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Abstract

Participatory budgeting generally involves a group of voters collectively deciding

what options to select to make up some common shared outcome. This can apply to

federal elections, choosing committees for representation, deciding how to allocate

funds towards public projects, deciding what movies to play at a cinema, etc. Par-

ticipatory budgeting studies how we can use the results of the polls to pick which

projects to fund in a fair and efficient manner. There is a large variety of situations

in which these ideas can be used, as mentioned before, and there is also a large

variety of ways even to poll voters.

The contribution of this thesis is fourfold. We investigate Pareto optimality in a very

general setting by looking at the complexity of computing Pareto optimal solutions

and verifying Pareto optimality, and briefly touch on the idea of negative utilities.

We also consider selecting committees given voters’ positive, negative, or neutral

opinions on candidates, and discuss notions of fairness and the complexities involving

them. We extend work on using ranked preferences to choose committees to the

more general setting where the size of the committee is not fixed, but rather each

candidate has a cost and there is a total budget, and we consider two aggregation

rules and investigate how variations in the costs of items and the overall budget

affects the outcome, so that project proposers can better understand what kind of

margins they were working with.
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1 Introduction

1.1 Motivation

Participatory budgeting generally involves a group of voters collectively deciding

what options to select to make up some common shared outcome. This can apply to

federal elections, choosing committees for representation, deciding how to allocate

funds towards public projects, deciding what movies to play at a cinema, etc.

For example, suppose a city has a certain budget for making the city a nice place

to live in, and it has a bunch of different public projects it could fund, like building

parks, fixing roads, putting on festivals, etc. It can poll its citizens to get their

opinions about these different projects, then aggregate these opinions to decide

how to allocate these funds. Not only does this help the overseers understand the

preferences of the citizens, it also allows the population to be more directly involved

in the running of the city.

Aziz and Shah [6] note that several cities have directed significant funding for public

projects to be allocated by participatory budgeting, so it is important how voter

opinions are aggregated and used to decide funding allocation. In particular, we do

not want to end up with undesirable outcomes, like only projects located in the most

densely populated areas being funded, or certain significant groups of the population

being underrepresented.

Participatory budgeting studies how we can use the results of the polls to pick which

projects to fund in a fair and efficient manner. There is a large variety of situations

in which these ideas can be used, as mentioned before, but there is also a large

variety of ways even to poll voters. For example, voters could give a thumbs up

or thumbs down to each idea, they could rank ideas, they could assign real valued

utilities to the ideas, they could propose their favourite outcomes, the list goes on.

Some of these polling methods get a more fine-grained view on voters’ preferences,

3



though they may require significantly more time and effort on the voters’ part.

Once the voters’ preferences have been collected through some manner of polling,

there’s still the question of how to aggregate the results. We can establish methods

for aggregating these results, and analyze the fairness of the results, but as Peters and

Skowron [12] show, there are even conflicting notions of fairness. We can therefore

look at a variety of aggregation rules and notions of fairness, and compare and

contrast them, seeing how they perform by different metrics.

1.2 Overview of contributions

We start off in section 4 by looking at a very general setting, and investigating

Pareto optimality. In particular, we look at the complexity of computing Pareto

optimal solutions and verifying Pareto optimality in the most general setting, and

in some simple restrictions, and briefly touch on the idea of negative utilities. In

section 5, where we consider selecting committees given voters’ positive, negative,

or neutral opinions on candidates, we point out several corrections in the work done

to date, then propose a fairness axiom of our own, compare it with previously seen

related axioms of fairness, check compatibility with the Pareto optimality, and prove

hardness of verification of satisfaction of our axiom. In section 6, we extend work on

using ranked preferences to choose committees to the more general setting where the

size of the committee is not fixed, but rather each candidate has a cost and there is

a total budget. In section 7, we consider two aggregation rules and investigate how

variations in the costs of items and the overall budget affects the outcome, so that

project proposers can better understand what kind of margins they were working

with.
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2 Preliminaries

2.1 General definitions

Definition N = {0, 1, 2, ...}

Definition [t] := {1, 2, ..., t} for t ∈ N.

In a participatory budgeting scenario we have

• a set of items/projects/candidates A = [m],

• a set of feasible sets/bundles/outcomes F ⊆ P(A) which we will usually define

via a cost function c : A → N and a budget b ∈ N where B ∈ F iff
∑

j∈B c(j) ≤

b (when we have such a cost function, we may extend the definition of c so

that for B ⊆ A, c(B) =
∑

j∈B c(j)),

• a set of voters V = [n],

• a partial order over F which denotes how much a voter likes a bundle, where

we will by default assume that this partial order is given by a utility function

u : V × P(A) → R which is additive, so u(i, V ) =
∑

j∈B u(i, {j}), making it

useful to define u(i, j) := u(i, {j}).

Definition We will consider several algorithms for computing outcomes given a

participatory budgeting scenario. We may refer to them in several different ways,

such as an aggregation rule, budgeting method, algorithm for computing an outcome,

etc.

Definition An outcome B is Pareto optimal or efficient iff for every outcome C

there is at least one voter who strictly prefers B to C or every voter is indifferent

between B and C. If there is an outcome C for which no voter strictly prefers B to C

and at least one voter strictly prefers C to B, then we call C a Pareto improvement

over B (such a C exists iff B is not Pareto optimal).
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Definition An aggregation rule is strategyproof iff once the utilities of all other

voters has been fixed, the outcome resulting from voter i reporting their utilities

truthfully is at least as good (from i’s perspective) as any outcome that could be

produced by this algorithm with the other voters’ reported utilities fixed.

Definition A general class of strategyproof algorithms that return Pareto optimal

outcomes are serial dictatorships.

In a serial dictatorship, the first voter restricts the set of feasible outcomes F0 = F

to those outcomes which maximize their utility, F1. The second voter then does the

same, restricting F1 to F2, their most preferred outcomes in F1, and so on for the

rest of the voters in a fixed order. Any remaining outcome is then returned.

Suppose there are two feasible outcomes B,C such that C is a Pareto improvement

over B. If C is eliminated at any point in the algorithm by a voter i, then B will

also be eliminated by voter i (if it has not already been eliminated) as voter i likes

B no more than C. If C is not eliminated by any voter, then B will be eliminated

by a voter i who strictly prefers C to B. In either case B will not be returned, so

whichever outcomes is returned will be Pareto optimal.

Now consider two runs of a serial dictatorship where the only difference in the input

is that in the second run voter imay not report their utility accurately. Note that the

first place in which this makes a difference is when voter i is restricting the feasible

outcomes. In the first run, Fi−1 is restricted to Fi, voter i’s favourite outcomes in

Fi−1. In the second run, Fi−1 is restricted to F ′
i . Note that the final outcome of the

algorithm will be an element of Fi or F
′
i for the respective runs, and no outcome in

F ′
i is preferred to any outcome in Fi, so the resulting outcome of the second run will

not be preferred by voter i to the outcome of the first run.
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2.2 Dichotomous background

Definition We call participatory budgeting scenarios where feasible outcomes are

all of those with size exactly k (F = {B ⊆ A : |B| = k} and u(i, j) ∈ {0, 1} for all

i ∈ V and j ∈ A, Approval-Based Multi-Winner scenarios. In these scenarios we

will typically represent voters’ utilities by having for each voter i an “approval set”

Ai of the items they assign a utility of 1 to.

