to the

71

6. Discussion and Conclusion 72

Figure 6.1: Architecture of Metsky et al.’s Model [60]

effect of the dropout technique on the full link layer. Meanwhile, the structure is

searched by the optimization algorithm, which can find the most suitable model

structure to capture the current data pattern. Therefore, the performance of the

structure optimized by the algorithm is generally better than that of the unoptimized

structure. For example, Metsky et al. proposed an CNN-base model, although it

was used on design of nucleic acid-based viral diagnostics rather than gRNAs. It

used parallel filters of different widths (which is the convolutional type), as shown

in figure 6.1. They did not use any hyperparameter optimizing algorithm to search

the architecture (It may be good if they have enough data, but the high model

complexity may lead to overfitting for a small dataset). Using my algorithm can

further improve their structure. To be specific, the structure of their model could

be one possible outcome case of the Adaptive CRISPRon Algorithm with M input

of 30 (48 in their case, since their input dimension is 48nt).

Except the advantages mentioned above, there are still some limitations and

some work that can be further engaged. To improve on the current work, there

are some suggestions that future researchers can take as references:

1. Further optimization of CRISPRon via Adaptive CRISPRon Al-

gorithm. In order to better compare with CRISPRon, the input M of

Adaptive CRISPRon is set to 3 in this paper (the value can be from 1 to

6. Discussion and Conclusion 73

30 for CRISPRon). This means that the structure of the search model is

limited to a small scope. Future research could try different possibilities for

entering the numerical value M , which would most likely further improve

CRISPRon performance. However, please note that when the value of M is

very small or very large, the search space of the algorithm is small because

of the less number of combinations of different convolutional types, so the

running time cost is relatively low. However, when M takes an intermediate

value, the search space of the algorithm will be large, and the running time

cost is relatively high.

2. Optimize other CNN-based model that is used for gRNA on-target

activity prediction. The Adaptive CRISPRon algorithm has demonstrated

its potential on the CRISPRon model. Other CNN-based models, such as

DeepCRISPR and DeepSpCas9Variant mentioned in Chapter 3, or some future

models can use this algorithm to optimize performance.

3. Optimize CNN-based models used for other sequence analysis

tasks.The Adaptive CRISPRon Algorithm is not only limited to the task of

on-target gRNA activity prediction. It can also be used to optimize the model

used for gRNA off-target possibility prediction, or even for other biological

sequence analysis tasks such as aforementioned the task of design of nucleic

acid-based viral diagnostics, as long as the model is based on CNN.

4. To develop a better algorithm that can optimize models based on

other deep learning structures. The Adaptive CRISPRon Algorithm is

limited to optimizing CNN-based model for sequence analysis. However, the

assumption and the idea the algorithm used can be transplanted or help to

develop other structure searching algorithm, which can be used on models

based on other structures such as RNN or LSTM.

6. Discussion and Conclusion 74

6.2 Conclusion

How to predict the on-target activity of gRNA is a key issue in designing gRNA to

improve the efficiency of CRISPR-Cas9 technology. Previous models based on CNN

structure have good results for this task, but there is still room for improvement.

This paper proposes an algorithm to optimize the model based on CNN structure,

which can further improve the performance of the model. The trained model

outperforms the original model on several datasets and achieves a state-of-art

effect. The algorithm proved the importance of structure of a deep learning model

and provides possibility to improve the performance of future models for other

biological sequence analyzing tasks, such as off-target gRNA prediction and design

of nucleic acid-based viral diagnostics.

References

[1] Barry L Stoddard. “Homing endonuclease structure and function”. In: Quarterly
reviews of biophysics 38.1 (2005), pp. 49–95.

[2] Yang-Gyun Kim, Jooyeun Cha, and Srinivasan Chandrasegaran. “Hybrid
restriction enzymes: zinc finger fusions to Fok I cleavage domain.” In: Proceedings
of the National Academy of Sciences 93.3 (1996), pp. 1156–1160.

