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Abstract

Aerosol cloud interactions (ACI) include various effects that result from aerosols
entering a cloud, acting as cloud condensation nuclei (CCN) and affecting cloud
properties. In general, an increase in aerosol concentration results in smaller
droplet sizes which leads to larger, brighter, longer-lasting clouds that reflect more
sunlight and contribute to cooling the earth. The strength of the effect is however
heterogeneous over meteorological regimes, making ACI the most uncertain driver
of radiative forcing due to human activities, and the largest source of uncertainty in
our current climate models. In our work, we estimate ACI from observational data
through the potential outcomes approach to causal inference. Based on [26], we use
machine learning approaches to estimate plausible ranges for the causal effects of
aerosols on clouds. Specifically, using the proposed method and models, we look
at satellite data from different regions, resolutions, and timescales to study how
different levels of confounding affect uncertainty bounds. To a larger extent, our
work contributes to understanding the climatological impacts of human emissions
on cloud properties. We highlight the importance of uncertainty and assumptions to
correctly assess interventions that aim to reduce global warming like geoengineering.
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1
Introduction

1.1 Motivation

Climate change is one of the major challenges of our time. The impacts are global

and unprecedented, requiring immediate and drastic actions to limit the number of

irreversible changes. Scientists use climate models to understand future projections

due to climate change and attribute shifts to anthropogenic or natural sources.

These models also allow to test different carbon emissions scenarios and help decision

makers find appropriate policies to reduce global warming. However, climate model

predictions come with uncertainties that arise from being unable to explicitly model

small-scale interactions, such as aerosol-cloud interactions (ACI) [7, 32].

Aerosol is a suspension system of fine liquid or solid particles usually non-

uniformly distributed in a gas (commonly air). There are different types of aerosols

coming from either natural or anthropogenic sources. Examples of aerosols from

natural sources include dust, sand, volcanic ash, and sea salt. Examples of aerosols

from anthropogenic sources include particulate air pollutants, smoke, and sprayed

pesticides. The overall effect of aerosols on climate is cooling, directly or indirectly.

By reflecting incoming solar radiation, and thus reducing the amount of sunlight

reaching the surface of the planet, aerosols can have a direct cooling effect. Aerosols

also serve as cloud condensation nuclei (CCN) allowing clouds to form and altering

1



1. Introduction 2

their properties like the size of their droplets, their precipitation efficacy, or their

lifetime [52]. This causes larger, brighter, longer-lasting clouds, contributing to

aerosols’ indirect cooling effect on climate. These “aerosol-cloud interactions”

are the focus of our work.

Different types of aerosols have different effects on clouds. Tthe magnitude

and sign of these effects can vary under different environmental conditions [17].

For instance, aerosols can act to either decrease or increase the size of water

droplets in a cloud [51]. To understand ACI, it is therefore crucial to identify

sources of heterogeneity.

Observing ACI using satellite, as we do, leads to a confounding problem because

aerosols are impossible to measure directly. The present work relies on a proxy,

aerosol optical depth (AOD), which is affected by nearby clouds and the local

environment [12]. Further uncertainty arises from working with finite data. Overall,

from a causal point of view, the environment acts as a confounder on ACI, which

is itself a heterogeneous effect due to its modulation by the environment. This

motivates our investigation of the effects of aerosols on cloud properties, whilst

accounting for different environmental factors. We are especially interested in

estimating the uncertainty bounds of the treatment effect of aerosols on cloud

properties for different levels of confounding.

Estimating the uncertainty related to ACI is crucial for decision-making and

scientific understanding. It is thought that the cooling effect of ACI counteracts

global warming, but the uncertainties on the sign and magnitude of this effect

are very large and justify contradicting hypotheses. Current climate models fail

to emulate ACI and have uncertainty bounds that could offset global warming

completely or double the effects of rising carbon dioxide [7]. It is therefore of

utmost importance that we improve our understanding of these interactions to

reduce their underlying uncertainties.
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1.2 Objectives

Our work uses machine learning approaches to estimate plausible ranges for the

causal effects of aerosols on clouds and derive uncertainty bounds. We report ranges

rather than point estimates because of the uncertainties arising from unobserved

confounding and working with finite data. We base our research on [26], which we

refer to as “Overcast”. There, the authors propose a method and models to estimate

continuous treatment effects. They develop a statistical uncertainty-aware sensitivity

model, the continuous treatment-effect marginal sensitivity model (CMSM), based

on the potential outcomes approach to causal inference, and relying on a feed-forward

neural network and a transformer. They evaluate their methods on a synthetic

dataset and on real-world data from satellite observations to estimate ACI.

The objective of this project is to further investigate ACI and their uncertainties

using the Overcast models. From a causal point of view, we aim to understand

how unmeasured confounding can change treatment-effect estimates. This can be

summarised as follows. First, we evaluate the method and models proposed in

Overcast by implementing baselines. Second, we look into geographical dependencies

of aerosols by studying two geographical regions (the South-East Pacific and the

South Atlantic) and two different levels of data resolution. Third, we perform an

uncertainty-aware causal sensitivity analysis to study how unmodelled confounding

variables can influence the range of plausible treatment effects for a given dataset.

1.3 Contributions

Our contributions are threefold and relate to the objectives outlined previously.

First, we find that whilst the predictor for cloud properties proposed by Overcast

is weak, it agrees with off-the-shelf regression models. Furthermore, we identify that

the Overcast transformer performs better than the feed-forward neural network

in terms of predictive power and estimates of treatment effects but has larger

ignorance regions.
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Second, we observe that Overcast models emulate ACI better in the Atlantic

than in the Pacific with low-resolution data, but worse with higher spatio-temporal

resolution data in the Pacific region. This work allows us to investigate how

varying levels of hidden confounding arising from geographical dependencies generate

different plausible ranges of treatment effects.

Third, we study unmeasured confounding across different datasets and perform

an uncertainty-aware sensitivity analysis. We find that omitting covariates reduces

uncertainty, as expected, but also yields less accurate dose-response curves. This

work is an extension to the original Overcast article in that we propose a methodology

for setting important parameters introduced in the paper, such as Λ which defines

the possible spread of outcomes. Our study also shows the importance of accounting

for violations of causal assumptions to derive realistic uncertainty bounds.

To a larger extent, our work contributes to highlighting the importance of

uncertainty when studying climate projection models to take appropriate measures.

1.4 Outline

This text contains eight chapters. The current chapter, Chapter 1 presents an

introduction to this project, highlighting our motivations, our objectives and our

contributions, and outlines the thesis structure. Chapter 2 provides background

on the topics of aerosol-cloud interactions, causal inference, and relevant topics in

machine learning. Chapter 3 formalises the problem setting. Chapter 4 presents our

methods, describing the datasets used, the Overcast models, and the experiments

performed. Chapters 5 through 7 present and analyse our results. Chapter 5 refers to

off-the-shelf regression baselines and compares the performance of the two Overcast

models. Chapter 6 investigates geographical dependencies by presenting our work on

datasets from different geographical regions and resolutions. Chapter 7 exposes our

uncertainty-aware sensitivity analysis where we further investigate unobserved con-

founding. The text ends with our conclusions in Chapter 8, summarising our research,

considering its implications and limitations, and reflecting on potential future works.



2
Background

In this chapter, the background necessary for understanding our work is provided.

Section 2.1 describes aerosols, clouds, and their interactions (ACI), as well as their

importance for climate modelling. Section 2.2 concerns causal inference, explaining

causality and the potential outcomes framework using formal statistical terms.

Section 2.3 explains core concepts of machine learning, specifically, the basics of

regression, artificial neural networks, attention mechanisms and transformer.

2.1 Aerosols, clouds and their interactions

2.1.1 Aerosols

Aerosol is a suspension system of fine liquid or solid particles usually non-uniformly

distributed in a gas (usually air). Aerosols come from various sources, with approxi-

mately 90% of the total aerosol mass from natural origins, and the remaining 10%

from anthropogenic sources [8]. Examples of aerosols from natural sources include

dust, sand, volcanic ash, and sea salt. Examples of aerosols from anthropogenic

sources include particulate air pollutants, smoke, and sprayed pesticides. The key

aerosol groups are sulphates, organic carbon, black carbon, nitrates, mineral dust,

and sea salt. Since aerosols often clump together to form complex mixtures, it is

5
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difficult to trace back their origins. They are therefore described based on their

shape, size, chemical composition, and other properties.

Aerosols can be measured by satellite and aircraft over both water and land,

and by ground-based instruments. Due to the complexity of their composition,

multiple properties are required for a full characterisation, making them difficult

to observe. However, light measurements taken by radiometers serve us as good

indicators of aerosol levels. The single most comprehensive variable for the remote

assessment of the aerosol load in the atmosphere is the aerosol optical depth (AOD),

also known as the aerosol optical thickness. It is a one-dimensional measure of

the amount of light that aerosols scatter and absorb in the atmosphere, with low

values of AOD indicating a clear atmosphere with quite high visibility, and higher

values representing higher concentrations of aerosols.

Aerosols impact climate by typically working in opposition to greenhouse gases,

exerting an overall cooling influence on the Earth both directly through their

interactions with radiation (ARI) and indirectly through their interactions with

clouds (ACI). These interactions are represented in Figure 2.2, with ARI on the

left, and ACI in the centre and on the right. Aerosol-radiation interactions (ARI)

stem from direct scattering or absorption of solar and terrestrial radiations by

aerosols [52]. The precise effect on light depends on aerosols’ properties such as

their composition, the colour of their particles, and environmental conditions. For

instance, pure sulphates and nitrates reflect nearly all radiation they encounter,

leading to cooling, whereas black carbon absorbs radiation and therefore warms

the atmosphere. Overall, the effect of black carbon is overwhelmed by the effect of

sulphates and nitrates, we thus say that aerosols have an overall cooling influence.

The indirect cooling effect of aerosols stems from aerosol-cloud interactions (ACI)

and is the focus of our project. We describe these further in the following subsections.

2.1.2 Clouds

A cloud is a visible mass of water droplets or ice crystals floating in the sky. There

are diverse types of clouds, categorised based on their location in the sky and
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their shape, which are partly determined by atmospheric conditions like pressure,

temperature, and winds.

Clouds form when water vapour condenses to liquid form in the sky. For

clouds to form, the air must not only be cool enough for water to condense but

also contain enough aerosols. Aerosols provide the non-gaseous surface required

for water to transition into the liquid state, creating a water droplet. We say

that aerosol particles acting as cloud seeds are activated as cloud condensation

nuclei (CCN). The activation itself depends on environmental properties like the

level of supersaturation within a cloud, and aerosol properties like size, shape,

and hygroscopicity, which is the capacity of a particle to attract moisture from

the air. Precipitation occurs when cloud droplets become larger because gravity

causes these droplets to fall through the air faster. The process of cloud droplet

formation is called cloud micro-physics.

To study cloud micro- and macro-physics, multiple measurements are used, as

represented in Figure 2.1 and summarised in Table 2.1. The diagrams in the top

row of this figure represent high values for each variable whereas the bottom row

represents low values. The cloud droplet concentration Nd is an indicator of the

total number of droplets present in any given volume of air. The mean cloud droplet

radius re measures the size of cloud droplets. The cloud optical thickness, or cloud

optical depth, τ measures the amount of light that a cloud prevents from passing

through it. It is linked to the brightness of a cloud. The cloud water path CWP is

the total amount of liquid water droplets in the atmosphere above a unit surface

area on the earth. The cloud fraction CF is the portion of each pixel of the sky

that is covered by clouds. It is an indicator of cloud coverage. The properties

are ordered according to the chain of causation both in the enumeration above,

the table and the figure. Namely, the number of cloud droplets affects their size

which affects a cloud’s optical thickness as well as the amount of water in the

atmosphere and the cloud coverage in the sky.
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Cloud property Notation Description

Cloud droplet number Nd
Number of water droplets in a given
volume of air

Cloud droplet radius re Mean radius of cloud droplets

Cloud optical depth τ
Amount of light that a cloud prevents
from passing through it

Cloud water path CWP
Amount of liquid water droplets in
the atmosphere above a unit surface
area on the earth

Cloud fraction CF Portion of each pixel of the sky that
is covered by clouds

Table 2.1: Cloud properties: notations and descriptions

Cloud droplet
number 

Nd

Cloud droplet
radius 

re

Cloud optical
thickness

Cloud fraction 
CF

Cloud water path 
CWP

Figure 2.1: Cloud properties. Ordered according to the chain of causation: cloud
droplet concentration Nd, cloud droplet radius re, cloud optical thickness τ , cloud water
path CWP, and cloud fraction CF. The top row represents larger values of these variables.
The bottom row represents lower values of these variables.

2.1.3 Aerosol-cloud interactions

Aerosols influence clouds’ micro-physical and macro-physical properties in multiple

ways, englobed in the term aerosol-cloud interactions (ACI). In this subsection, two

effects of aerosols on cloud micro-physics are described: the Twomey effect on cloud

reflectivity, and the Albrecht effect on cloud lifetime and coverage. The caveats of

these theories and the consequent difficulty to model ACI are then developed.