The feasible outcomes being those of size k is what we might expect if we are

filling multiple identical positions, like appointing a committee, hiring employees, or

electing a parliament, and a nice property of approval-based voting is the simplicity

of voting, as a voter just needs to decide whether or not they approve of each

candidate, as opposed to other setups where they might have to rank the candidates

or give real-valued utilities for the candidates.

When considering what kind of outcomes are desirable, we ideally want a balance

between being fair by representing groups and finding efficient solutions which max-

imize the overall happiness.

Definition The Approval Voting rule returns the k candidates with the most ap-

provals (breaking ties arbitrarily). Note that this will maximize the sum of the

utilities attained by all the voters.

A significant problem with Approval Voting though is illustrated by the following

scenario.

Example Suppose that A = [100], k = 50, V = [50], Ai = [50] for i ∈ [26] and

Ai = A \ [50] for i ∈ V \ [26]. Each candidate in [50] has 26 approvals, whereas each

candidate in A \ [50] has 24 approvals, so Approval Voting would choose [50] as the

outcome. This may seem unfair though as there are 50 candidates to choose and

50 voters, but every single voter in V \ [26] has none of their approved candidates

selected and so are completely unrepresented, even though we might intuitively think
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each of the 50 voters should be represented by at least one of the 50 candidates.

This type of scenario is the motivation behind Aziz et al. [2] introducing the following

JR, EJR, and core notions of fairness of outcomes of a voting scenario.

Definition A committee B provides justified representation (JR) if for every subset

of voters V ′ ⊆ V such that |V ′| ≥ n
k
,

⋂
i∈V ′

Ai ̸= ∅ =⇒ ∃i′ ∈ V ′ s.t. Ai′ ∩B ̸= ∅.

Intuitively, if a set of voters that agrees on a candidate is large enough to deserve

representation by a candidate, then at least one of these voters has representation.

Note that if i is the voter with representation, then if we consider the set V ′ \ {i},

it may still be large enough to deserve representation, so another voter in V ′ \ {i}

would be represented, and so on until the set is not big enough for representation.

Remark Aziz et al. [2] show that it can be checked in polynomial-time whether a

committee B satisfies JR.

Example If we reconsider the example from before when A = [100], k = 50,

V = [50], Ai = [50] for i ∈ [26] and Ai = A \ [50] for i ∈ V \ [26], we now have that

a candidate from [50] and a candidate from A \ [50] must be in the outcome for it

to provide JR, as for V ′ = [26], |V ′| ≥ 50
50

and
⋂

i∈V ′ Ai = [50] ̸= ∅, and similarly

for V ′ = V \ [26]. Note though that once we have these two candidates, as every

voter has a candidate they approve of in the outcome, JR is satisfied. Therefore

the outcome [49] ∪ {51} satisfies JR. We now have that every voter has at least 1

representative, but this may not seem satisfactory, as the 24 voters in V \ [26] have

only one representative whereas the 26 voters in [26] have 49 representatives.

Sánchez-Fernández et al. [15] proposed the following strengthening of JR.

Definition A committee B satisfies proportional justified representation (PJR) if
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for every subset of voters V ′ ⊆ V and all ℓ ∈ [k], if |V ′| ≥ ℓ · n
k
then

∣∣∣∣∣⋂
i∈V ′

Ai

∣∣∣∣∣ ≥ ℓ =⇒

∣∣∣∣∣⋃
i∈V ′

Ai ∩B

∣∣∣∣∣ ≥ ℓ.

Intuitively, if a set of voters that agrees on ℓ candidates is large enough to deserve

representation by ℓ candidates, then there are ℓ chosen candidates that are each

approved by at least one of these voters.

Remark Aziz et al. [3] show that it is co-NP-complete to check whether a committee

B satisfies PJR.

Example Considering the example from before one last time, when A = [100],

k = 50, V = [50], Ai = [50] for i ∈ [26] and Ai = A\ [50] for i ∈ V \ [26], we now have

that 26 candidates from [50] and 24 candidates from A\ [50] must be in the outcome

for it to provide PJR, as for V ′ = [26], |V ′| ≥ 26 · 50
50

and
∣∣⋂

i∈V ′ Ai

∣∣ = 50 ≥ 26, and

similarly for V ′ = V \ [26].

While the above example highlights some positive results, we now give another

example in which voters do not have such unanimous groups which may give us

motivation for a further strengthening.

Example Consider when A = [100], k = 50, V = [50], Ai = {i} ∪ ([100] \ [50]).

The committee B = [50] satisfies PJR as each voter has a candidate they uniquely

like in B, so any group of ℓ · n
k
= ℓ voters has representation by ℓ candidates. Note

though that all of the voters would be strictly better off with [100] \ [50] as they all

approve of all of these candidates.

This example motivates the following stronger definition by Aziz et al. [2]

Definition A committee B satisfies extended justified representation (EJR) if for
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every subset of voters V ′ ⊆ V and all ℓ ∈ [k], if |V ′| ≥ ℓ · n
k
then

∣∣∣∣∣⋂
i∈V ′

Ai

∣∣∣∣∣ ≥ ℓ =⇒ ∃i′ ∈ V ′ s.t. |Ai′ ∩B| ≥ ℓ.

Intuitively, if a set of voters V ′ that agrees on ℓ candidates is large enough to deserve

representation by ℓ candidates, then one of these voters i approves of at least ℓ of

the chosen candidates. While this may not seem particularly strong, note that i is

represented by ℓ candidates, and if we consider the set V ′ \ {i}, it may still be large

enough to deserve representation by ℓ candidates, so another voter in V ′ \ {i} is

represented by ℓ candidates, and so on until the set is not big enough for a single

candidate.

Example Considering the previous example, when A = [100], k = 50, V = [50],

Ai = {i} ∪ ([100] \ [50]). Taking V ′ = V , EJR states that at least one of the voters

must like every candidate, so at least 49 candidates from [100] \ [50] will be chosen.

In particular, at least one of the voters will be as happy as possible, and all the

others will be very close to as happy as possible if not as happy as possible.

Remark Aziz et al. [2] show that it is co-NP-complete to check whether a committee

B satisfies EJR.

We now introduce a final strengthening of our fairness conditions, the core, though

Peters et al. [11] state it is unknown if there always exists an outcome in the core.

Definition A committee B is in the core if for every subset of voters V ′ ⊆ V and

all ℓ ∈ [k], if |V ′| ≥ ℓ · n
k
then for all S ⊆ A with |S| ≤ ℓ, there exists a voter i ∈ V ′

such that

|Ai ∩B| ≥ |Ai ∩ S|.

Remark For an outcome B, B is in the core =⇒ B satisfies EJR =⇒ B satisfies

PJR =⇒ B satisfies JR. These implications follow directly from the definitions.
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Peters and Skowron [12] give the following intuitive and efficient algorithm and show

that it always finds an outcome that satisfies EJR (and so also PJR and JR).

Equal Shares Each voter i is given bi =
k
n
dollars.

We say that a candidate j is ρ-affordable for ρ ≥ 0 if ρ is the least value such that

∑
i∈V

min {bi,1 [j ∈ Ai] · ρ} = 1,

and we say it is affordable if it is ρ-affordable for any ρ, or equivalently

∑
i∈V

bi · 1 [j ∈ Ai] ≥ 1.