[3] Yong Zhang et al. “Transcription activator-like effector nucleases enable efficient
plant genome engineering”. In: Plant physiology 161.1 (2013), pp. 20–27.

[4] Yuanwu Ma, Lianfeng Zhang, and Xingxu Huang. “Genome modification by
CRISPR/Cas9”. In: The FEBS journal 281.23 (2014), pp. 5186–5193.

[5] Raj Chari et al. “sgRNA Scorer 2.0: a species-independent model to predict
CRISPR/Cas9 activity”. In: ACS synthetic biology 6.5 (2017), pp. 902–904.

[6] Tessa G Montague et al. “CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for
genome editing”. In: Nucleic acids research 42.W1 (2014), W401–W407.

[7] John G Doench et al. “Rational design of highly active sgRNAs for
CRISPR-Cas9–mediated gene inactivation”. In: Nature biotechnology 32.12 (2014),
pp. 1262–1267.

[8] Miguel A Moreno-Mateos et al. “CRISPRscan: designing highly efficient sgRNAs
for CRISPR-Cas9 targeting in vivo”. In: Nature methods 12.10 (2015), pp. 982–988.

[9] Guohui Chuai et al. “DeepCRISPR: optimized CRISPR guide RNA design by deep
learning”. In: Genome biology 19.1 (2018), pp. 1–18.

[10] Hui Kwon Kim et al. “SpCas9 activity prediction by DeepSpCas9, a deep
learning–based model with high generalization performance”. In: Science advances
5.11 (2019), eaax9249.

[11] Daqi Wang et al. “Optimized CRISPR guide RNA design for two high-fidelity Cas9
variants by deep learning”. In: Nature communications 10.1 (2019), pp. 1–14.

[12] Xi Xiang et al. “Enhancing CRISPR-Cas9 gRNA efficiency prediction by data
integration and deep learning”. In: Nature communications 12.1 (2021), pp. 1–9.

[13] Xenopus Xenbase. 2016. url:
https://www.xenbase.org/entry/static-xenbase/CRISPR.jsp.

[14] Thomas Gaj, Charles A Gersbach, and Carlos F Barbas III. “ZFN, TALEN, and
CRISPR/Cas-based methods for genome engineering”. In: Trends in biotechnology
31.7 (2013), pp. 397–405.

75

https://www.xenbase.org/entry/static-xenbase/CRISPR.jsp

References 76

[15] Hélène Deveau, Josiane E Garneau, and Sylvain Moineau. “CRISPR/Cas system
and its role in phage-bacteria interactions”. In: Annual review of microbiology 64
(2010), pp. 475–493.

[16] Magdalena Hryhorowicz et al. “CRISPR/Cas9 immune system as a tool for genome
engineering”. In: Archivum immunologiae et therapiae experimentalis 65.3 (2017),
pp. 233–240.

[17] Kira S Makarova et al. “An updated evolutionary classification of CRISPR–Cas
systems”. In: Nature Reviews Microbiology 13.11 (2015), pp. 722–736.

[18] Fuguo Jiang, Jennifer A Doudna, et al. “CRISPR-Cas9 structures and
mechanisms”. In: Annu Rev Biophys 46.1 (2017), pp. 505–529.

[19] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

[20] Donald E Hilt and Donald W Seegrist. Ridge, a computer program for calculating
ridge regression estimates. Department of Agriculture, Forest Service, Northeastern
Forest Experiment . . ., 1977.

[21] RJ Tibshirani. “Regression shrinkage and selection via the lasso”. In: (2011).
[22] Abhishek Sharma. “Decision Tree vs. Random Forest – Which Algorithm Should

you Use?” In: Analytics Vidhya (2020).
[23] Thais Mayumi Oshiro, Pedro Santoro PerezJosé, and Augusto Baranauskas. “How

Many Trees in a Random Forest?” In: International Workshop on Machine
Learning and Data Mining in Pattern Recognition (2012).