The Twomey and Albrecht effects have similar underlying mechanisms resulting

from an increase in aerosols. First, aerosols are emitted and enter a cloud where

they activate as CCN. Provided that the amount of liquid water in the cloud
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Direct effect
(ARI)

Twomey effect
(ACI)

Albrecht effect
(ACI)

Cloud droplet
formation 
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Figure 2.2: Aerosols’ cooling effect through interactions with radiation and
clouds (ARI and ACI). The top row represents higher levels of aerosols. The bottom
row represents lower levels of aerosols. Left: direct cooling effect of aerosols (ARI). Middle
and Right: indirect cooling effect of aerosols (ACI): Twomey effect on cloud reflectivity,
and Albrecht effect on cloud lifetime.
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remains constant, the same amount of liquid water is divided between more CCN

which leads to an increase in the number of droplets Nd but a decrease in their size

re. Both of these effects are represented in Figure 2.2, with the top row showing

lower levels of aerosols and the bottom row representing higher levels of aerosols.

Twomey effect: cloud reflectivity The Twomey effect asserts that an increase

in aerosols leads to an increase in cloud reflectivity [53]. The increase in the number

of cloud droplets Nd described previously results in more light being scattered.

This leads to brighter and more reflective clouds. In terms of measurements, this

can be observed by an increase in τ .

Albrecht effect: cloud lifetime and coverage The Albrecht effect states that

an increase in aerosols leads to an increase in cloud lifetime and cloud coverage [1].

The decrease in cloud droplet size re leads to droplets not being large enough

to precipitate, and thus reduced precipitation efficiency. Hence, the cloud liquid

water stays suspended for longer. The clouds then last longer or spread out more

thus increasing cloud coverage CF.

Caveats All clouds are affected by aerosols, but the effects depend on the type

of aerosols, the type of clouds and the environmental conditions [17]. There are

therefore caveats to these two effects. For example, if the aerosol is black carbon,

it absorbs the light thus making the cloud less reflective in contradiction with the

Twomey effect [9]. Aerosols can also absorb solar radiation directly thus changing

the clouds’ environment and leading to their evaporation and a decrease in cloud

coverage, contradicting the Albrecht effect. These examples give us a taste of the fact

that ACI have high spatio-temporal variability and have a non-linear dependence

on meteorological drivers like temperature, and winds.

Modelling ACI ACI are the most uncertain driver of radiative forcing due to

human activities [7, 32]. It is difficult to understand and model ACI, especially on

a global scale. This is because aerosols and aerosol types are unevenly distributed
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around the globe, travel thanks to winds and have a limited lifetime. Moreover,

since diverse types of aerosols and environmental conditions have different effects

on clouds in terms of magnitude and sign, their impacts are mostly regional. For

instance, sand and black carbon are found in distinct geographical regions and

affect clouds differently. In technical terms, it is said that the effect of aerosols

on cloud properties is heterogeneous and confounded by environmental conditions.

The difficulty to measure aerosols and aerosol-clouds interactions, the inability to

perform experiments, and the lack of baselines for the pre-industrial era all hinder

research and contribute to these uncertainties.

2.1.4 Importance of ACI for climate modelling

Climate models are computer simulations of the Earth’s climate system which are

used to understand and predict its behaviour. Models differ in their method, they

can be physical or statistical, and the scale of the processes they model. Physical

models rely on mathematical equations of physical, chemical and biological processes

whilst statistical models make use of data to uncover physical relations.

Modelling and experimentation increase our understanding of complex processes

involved in climate change as a function of anthropogenic and natural changes that

are affecting our climate. Climate models are essential to test different carbon

emissions scenarios and help decision makers find appropriate policies to reduce

global warming. It is therefore of utmost importance to improve accuracy and

reduce uncertainties of these models to act appropriately to reduce climate change.

Although models are tested by running simulations of past events and improved

using real-world observations, there remain uncertainties and approximations. Most

current climate models, called general circulation models, do not have a high

enough resolution to capture cloud processes. ACI thus remain the largest source

of model uncertainty [7, 32]. Overall, it is estimated that the cooling effect of

aerosols overcomes their warming effect and that aerosols counteract the effects of

greenhouse gases. To give an order of magnitude, current climate models fail to

emulate ACI to the extent that they have uncertainty bounds that could offset global
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warming completely or double the effects of rising carbon dioxide [7]. Understanding

how human emissions affect the ability of clouds to cool our planet and reducing

uncertainties is crucial to accurately assess climate intervention methods, particularly

geoengineering methods involving cloud seeding. This highly motivates research

on ACI and encourages scientists to investigate the effects of the environmental

surroundings of clouds and aerosols on cloud properties.

2.2 Causal inference

In this section, background on causality and its core principles are given. We start

by defining and motivating causal inference, then illustrate our point with Pearl’s

ladder of causation, and finally introduce the potential outcomes framework. We

use results and definitions from [34, 37–40].

2.2.1 Definition and motivations

Causal inference is the process of drawing conclusions about cause and effect. It

consists in analysing the response of an effect variable, also called outcome, when

one of the causes of this variable, also called treatment, is changed. Formally, we

are interested in estimating the effect of a treatment (aerosols), denoted by the

random variable T ∈ T , on outcomes of interest (cloud properties), denoted by

the random variable Y ∈ Y, for a unit i described by covariates (environment)

represented by the random variable X ∈ X .

The main problem motivating causal inference can be summarised in the phrase

“association is not causation”, more widely known as “correlation does not imply

causation”. This amounts to saying that observing statistical association between

two variables Y and T does not allow to conclude on the effect of T on Y. For

example, we can observe that as ice cream sales increase, the rate of drowning deaths

increases. This observation is however insufficient to conclude about the causal

relationship between ice cream consumption and drowning, and we must account

for the season, temperature and exposure to water-based activities, which are all

confounding effects. This example highlights that statistical association is a mixture
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of causal association and confounding association. Causal inference aims to uncover

causal patterns from mere association, notably by controlling for confounders.

It is a critically important task in a variety of fields such as climate science,

healthcare, and economics. We may be interested in studying the effect of envi-

ronmental policies on emissions and climate change, or the effect of a treatment

on a disease. Overall, causal inference is not merely a tool but a paradigm to

answer a specific type of question.

2.2.2 Ladder of causation

In [40], Pearl describes three steps of learning about causality, represented by what

he calls the Ladder of Causation, represented in Figure 2.3. At the first rung,

we uncover association by seeing, and answering the question “What if I see . . . ”.

It entails observing regularities or patterns in data. The second rung is that of

intervention, where we learn by doing and address the question “What if I do . . . ”.

We predict the effects of deliberate actions and infer causal relationships. The third

rung is about imagining and constructing a theory explaining why actions have

specific effects and reason about the absence of these actions. It sits in the realm of

counterfactuals where questions are of the form “What if I had done . . . ”.

Standard statistical methods and machine learning enable us to access the first

rung of this ladder. Scientific experimentation elevates us to the second rung,

provided we rigorously follow the scientific method. This rung and the third one

can also be attained through causal knowledge and further assumptions.

Let us now reason about the example of aerosols and clouds, and address the

question: “Does an increase in aerosol lead to a decrease in cloud droplet size?”. The

naive way to answer this question consists in comparing conditional expectations

of the size of cloud droplets given different aerosol levels. Unfortunately, due

to confounding effects like meteorological conditions, this reasoning only allows

us to infer statistical association and not causation. The most natural way to

reason causally would be to climb to the second rung of the ladder and perform

experiments. Unfortunately, experimenting is impractical in this case, and in general
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Figure 2.3: “The Ladder of Causation, with representative organisms at each level.
Most animals, as well as present-day learning machines, are on the first rung, learning
from association. Tool users, such as early humans, are on the second rung if they act by
planning and not merely by imitation. We can also use experiments to learn the effects of
interventions, and presumably, this is how babies acquire much of their causal knowledge.
Counterfactual learners, on the top rung, can imagine worlds that do not exist and infer
reasons for observed phenomena. (Source: Drawing by Maayan Harel.)” [40]

often expensive or unethical [43]. Some scientists turn to natural experiments, where

they study natural perturbations such as ship tracks, or hemispheric differences

and consider differences in the northern and the southern hemispheres as a proxy

to estimate post-industrial and pre-industrial aerosols respectively [11, 21, 47]. It

remains however unclear how representative these natural experiments are in the

grander scheme of studying the global response of clouds to aerosols. Climate

scientists should therefore climb to the last rung of the ladder, modelling with
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both experimental and observational data, and using further assumptions to reason

in the world of counterfactuals.

2.2.3 Potential outcomes framework

We describe one of the frameworks to study the causal question “What if I had

done . . . ”, the potential outcomes framework, also known as the Neyman-Rubin

causal model [43, 44, 48, 49].

Notation Recall that we are interested in estimating the effect of a treatment,

denoted by the random variable T ∈ T , on outcomes of interest, denoted by the

random variable Y ∈ Y, for a unit i described by covariates represented by the

random variable X ∈ X . In what follows, we use upper-case letters to denote random

variables and lower-case letters to denote values that these random variables take

on. We assume that we have observational data Dn consisting of n realisations of

the random variables so that Dn = {(xi, ti, yi)}n
i=1. We call a potential outcome

denoted by Yt what the outcome would be if the treatment were t. It is distinct

from the observed outcome Y because not all potential outcomes are observed. We

assume that the tuples (xi, ti, yi) are independent and identically distributed (i.i.d.)

samples from the joint distribution P (X, T, YT) where YT = {Yt | t ∈ T }.

Treatment effect and identifiability A causal estimand of interest is the

individual treatment effect. The best way to evaluate this quantity would be to

observe all potential outcomes for a given individual, but this is impossible and

known as the fundamental problem of causal inference [25, 43]. One can however

study other causal estimands, like the conditional average potential outcome (CAPO)

and the average potential outcome (APO):

CAPO = µ(x, t) := E [Yt | X = x] and APO = µ(t) := E [µ(X, t)] . (2.1)

Unfortunately, with data from the observational distribution P (X, T, YT), one can

only compute the following estimates:

µ̃(x, t) = E [Y | T = t, X = x] and µ̃(t) = E [µ̃(X, t)] . (2.2)
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Naturally, once can wonder how the APO µ(t) and the CAPO µ(x, t) relate to the

observational estimates µ̃(t) and µ̃(x, t). Formally, this is known as identifying a

causal effect, that is, reducing a causal expression to a purely statistical expression.

Identifying the APO and the CAPO from observational data requires additional

assumptions which we describe before formally proving identifiability.

Unconfoundedness The first assumption is ignorability and states that units

are randomly assigned their treatment. It guarantees that the treatment groups

are comparable. It is written:

YT ⊥⊥ T. (2.3)

In practice, this assumption is unrealistic as there are likely to be confounding

variables, especially with observational data. Confounding variables are variables

that have an impact on the results of a statistical test but are not the variables that

causal inference is studying. For example, meteorological conditions (like winds

and pressure) affect both aerosols and cloud properties and therefore confound the

influence of aerosols on cloud properties. We therefore adjust our assumption by

controlling for confounding variables by conditioning. This assumption is called

unconfoundedness, or conditional ignorability, and is written:

YT ⊥⊥ T | X. (2.4)

It implies that E [Yt | T = t′, X = x] = E [Yt | T = t, X = x] for any t, t′ ∈ T .

Positivity Intuitively, it seems like we can fit as many covariates into X as

possible to ensure unconfoundedness. Unfortunately, doing so can be detrimental

to the positivity assumption. This assumption states that all subgroups of the

data with different covariates have a non-zero probability of receiving any dose of

treatment. Formally, for any x ∈ X such that P [X = x] > 0, we must have

P [T = t | X = x] > 0 ∀t ∈ T . (2.5)
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There is therefore a trade-off between positivity and unconfoundedness due to the

curse of dimensionality and working with finite data, as with large X and continuous

treatment, it is unlikely that we observe all treatment levels for each x ∈ X.

No interference Furthermore, we need the no interference assumption which

states that a single unit’s outcome is not affected by other units’ treatment.

Consistency Finally, we assume consistency which states that a unit’s observed

outcome Y given treatment t is identical to their potential outcome, written:

Y =
∑
t∈T

Yt · 1[T = t], (2.6)

where 1 denotes the indicator function so that 1[T = t] is 1 if T = t otherwise 0.

Proof of identifiability Let us now assume no interference and prove that the

CAPO and the APO are identifiable from the observational distribution P (X, T, YT)

by adapting a proof from [34]:

µ(t) = E [µ(X, t)] by definition

= E [E [Yt | X]] by definition

= E [E [Yt | T = t, X]] by unconfoundedness (2.4) and positivity (2.5)

= E [E [Y | T = t, X]] by consistency (2.6)

= E [µ̃(X, t)] by definition

= µ̃(t). by definition

In summary, with the assumptions enumerated above, we can infer causal

relationships from observational data. In our case, using satellite observations

theoretically allows us to infer the effect of aerosols on clouds. In practice, the

present thesis explores limitations of this reasoning, especially when some of the

assumptions are violated.
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2.3 Machine learning

Machine learning aims to uncover complex relationships and patterns in datasets. It

builds methods that “learn” from data to perform specific tasks. Algorithms

are assessed on their capacity to generalise to unseen data rather than just

memorising training data.