Starting with an empty outcome B = ∅, we take an item j which is ρ-affordable for

the least ρ (breaking ties arbitrarily), add j to B, and subtract min {bi,1 [j ∈ Ai] · ρ}

from each bi (ρ can be seen as the ratio dollars spent/utility gained). We repeat this

until no item is ρ-affordable for any ρ, then extend B arbitrarily to a set of size k

and terminate (any extension will satisfy EJR).

Note that finding a ρ for which an item j is ρ-affordable (or whether no such ρ

exists) is solvable in O(n) time as for fixed b1, ..., bn,

fj(ρ) =
∑
i∈V

min {bi,1 [j ∈ Ai] · ρ}

is a continuous non-decreasing piecewise linear function with breakpoints exactly at

{bi : i ∈ V,1 [j ∈ Ai]} .
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2.3 Properties of aggregation rules

To implement participatory budgeting in the real world, there is a good chance

that the people in charge, who may not have any background in the subject, will

have to be convinced that the algorithm/rule being used is a reasonable one. For

this reason, it can be desirable to not only have guarantees on outcomes having

certain properties, like the fairness properties previously discussed, but also have

easily accessible information about how small changes in the input could change the

output, and intuitive relations between different outcomes for similar inputs.

Talmon and Faliszewski [16] consider a few different utility functions for which we

can see some intuitive applications. The utility functions considered in this paper all

made use of approval sets as described in Section 2.2, though the feasible outcomes

they consider are defined using a cost and budget rather than having a fixed size.

The first function discussed was u(v,B) = 1 [Av ∩B ̸= ∅], which can be seen as

voter v being happy iff one of their items is selected. This could be used in a

pizza party where A is the set of pizza types, c gives the cost of a pizza type,

and a voter is happy iff there is a type of pizza they like. The second function

discussed was u(v,B) = |Av ∩B|, which is voter v’s happiness being proportional

to the number of their items being selected. This could be used by a group deciding

which movies to purchase, and a voter’s happiness is proportional to the number

of movies they can now watch that they would enjoy. The third function discussed

was u(v,B) =
∑

a∈Av∩B c(a), which is voter v’s happiness being proportional to the

amount of money spent on the items they approve of. This could also be used by a

group deciding which movies to purchase, but now if the group does not purchase a

movie that a voter likes, they will buy themselves a personal copy.

For each of these utility functions, Talmon and Faliszewski [16] then consider three

different rules for choosing bundles: one which maximizes the sum of utilities, one

which iteratively constructs the bundle by greedily taking the next item that is still
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affordable and maximizes the marginal utility, and one which iteratively constructs

the bundle by greedily taking the next item that is still affordable and maximizes

the marginal utility divided by the marginal cost. For each of these nine rules, they

then discussed computational complexity as well as whether or not they satisfy a

short list of potentially desirable axioms.

Definition A budgeting method satisfies Inclusion Maximality if for all inputs

A, c, b, V, u, the bundle it selects, B, is not a strict subset of any other feasible

bundle.

This can be a desirable property as more things is often better, though if some items

are disliked this may not be the case.

Definition A budgeting method satisfies Limit Monotonicity if for all inputs

A, c, b, V, u, either there is an item j for which c(j) = b+ 1, or the bundle it selects,

B, is contained in the bundle it selects for A, c, b+ 1, V, u.

This can be a desirable property when the budget might not be fully fixed before-

hand, as if the budget increasing causes voters’ choices to be unselected, this could

be seen as a manipulation of the results.

Definition A budgeting method satisfies Discount Monotonicity if for all inputs

A, c, b, V, u, for all items j in the bundle it selects, if the cost of j were decreased,

then it would still be selected.

This is a desirable property as it can motivate the people proposing projects to make

them more affordable.

Definition A budgeting method satisfies Splitting Monotonicity if for all inputs

A, c, b, V, u, for all items j in the bundle it selects, the bundle that would be selected

for A∪A′ \ {j} , c′, b, V, u′, where c′(A′) = c(j), and c′ and c agree otherwise, and all

voters that approved of j approve of all items in A′, contains at least one element

of A′.
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Intuitively, this states that if an item that would have been selected is decomposed

into parts, then at least one of those parts will still be selected.

Definition A budgeting method satisfies Merging Monotonicity if for all inputs

A, c, b, V, u, for all sets of items A′ contained in the bundle it selects, such that each

voter approves of all of A′ or none of A′, the bundle that would be selected for

A ∪ {j} \ A′, c′, b, V, u′, where c(A′) = c′(j), and c′ and c agree otherwise, and all

voters that approved of all of A′ approve of j, contains j.

Intuitively, this states that if a set of items A′ is such that each person likes all of

A′ or none of A′, and A′ would have been entirely selected, and A′ is combined into

one item, then it will still be selected.

Remark The previous two axioms are collectively useful for allowing proposers of

projects to not have to worry about how many parts their proposal comes in.

3 The Knapsack problem

We will now formally define the knapsack problem for our use in this paper, a slight

variation on a problem in Karp’s famous list of 21 NP-complete problems [9].

Definition An instance of the knapsack problem has

• a set of items/projects/candidates A = [m],

• a set of feasible sets/bundles/outcomes F ⊆ P(A) which is defined via a cost

function c : A → N and a budget b ∈ N where B ∈ F iff c(B) ≤ b,

• an injective utility function u : P(A) → T , where T is a totally ordered set,

and as a goal, wants to find a bundle with the greatest utility.

Remark Typically, T will be R,Q,Z, or N, but we allow for more flexibility so that

we can optimize lexicographically over vectors of utilities.
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Remark Other common variations on this problem are to consider the decision

problem of whether a total utility of v is attainable, the optimization problem of

finding the largest total utility attainable, and the problem of finding an affordable

bundle with total utility of at least v if such a bundle exists. Finding optimal

outcomes is typically what we desire in participatory budgeting, so that is what we

will focus on, but note that given an optimal outcome we can quickly obtain answers

to the other 3 problems, so it is at least as hard as the other problems.

As noted before, Karp [9] proved that when T = Z+, the decision problem of whether

a total utility of v is attainable is NP-complete, but if the costs, budget, or utilities

are given in unary, then it can be solved in polynomial time, as we will show shortly.

Remark Note that an instance of the knapsack problem is equivalent to an instance

of our standard participatory budgeting scenario with exactly one voter and utilities

restricted to Z+.

Theorem 3.1 When T = Z≥0, there is an algorithm to find an optimal outcome of

the knapsack problem that runs in Θ(m · u(A)) time.

Proof Vazirani [18] gives us the following dynamic program.

Let s[j, v] be a smallest cost bundle with items in [j] and total utility exactly v, or

some exception value None if no such bundle exists. We define None ∪ B := None

and c(None) = ∞. We have

s[j, v] =



{} if v = 0

None else if j = 0

s[j − 1, v − u(j)] ∪ {j} else if u(j) ≤ v and

c (s[j − 1, v − u(j)] ∪ {j}) < c(s[j − 1, v])

s[j − 1, v] else.
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We can then fill out a 2-dimensional array containing s-values by sequentially cal-

culating s[0, 0], s[0, 1], ..., s[0, u(A)], s[1, 0], s[1, 1], ..., s[m,u(A)], and then return the

first bundle in the sequence s[m,u(A)], s[m,u(A) − 1], ..., s[m, 0] whose cost is at

most b.