[24] Guolin Ke et al. “LightGBM: A Highly Efficient Gradient BoostingDecision Tree”.
In: Microsoft Research (2017).

[25] Wiki. Support-Vector Machine. Aug. 2022. url:
https://en.wikipedia.org/wiki/Support-vector_machine.

[26] Mariette Awad and Rahul Khanna. “Support Vector Regression”. In: Efficient
Learning Machines (2015).

[27] Sunitha Basodi et al. “Gradient amplification: An efficient way to train deep neural
networks”. In: Big Data Mining and Analytics 3.3 (2020), pp. 196–207.

[28] Maurice Henry Buettgenbach. Explain like I’m Five: Artificial neurons.
https://towardsdatascience.com/explain-like-im-five-artificial-
neurons-b7c475b56189. Nov. 2021.

[29] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning
representations by back-propagating errors”. In: nature 323.6088 (1986),
pp. 533–536.

[30] Michael A. Nielsen. Neural networks and deep learning.
http://neuralnetworksanddeeplearning.com/chap5.html. Jan. 1970.

[31] Dor Bank, Noam Koenigstein, and Raja Giryes. “Autoencoders”. In: arXiv preprint
arXiv:2003.05991 (2020).

http://www.deeplearningbook.org
https://en.wikipedia.org/wiki/Support-vector_machine
https://towardsdatascience.com/explain-like-im-five-artificial-neurons-b7c475b56189
https://towardsdatascience.com/explain-like-im-five-artificial-neurons-b7c475b56189
http://neuralnetworksanddeeplearning.com/chap5.html

References 77

[32] Using deep learning models and convolutional Neural Networks.
https://docs.ecognition.com/eCognition_documentation/
User20Guide20Developer/820Classification20-20Deep20Learning.htm.

[33] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for
large-scale image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

[34] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2016,
pp. 770–778.

[35] Christian Szegedy et al. “Going deeper with convolutions”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2015, pp. 1–9.

[36] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural
computation 9.8 (1997), pp. 1735–1780.

[37] Li Wan et al. “Regularization of neural networks using dropconnect”. In:
International conference on machine learning. PMLR. 2013, pp. 1058–1066.

[38] John Hertz, Anders Krogh, and Richard G Palmer. Introduction to the theory of
neural computation. CRC Press, 2018.

[39] Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks from
overfitting”. In: The journal of machine learning research 15.1 (2014),
pp. 1929–1958.

[40] Sergey Ioffe and Christian Szegedy Batch Normalization. “Accelerating deep
network training by reducing internal covariate shift”. In: arXiv preprint
arXiv:1502.03167 (2014).

[41] Agnes Lydia and Sagayaraj Francis. “Adagrad—an optimizer for stochastic
gradient descent”. In: Int. J. Inf. Comput. Sci 6.5 (2019), pp. 566–568.

[42] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep
network training by reducing internal covariate shift”. In: International conference
on machine learning. PMLR. 2015, pp. 448–456.

[43] Shibani Santurkar et al. “How does batch normalization help optimization?” In:
Advances in neural information processing systems 31 (2018).

[44] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. “Sequential model-based
optimization for general algorithm configuration”. In: International conference on
learning and intelligent optimization. Springer. 2011, pp. 507–523.

[45] James Bergstra et al. “Algorithms for hyper-parameter optimization”. In: Advances
in neural information processing systems 24 (2011).

[46] George De Ath et al. “Greed is good: Exploration and exploitation trade-offs in
Bayesian optimisation”. In: ACM Transactions on Evolutionary Learning and
Optimization 1.1 (2021), pp. 1–22.

[47] Han Xu et al. “Sequence determinants of improved CRISPR sgRNA design”. In:
Genome research 25.8 (2015), pp. 1147–1157.