Formally, the aim is to learn a function fθ from an input space X to an output

space Y. Methods are designed to learn this function automatically from data,

adjusting the parameters θ. It can be viewed as an optimisation problem, searching

for appropriate values of θ to optimise a loss function L(θ). For this, we make use of

a training dataset D. In supervised learning, D consists of input output pairs (x, y) ∈

(X , Y), whereas in unsupervised learning D only consists of input data x ∈ X .

2.3.1 Regression methods

Ordinary least squares linear regression Assume the dataset is labelled,

D = {(xi, yi)}N
i=1, and the aim is to predict real-valued numbers, Y = R from

D-dimensional input, X = RD. If we assume a linear relationship between inputs

and output, the data can be modelled using linear regression. A prediction for a

single data point (x, y) ∈ (RD,R) is then of the form:

ˆ̄y = fθ(x) = w0 + w1x1 + w2x2 + · · · + wDxD = w0 +
D∑

i=1
wixi,

where ȳ = E [y | x] and w is one of the parameters included in θ. For ease of

notation, a dimension x0 = 1 is added to the input data so that

ˆ̄y = fθ(x) = w · x.

The least squares estimate looks for w that minimises the following:

L(w) =
N∑

i=1
(yi − ˆ̄yi)2.

Through basic calculus, we obtain a closed-form optimal solution

w⋆ = (XTX)−1XTy,

where X is the matrix of all input points (called the input matrix), and y is the

vector of all outputs (called the output vector).
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Regularisation Overfitting is a problem that arises when the model is too

complex, fits exactly the training data, and cannot generalise to unseen data.

To prevent overfitting, we can use regularisation techniques. The idea is to add

a penalty or regularisation term to the loss function. This term is a function

of the model’s parameters θ. For example, the Ridge regression penalises large

weights and takes the following form:

L(θ) =
N∑

i=1
(yi − ŷi)2 + λ

D∑
i=1

w2
i ,

where λ > 0 is a hyperparameter that controls the strength of the regularisation.

There are other forms of regularisation, such as Lasso, which are not discussed here.

Gradient descent Depending on the form of the loss function, its minimum does

not necessarily have a closed-form solution. In such case, we can use optimisation

techniques such as gradient descent, or variants, to approximate θ⋆ [45]. The

idea is to iteratively update the parameters θ by taking a step in the direction

of the gradient. If we denote the gradient of the loss function as ∇L(θ), then

the update is given by:

θ(n+1) = θ(n) − η∇L(θ),

where η > 0 is the learning rate, a hyperparameter that controls the size of

the step at each iteration.

Polynomial feature expansion When there is no linear relationship between

the inputs and the output, we can complexify either the model or the representation

of the data. Polynomial feature expansion is a technique that allows modelling of

the data using a higher order polynomial. The idea is to expand the input space

by adding polynomial features using a map ϕ. For example, to learn quadratic

relationships with a two-dimension input of the form x = (x0, x1), we can use
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the following map:

ϕ(x) =



1
x0
x1
x2

0
x2

1
x0x1


.

We can then fit a linear model to the transformed data and learn non-linear relation-

ships.

Evaluating performance To evaluate a model’s performance, we can use various

techniques and metrics. One can study the prediction error plot, which is a

scatter plot of the predicted values ŷ against the observed values y. An associated

metric is the squared Pearson correlation coefficient, denoted r2. It is a measure

of linear correlation between two sets of data, namely the predicted values and

the observed values. We have:

r2 = 1 −
∑n

i=1(yi − ˆ̄yi)2∑n
i=1(yi − ȳ)2

where n is the number of observations, yi is the ith observed value, ŷi is the ith

predicted value, and ȳ = 1
n

∑n
i=1 yi is the mean of all observed values. The values of

this coefficient range from 0 to 1. A value of 1 indicates a perfect linear correlation,

whilst values closer to 0 indicate a weaker linear correlation.

2.3.2 Artificial neural networks

Artificial neuron Artificial neurons were conceived as mathematical models of

biological neurons and are now the building blocks for artificial neural networks

which are at the core of modern machine learning and deep learning. Neurons,

whether artificial or biological first receive an input signal and then process it

before sending an output signal. An artificial neuron receives some input x, and

performs some linear transformation using a weight vector w. We obtain w · x,

called the pre-activation, where a dimension is added to x to account for the bias
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term. It is then passed to a non-linear function f , known as the activation function,

to obtain the output ŷ. Formally, we have

ŷ = f(w · x) = f

(
w0 +

D∑
i=1

wixi

)
,

as shown in Figure 2.4. The input signal is on the left, each component is multiplied

by a corresponding weight wi represented in a circle. These products are added

together, and the result is passed through the activation function f , inside the

unit, to obtain the output ŷ.

1

Figure 2.4: Artificial Neuron. The input signal on the left is multiplied by weights
wi, these products are added together, and the result is passed through the activation
function f to obtain the output ŷ.

A famous example of an artificial neuron is the perceptron, which is a simple

linear classifier invented by McCulloch and Pitts in the 1960s and implemented

by Rosenblatt in the 1970s. It separates data between two classes 1 and 0 and is

therefore called a binary classifier. The predictions are as follows:

f(x) =

1 if w · x > 0
0 otherwise

(2.7)

Put more simply, it is an artificial neuron with a threshold activation function.

Feed-forward neural networks To learn non-linearly separable patterns, we

can stack multiple layers of perceptrons together, creating a Multi-Layer Perceptron

(MLP). More generally, we use neural networks which were inspired by the way

biological nervous systems process information and are more general than MLP.
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A neural network is a collection of interconnected artificial neurons, called units,

organised into layers as shown in the diagram in Figure 2.5. The first layer (in

blue) is called the input layer and processes the raw input data. The last layer

(in red) is called the output layer and produces the prediction of the network.

All the layers in between are called hidden layers (in green). This is where the

data processing is done, and the number of hidden layers directly impacts the

processing power of the network. At each layer, the units are connected using

weights. Each unit, or artificial neuron, works as described earlier, computing a

weighted sum of the inputs (called pre-activation) and then applying a non-linear

function (called the activation function) to obtain the activation which will be

passed on as input to the next layer’s units.

Figure 2.5: Artifical neural network with input of dimension 3 (in blue), 2 hidden
layers (in green) and output of dimension 2 (in red). Each arrow represents a weight
learnable through backpropagation and each circle represents a unit with summation and
a non-linear activation function.

Backpropagation The aim is to optimise the network’s weights to minimise

the loss function over all training datapoints. This optimisation is often done

using gradient descent, but variants are also used depending on the type of loss

function, the size of the training dataset, the loss landscape and others. To “learn”

the weights, we need to know how the network’s predictions are affected by the

input data. For this, we use the backpropagation algorithm, which is a method

of learning that uses the error of the network’s predictions to adjust the weights

of the network [46]. The error is computed through a loss function and is used to

determine the direction and the magnitude of the weight adjustment.



2. Background 23

Activation functions Various activation functions can be used in artificial neural

networks depending on the type of problem and the input. The ReLU function

is very common for regression problems:

ReLU(x) = max(0, x).

The Leaky ReLU function is a variant of the ReLU function, with a small negative

slope α determined by the user. This function is used to circumvent the problem

of vanishing gradients, that is, gradients that are too small to be useful:

LeakyReLU(x) = max(0, x) + min(0, x) · α.

The SoftMax function is often used as the last activation function of a neural

network to produce a probability distribution over the output classes:

SoftMax(x)j = exj∑n
i=1 exi

.

The SoftPlus function is a smooth approximation of the ReLU function, with a

parameter β determined by the user:

SoftPlus(x) = 1
β

ln(1 + eβx).

Ensemble methods When a single estimator is not good enough to predict

the output, an ensemble method can be used to combine the predictions of

multiple estimators. Two families of ensemble methods are available: bagging

and boosting. Bagging stands for bootstrap aggregating and is a technique where

several independent estimators are built independently using subsets of the training

data. The predictions of each predictor are then combined by averaging. By

contrast, boosting consists of sequentially building estimators, attempting to reduce

the bias of the combined estimator.

Regularisation A widely used regularisation technique is the dropout technique

which is used to prevent overfitting [23, 50]. It consists in randomly omitting, or

“dropping out” a fraction of the units during the training process. Effectively, it

amounts to making the training process noisy and therefore preventing co-adaptation

of the units, where each layer would correct for mistakes of previous layers.
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Residual connections Residual, or shortcut connections were introduced by [22]

to facilitate the optimisation and improve the accuracy of very deep networks. In

traditional neural networks, data flows through each layer sequentially, and the

output of each layer is used as input to the next layer. Residual connections provide

another path for data to reach the latter parts of the network by skipping some

layers, as shown in Figure 2.6. Residual networks can still be trained end-to-end

using stochastic gradient descent and backpropagation.

Figure 2.6: Residual network building block: residual connection. [22]

2.3.3 Attention and transformer

Attention mechanism Attention mechanisms in machine learning aim to mimic

cognitive attention, the process allowing the human brain to select and focus on

relevant stimuli. A typical example inspired by the real world is that of the cocktail

party problem [10]. This effect describes the brain’s ability to focus one’s auditory

attention on a single conversation in a noisy room, but the concept applies to many

situations. Attention mechanisms aim to pick out salient information from noisy

data. In computer science models, this is done by enhancing parts of the information

whilst diminishing other parts. Attention allows us to model dependencies between

sequences with respect to their relative importance rather than to their relative size

or distance, thus allowing us to make use of context. It is commonly used in the field

of neural machine translation (translation using deep learning) and aims to answer

the question: “What parts of the input should one focus on for predicting specific

parts of the output”. For example, when translating sentences from one language to



2. Background 25

another, proximity is not necessarily the best proxy for usefulness and attention

allows to capture longer-range dependencies and unveil relationships between words.

Implicit attention Most neural networks have implicit attention in that they

respond more strongly to certain parts of the data than others. Studying a network’s

Jacobian allows one to analyse the sensitivity of the network’s outputs with respect

to the inputs and thus study its implicit attention.

Explicit attention Explicit attention allows more flexibility, computational

efficiency, scalability and interpretability. Introduced by [3], it relies on creating

a context vector for every token in the input sequence. The context vector allows

to capture more global information relevant to the current token and thus to the

output. General attention mechanisms make use of three components: keys, queries

and values. In machine translation, each word or token in an input sentence would

be attributed its own query, key and value vectors, which are computed using

weight matrices learnt by the network.

Hard and soft attention [56] introduces two types of attention: hard attention

through glimpses and soft attention. In the context of image data, hard attention

consists of fixed-size windows moving around the image. It is trained using

reinforcement learning techniques since it is not differentiable. It is particularly

useful for robots as they have restricted access to data and cannot “see” everywhere.

Soft attention on the other hand is more flexible and can be trained end-to-end

using backpropagation as it is differentiable. It relies on data-dependent dynamic

weights that can change through runtime rather than fixed-size glimpses. In the

context of image data, soft attention allows combining focus on multiple parts of

the image at once through weighted image features.

Transformer Standard methods prior to [54] made use of attention as part of

larger artificial neural network architectures such as long short-term memory [24] or

gated recurrent neural networks [13]. [54] introduced the transformer which relies
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Figure 2.7: The Transformer: model architecture [54]

entirely on attention to draw global dependencies between input and output. The

architecture of the transformer is represented in Figure 2.7. It is composed of an

encoder (on the left of the figure) and a decoder (on the right of the figure). Encoder-

decoder architectures are commonly used in machine translation, where the encoder

is used to encode the input sequence into a more compact representation, and the

decoder is used to decode the output sequence from the encoder’s representation.

Working with more compact representations improves efficiency and helps with

learning longer-range dependencies. The model is said to be auto-regressive at

each step, meaning that previously generated output is used as additional input

during the following step. Positional encodings allow making use of the order of

the sequence by injecting information about the relative and absolute position

of the tokens in the sequence.
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Self-attention The transformer uses a self-attention mechanism to relate different

positions of a single sequence and thus compute a representation of the said

sequence. Figure 2.8(a) shows the attention mechanisms used in the transformer,

called the scaled dot-product attention. The input consists of queries and keys

of dimension dk, and values of dimension dv, which are derived from tokens in

the input sequence. In practice, the keys, values and queries can be packed

together into matrices K, V and Q respectively, so that the attention value can be

computed on multiple queries simultaneously. In mathematical terms, the scaled

dot-product attention is defined as:

Attention(Q, K, V ) = SoftMax
(

QKT

√
dK

)
V.

Multi-head attention is a generalisation of the scaled dot-product attention,

where the queries, keys and values are split into multiple heads. Having multiple

heads allows attending to different parts of the sequence differently, whilst performing

the computations in parallel. Figure 2.8(b) shows the mechanism, which can

be written as:

Multi-Head Attention(Q, K, V ) = Concatenate(head1, . . . , headh)W O (2.8)

where headi = Attention(QW Q
i , KW K

i , V W V
i ), (2.9)

where W O, W Q, W K and W V are learnable parameter matrices.

(a) Scaled dot-product (b) Multi-head attention

Figure 2.8: Self-attention mechanisms: scaled dot-product and multi-head attention [54]



3
Problem setting

In this chapter, the problem is set formally and the research questions are stated.

This chapter begins with a definition of the causal model used in this work in

Section 3.1, followed by a description of the framework of the uncertainty and

sensitivity analysis performed in Section 3.2, and the formulation of our research

questions in Section 3.3.