Note that calculating the cost of a bundle in our third case takes O(m) time, but

if we store the costs in the array along with the bundles we can remove this extra

factor.

Definition A generalization of the knapsack problem is the multi-dimensional knap-

sack problem [10]. An instance of the knapsack problem has

• a set of items/projects/candidates A = [m],

• a set of feasible sets/bundles/outcomes F ⊆ P(A) which is defined via cost

functions c1, ..., cd : A → N and budgets b1, ..., bd ∈ N where B ∈ F iff

ci(B) ≤ bi for all i ∈ [d],

• an injective utility function u : P(A) → T , where T is a totally ordered set,

and as a goal, wants to find a bundle with the greatest utility.

Theorem 3.2 There is an algorithm to find an optimal outcome of the multi-

dimensional knapsack problem that runs in time in

O

(
max {d, t} ·m ·

d∏
i=1

(min {bi, ci(A)}+ 1)

)
,

where t is the maximum time it takes to either compare two elements of T or compute

u(B ∪ {j}) given u(B) for any B and j.

Proof This algorithm is based on a dynamic programming approach illustrated by

Andonov et al. [1] Let r[j, b′1, ..., b
′
d] be an optimal outcome with items in [j] and

budgets b′1, ..., b
′
d. We have
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r[j, b′1, ..., b
′
d] =

∅ if j = 0

r[j − 1, b′1, ..., b
′
d] else if ci(j) > b′i for any i ∈ [d] or

u(r[j − 1, b′1, ..., b
′
d]) >

u(r[j − 1, b′1 − c1(j), ..., b
′
d − cd(j)] ∪ {j})

r[j − 1, b′1 − c1(j), ..., b
′
d − cd(j)] ∪ {j} else.

We can fill out a (d + 1)-dimensional array storing r-values with indices from 0 to

m, 0 to min {b1, c1(A)}, ..., 0 to min {bd, cd(A)} in lexicographical order, then query

this array on r [m,min {b1, c1(A)} , ...,min {bd, cd(A)}] to get a desired outcome.

Note that if we store the utilities in the array along with the bundles, we can calculate

query the previously calculated entries in O(d), the utilities in the if-statement in

O(t), compare the utilities in the if-statement in O(t), and calculate the new utilities

in O(t), for a total of O(max {d, t}) time, giving the desired total runtime.

Remark This algorithm can, and often is, used with dimension 1.

4 Pareto optimality in our standard setting

4.1 Introduction

In any situation with multiple parties and multiple possible outcomes, when consid-

ering the efficiency of outcomes, Pareto optimality is a desirable property. Given an

outcome that is not Pareto optimal, no voter has any reason to object to switching

outcomes to a Pareto improvement, and at least one voter would actively desire this

switch. For this reason, being able to find Pareto optimal outcomes, verify Pareto

optimality, and find Pareto improvements, are important tools to have available

when possible.

17



Unfortunately, Aziz and Monnot [5] show that in our standard participatory bud-

geting setup, even with uniform cost items and utilities in {0, 1}, it is NP-hard to

verify Pareto optimality (and finding Pareto improvements is at least that hard).

We will elaborate on their results in Section 6.1, but this is certainly not a promising

start.

A further negative result is that in our standard participatory budgeting setup

with utilities in Z≥0, even if we only have one voter, computing a Pareto optimal

outcome is NP-hard. This is directly from the NP-hardness of the knapsack problem,

discussed in Section 3.

We therefore investigate our standard participatory budgeting setup with a few

different restrictions to get some positive results.

4.2 Computing a Pareto optimal outcome when there is a

constant number of distinct costs

Theorem 4.1 In our usual participatory budgeting setup but with M a bound on

the number of distinct costs, there exists an efficient strategyproof algorithm that

returns a Pareto optimal outcome.

Proof Consider when the number of distinct costs is bounded by some M .

We give a serial dictatorship algorithm for finding an outcome. Recall from section

2.1 that this is a strategyproof way to obtain a Pareto optimal outcome. We included

an implementation of this in Python in Appendix A in case the more informal

description was not sufficiently convincing, but the more informal description is as

follows.

For c1 > · · · > cM the distinct costs, and mp the number of items with cost cp, we

first make a list of all maximal tuples (with respect to each entry) of nonnegative

integers such that each tuple (t1, ..., tM) is such that
∑M

p=1 cp ∗ tp ≤ b and tp ≤ mp
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for each p ∈ [M ].

For each tuple (t1, ..., tM), the corresponding set of feasible solutions is all sets of

items for which there are at most tp items of cost cp for each p ∈ [M ]. Note that every

feasible solution corresponds to at least one of these tuples. The feasible solutions

for a given tuple can then be split up by cost, so for a given tuple (t1, ..., tM) and

a given cost cp we have the feasible solutions are all sets of size no more than tp of

items which each cost cp, then taking the Cartesian product of the feasible sets for

each cost give the feasible sets for the tuple.

Note that for a given tuple (t1, ..., tM), voter 1 can restrict the feasible outcomes

to those which are optimal for them by restricting the feasible outcomes for each

cost in this tuple to optimal outcomes. Once they have done this, they can delete

any tuples which do not attain their optimal utility, leaving only feasible outcomes

which are optimal for them. The remaining voters can then do the same in order,

until we arrive at a set of feasible outcomes resulting from a serial dictatorship.

Note that the number of tuples is no more than

M∏
p=1

(mp + 1) ≤

(∑M
p=1 (mp + 1)

M

)M

=

(
m+M

M

)M

,

which is polynomial for a fixed M . The feasible outcomes for a fixed tuple and cost

can then be feasibly restricted by each voter to those which are optimal for them,

as we do in the code, so overall this can be done efficiently.
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4.3 Computing a Pareto optimal outcome when costs or

budget is polynomially bounded

Theorem 4.2 In our usual participatory budgeting setup, there exists a strate-

gyproof algorithm that returns a Pareto optimal outcome that runs in

O (n ·m ·min {b, c(A)}) .

Proof Using the 1-dimensional version of the algorithm given in Theorem 3.2, where

we let the utility function return the vector (u(1, B), ..., u(n,B)) and have the or-

dering on these vectors be lexicographical, we can get an outcome in

O (n ·m ·min {b, c(A)}) time that would maximize the lexicographical utility (be

chosen by a serial dictatorship) subject to the budget.

4.4 Turning bads into goods

Negative utilities have been far less studied than positive utilities, so we make a few

remarks about commonalities and differences with positive utilities, before continu-

ing on with our results.

Consider the situation where we have a set of “bads” A = [m], a value function

v : A → N and a quota q ∈ N such that B ∈ F iff
∑

j∈B v(j) ≥ q, V = [n], and we

have an additive utility function u : V × F → R≤0.

This is equivalent to the situation with A = [m], a cost function c = v and a budget

b = −q +
∑

j∈A v(a) such that B ∈ F iff c(B) ≤ b, V = [n], and u′ : V × F → R≤0

where u′(i, S) = u(i, A)−u(i, S). What we have done here is essentially “by default”

added all of the items, and now our budget is how much value we can lose while still

meeting the quota.