[48] Nathan Wong, Weijun Liu, and Xiaowei Wang. “WU-CRISPR: characteristics of
functional guide RNAs for the CRISPR/Cas9 system”. In: Genome biology 16.1
(2015), pp. 1–8.

https://docs.ecognition.com/eCognition_documentation/User20Guide20Developer/820Classification20-20Deep20Learning.htm
https://docs.ecognition.com/eCognition_documentation/User20Guide20Developer/820Classification20-20Deep20Learning.htm

References 78

[49] Laurence OW Wilson et al. “High activity target-site identification using
phenotypic independent CRISPR-Cas9 core functionality”. In: The CRISPR
Journal 1.2 (2018), pp. 182–190.

[50] Achal Rastogi et al. “PhytoCRISP-Ex: a web-based and stand-alone application to
find specific target sequences for CRISPR/CAS editing”. In: BMC bioinformatics
17.1 (2016), pp. 1–4.

[51] Aaron McKenna and Jay Shendure. “FlashFry: a fast and flexible tool for
large-scale CRISPR target design”. In: BMC biology 16.1 (2018), pp. 1–6.

[52] Jennifer Listgarten MicrosoftResearch. MicrosoftResearch/Azimuth: Machine
Learning-based predictive modelling of CRISPR/Cas9 guide efficiency. 2016. url:
https://github.com/MicrosoftResearch/Azimuth.

[53] John G Doench et al. “Optimized sgRNA design to maximize activity and
minimize off-target effects of CRISPR-Cas9”. In: Nature biotechnology 34.2 (2016),
pp. 184–191.

[54] Nahye Kim et al. “Prediction of the sequence-specific cleavage activity of Cas9
variants”. In: Nature Biotechnology 38.11 (2020), pp. 1328–1336.

[55] Scott M Lundberg and Su-In Lee. “A unified approach to interpreting model
predictions”. In: Advances in neural information processing systems 30 (2017).

[56] Leo Breiman. “Random forests”. In: Machine learning 45.1 (2001), pp. 5–32.
[57] Ferhat Alkan et al. “CRISPR-Cas9 off-targeting assessment with nucleic acid

duplex energy parameters”. In: Genome biology 19.1 (2018), pp. 1–13.
[58] Raj Chari et al. “Unraveling CRISPR-Cas9 genome engineering parameters via a

library-on-library approach”. In: Nature methods 12.9 (2015), pp. 823–826.
[59] Traver Hart et al. “High-resolution CRISPR screens reveal fitness genes and

genotype-specific cancer liabilities”. In: Cell 163.6 (2015), pp. 1515–1526.
[60] Hayden C Metsky et al. “Designing sensitive viral diagnostics with machine

learning”. In: Nature biotechnology (2022), pp. 1–9.

https://github.com/MicrosoftResearch/Azimuth

	Introduction
	Motivation
	Contribution
	Dissertation Structure Overview

	Background
	CRISPR Background
	The Emergence of CRISPR-Cas System
	Structure of the CRISPR-Cas System
	Mechanism of CRISPR-CAS System
	The Different CRISPR Systems
	The Mechanism of CRISPR-Cas9 System in Practice

	Machine Learning Background
	Traditional Machine learning Models
	Deep Learning Models
	Implementation Details of Models

	Literature Review
	The Tools and Datasets Before CRISPRon
	Tools Based on Traditional Machine Learning Algorithms or Biological Features
	DeepCRISPR
	DeepHF
	DeepSpCas9
	DeepSpCas9variants

	CRISPRon and Xi et al.'s Dataset
	Data Generation
	Model Architecture and Training Process

	Methodology
	Methodology Analysis of Previous Work
	The Adaptive CRISPRon Algorithm

	Experiments and Results
	Data Analysis
	Data Pre-processing
	GB Biological Feature Computation
	Training Data Split
	Test Data Pre-processing

	Model Reproduction
	Model Structure Optimizing
	Hyperparameter Search Tool
	Implementation of the Adaptive CRISPRon Algorithm
	The Adaptive CRISPRon Structure

	Adaptive CRISPRon Training and Testing

	Discussion and Conclusion
	Discussion and Future Work Suggestion
	Conclusion

	References