3.1 Causal setting

This work is interested in unveiling the effect of aerosol (a) on cloud properties.

Aerosols affect multiple cloud properties including the cloud droplet radius (re), the

cloud optical depth (τ), the cloud water path (CWP) and the cloud fraction (CF).

In the present thesis, to simplify the analysis and ease understanding, results are

reported mainly for the cloud droplet radius (re). The simplified causal diagram

is represented in Figure 3.1, with treatment in purple and outcomes in red. In

this diagram and the following, arrows represent causal relationships, an arrow

from A to B indicates that A causes B.

Unfortunately, aerosols are unobservable through satellites because of masking

clouds. We therefore only observe the aerosol optical depth (AOD) which we use as

a proxy for aerosol. AOD is however affected by local environmental processes [12],

28
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a re CWP CF

Figure 3.1: Simplified causal diagram of ACI. Aerosol concentration (a, regarded as
treatment, in purple) modulates cloud properties (in red) including cloud optical depth
(τ), cloud droplet radius (re), cloud water path (CWP) and cloud fraction (CF).

which also affect cloud processes. For instance, humidity affects both AOD, through

aerosol swelling, and cloud micro-physics [2]. Whilst ACI is a causal problem at its

core, as shown in Figure 3.1, the inability to observe aerosols directly leads to a

confounding problem wherein the effects of aerosols on clouds are mixed in with other

effects which results in a distortion of the true relationship. The causal diagram is

represented in Figure 3.2: AOD, considered as the treatment and represented in

purple modulates cloud properties, considered as outcomes and represented in red.

Environmental processes, represented in blue, act as confounders, affecting both the

treatment and the outcomes, through cloud processes. The dashed line represents

the effect between aerosol and cloud properties, that is, the effect of interest.

AOD

Env. Proc Cloud.
Proc CWP CFre

Figure 3.2: Causal diagram of ACI with confounding from environmental and
cloud processes. Environmental and cloud processes confound the effect of aerosol on
cloud properties. AOD (treatment, purple) modulates cloud properties (outcomes, red).
Environmental processes (in blue) and cloud processes (in red) act as confounders. The
dashed line is the effect of interest, measured with the APO.

Since environmental and cloud processes are impossible to directly observe

from satellite data, we use meteorological proxies such as relative humidity (RH),

sea surface temperature (SST), estimated inversion strength (EIS), vertical winds

(ω500) and lower tropospheric stability (LTS). These meteorological proxies are
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selected because they are thought to be a good approximation for temperature,

pressure and saturation, which all impact cloud processes.

AOD

re CWP CFEISLTSRHx SST

U

Figure 3.3: Causal diagram of ACI we report within. AOD (treatment, purple)
modulates cloud properties (outcomes, red), which are confounded by meteorological
proxies (covariates, blue) and unobserved confounding (grey).

This work investigates how unobserved confounding variables, such as the

environment, and the use of AOD as a proxy for aerosol, change the estimates

of the effects of aerosol on cloud properties whilst controlling for meteorological

proxies, as shown by the causal diagram in Figure 3.3.

3.2 Uncertainty and sensitivity analysis

Using observational data requires knowledge about the characteristics of the

population and generally leads to lower certainty in the estimated causal effects.

This is because the assumptions needed for identifiability of the conditional average

potential outcome (CAPO), such as unconfoundedness, are unrealistic in practice,

and often untestable with observational data. These assumptions are especially

problematic in the continuous treatment regime. Violation of these assumptions

induces bias in the estimates of causal effects, that is, µ̃(X, t) can be an arbitrarily

biased estimate of the CAPO µ(X, t).

When performing uncertainty and sensitivity analysis, we want to understand

how robust our estimates are to the violation of assumptions and compute un-

certainty bounds with respect to the relaxation of these assumptions. For this,
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we quantify the degree of violation of the assumptions and derive intervals of

possible causal effects. The width of the interval increases as the assumptions

are challenged more severely.

We focus on the violations of two main assumptions: unconfoundedness and

positivity. We note the trade-off between these two assumptions, where fitting as

many covariates into X as possible ensures unconfoundedness but violates positivity

due to the curse of dimensionality. We describe possible violations more precisely

using the framework of the continuous treatment-effect marginal sensitivity model

(CMSM) introduced by [26].

Unconfoundedness violations Confounding variables are unobserved factors

that influence the treatment assignment or outcomes, and thus manifest as variance

in the estimates of the outcome and propensity density for treatment. Unobserved

confounding variables, that is, variables that we know impact the treatment

assignment or the outcome, but that we do not observe, lead to the violation

of the unconfoundedness assumption shown in Equation (2.4). The CMSM proposes

a parameter Λ to explain a certain level of violation of the unconfoundedness

assumption [27, 28]. This parameter relies on the observation that any divergence

between the unidentifiable P [Yt | X = x] and the identifiable P [Y | T = t, X = x]

is indicative of hidden confounding. Working with densities instead of probabilities

and using measure theory, the authors set

λ(yt; x, t) = p(t | x)
p(t | yt, x) .

Whilst λ cannot be identified from data alone, the CMSM enables domain experts

to set a degree of hidden confounding using the parameter Λ such that

Λ−1 ≤ λ(yt; x, t) ≤ Λ,

that is, hypothesising that p(t | x) and p(t | yt, x) differ by at most Λ. Intuitively,

Λ represents the proportion of range in unexplained outcome Y coming from

unobserved confounders after observing the covariates x and the treatments t.
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In our study, confounding comes from three main sources: aerosols, clouds, and the

environment. The aerosol proxy does not allow us to access aerosol type, size, or

hygroscopicity which are all confounders of ACI. We also rely on meteorological

proxies to capture environmental processes which confound ACI. Clouds are moreover

interconnected in real life but not in our model. All of these simplifications lead to

unmeasured confounding in our model which we discuss throughout this work.

Positivity violations Since the observed data is finite and the treatment is

continuous, it is almost always impossible to observe all treatment levels for every

covariate value describing a set of units, thus violating the positivity (or overlap)

assumption shown in Equation (2.5) [15]. The CMSM proposes that positivity

violations are linked to statistical uncertainty. Indeed, statistical uncertainty is

high where the overlap is weak, that is, where few treatment levels are observed for

a given covariate value. They build (1 − α) statistical confidence intervals for the

upper and lower bounds and suggest that the parameter α can be used to describe

different levels of violations of the positivity assumption.

3.3 Research questions

Our work consists of the study of the artificial neural networks described in [26]

(Overcast) to estimate the effects of aerosols on cloud properties. We also perform an

uncertainty and sensitivity analysis to study hidden confounding using the CMSM,

which allows accounting for various levels of violations of the unconfoundedness and

positivity assumptions through the parameters α and Λ. Our work is articulated

around the following research questions:

1. How well do the Overcast models emulate ACI in terms of predictive accuracy

and treatment-effect estimates?

2. How well do the Overcast models capture geographical dependencies of ACI?

3. How does unmeasured confounding affect plausible ranges of treatment-effect

estimates of ACI?
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Experimental setup

This chapter details the experimental setup. The data is described in Section 4.1,

with an explanation of the data sources, the datasets used and the pre-processing

steps applied. In Section 4.2, the Overcast model architecture for both the feed-

forward neural network and the transformer is described and illustrated. Details

about our implementation, and the training and tuning procedures are provided

for reproducibility in Section 4.3, and the general setup for our experiments is

given in Section 4.4.

4.1 Data

4.1.1 Data sources

Data is in the form of tabular data that has been retrieved from re-analyses

of satellite observations. The Moderate Resolution Imaging Spectroradiometer

(MODIS) instruments aboard the Terra and Aqua satellites observe the Earth

at approximately 1 km × 1 km resolution [4]. These observations are fed into

the Modern-Era Retrospective Analysis for Research and Applications version

2 (MERRA-2) real-time model to emulate the atmosphere and its components,

such as aerosols [19]. MERRA-2 calculates global vertical profiles of temperature,

relative humidity, and pressure, and assimilates hyperspectral and passive microwave

33
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Observations for a single day:  
 grids of  pixels,  

each cell contains observations for one pixel 

Daily means:   
single grid of  pixels,  

each cell contains average of  daily observations 

Daily Mean

Figure 4.1: Schematic representation of the datasets. For each day, there are nacq

grids of satellite observations of nlats × nlons pixels of a given size. These grids can be
averaged to obtain daily means of observations.

satellite observations to enhance its ability to model Earth’s atmosphere. The data

studied are MODIS observations from the Aqua and Terra satellites collocated

with MERRA reanalyses of the environments.

Aerosol optical depth (AOD) at 550nm from MERRA-2 is derived from MODIS

observations of aerosol from multiple satellites (Terra, Aqua, Suomi-NPP), with

corrections for sunglint and near-cloud optical effects [6]. The cloud droplet radius

re is found for pixels that are both probably or definitely cloudy according to

the MODIS Cloud Mask. The NOAA CMORPH CDR precipitation product is

found by integrating multiple observations of precipitation from both satellite and

in-situ sources. Sea surface temperature (SST) from NOAA WHOI CDR is found

using multiple observations of surface brightness temperature and incorporating

precipitation estimates to better approximate the effects of the diurnal cycle on sea

surface temperature. The data sources are summarised in Appendix A.

4.1.2 Datasets

Figure 4.1 is a schematic representation of the datasets. For each day, there are

nacq grids of observations of nlats × nlons pixels of a given size, where nacq is the

number of acquisitions in a given day, nlats is the number of pixels along the latitude
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and nlons is the number of pixels along the longitude. These grids can be averaged

to obtain daily means of observations, as shown on the right of the figure. The

size of each pixel depends on the spatial resolution of the dataset. In the native

observations, the pixels have a size of 1 km × 1 km.

We use three different datasets: (1) low-resolution data from the South-East

Pacific (LR Pacific), (2) low-resolution data from the South Atlantic (LR Atlantic)

and (3) high-resolution data from the South-East Pacific (HR Pacific). For the

low-resolution datasets, we use the 1◦ × 1◦ daily observed means of clouds, aerosol

and the environment. For reference, 1◦ is approximately 110 km. This allows

homogenising our observations of clouds and the atmosphere. Schematically, this

is the case on the right of Figure 4.1 with pixels of size 1◦ × 1◦, and 15 years of

data (from 2004 to 2019). For the high-resolution dataset, we use the gridded 25

km × 25 km resolution of the cloud products from MODIS, and 12 km × 12 km

resolution of the aerosol products from MODIS, and 0.5◦ × 0.625◦ resolution from

MERRA. Schematically, this corresponds to the case on the left of Figure 4.1 with

pixels of size 25 km × 25 km and 4 acquisitions per day for an entire year (2003).

4.1.3 Pre-processing

We restrict our observations to clouds in the “aerosol limited” regime by applying

some filtering [30]. In “aerosol limited” regimes, we assume that cloud development

is limited by the availability of cloud-condensation nuclei, and thus aerosol. Our

choice of filtering is informed by domain knowledge and the comparison of the

data distributions between the low- and high-resolution datasets. CWP are filtered

to values below 250µm and re to values below 30µm. AOD values are filtered,

only keeping values between 0.03 and 0.3. Below 0.03, no effect is expected, since

there is not enough aerosol to lead to changes. Above 0.3, there is a chance of

direct effects, whereas the focus of our study is on indirect effects. We also filter

out precipitating clouds to avoid a loop in the causal graph. Finally, all features

are normalised before being fed into the model.
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Figure 4.2 and 4.3 show histograms for cloud water path (CWP) and cloud

optical depth (τ) before and after restricting CWP values to below 250µm. We

notice that filtering CWP also influences the distribution of τ because they are

causally linked. It allows getting rid of the high τ and CWP values in the high-

resolution dataset. We moreover study the distributions of mean cloud droplet

size re and apply further filtering as shown in Figure 4.4. Doing so brings these

distributions closer, getting rid of outliers in the high-resolution data.

(a) Before filtering (b) After filtering

Figure 4.2: CWP histograms before and after CWP filtering

(a) Before filtering (b) After filtering

Figure 4.3: τ histograms before and after CWP filtering



4. Experimental setup 37

(a) Before filtering (b) After filtering

Figure 4.4: re histograms before and after re and CWP filtering

These histograms moreover improve our understanding of the data. In particular,

we notice in Figure 4.2 that CWP is layered for the low resolution datasets. This

layering comes from the way CWP is computed and aggregated for low-resolution

data, relying on assumptions from sensors which lead to CWP not being truly

continuous. We do not see these effects for the high-resolution data because no

aggregation is needed. These observations enlighten differences between the high-

and low-resolution datasets and underlying sources of confounding in the data.

4.2 Overcast methods and models

4.2.1 Model architecture

In what follows, we denote by x the input data (the meteorological proxies), t the

treatment (AOD), and y the output data (the cloud properties). The Overcast

models’ architecture is described and illustrated in Figure 4.5. The models are

neural-network architectures with two basic components: a feature extractor ϕ(x; θ)

(represented in green in the figure) and a density estimator f(ϕ, t; θ) (represented in

orange in the figure). There are two different versions of the model: a feed-forward

neural network and a transformer which differ in the ability of their feature extractor

to capture context. The covariates x (represented in blue) are given as input to

the feature extractor, which is concatenated with t (represented in purple) and
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given as input to the density estimator which outputs p(y | t, x, θ) from which we

can sample to obtain samples of the outcomes (represented in red).