Note that for each voter i, u(i, A) is a constant, and (−u(i, S)) : V × P(A) → R≥0

is an additive function. We can therefore see u′ as indicating that everyone’s utility
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is an additive function of the bads selected plus some baseline utility value. This

essentially reduces the problem with bads (non-liked items) to the more standard

problem with goods (non-disliked items).

4.5 Mixing goods and bads

As discussed previously, we can turn a problem about bads into a problem about

goods, so given a situation with items such that each item is either disliked by

nobody or liked by nobody, a budget, and costs in Z, we can similarly turn it into a

situation where all the costs are non-negative by adding the negative cost items to

the outcome “by default” and having a cost to remove them. We are then left with

a scenario which is essentially a problem about goods (there may be some items

which no one likes which have a non-negative cost which we would trivially never

add to an outcome).

More interesting is when some items are liked by some people and disliked by others.

Even with no budget and no costs, what is or is not fair isn’t clear.

Example Consider when A = [2], V = [3], u(1, 1) = u(2, 2) = u(3, 2) = 1 and all

other utilities are −1. Is it preferable to have utilities (0, 0, 0) or (−1, 1, 1)?

If (0, 0, 0) is preferable, what about similar scenarios where we can choose between

(0, ..., 0) vs (−1, 1, ..., 1)? If (−1, 1, 1) is preferable, what about (−1, ...,−1︸ ︷︷ ︸
n copies

, 1, ..., 1︸ ︷︷ ︸
n+1 copies

)?

4.6 co-NP-completeness of verifying Pareto optimality when

utilities are in {−1, 0, 1} and there are no costs

As discussed at the start of the section, Aziz and Monnot [5] show that in our

standard participatory budgeting setup, even with uniform cost items and utilities

in {0, 1}, it is NP-hard to verify Pareto optimality. We show that if we add −1 to

the allowed utilities, it is co-NP-complete to verify Pareto optimality of the empty

selection even if we restrict the budget to be unlimited and each item to have at
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most 4 voters with non-zero utility for it.

Theorem 4.3 In our usual participatory budgeting setup, but restricted to utilities

in {−1, 0, 1}, unlimited budget (F = P(A)), and for all items j ∈ A, we have

|{i ∈ V : u(i, j) ̸= 0}| ≤ 4, it is co-NP-complete to verify Pareto optimality over the

empty selection.

Proof Note that a Pareto improvement over the empty selection is a witness to the

empty selection not being Pareto optimal, so our problem is in co-NP.

We show hardness by a reduction from Set Cover which Karp [9] showed to be NP-

complete. An instance of Set Cover has S1, ..., Sm ⊆ [n] and k ∈ [m], and asks if

there is a set Q ⊆ {S1, ..., Sm} with |Q| ≤ k such that
⋃

S∈Q S = [n].

Suppose we have an instance of Set Cover, with S1, ..., Sm ⊆ [n] and k ∈ [m]. If

n = 0 we can return True and if k ≤ 2 this can be solved by checking all
(
m
k

)
possibilities in quadratic time. Otherwise, let A = {s1, ..., sm, a1, ..., ak},

V = {e1, ..., en, c, h, ℓ1, ..., ℓk}, and u be as following.

u(ei, sj) = 1 [i ∈ Sj]

u(ei, aj) = −1 [j = 1]

u(c, sj) = −1

u(c, aj) = 1

u(h, x) = 1 for any x ∈ A

u(ℓi, sj) = 0

u(ℓi, ai) = −1

u(ℓi, a(i mod k)+1) = 1

u(ℓi, aj) = 0 for any j /∈ [k] \ {i, (i mod k) + 1}

We claim that there is a Pareto-improvement over the empty selection of this prob-
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lem iff there was a set cover of size at most k, which is sufficient to complete the

proof.

Suppose B ⊆ A is a Pareto-improvement over the empty selection. If B contains

any item sj′ , then it must also contain an item aj so that voter c is not worse off.

Therefore as B is not the empty selection it must contain an item aj. Note that

such an item aj contributes −1 utility to voter ℓj, so if we look at the last k items as

a k-cycle, the next item must also be in B so that that voter does not have negative

utility. Continuing like this, we have that {a1, ..., ak} ⊆ B. Note that

u(ei, {a1, ..., ak}) = −1

u(c, {a1, ..., ak}) = k

u(h, {a1, ..., ak}) = k

u(ℓi, {a1, ..., ak}) = 0

so u(ei, B ∩ {s1, ..., sm}) ≥ 1 for all i ∈ [n] (voters must have net non-negative

utility for B) and |B ∩ {s1, ..., sm}| ≤ k (voter c gets −1 utility for each item in

B ∩ {s1, ..., sm}). As

1 ≤ u(ei, B ∩ {s1, ..., sm}) =
∑

sj∈B∩{s1,...,sm}

u(ei, sj) =
∑

sj∈B∩{s1,...,sm}

1 [i ∈ Sj] ,

we have that i ∈
⋃

sj∈B∩{s1,...,sm}

Sj for all i ∈ [n], and since |B ∩ {s1, ..., sm}| ≤ k we

have that a set cover of size ≤ k exists.

Now instead suppose there is a set cover Q =
{
Sj1 , ..., Sjk′

}
with |Q| ≤ k. Let

C = {sj : Sj ∈ Q}. Let B = C ∪ {a1, ..., ak}. For i ∈ [n],

u(ei, B) =
∑
sj∈C

1 [i ∈ Sj] + u(ei, {a1, ..., ak}) = |{sj ∈ C : i ∈ Sj}| − 1 ≥ 0,
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u(c, B) =
∑
sj∈C

−1 + u(c, {a1, ..., ak}) = −|C|+ k ≥ 0,

u(h,B) =
∑
sj∈C

1 + u(h, {a1, ..., ak}) = |C|+ k > 0,

and for i ∈ [k],

u(ℓi, B) =
∑
sj∈C

0 + u(ℓi, {a1, ..., ak}) = 0 + 0,

so there is a Pareto improvement over the empty selection.

5 Proportionality in Committee Selection with

Negative Feelings

5.1 Section overview

In this section we will cover a generalization of Approval-Based Multi-Winner sce-

narios given by Talmon and Page [17], where instead of approving or disapproving,

voters can approve, disapprove, or be neutral about each candidate. We will briefly

discuss their notions of fairness, go over several of corrections to their paper, then

consider a further notion of fairness, reasons for this choice, and the complexity of

computing fair outcomes and verifying fairness of outcomes.

5.2 Trichotomous background

Similarly to the dichotomous setting, Talmon and Page [17] consider scenarios where

feasible outcomes are all of those with size exactly k, but now they have each voter

i divide the items into items they approve of (A+
i ), items they disapprove of (A−

i ),

and items they are indifferent about (A0
i ). This allows for voters to express a some-

what more detailed opinion, as there can be a significant difference between being

indifferent about a particular project being implemented and being actively opposed

to it.
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In the dichotomous setting, the fairness axioms were of the form “If there is a large

enough group of voters with similar enough opinions, then they deserve at least this

much representation.” Talmon and Page [17] consider two classes of fairness axioms.

The first is fairly liberal with what is allowed for “similar enough opinions”, in that

they only require
∣∣(⋃

i∈V ′ A
+
i

)
\
(⋃

i∈V ′ A
−
i

)∣∣ to be sufficiently large, and then they

consider a variety of options for what such a group would deserve, including making

sure they have sufficient representation within the candidates they approve of (and

sometimes also those for which they are neutral) and making sure candidates they

disapprove of are not selected.