DenseLinear LinearResNet
(depth-1)

Gaussian
Mixture Model

DenseFeatureExtractor

EncoderBlock

LinearMAB
depth

InputEmbedding
DenseLinear DropOut

PositionEmbedding
DenseLinear DropOut

b. Transformer Feature Extractor

DenseFeatureExtractor

DenseLinear LinearResNet
(depth-1)

a. Feed-Forward Neural Network Feature Extractor

Overcast
Feature Extractor 

 
(a. or b.)

Density Estimator

covariates

treatment
 

outcomes

Density Estimator

Figure 4.5: Overcast model architecture. The inputs are represented by circles,
in blue the covariates, in purple the treatment. In the red circle is the output of the
model, the outcomes distribution. The model has different feature extractors (in green)
for the feed-forward neural network and the transformer. It has a single density estimator
(in orange).

4.2.1.1 Feed-forward neural network feature extractor

The feature extractor for the feed-forward neural network is fairly simple. It takes

as input the covariates x, which are fed into a dense linear layer followed by

a dense feature extractor. The dense feature extractor is composed of several

residual network layers.

4.2.1.2 Transformer feature extractor

The main advantage of the transformer architecture in the feature extractor is that

attention allows to model the spatio-temporal correlations between the covariates
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on a given day. This is interesting because confounding may be latent in the

relationships between neighbouring variables. Typically, environmental processes

(which is one source of confounding) are dependent upon the spatial distribution

of clouds, humidity and aerosol, and this feature extractor may capture these

confounding effects better. It takes as input both the covariates x, and a position

vector which includes geographical positions for each pixel in the form of latitude

and longitude. The input and position vectors go through separate embeddings

which are composed of a dense linear layer followed by a drop-out layer. These

embeddings then go through an encoder block, which is composed of several multi-

head attention blocks (MAB) as described in [54] and shown in the left grey block

in Figure 2.7. The input goes through multi-head attention and is then added

to the original input, the result of which is normalised. It then goes through a

feed-forward neural network, the results of which are added to the result of the

previous step before being normalised.

4.2.1.3 Density estimator

The density estimator is composed of a dense linear layer, followed by a dense

feature extractor, and a Gaussian mixture model (GMM) [5]. The dense feature

extractor is composed of multiple residual network layers [22]. The Overcast GMM

is represented in Figure 4.6. It outputs a Gaussian mixture density, which is an

estimator of p(y | t, x) with the same number of components as the number of

outcomes (ny) and is of the form:

p(y | t, x, θ) =
ny∑

j=1
π̃j(ϕ, t; θ) N

(
y | µ̃j(ϕ, t; θ), σ̃2

j (ϕ, t; θ)
)

,

where N (· | µ, σ2) denotes a normal distribution with mean µ and variance σ2.

Modelling the density allows to sample y values and perform the sensitivity analysis.

The mixing coefficients π are estimated with a linear layer and a softmax layer, to

obtain π̃, represented in blue in the figure. The vector of means of the Gaussian

kernels µ̃ is obtained by ny linear layers (in green in the diagram), whilst the

vector of variances σ̃ is obtained by ny blocks of linear layers and SoftPlus layers

(in orange in the diagram).
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Linear SoftPlus

Linear

Gaussian Mixture Model

Figure 4.6: Overcast Gaussian mixture model

4.2.2 Making predictions

After model training, at inference time, we perform two main tasks. The first task is

to predict the values of the studied outcomes, i.e., the cloud properties. The second

task is to do causal inference and estimate the dose-response, or APO curve alongside

its confidence intervals. To estimate these quantities, we make use of the following:

µ̃(x, t; θ) =
ny∑

j=1
π̃j(ϕ, t; θ)µ̃j(ϕ, t; θ) = E [y | t, x, θ] .

This is the mean of the Gaussian mixture density.

We use bootstrap aggregation, that is, use nb = 10 different models whose

parameters are obtained by training on different subsets of the data denoted by

{D̂k}nb
k=1. We let θk denote the parameters of the model of the k-th bootstrap

sample of the data. The predictions of all nb estimators are averaged to obtain

the final predictions. This allows for improving the accuracy and stability of the

predictions made. The predictions for the cloud properties are obtained from:

µ̃(x, t) = 1
nb

nb∑
k=1

µ̃(x, t; θk),

where µ̃(x, t; θk) is computed across all datapoints characterised by x and t in

the testing set.

To do causal inference, and obtain the APO curve, we also use {µ̃(x, t; θk)}nb
k=1.

Since the amount of data is finite, the treatment cannot be considered truly

continuous and has to be quantised. The CAPO µ̃(x, t; θk) is then predicted for
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each treatment level and each model parameterised by θk. It is then averaged

across all nb models and across all covariates to obtain the APO, which can be

plotted as a function of t only.

To quantify the uncertainty presented by finite data and possible violations of

the positivity assumption, bootstrapped uncertainty intervals are computed. When

unconfoundedness is assumed, the uncertainty intervals are obtained directly from

the confidence interval for the confidence level α.

To study possible violations of the unconfoundedness assumption, we work with

samples from the density estimator rather than the expected value. The continuous

treatment-effect marginal sensitivity model (CMSM) from [26] proposes to quantify

the interval of E [y | x, t] compatible with the data and a user-specified relaxation

of the unconfoundedness assumption through the parameter Λ. The interval is then

obtained by applying the CMSM to the bootstrapped predictions.

4.2.3 Evaluating performance

We use two metrics to evaluate the performance of the Overcast models, linked to

the two different tasks: predicting the outcomes and predicting the dose-response.

The predicted values can be compared to the observed values by plotting them in a

scatter plot. The squared Pearson correlation coefficient r2 can also be computed,

as explained in Chapter 2. The average potential outcome (APO), or dose-response

curves can be plotted separately for each outcome against the treatment. Using

the CMSM allows us to plot uncertainty around these curves for various levels

of hidden confounding. We compare the tightness of the ignorance regions and

use domain expert knowledge to evaluate the shape and slope of these curves

as there is no ground truth.

4.3 Implementation details

We follow the implementation from the original paper [26]. The code is written

in python and is available at https://github.com/msolal/MT-MLforACI. The

https://github.com/msolal/MT-MLforACI
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packages used include PyTorch [36], scikit-learn [41], Ray [33], NumPy, SciPy

and Matplotlib.

We use ray tune [31] with HyperBand Bayesian Optimisation [18] search

algorithm to optimise our network hyper-parameters. The hyper-parameters

considered during tuning are accounted for in Appendix B.1. The final hyper-

parameters for each model and each dataset are given in Appendix B.2. The hyper-

parameter optimisation objective is the batch-wise Pearson correlation averaged

across all outcomes on the validation data for a single dataset realisation with

random seed 1331.

We split the data into training, validation, and testing sets across different

dates. The original paper splits data in the following way: Mondays to Fridays

datapoints are in the training set, Saturdays datapoints are in the validation set,

and Sundays datapoints are in the testing set. In our implementation, we keep

the same ratio between datasets but we randomise the splits. We do so by using

random seed 42 and having 5/7 of the data in the training set, 1/7 in the validation

set, and 1/7 in the testing set. The randomisation is motivated by the fact that

there is a clear weekly cycle of AOD [11]. Models are optimised by maximising

the log likelihood of p(y | t, x, θ).

4.4 Experiments

Unless stated otherwise, we use the low-resolution Pacific data and the experimental

setup is the following. The covariates considered are relative humidity at 900,

850 and 700 millibar (RH900, RH850, RH700), sea surface temperature (SST),

vertical motion at 500 millibars (ω500) and inversion strengths (with both the lower

tropospheric stability, LTS, and the effective inversion strength, EIS). The treatment

is aerosol optical depth (AOD). The outcomes of interest are cloud droplet size

(re), cloud optical depth (τ), cloud water path (CWP) and cloud fraction (CF). For

the sake of clarity, we use the following colour code in our result plots: blue when

the dataset is low-resolution South-East Pacific, and orange for any variation, for

example, high-resolution Pacific data, or low-resolution Atlantic data.
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Evaluating performance

In this chapter, our work on establishing baselines is reported. With these

experiments, we address our first research question about evaluating the performance

of Overcast models. We use the off-the-shelf models ridge regression, polynomial

ridge regression and multi-layer perceptron to benchmark the performance of

Overcast models in Section 5.1. Section 5.2 compares the performance of both

Overcast models. The results from this chapter are summarised in Table 5.1

and discussed in Section 5.3.

5.1 Regression baselines

In this section, the results for off-the-shelf methods are presented. Three different

models are compared: ridge regression, polynomial ridge regression and a multi-layer

perceptron with a single hidden layer. We use implementations from scikit-learn [41],

including cross validation which is used to set the regularisation hyper-parameter

λ. The data is standardised to have zero mean and unit variance. The models

are evaluated by comparing predicted outcomes to observed outcomes. This is

done using prediction error plots and the squared Pearson correlation coefficient r2.

Note that these baselines are not causal and therefore do not allow us to study the

treatment effect but only predictions of cloud properties. During the project, we also

43
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studied some causal baselines, namely causal forests. These causal baselines consider

the treatment as binary rather than continuous and are therefore difficult to compare

to Overcast models which is why we don’t include them in the present report.

5.1.1 Linear ridge regression

The results for the ridge regression model are in Figure 5.1. As expected, we notice

differences in the performance for the different outcomes, that is, certain cloud

properties are harder to predict than others. In particular, the cloud coverage or

cloud fraction (CF) is harder to predict than the cloud cloud water path (CWP) as

shown by the difference in r2, where r2 = 0.154 for CF and r2 = 0.289 for CWP.

This difference is likely to stem from the causal graph and physical processes. In

particular, re, τ and CWP are physical quantities with underlying mathematical

equations linking them all together [20]. CF on the contrary cannot be derived

mathematically from other cloud properties. Moreover, further confounding comes

from the fact that AOD is better observed for low cloud fraction [29]. Overall,

ridge regression performs poorly as shown by the fact that r2 is low across all

outcomes, between 0.150 and 0.290. This could be because there are non-linear

relationships between meteorological proxies and cloud properties, or because the

covariates do not explain enough of the variance in the outcome. To distinguish

between these cases, we perform subsequent experiments.

Figure 5.1: Prediction error plot for ridge regression on low-resolution Pacific
data. Input RH900, RH850, RH700, LTS, EIS, ω500, SST, AOD. Output re, τ , CWP,
CF
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5.1.2 Polynomial ridge regression

To capture non-linear relationships in the data, polynomial feature expansion

with degree 3 is performed before the data is fed into a linear ridge regression

model. Our results for this experiment are in Figure 5.2. We choose to set the

degree of our polynomial expansion to 3 as a trade-off between performance and

runtime. Degree 2 yields slightly worse results with lower r2 (by approximately

0.1), whereas degree 4 takes longer to run and may lead to overfitting. Overfitting

would occur since the features are simply not good enough to explain the variance

in outcomes. As expected, we notice improved performance across all outcomes

compared to the linear regression baseline. For instance, for predicting the cloud

droplet radius re, r2 = 0.146 with linear ridge regression and r2 = 0.191 with

the polynomial ridge regression.

Figure 5.2: Prediction error plot for polynomial ridge regression on low-
resolution Pacific data. Input RH900, RH850, RH700, LTS, EIS, ω500, SST, AOD.
Output re, τ , CWP, CF

5.1.3 Multi-layer perceptron

We build a Multi-Layer Perceptron (MLP) with a single hidden layer with ReLU

activation. The results are shown in Figure 5.3. We notice a slight improvement in

performance across all outcomes compared to the polynomial ridge regression, as

expected. For instance, for the cloud droplet size re, r2 = 0.213 for the MLP and

r2 = 0.191 for the polynomial ridge regression. The performance could be further

improved by increasing the complexity of the model, for example by increasing

the number of hidden layers and units.
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Figure 5.3: Prediction error plot for multi-layer perceptron on low-resolution
Pacific data. Input: RH900, RH850, RH700, LTS, EIS, ω500, SST, AOD. Output: re, τ ,
CWP, CF

5.2 Overcast models

In this section, the performance of the Overcast models is studied. Recall that

there are two Overcast models which differ in their feature extractor. The Overcast

transformer can capture spatio-temporal dependencies in the data through an

attention mechanism whereas the feed-forward neural network cannot, as explained

in Section 4.2. The models are evaluated based on their predictive accuracy as we

did for the baselines, and the shape and underlying uncertainty of the predicted

dose-response curves, or average potential outcome (APO). In this section, the

results for the transformer are in blue and the neural network are in orange.

5.2.1 Predictive accuracy

Figure 5.4 shows the prediction error plots for both models across all outcomes.

In orange are the predictions for the feed-forward neural network, and in blue are

the predictions for the transformer. We find that the feed-forward neural network

performs similarly to the polynomial ridge regression and the multi-layer perceptron,

whilst the transformer performs slightly better. For instance, for the cloud droplet

radius, r2 = 0.213 for the multi-layer perceptron, r2 = 0.201 for the Overcast neural

network and r2 = 0.281 for the Overcast transformer.

The transformer performs better than the feed-forward neural network because

its architecture allows to model spatial dependencies between meteorological proxies

thanks to the use of attention mechanisms. This is done by allowing to attend

neighbouring pixels to make predictions for a specific pixel as evoked in Section 4.2.
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Figure 5.4: Prediction error plot: transformer and feed-forward neural network.
Low-resolution Pacific dataset. Covariates: RH900, RH850, RH700, EIS, LTS, SST, W500.
Treatment: AOD. Outcomes: re, τ , CWP, CF.

Physically, this approach is more reasonable than that of the feed-forward neural

network because the pixels are not assumed to be independent.

5.2.2 Dose-response curves

The dose-response curves of the two models are then compared. The dose-response

curves for all outcomes are shown in Figure 5.5, with the transformer model in

blue in Figure 5.5(a) and the feed-forward neural network model in orange in

Figure 5.5(b). We find that the transformer’s curves agree best with domain

knowledge. In particular, the non-monotonicity of the neural network dose-response

curves for re, CWP and CF are not in accordance with the underlying physical

processes. Moreover, CF is highly confounded under our chosen causal graph as

evoked earlier and shown by the parabolic shape of its dose-response curve. These

results may be indicative of unobserved confounding that the transformer captures

better than the neural network by modelling spatio-temporal dependencies. For

the remainder of our work, we decide to focus on cloud droplet size re to simplify

the analysis of the results. This choice is motivated by the fact that the effect of

aerosol on re is described by the direct Twomey effect which is well understood.

To analyse the dose-response curves, we display them on the same plot in

Figure 5.6. Recall that, to study a dose-response curve, we are interested in three

aspects: (1) its shape, (2) its uncertainty bounds, and (3) its slope. Figure 5.6(a)

allows to investigate the former two aspects. To compare the slopes of two curves,
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Figure 5.5: Dose-response curves on low-resolution Pacific data: transformer
and feed-forward neural network. Low-resolution Pacific dataset. Covariates: RH900,
RH850, RH700, EIS, LTS, SST, W500. Treatment: AOD. Outcomes: re, τ , CWP, CF.

we can min-max scale them:

x 7→ x − min(x)
max(x) − min(x) ,

which scales the data from domain [min(x), max(x)] to codomain [0, 1]. Figure 5.6(b)

shows the scaled dose-response curves and allows to compare the slope of the curves.

As expected from the results shown in Figure 5.5, we notice that the transformer’s

dose-response curve agrees better with domain knowledge both in terms of shape

and in terms of slope. Further, the uncertainty bounds for the transformer are

larger and therefore worse than that of the neural network. This is because the

transformer feature extractor considers all pixels from a day as a single datapoint

whereas the neural network considers every single pixel as a datapoint. It suggests

that using more data, specifically data from more days, may reduce uncertainty.
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Figure 5.6: Dose-response curves for re: transformer and feed-forward neural
network. Low-resolution Pacific dataset. Covariates: RH900, RH850, RH700, EIS, LTS,
SST, W500. Treatment: AOD. Outcomes: re.

5.3 Discussion

We summarise the results for all the experiments from this chapter in Table 5.1.

Model Squared Pearson coefficient r2

re τ CWP CF
Linear Ridge Regression 0.146 0.235 0.289 0.154

Polynomial Ridge Regression 0.191 0.280 0.327 0.225
Multi-Layer Perceptron 0.213 0.293 0.338 0.238

Overcast Feed-Forward Neural Network 0.201 0.287 0.336 0.228
Overcast Transformer 0.281 0.321 0.340 0.270

Table 5.1: Prediction accuracy r2 for baseline and Overcast models. Dataset:
low-resolution Pacific. Input: RH900, RH850, RH700, LTS, EIS, ω500, SST. Treatment:
AOD. Output: re, τ , CWP, CF.

These experiments allow us to answer our first research question about the

evaluation of Overcast models. We show that the more complex the model, the better

the prediction accuracy, as expected. We find that the Overcast models perform

slightly better than baseline models for all outcomes. The predictive accuracy is still

quite low, with r2 ≃ 0.3 so future works should focus on improving these predictions.

These experiments and observations moreover suggest that the transformer is the
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better model. Whilst the uncertainty levels are higher, it agrees best with domain

knowledge in terms of dose-response curves. More importantly, modelling context

using attention mechanisms allows reducing sources of confounding and makes more

sense physically. Let us consider this fact more carefully and attempt to provide

some intuition. Recall that our low-resolution data consists of grids of daily means

of observations per pixel identified through their geographical coordinates (with

latitude and longitude). The transformer allows capturing dependencies between

the different cells of the grid, that is, between neighbouring pixels whilst the

feed-forward neural network considers each pixel or cell independently. Physically,

it makes more sense to model spatial dependencies in that way since physical

processes are continuous and boundaries between pixels have no physical meaning.

Future work should consider improving the attention mechanism to also capture

temporal dependencies.

In our experiments, we moreover notice significant differences in the predictive

accuracies for the different outcomes. The relative performance for each outcome

remains in the same order, with CWP being the easiest to predict, then τ , then CF ,

and finally re. This suggests that the magnitude of the confounding differs between

outcomes. In other words, the meteorological proxies that we use as covariates

allow explaining the variance in certain outcomes better than others.

In the experiments that follow, we focus on the Overcast transformer. Since

the transformer takes very long to be trained, tuned and evaluated, we also use

the degree 3 polynomial ridge regression for additional experiments. It is the best

trade-off between predictive accuracy and runtime, and side experiments are helpful

to improve our understanding of the topic.



6
Capturing geographical dependencies

In this chapter, our experiments on geographical dependencies are presented. We

work with various datasets which differ in terms of geographical regions and

spatio-temporal resolution. This work allows us to address our second research

question regarding the ability of the Overcast transformer to capture geographical

dependencies. This chapter is divided into four sections. Our motivations are

explained in Section 6.1. Section 6.2 compares data with observations from two

distinct regions: the South-East Pacific and the South Atlantic. Section 6.3

reports our work on different spatio-temporal resolutions. This chapter ends

with a discussion in Section 6.4.

6.1 Motivations

Clouds are inherently local and interconnected, with a scale of interactions on the

order of kilometres. Models therefore need to capture geographical dependencies to

accurately predict cloud properties and emulate ACI. To study the Overcast trans-

former’s ability to capture geographical dependencies, we compare its performance

on data of different geographical regions and scales. The datasets have different

levels of unobserved confounding. For instance, the Atlantic and the Pacific regions

are known to have different types of aerosols. The low-resolution data may be

51
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averaging cloud types, thus obscuring the signal compared to the high-resolution

data. Our causal graph does not include these confounders directly, since they

are impossible to retrieve from satellite data. Instead, they are accessed through

meteorological proxies and aerosol optical depth (AOD). With these experiments,

we empirically study how well the Overcast models capture these confounders by

comparing their performance on the different datasets. This work contributes to

our evaluation of the models as we assess their ability to generalise.

6.2 Geographical regions

In this section, our work on geographical regions is presented. We study two

datasets, which respectively contain observations from the South-East Pacific

and the South Atlantic.

To best understand our experiments and results, let us describe the physical

differences between the two regions. The South-East Pacific and South Atlantic

are regions with similar meteorology but different confounding influences. The

possible confounding factors include aerosol type, aerosol hygroscopicity, aerosol

size, and others, which notably impact aerosols’ activation as cloud condensation

nuclei. For instance, the South Atlantic has a higher concentration of sea salt

and sand aerosols than the South-East Pacific which is a more polluted region.

Consequently, aerosol optical depth (AOD) may be a better proxy for aerosols in

certain regions. The Twomey effect of aerosol on cloud droplet radius re informs

us that we can expect similar effects and effect sizes across both regions, and thus

it makes sense to compare dose-response curves [53].

Structurally, the two datasets are the same and consist of 1◦ × 1◦ daily means

of satellite observations between 2004 and 2019. We therefore rely on the same

covariates, treatment, and outcomes for both regions. In what follows, results for

the South-East Pacific and the South Atlantic are respectively in blue and orange

and were obtained using the Overcast transformer.
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Figure 6.1: Prediction error plot for re: South Atlantic and South-East Pacific.
Overcast transformer on low-resolution datasets. Input RH900, RH850, RH700, LTS, EIS,
ω500, SST, AOD. Output re

6.2.1 Results

Figure 6.1 shows the prediction errors plots for both regions. We find that the

model performs significantly better on data from the Atlantic, with r2 = 0.375

than on data from the Pacific, with r2 = 0.281. This suggests that our chosen

meteorological proxies better explain the variance in cloud droplet radius in the

Atlantic than in the Pacific.

Next, the dose-response curves of the two datasets are considered. These curves

are shown in Figure 6.2, with the raw curves in Figure 6.2(a) and the min-max

scaled curves in Figure 6.2(b). We notice that the uncertainty bounds are larger

for the Atlantic compared to the Pacific and that the range of outcomes is smaller

in the Atlantic, with values ranging from 15.2 to 13.7, than in the Pacific, with

values between 15.5 and 13.4. We also observe that the slopes of the curves are

very similar, as expected from domain knowledge.
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Figure 6.2: Dose-response curves for re: South Atlantic and South-East Pacific.
Overcast transformer, low-resolution datasets. Covariates: RH900, RH850, RH700, EIS,
LTS, SST, W500. Treatment: AOD. Outcomes: re.

6.2.2 Discussion

Overall, this experiment shows that the model generalises well to different geo-

graphical regions. We see this through the fact that r2 is similar for both regions,

and slightly better for the Atlantic than the Pacific for cloud droplet radius. The

APO curves moreover have very similar slopes, as expected.

We notice better performance for the South Atlantic data compared to the

South East Pacific. This means that the meteorological proxies and AOD allow us

to better capture variance in cloud droplet radius in the Atlantic than in the Pacific.

This could be explained by the existence of larger-scaled physical interactions in

the Pacific than the Atlantic that our model is unable to capture with our chosen

meteorological proxies. Namely, the Pacific is subject to tropical effects and different

circulations patterns compared to the Atlantic [35]. Another possible explanation

of these differences concerns the type of aerosols. In the South Atlantic region, dust

and sand are prevalent aerosols, whereas in the Pacific there are more anthropogenic

aerosols. Together, the meteorological conditions, the differences in aerosol types,

and the differences in cloud types may impact how well aerosol optical depth
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approximates aerosol concentrations and their effects.

6.3 Spatio-temporal resolution

In this section, our work on data with different spatio-temporal resolutions is

presented. Both datasets contain observations from the South-East Pacific but

differ in three main ways: spatial resolution, temporal resolution and timescale. The

low-resolution data contains daily means of satellite observations gridded at 1◦ × 1◦

resolution. The high-resolution data contains 4 acquisitions of satellite observations

per day which are not aggregated, and are gridded at approximately 25km × 25km

resolution. Moreover, the two datasets do not cover the same timescale as the

low-resolution data spans from 2004 to 2019 whereas the high-resolution data is

from 2003. We refer the reader to Section 4.1 for more detail.

Our motivation to compare these datasets stems from our will to investigate the

ability of the Overcast models to capture geographical dependencies and from the

original paper [26]. The experiments presented therein make use of the low-resolution

Pacific dataset. In their discussion of the results, the authors suggest that the

resolution of the observations could be averaging cloud types and obscuring the signal.

They hint that higher resolution data could resolve some confounding influences.

When working with high-resolution data, we consider slightly different variables.

In terms of covariates, RH900 is replaced by RH950, and EIS is omitted. We expect

the replacement of RH900 by RH950 to have little effect on the result, but removing

EIS is expected to have a larger impact. In terms of outcomes, CF is omitted

and Nd is added. We do these changes since not all meteorological proxies and

cloud properties measurements are available for both datasets. To summarise, the

covariates are therefore relative humidity (RH950, RH850, RH700), sea surface

temperature (SST), vertical motion (ω500) and inversion strength (LTS), and the

outcomes of interest are cloud droplet number (Nd), mean cloud droplet size (re),

cloud optical depth (τ) and cloud water path (CWP).
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6.3.1 Results

When running the Overcast transformer on the high-resolution data, we find

extremely low predictive accuracy for the cloud droplet radius with r2 = 0.014,

which is indicative of a bug. Moreover, given the large amount of data and memory

requirements, we were not able to plot the dose-response curve. Preliminary results

with anterior versions of the Overcast models however confirm that these models

perform worse on high-resolution data and so do baseline models. The results for

the degree-3 polynomial regression are shown in Figure 6.3, with high-resolution in

Figure 6.3(a) and low-resolution in Figure 6.3(b), where we select the same covariates

for both datasets. We notice even more difference between the datasets if we also

include RH950 and RH900 to the covariates for the high- and low-resolution datasets,

as shown in Figure 6.4, with high-resolution in Figure 6.4(a) and low-resolution in

Figure 6.4(b). We notice lower accuracy with high-resolution data for all outcomes,

especially cloud optical depth and cloud water path. This result is surprising and

there is high motivation to understand it better in the hope of improving performance.

We therefore perform subsequent experiment to investigate the performance gap.

6.3.2 Investigating the performance gap

The following experiments investigate the performance gap between the high and

low-resolution data. Our analysis of the aforementioned results is hindered by

the threefold difference between datasets. We therefore attempt to build a more

controlled environment in the following experiments, studying the different factors

separately to increase our understanding of the relative importance of each factor.