The second class of axioms is more strict in what it means to have “similar enough

opinions”, in that they require
∣∣⋂

i∈V ′ A
+
i

∣∣ to be large enough. This is very similar

to the criteria we have seen in the dichotomous setting.

5.3 Corrections

We first go over several of points that seem to be incorrect in the paper. 1

The first point relates to the following definition Talmon and Page [17] give.

Definition A committee B satisfies weakest axiom (WA) if for every subset of

voters V ′ ⊆ V and all ℓ ∈ [k], if |V ′| ≥ ℓ · n
k
then

∣∣∣∣∣
(⋃

i∈V ′

A+
i

)
\

(⋃
i∈V ′

A−
i

)∣∣∣∣∣ ≥ ℓ =⇒

∣∣∣∣∣
((⋃

i∈V ′

A+
i

)
∪

(⋃
i∈V ′

A0
i

))
∩B

∣∣∣∣∣ ≥ ℓ.

In this paper they claim that WA is not always satisfiable, but we claim that WA

is no more demanding than PJR, and [15] shows that PJR is always satisfiable.

Proposition 5.1 WA is always satisfiable.

Proof Suppose we have a trichotomous scenario. Consider the dichotomous sce-

1This paper is an arXiv preprint.
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nario with Ai = A+
i ∪ A0

i . A PJR committee committee exists by [15], so let B

be such a committee. Let V ′ ⊆ V and ℓ ∈ [k] be arbitrary such that |V ′| ≥ ℓ · n
k
.

Suppose
∣∣(⋃

i∈V ′ A
+
i

)
\
(⋃

i∈V ′ A
−
i

)∣∣ ≥ ℓ.

(⋃
i∈V ′

A+
i

)
\

(⋃
i∈V ′

A−
i

)
⊆ A \

(⋃
i∈V ′

A−
i

)
=
⋂
i∈V ′

A−
i =

⋂
i∈V ′

(
A+

i ∪ A0
i

)
,

so
∣∣⋂

i∈V ′

(
A+

i ∪ A0
i

)∣∣ ≥ ℓ. Therefore
∣∣⋂

i∈V ′ Ai

∣∣ ≥ ℓ, so since B satisfies PJR,∣∣(⋃
i∈V ′ Ai

)
∩B

∣∣ ≥ ℓ. Therefore
∣∣((⋃

i∈V ′ A
+
i

)
∪
(⋃

i∈V ′ A0
i

))
∩B

∣∣ ≥ ℓ, so WA is

satisfied.

The second point relates to the following definition Talmon and Page [17] give,

though we restate it slightly to avoid potentially ambiguous negations.

Definition A committee B satisfies New Cohesiveness Representation (NCR) if for

every subset of voters V ′ ⊆ V and all ℓ ∈ [k], if |V ′| ≥ ℓ · n
k
then

∣∣∣∣∣⋂
i∈V ′

A+
i

∣∣∣∣∣ ≥ ℓ =⇒

∣∣∣∣∣⋂
i∈V ′

A+
i ∩B

∣∣∣∣∣ ≥ ℓ.

In this paper they claim that NCR is always satisfiable, but we give a counterexample

here.

Example Let A = [3], k = 2, V = [3], A+
i = [3] \ {i}. Note that for V ′ = {1, 2},

|V ′| ≥ 1 · 3
2
and

∣∣⋂
i∈V ′ A

+
i

∣∣ ≥ 1, so for NCR to be satisfied it must be the case that∣∣⋂
i∈V ′ A

+
i ∩B

∣∣ ≥ 1 where
⋂

i∈V ′ A
+
i = {3}. In particular it must be the case that

3 ∈ B. Note that symmetrically by taking V ′ = {2, 3} and V ′ = {1, 3}, we get that

1, 2 ∈ B which is impossible as it must be the case that |B| ≤ k = 2.

5.4 A further axiom

As Talmon and Page [17] point out while exploring their axioms, the first class

of axioms for the most part is not always satisfiable, and the one that is always
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satisfiable is no stronger than PJR.

We also noticed that the second class of axioms did not make use of either the A0
i or

the A−
i , which means that for all intents and purposes for each voter i it only takes

into account whether or not items are in A+
i , which effectively reduces things to

the dichotomous setting. We can therefore note their proof of satisfiability of NCR

works if we replace NCR with the similar axiom EJR in the dichotomous setting.

We therefore tried to come up with a balance between using the trichotomous set-

ting while still having a strong axiom which is always satisfiable. In doing so we

noticed that if we consider each voter getting 1 unit of utility for every liked item

selected and −1 unit of utility for every disliked item selected, then this is a fairly

symmetric problem where we are partitioning the items into two sets, a “selected”

set or committee B and an “unselected” set C = B.

In particular, we can see this symmetry by comparing utility functions

u+(i, B) =
∣∣A+

i ∩B
∣∣− ∣∣A−

i ∩B
∣∣

u−(i, B) =
∣∣A−

i ∩B
∣∣− ∣∣A+

i ∩B
∣∣

u±(i, B) =
∣∣A+

i ∩B
∣∣+ ∣∣A−

i ∩B
∣∣

In particular, note that

u+(i, B) +
∣∣A−

i

∣∣ = u−(i, B) +
∣∣A+

i

∣∣ = u±(i, B),

so these utility functions are the same up to an additive constant for each voter, so

maximizing one of these functions for a particular voter is equivalent to maximizing

all of them.

Definition For B a committee and C = B, B satisfies symmetric trichotomous

justified representation (STJR) if each of the following holds.
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• For all sets of voters V ′ ⊆ V for all ℓ ∈ N, if |V ′| ≥ ℓ · n
k
, then for some i ∈ V ,

∣∣A+
i ∩B

∣∣ ≥ min

(
ℓ,

∣∣∣∣∣⋂
i∈V ′

A+
i

∣∣∣∣∣+ ℓ− k

)

• For all sets of voters V ′ ⊆ V for all ℓ ∈ N, if |V ′| ≥ ℓ · n
m−k

, then for some

i ∈ V , ∣∣A−
i ∩ C

∣∣ ≥ min

(
ℓ,

∣∣∣∣∣⋂
i∈V ′

A−
i

∣∣∣∣∣+ ℓ− (m− k)

)
.

Remark To get some intuition for this axiom, we first note that if we remove the

+ℓ−k in the first part of the axiom from the second argument to min, this becomes

EJR where Ai = A+
i , and a symmetric thing holds for the other part.

Example In this EJR format though it is not always satisfiable. Consider A = [4],

k = 2, V = [2], A+
1 = {1}, A−

2 = {1}. Voter 1 makes up 1 · n
k
of the voters and

has
∣∣A+

1

∣∣ = 1, so 1 would have to be selected. On the other hand, voter 2 makes up

1 · n
m−k

of the voters and has
∣∣A−

2

∣∣ = 1, so 1 would have to be not selected.

Remark What this example illustrates is we have a problem when groups are able

to decide which specific set of items is selected/unselected, as this could directly

conflict with another group’s desires. We instead make it so that if a group agrees on

k items to be selected (orm−k items to not be selected), then they are proportionally

represented in the selected items (or unselected items). Note that if
∣∣⋂

i∈V ′ A
+
i

∣∣ ≥ k

(or the equivalent in the other case), then this reduces to the EJR axiom version,

but for every item they are short of k, they lose one fewer guaranteed item in

representation.

Theorem 5.2 There is a polynomial-time algorithm for computing an outcome

which satisfies STJR.

Proof

Begin algorithm description
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If k ≤ m
2
, use Equal Shares (without the arbitrary extension at the end) on the

dichotomous scenario with candidates in A, Ai = A+
i , and with committee of size k

to get a committee B′. If |B′| < k, use Equal Shares (with the arbitrary extension at

the end) on the dichotomous scenario with candidates in A \B′, Ai = A−
i ∩ (A \B′)

and with committee of size m − k to get a committee C. Set B = C and return

these.

If k > m
2
then start with C ′ instead.

End algorithm description

We first note that this alternate definition of EJR is equivalent to the original

(though more closely resembles STJR).

Definition A committee B satisfies extended justified representation (EJR) if for

every subset of voters V ′ ⊆ V and all ℓ ∈ [k], if |V ′| ≥ ℓ · n
k
then for some i ∈ V ,

∣∣A+
i ∩B

∣∣ ≥ min

(
ℓ,

∣∣∣∣∣⋂
i∈V ′

A+
i

∣∣∣∣∣
)
.

Note that Peters and Skowron [12] showed that Equal Shares satisfies EJR, so (in

the case where k ≤ m
2
) B′ will satisfy EJR in the corresponding dichotomous setting

(so B will too). As we can see by comparing our alternate definition of EJR to the

first part of STJR (and noting that ℓ ≤ k), B satisfying EJR in the corresponding

dichotomous setting guarantees that the first part of STJR is satisfied.

Now suppose there is a set of voters V ′ with |V ′| ≥ ℓ · n
m−k

. Let B′′ ⊆ B′ be the items

that voters in V ′ did not spend any money on in the first Equal Shares algorithm.
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Note that

|B′′| ≤ k

n
· (|V \ V ′|)

≤ k

n
·
(
n− ℓ · n

m− k

)
= k ·

(
1− ℓ

m− k

)
=

k

m− k
· (m− k − ℓ)

≤ m− k − ℓ,

so in particular

∣∣∣∣∣⋂
i∈V ′

A−
i ∩B′

∣∣∣∣∣ =
∣∣∣∣∣⋂
i∈V ′

A−
i

∣∣∣∣∣−
∣∣∣∣∣⋂
i∈V ′

A−
i ∩B′

∣∣∣∣∣
≥

∣∣∣∣∣⋂
i∈V ′

A−
i

∣∣∣∣∣− |B′′|

≥

∣∣∣∣∣⋂
i∈V ′

A−
i

∣∣∣∣∣− (m− k − ℓ) .

Therefore when Equal Shares is being run the second time, we will have |V ′| ≥ ℓ· n
m−k

so for some i ∈ V ,

∣∣A−
i ∩ C

∣∣ ≥ min

(
ℓ,

∣∣∣∣∣⋂
i∈V ′

A−
i ∩B′

∣∣∣∣∣
)

≥ min

(
ℓ,

∣∣∣∣∣⋂
i∈V ′

A−
i

∣∣∣∣∣+ ℓ− (m− k)

)
,

as Equal Shares satisfies EJR. Therefore the second part of STJR will also be sat-

isfied.

Remark Unfortunately this axiom and Pareto optimality cannot always be simul-

taneously satisfied, where we use any of the previously described utility functions

(which one we use is irrelevant as we previously noted that they are equivalent in

this regard).

Example As such an example of incompatibility, consider the scenario where
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V = [3], A = [12], A+
i = {j : j ≡ i mod 3 and j ≤ 9}, A−

i = [9] \ A+
i ,

and k = 3. Note that
∣∣A+

i

∣∣ = 3, so the first part of STJR decrees that for each i ∈ V ,∣∣A+
i ∩B

∣∣ ≥ 1. In particular, B ⊂ [9] and contains one item from each equivalence

group mod 3. This gives each voter a total utility of −1. Note though that if we

took B = {10, 11, 12}, each voter would have a strictly higher utility of 0.

Theorem 5.3 It is co-NP-complete to check whether a committee B satisfies STJR.

Proof To prove this we use a modification of the proof of hardness of verification

of EJR given by Aziz et al. [2]

Note that checking if B satisfies STJR is in co-NP as if it does not satisfy STJR,

then there is a set of voters V ′ for which STJR does not hold, and given V ′ it is

easy to verify that the axiom does not hold.

To prove verification of STJR is co-NP-hard, we will reduce the Balanced Complete

Bipartite Subgraph problem, which Garey and Johnson [8] have as [GT23] in their

list of NP-complete problems, to our problem.

An instance of the Balanced Complete Bipartite Subgraph problem is given by an

integer ℓ and a bipartite graph (L,R,E) where E is the set of edges going between

the two disjoint sets of vertices L and R, and it asks “Does there exist L′ ⊆ L and

R′ ⊆ R with |L′| = |R′| = ℓ such that for all u ∈ L′ and v ∈ R′, {u, v} ∈ E?”

Suppose we have an instance of the Balanced Complete Bipartite Subgraph problem,

(L,R,E), ℓ, with |R| = s. Note that if ℓ < 3 then the problem can be solved in

polynomial time with a brute force approach of checking all
(|L|

ℓ

)
·
(|R|

ℓ

)
≤ |L|2|R|2

pairs of L′, R′ with |L′| = |R′| = ℓ, and if ℓ ≥ 3 but s < 3 then the answer is clearly

“no”, so we assume ℓ, s ≥ 3.

We construct an instance of our problem as follows. We have

31



A = C0 ∪ C1 ∪ C ′
1 ∪ C2 ∪ C3 where C0, C1, C

′
1, C2, C3 are all disjoint and

C0 = L, |C1| = |C ′
1| = ℓ− 1, |C2| = sℓ+ ℓ− 3s, |C3| = ℓ− 2,

and V = V0 ∪ V1 ∪ V2 where V0, V1, V2 are all disjoint and

V0 = R, |V1| = ℓ(s− 1), |V2| = sℓ+ ℓ− 3s = (s+ 1)(ℓ− 3) + 3 ≥ 3.

We then have A+
i = {j : {i, j} ∈ E} ∪ C1 ∪ C3 for each i ∈ V0, A

+
i = C0 ∪ C ′

1 ∪ C3

for each i ∈ V1, and there is a bijection f : V2 → C2 where A+
i = {f(i)} for each

i ∈ V2, and A−
i = ∅ for all i ∈ V .

Finally we have k = 2ℓ− 2 and B = C1 ∪ C ′
1.

Note that for n = |V |, n = s+ ℓ(s− 1) + sℓ+ ℓ− 3s = 2s(ℓ− 1), so n
k
= s.

Suppose there exist L′ ⊆ L and R′ ⊆ R with |L′| = |R′| = ℓ such that for all u ∈ L′

and v ∈ R′, {u, v} ∈ E. Fix such L′, R′. For C∗ = L′, V ∗ = R′ ∪ V1,
2 we have that

|V ∗| = ℓs and
⋂

i∈V ∗ A
+
i = L′ ∪ C3 with |L′ ∪ C3| = k, but each voter in V ∗ only

likes ℓ− 1 of the candidates in B, so it is not the case that

∣∣A+
i ∩B

∣∣ ≥ min

(
ℓ,

∣∣∣∣∣⋂
i∈V ′

A+
i

∣∣∣∣∣+ ℓ− k

)
,

for any i ∈ V ∗, so STJR is not satisfied.