We use the degree-3 polynomial ridge regression baseline model throughout this

study since the Overcast models require a long running time. We assume that

these results are representative of the results we would obtain with the Overcast

models. Since we rely on regression baselines, we can only study the prediction

error and not the treatment effect.
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(a) High-resolution

(b) Low-resolution

Figure 6.3: Prediction error plot: high-resolution and low-resolution Pacific
datasets with the same covariates. Degree 3 polynomial ridge regression model.
Covariates: RH850, RH700, LTS, SST, W500. Treatment: AOD. Outcomes: re, τ , CWP.

(a) High-resolution

(b) Low-resolution

Figure 6.4: Prediction error plot: high-resolution and low-resolution Pacific
datasets with similar covariates. Degree 3 polynomial ridge regression model.
Covariates: RH950 (for high-resolution) or RH900 (for low-resolution), RH850, RH700,
LTS, SST, W500. Treatment: AOD. Outcomes: re, τ , CWP.
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6.3.2.1 Treatments

In this section, different treatments are compared, by adding them successively to

the list of covariates: aerosol optical depth (AOD), cloud droplet concentration (Nd)

and mean cloud droplet size (re). These variables intervene at different moments in

the causal chain: an increase in AOD leads to an increase in CCN which leads to

an increase in Nd which leads to a decrease in re. The next events in the causal

chain are the changes in cloud optical depth (τ), cloud water path (CWP) and

cloud fraction (CF). Because of the causal relationships between the variables, we

can consider AOD, Nd and re as various proxies for aerosol. With this experiment,

we study how additional features explain the variance in cloud properties better

than AOD in the high-resolution Pacific dataset.

Figure 6.5 shows the results obtained for this experiment, namely the prediction

error plots, with AOD as treatment in Figure 6.5(a), Nd in Figure 6.5(b), and re

in Figure 6.5(c). There is a significant improvement in performance especially for

predicting cloud optical depth (τ), with r2 = 0.498 with Nd as treatment instead of

0.052 with AOD as treatment, and even larger with re as treatment where r2 = 0.917.

We find that the further in the causality chain the better the predictive

power. By moving further in the causal chain, proxies have less influence and

the observations are less confounded which helps make better predictions. We

get improved predictions with Nd as treatment and best predictions with re as

treatment. However, we note that considering Nd as treatment induces bias because

Nd is computed from re and τ during the re-analysis in the current datasets.

6.3.2.2 Timescale

We study fifteen years of data in the low-resolution data (from 2004 to 2019),

but only one year in the high-resolution data (from 2003). To best compare

the impact of resolution on performance, we study the importance of timescale

for the predictive accuracy of the models. We do so for both the low-resolution

and the high-resolution data.
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(a) AOD

(b) Nd

(c) re

Figure 6.5: Prediction error plot for polynomial ridge regression: AOD, Nd

and re as treatments. high-resolution Pacific data. Covariates: RH950, RH850, RH700,
LTS, ω500, SST. Outcomes: Nd, re, τ , CWP

The results for the low-resolution data are in Figure 6.6. In Figure 6.6(a) are

results for the control experiment, with the entire timescale from 2004 to 2019.

Figure 6.6(b) contains results when the models are run on data from 2004 only.

We notice that we obtain similar performance across all outcomes. For instance,

the predictive accuracy for cloud optical depth τ is r2 = 0.285 for a single year

and r2 = 0.280 for all 15 years.

Figure 6.7 shows the results for a similar experiment with the high-resolution

data. We compare using data from January 2003 to July 2003 in Figure 6.7(a)

to using data from the entire year of 2003 in Figure 6.7(b). We notice that we
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(a) 2004 - 2019

(b) 2004

Figure 6.6: Prediction error plot for polynomial ridge regression on low-
resolution Pacific data: 2004 and 2004-2019 timescale. Covariates: RH900,
RH850, RH700, LTS, EIS, ω500, SST. Outcomes: re, τ , CWP, CF

obtain similar performance in predicting the cloud droplet radius re and improved

accuracy for τ and CWP. For instance, the predictive accuracy for τ is r2 = 0.052

for 7 months, and r2 = 0.179 for the entire year. This suggests that given more

data, and specifically, data from a larger timescale, the performance would improve.

6.3.2.3 Discussion

The threefold difference between the high- and low-resolution datasets hinders our

analysis. The timescale experiment motivates further experimentation with longer

timescales for high-resolution data in the hope that the prediction accuracy would

improve. It would also be interesting to study more precisely the influence of the

spatial resolution of the data. In particular, the high-resolution data could be

aggregated into daily means, leading to the only difference between datasets being

their spatial resolution. Unfortunately, due to time constraints and the amount

of time needed for the models to run, we were quite limited in the number of

experiments that we could perform. Another interesting aspect to consider is the
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(a) January 2003 - July 2003

(b) January 2003 - December 2003

Figure 6.7: Prediction error plot for polynomial ridge regression on high-
resolution Pacific data: January 2003 - July 2003 and January 2003 - December
2003 timescale. Covariates: RH950, RH850, RH700, LTS, ω500, SST. Outcomes: re, τ ,
CWP

cloud types. For example, the high-resolution data is less likely to contain types of

clouds with a smaller radius like cumulus or cirrus. Maybe adding more filtering

on cloud types would help with performance. The experiments on treatments

suggest that an alternative framework could be used to predict cloud properties

and better capture the underlying causal chain. For instance, we could use an

auto-regressive model, where re would be used in addition to the covariates and

the treatment to predict τ , which would then be used in addition to the previously

used covariates to predict CWP.
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6.3.3 Alternative model architecture

To improve the performance of the model, we thought about changing another

aspect of the architecture, namely the attention-based feature extractor. We would

make use of both the low- and high-resolution data, with high-resolution covariates,

both high- and low-resolution position vectors which include acquisition time, and

low-resolution treatment and outcomes. The trick is that the high-resolution and

low-resolution data do not have the same dimensions since the high-resolution data

contains multiple observations for each location in space for a single day whereas

the observations from the low-resolution data are daily means. We hypothesise that

appending a multi-head attention block with positional encoding from the high-

resolution data would help us combine the low- and high-resolution data to make

predictions. This would be used instead of the transformer feature extractor shown

in green and labelled (b) in Figure 4.5. Unfortunately, due to the time constraint,

we did not have time to implement this idea, but a diagram is shown in Figure 6.8.

LR PositionEmbedding

EncoderBlock1

LinearMAB

InputEmbedding

HR PositionEmbedding

EncoderBlock2

LinearMAB

c. Proposed Feature Extractor 

Figure 6.8: Alternative architecture for the Overcast attention-based feature
extractor. Uses both low-resolution and high-resolution data, and multiple attention
blocks to capture both spatial and temporal dependencies.

6.4 Discussion

The results for all the experiments from this chapter are summarised in Table 6.1.

This work allows us to answer the second research question regarding the

ability of the Overcast models to capture geographical dependencies. We find

that the Overcast transformer captures emulates ACI better in the Atlantic region

than in the Pacific but fails to predict cloud properties using high-resolution data

rather than low-resolution data.
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Dataset Covariates Squared Pearson r2

re τ CWP
High Resolution

RH850, RH700, LTS, SST, ω500, AODLow Resolution

High Resolution
RH950, RH850, RH700, LTS, SST, ω500, AOD 0.143 0.052 0.057
RH950, RH850, RH700, LTS, SST, ω500, AOD, Nd 0.323 0.498 0.241
RH950, RH850, RH700, LTS, SST, ω500, AOD, Nd, re / 0.917 0.907

LR 2004
RH900, RH850, RH700, LTS, EIS, SST, ω500, AOD

0.215 0.285 0.322
LR 2004 - 2019 0.191 0.280 0.327
HR Jan - Jul 2003

RH950, RH850, RH700, LTS, SST, ω500, AOD
0.143 0.052 0.057

HR 2003 0.129 0.179 0.117

Table 6.1: Prediction accuracy r2 for experiments on geographical dependen-
cies. Model: degree 3 polynomial ridge regression. Experiments: treatments, timescale
on low-resolution data (LR) and timescale on high-resolution data (HR).

In these experiments, we also touch upon various sources of confounding including

cloud types, aerosol types, and the imperfectness of AOD as a proxy for aerosols.

Whilst the threefold difference between the high and low-resolution datasets

hinders our analysis, the results suggest that using more data from more days to

do predictions may improve the prediction accuracy of the high-resolution data.

Furthermore, we touch upon possible changes to our model architecture to better

capture geographical dependencies. The first one consists in using both low- and

high-resolution data to make predictions and to allow the feature extractor to

capture temporal dependencies in addition to spatial dependencies. Secondly, we

suggest not assuming independence between outcomes maybe by using an auto-

regressive framework where predictions for outcomes variables are made using the

predictions for variables anterior in the causal chain.



7
Uncertainty-aware sensitivity analysis

In this chapter, our uncertainty-aware sensitivity analysis is described. A sensitivity

analysis aims to uncover how sensitive a model is to the addition of one or more

variables. We study how robust our estimates are to the violation of assumptions

and derive bounds on the ignorance induced for a given degree of violation of these

assumptions. The width of the interval of possible causal effects increases as the

assumptions are challenged more severely. This work focuses on the relaxation of

the unconfoundedness and the positivity assumptions. We pursue our investigation

of sources of confounding from Chapter 6 with new experiments and attempt to

provide a methodology for setting the parameter Λ proposed by [26].

Section 7.1 outlines our motivations and Section 7.2 explains our experimental

setup and gives some theoretical background. Section 7.3 describes our first

experiment which consists in omitting covariates thus introducing known levels of

confounding in the model. The second experiment, presented in Section 7.4 is an

extension to our work with the South Atlantic and South-East Pacific regions.

7.1 Motivations

Unobserved confounding variables are unobserved variables that affect both the

treatment and the outcome. They are the variables which violate the unconfound-

64
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edness assumption required to identify the CAPO and APO from observational

data. As explained in Section 2.2, the most common approach to respect this

assumption is to control for these confounding variables by setting them as covariates

and conditioning on them. Doing so however leads to stronger violations of the

positivity assumption when working with finite data.

The Overcast models make use of expert knowledge about ACI to select the

covariates. Ideally, they would include pressure profiles, temperature profiles and

supersaturation since these are directly involved in cloud processes and impact the

quality of AOD measurements as a proxy for aerosol concentration. Unfortunately,

they are impossible to retrieve from satellite data, so we rely on meteorological

proxies like relative humidity, sea surface temperature, inversion strengths, and

vertical motion.

The overarching aim of this work is to better understand uncertainties lying

in models that study the impact of emissions on cloud properties. This fits in

the grander scheme of modifying climate models to increase confidence in future

projections of climate change.

7.2 Experimental setup

Recall the parameter Λ proposed by the continuous treatment-effect marginal

sensitivity model (CMSM) in [26]. This parameter is set by the user to represent a

belief in a certain level of violation of the unconfoundedness assumption. The idea is

to relate unconfoundedness violations to the proportion ρ of the unexplained range

in outcomes coming from unobserved confounders after observing the covariates x

and the treatment t. When a user sets Λ to 1, they assume that the model has no

hidden confounding, which means that the entire unexplained range of Y comes

from unknown mechanisms independent of the treatment. As the user increases Λ,

they attribute some of the unexplained range of outcomes to mechanisms causally

connected to the treatment.

The original paper highlights the difficulty in interpreting and setting Λ. They

propose a methodology where the user would sweep over values of Λ and report
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bounds corresponding to a ρ value they deem tolerable. They also relate Λ to the

Kullback-Leibler divergence between P [Yt | T = t, X = x] and P [Yt | X = x].

The following work attempts to set a new methodology for setting Λ. We work

with two datasets, used to train two different models: (i) and (ii). The model (i) is

our control model, trained on the entire low resolution Pacific data, whereas the

model (ii) is our experiment. After training both models, we plot the dose-response

curves for (i) and (ii) on the same plot. We can compare the shape and slope

of these curves as well as their uncertainty bounds under the unconfoundedness

assumption by plotting the ignorance region for Λ → 1 for both models. Then, we

are interested in setting Λ for model (ii) such that the uncertainty bounds cover the

entire ignorance region of model (i) under the unconfoundedness assumption. For

this, we are interested in comparing the slopes and thus min-max scale both curves.

7.3 Omitting covariates

By omitting covariates, we are removing a confounding variable from the model,

therefore increasing the amount of unobserved confounding. We expect worse

predictive power and changes to the APO curves and their confidence intervals.

Thanks to expert knowledge, we can grasp the importance of the confounding

variables we are omitting. We expect that the importance of a covariate is reflected

in the distance between the predicted APO and the ground truth APO, with

worse curves for important covariates. Removing covariates also results in less

violation of the positivity assumption and therefore tighter uncertainty bounds

around the APO since more data is available to predict p(y | x, t). This experiment

helps us gain some intuition about the influence of the parameter Λ and how it

relates to the inclusion of confounding variables in the model. We perform two

experiments: first omitting vertical motion at 500 millibars (ω500), a variable of

moderate importance, and secondly omitting all relative humidity variables, which

are highly important variables. The results of the control experiment with the

low-resolution Pacific data are in blue, and the results for the experiments where

we omit certain covariates are in orange.
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7.3.1 Vertical motion

Vertical motion at 500 millibars (ω500) is a variable with moderate impact on the

cloud properties considered in this work. Figure 7.1 reports our results for this

experiment with the Pacific model in blue and the Pacific without ω500 model in

orange. We notice in Figure 7.1(a) that the uncertainty bounds are larger when

ω500 is omitted from the covariates. This result goes against our expectations

and is indicative of a bug, which we were unfortunately not able to investigate.

Figure 7.1(b) identifies the value of Λ that results in an ignorance interval around

the Pacific without ω500 model predictions that covers the Pacific model predictions

and its ignorance region. We find that we need to set Λ = 1.01 to account for

omitting ω500 from the covariates. We also note that the slopes of the dose-

response curves are slightly different, with worse predictions when omitting ω500

from the covariates, as expected
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Figure 7.1: Dose-response curves for re: Pacific and Pacific without ω500.
Overcast transformer, low-resolution dataset. Covariates: RH900, RH850, RH700, EIS,
LTS, SST, (ω500). Treatment: AOD. Outcomes: re.

7.3.2 Relative humidity

We perform the same experiment but now omit all relative humidity variables

(RH900, RH850, RH700). These variables have a higher impact on cloud properties,
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and we therefore expect much worse dose-response curves. Figure 7.2 reports our

results for this experiment, with the Pacific in blue and Pacific without relative

humidity in orange. In Figure 7.2(a), we notice that the uncertainty bounds

are similar for both the control and the test experiments as expected. In the

same manner as in the former experiment, we try to identify an appropriate Λ.

Figure 7.2(b) identifies the value of Λ that results in an ignorance interval around

the Pacific without RH model predictions that covers the Pacific model predictions.

We find that we need to set Λ = 1.04. We also see that the APO curves are quite

different, especially compared to the previous experiment, and as expected from

the importance of relative humidity variables.
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Figure 7.2: Dose-response curves for re: Pacific and Pacific without relative
humidity. Overcast transformer, low-resolution dataset. Covariates: (RH900, RH850,
RH700), EIS, LTS, SST, W500. Treatment: AOD. Outcomes: re.

7.3.3 Discussion

We can now compare the results of both experiments. We notice that we need a

larger Λ for more important covariates, as expected. We set Λ = 1.04 when omitting

relative humidity variables and Λ = 1.01 when omitting ω500. Moreover, omitting

covariates results in worse APO curves, especially when the covariate is important.

We find that the parameter Λ can account for these shifts.
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7.4 Geographical regions

Our second experiment consists of the study of data from regions with similar

meteorology but different magnitudes of confounding influences. As in Chapter 6,

we study the South Atlantic and the South-East Pacific regions. We are looking

for the values of Λ that result in an ignorance interval explaining both the Pacific

and the Atlantic data. In what follows, the results for the Pacific data are in

blue and those for the Atlantic are in orange.

Figure 7.3 shows our results for this experiment. Figure 7.3(a) shows the value

of Λ that results in an ignorance interval around the Atlantic model predictions

that covers the Pacific model predictions under the unconfoundedness assumption.

Figure 7.3(b) shows the value of Λ that results in an ignorance interval around

the Pacific model predictions that covers the Atlantic model predictions under

the unconfoundedness assumption.
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Figure 7.3: Dose-response curves for re: South-East Pacific and South Atlantic.
Overcast transformer, low-resolution datasets. Covariates: RH900, RH850, RH700, EIS,
LTS, SST, W500. Treatment: AOD. Outcomes: re.

It is interesting to notice that the two values of Λ differ, with Λ = 1.05 for the

Atlantic and Λ = 1.07 for the Pacific. This result makes sense given the fact that

there are different confounding influences in the Pacific and the Atlantic.
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7.5 Discussion

With these two experiments, we extend the results of the original paper by exploring

possible interpretations of Λ.

This work allows us to address the third research question about the impact

of unmeasured confounding on plausible ranges of treatment-effect estimates of

ACI. With our first experiment on omitting covariates, we touch upon the trade-off

between unconfoundedness and positivity, where increased violations of unconfound-

edness lead to decreased violations of positivity and therefore worse predictions but

tighter uncertainty bounds. In our second experiment, we reason about confounding

in the underlying physical processes and take a more empirical approach. This

work gives us more intuition about the parameter Λ relating violations of the

unconfoundedness assumption to ignorance regions of dose-response curves.

It also shows the importance of controlling for confounding influences or factor

violations of the unconfoundedness assumption in the parameter Λ to obtain

realistic uncertainty intervals.



8
Conclusion

8.1 Summary, contributions and implications

In this work, we use machine learning approaches to estimate plausible ranges for

the causal effects of aerosols on clouds and derive uncertainty bounds. Our research

is based on [26], which we refer to as Overcast. The authors propose a method and

models to estimate continuous treatment effects and develop a sensitivity model,

the continuous treatment-effect marginal sensitivity model (CMSM) based on the

potential outcomes approach to causal inference. The objective of this project is to

further investigate aerosol-cloud interactions (ACI) and their uncertainties using

the Overcast models. From a causal point of view, we aim to understand how

unmeasured confounding can change treatment-effect estimates.

The most important aspects of this work can be summarised into three distinct

objectives. First, we evaluate the method and models proposed in Overcast

by implementing various baselines. Second, we study how well geographical

dependencies of ACI are captured by the Overcast models. Third, we perform

an uncertainty-aware causal sensitivity analysis using the CMSM to study how

unmodelled confounding variables can influence the range of plausible treatment

effects for a given dataset.
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First, we find that whilst the predictor for cloud properties proposed by

Overcast is quite weak, it agrees with off-the-shelf regression models like third-

degree polynomial ridge regression. We identify that the Overcast transformer

performs better than the Overcast feed-forward neural network in terms of predictive

power, and agrees best with domain knowledge in terms of estimates of treatment

effects. The underlying attention mechanisms allow us to model spatio-temporal

dependencies between meteorological variables and capture confounding latent in

the relationships between neighbouring variables. It however has larger ignorance

regions which can hopefully be reduced by using larger amounts of data.

Second, our experiments with datasets from different geographical regions and

resolutions show Overcast models can capture some of the geographical dependencies

of ACI. We find that the model emulates ACI better in the Atlantic than in the

Pacific but performs much poorly with high-resolution data compared to low-

resolution data in the Pacific. This shows that the model can capture certain

geographical dependencies of ACI but not others. A possible explanation for this

relates to the amount of hidden confounding in the different datasets. Further

investigation would be required to better understand the underlying mechanisms

and improve the model.

Third, our uncertainty-aware causal sensitivity analysis allows us to study hidden

confounding across different datasets. We find that omitting covariates reduces

uncertainty but increases error in the treatment effect estimates that the sensitivity

parameter Λ can account for. Our work also extends the original Overcast article

in that it provides a further interpretation of the sensitivity parameter Λ and

proposes a methodology to set it appropriately.

To a larger extent, our work contributes to understanding the climatological

impacts of human emissions on cloud properties and assessing interventions that aim

to reduce global warming. Among the measures considered to counteract climate

change is geoengineering, deliberate large-scale interventions in the Earth’s climate

system. In particular, spraying seawater is a technique considered to seed larger,

brighter, longer-lasting clouds, therefore enhancing clouds’ ability to cool. Whilst
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this method could offset some warming effects, it could also have disastrous impacts

on weather patterns [16]. This project highlights the importance of uncertainty

when studying climate projection models to take appropriate measures. It is of

utmost importance that decision makers are made aware of proposals’ underlying

uncertainties and assumptions to make informed decisions.

8.2 Limitations and future works

The present work has some limitations that stem from the models used, the

evaluation, the datasets studied, and time constraints.

First, let us describe the limitations of the models used. The most obvious

limitation concerns the accuracy of the cloud properties predictions as shown by

the low r2. Further, the underlying causal graph contains known confounding

influences that are not observed and therefore not controlled for, like aerosol types.

To address these issues, future works should focus on the following areas: improving

the predictor of cloud properties, accounting for the error in treatment measurement,

and improving the underlying causal graph. The predictor of cloud properties should

be improved significantly, probably by using another feature extractor, or by using

a different density estimator. Namely, we would use both low and high-resolution

data, and the feature extractor would use attention mechanisms to capture not only

spatial but also temporal dependencies. The framework could be auto-regressive

to capture dependencies between cloud properties. Future work could explore

uncertainty arising from the fact that AOD is only a proxy for aerosol. It is

currently difficult to estimate how much the use of proxies blurs out the strength of

the true causal effect, especially because AOD is itself confounded by environmental

processes. We suggest investigating frameworks that take into account treatment

measurement errors like [57]. More generally, the underlying causal graph could

account for more confounding variables if only they were observable.

Second, the evaluation performed is not sufficiently robust. This weakness

comes from the fact that the ignorance levels are computed using Monte-Carlo

integration which requires a large number of samples. Future work could consider
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using larger sample sizes during inference time and studying the influence on the

derived uncertainty bounds. Moreover, each experiment was only run once, using a

specific random seed for splitting the dataset. Given the spatio-temporal variability

of the data and the relatively small size of the datasets, running the experiments

multiple times may lead to more reliable results. Further, the APO curves are

currently plotted using only the testing set whereas using the entire dataset would

likely reduce the size of the ignorance region.

Third, some limitations stem from the datasets studied. The low-resolution and

high-resolution datasets differ in terms of spatial resolution, temporal resolution and

timescale. This threefold difference hinders the analysis of our results. Moreover,

there are confounding influences from relying on satellite data. It would be

interesting to look at longer timescales, especially for high-resolution data. This

should hopefully be more representative and mitigate the effects of El Niño for

example. We moreover expect that increasing the amount of data will help reduce

the uncertainties in the treatment-effect estimates, especially for the transformer.

Further, to improve understanding of the present results, future work could

investigate datasets with different spatial resolutions or temporal resolutions only.

Fourth, our work was produced under significant time constraints. Given the

time needed to train, tune and evaluate the models, we were not able to run all

the experiments we wanted to run to be able to fully interpret our results. Our

work therefore relies on baseline models to understand the underlying mechanisms

of the Overcast models which is not ideal. These limitations could be answered

by allocating more time to re-implementing the model to achieve better efficiency

before moving on to further experiments.

Our analysis is also impacted by the fact that our work is mostly empirical

rather than theoretical. For instance, studying the underlying theory more deeply

could potentially help with understanding the parameter Λ. It could also help us

reason theoretically about the amount of data needed to obtain reliable results.
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A
Datasets

A.1 Sources of satellite observations

Product Name Description
Cloud Dropet Concentration Nd MODIS (1.6, 2.1, 3.7 µm channels) [4]
Cloud Effective Radius re MODIS (1.6, 2.1, 3.7 µm channels) [4]
Cloud Optical Depth τ MODIS (1.6, 2.1, 3.7 µm channels) [4]
Cloud Water Path (CWP) MODIS (1.6, 2.1, 3.7 µm channels) [4]
Cloud Fraction (CF) MODIS (1.6, 2.1, 3.7 µm channels) [4]
Precipitation NOAA CMORPH CDR [42]
Sea Surface Temperature (SST) NOAA WHOI CDR [14]
Lower Tropospheric Stability (LTS) MERRA-2 [19]
Vertical Motion (ω500) MERRA-2 [6]
Estimated Inversion Strength (EIS) MERRA-2 [19, 55]
Relative Humidity at x mb MERRA-2 [19]
Aerosol Optical Depth (AOD) MERRA-2 [19]

Table A.1: Sources of satellite observations
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B
Additional implementation details

B.1 Hyper-parameters search space

Hyper-parameter Transformer Feed-Forward Neural Network
Hidden Units tune.qlograndint(128, 512, 128) tune.qlograndint(32, 1024, 32)
Network Depth tune.randint(2, 5) tune.randint(2, 6)
GMM Components tune.randint(1, 32) tune.randint(1, 32)
Attention Heads tune.choice([1, 2, 4, 8]) NA
Negative Slope tune.quniform(0.0, 0.5, 0.01) tune.quniform(0.0, 0.5, 0.01)
Dropout Rate tune.quniform(0.0, 0.5, 0.01) tune.quniform(0.0, 0.5, 0.01)
Layer Norm tune.choice([True, False]) tune.choice([True, False])
Batch Size tune.qlograndint(32, 256, 32) tune.qlograndint(32, 256, 32)
Learning Rate tune.quniform(1e-4, 1e-3, 1e-4) tune.quniform(1e-4, 2e-3, 1e-4)

Table B.1: Hyper-parameters search space for Overcast models
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B.2 Final hyper-parameters

Hyper-parameter Transformer Neural Network

LR Pacific LR Atlantic LR Pacific
without ω500

LR Pacific
without RH LR Pacific

Hidden units 128 128 256 128 256
Network depth 3 4 3 3 2
GMM T components 27 7 24 27 2
GMM Y components 22 24 24 22 5
Attention heads 8 8 4 8 NA
Negative slope 0.28 0.19 0.01 0.28 0.1
Dropout rate 0.42 0.16 0.5 0.42 0.09
Layer norm False True False False False
Batch size 128 160 32 128 224
Learning rate 0.0001 0.0001 0.0002 0.0001 0.0002
Epochs 500 500 500 500 9

Table B.2: Final hyper-parameters for each dataset and model
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