Now suppose instead that B does not satisfy STJR. Note that the second part of

the axiom is trivially satisfied as all the A−
i are empty, so it must be the first part

of the axiom that is not satisfied. Letting V ∗, ℓ′ be the set of voters and the natural

2In the arXiv version of [2] there was a typo where the equivalent statement to V ∗ = R′ ∪ V1

was written as V ∗ = R ∪ V1, which has been pointed out to one of the authors.
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number for which it is not satisfied, we have

∣∣A+
i ∩B

∣∣ < min

(
ℓ′,

∣∣∣∣∣ ⋂
i∈V ∗

A+
i

∣∣∣∣∣+ ℓ′ − k

)

for all i ∈ V ∗. Note that V2 ∩ V ∗ = ∅ as otherwise
⋂

i∈V ∗ A
+
i would be empty since

|V ∗| > 1 and all voters in V2 share no liked items with anyone. Note then that it

must be the case that

min

(
ℓ′,

∣∣∣∣∣ ⋂
i∈V ∗

A+
i

∣∣∣∣∣+ ℓ′ − k

)
≥ ℓ

since every voter in V0 ∪ V1 has ℓ − 1 of their liked candidates in B. We also have

that V ∗ ⊆ V0 ∪ V1, so |V ∗| ≤ s+ sℓ− ℓ. As ℓ′ · s ≤ |V ∗|, we have ℓ′ · s ≤ s+ sℓ− ℓ,

and

ℓ′ · s ≤ s+ sℓ− ℓ

=⇒ ℓ′ ≤ 1 + ℓ− ℓ

s

=⇒ ℓ′ ≤
⌊
1 + ℓ− ℓ

s

⌋
=⇒ ℓ′ ≤ ℓ

so ℓ′ ≤ ℓ. We also have

ℓ′ ≥ min

(
ℓ′,

∣∣∣∣∣ ⋂
i∈V ∗

A+
i

∣∣∣∣∣+ ℓ′ − k

)
≥ ℓ,

so ℓ′ = ℓ. From this we get that |V ∗| ≥ ℓs, so |V ∗ ∩ V0| ≥ ℓ and |V ∗ ∩ V1| ≥ 1. Since

V ∗ contains voters from both V0 and V1,
⋂

i∈V ∗ A
+
i ⊆ C0 ∪ C3. We therefore have
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that

∣∣∣∣∣ ⋂
i∈V ∗

A+
i

∣∣∣∣∣+ ℓ′ − k ≥ ℓ

=⇒

∣∣∣∣∣C0 ∩
⋂
i∈V ∗

A+
i

∣∣∣∣∣+
∣∣∣∣∣C3 ∩

⋂
i∈V ∗

A+
i

∣∣∣∣∣ ≥ k

=⇒

∣∣∣∣∣C0 ∩
⋂

i∈V ∗∩V0

A+
i

∣∣∣∣∣+ ℓ− 2 ≥ 2ℓ− 2

=⇒

∣∣∣∣∣ ⋂
i∈V ∗∩V0

{j : {i, j} ∈ E}

∣∣∣∣∣ ≥ ℓ,

so for R′′ = V ∗ ∩ V0 ⊆ R and L′′ =
⋂

i∈V ∗∩V0
{j : {i, j} ∈ E} ⊆ L, |L′′|, |R′′| ≥ ℓ and

for all j ∈ L′′ and i ∈ R′′, {u, v} ∈ E. Therefore for any L′ ⊆ L′′ and R′ ⊆ R′′

with |L′| = |R′| = ℓ, we can see that the answer is yes for the Balanced Complete

Bipartite Subgraph problem.

6 Computing and testing Pareto optimal commit-

tees with ranked preferences

6.1 Uniform-cost background

Aziz and Monnot [5] investigate Pareto optimality in scenarios where

F = {B ⊆ A : |B| = k} for a variety of different classes of utility functions.

To define these classes of utility functions they have a preference profile

≿= (≿1, ...,≿n) where each preference relation ≿i is a complete and transitive rela-

tion over A. For simplicity of notation they also write

j ≻i j
′ ⇐⇒ (j ≿i j

′ and j′ ̸≿i j) and j ∼ j′ ⇐⇒ (j ≿ j′ and j′ ≿ j).

Definition For each voter i, the relation ≿i induces a set of non-empty equivalence

classes E1
i , ..., E

ki
i where j ∼i j

′ for any j, j′ ∈ Ep
i for any p, and j ≻i j

′ for any

j ∈ Ep
i and j′ ∈ Eq

i for any p < q.
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Aziz and Monnot did not as it was not strictly necessary, but we assume that ki ≥ 2

for all voters i as otherwise such a voter is completely indifferent about everything.

This simplifies a few details later.

Definition We define the topwidth to be tw(≿) := maxi∈[n] |E1
i |.

Definition We say that the set of voters have dichotomous preferences if ki = 2 for

all i.

Definition We say that the set of voters have linear preferences if ki = m for all i.

Definition For B ⊆ A, max≿i
(B) := Ep

i ∩ B for p the least integer such that

Ep
i ∩B ̸= ∅.

Definition For B ⊆ A, min≿i
(B) := Ep

i ∩ B for p the greatest integer such that

Ep
i ∩B ̸= ∅.

Definition Given a preference relation ≿i for a voter i, they then extend it to a

partial order on the sets of size k, by defining for B,C ∈ F ,

• responsive set extension (RS), B ≿RS
i C iff there is a bijection f : B → C

such that j ≿i f(j) for all j ∈ B,

• best set extension (B), B ≿B
i C iff j ≿i j

′ for j ∈ max≿i
(B) and j′ ∈ max≿i

(C),

• worst set extension (W), B ≿W
i C iff j ≿i j

′ for j ∈ min≿i
(B) and

j′ ∈ min≿i
(C),

• downward lexicographical extension (DL), B ≿DL
i C iff |B ∩ Ep

i | = |C ∩ Ep
i |

for all p or |B ∩ Ep
i | > |C ∩ Ep

i | for the least p for which |B ∩ Ep
i | ≠ |C ∩ Ep

i |

• upward lexicographical extension (UL), B ≿UL
i C iff |B ∩ Ep

i | = |C ∩ Ep
i | for

all p or |B ∩ Ep
i | < |C ∩ Ep

i | for the greatest p for which |B ∩ Ep
i | ≠ |C ∩ Ep

i |

Remark Aziz and Monnot [5] note that for all B,C ∈ F ,

• B ≿RS
i C =⇒ B ≿DL

i C =⇒ B ≿B
i C
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• B ≿RS
i C =⇒ B ≿UL

i C =⇒ B ≿W
i C

• B ≻RS
i C =⇒ B ≻DL

i C

• B ≻RS
i C =⇒ B ≻UL

i C

In particular, if a committee B is DL-efficient or UL-efficient then it is also RS-

efficient. This follows by a simple proof by contraposition, where if we assume B is

not RS-efficient then there is an RS Pareto improvement C over B, but C would

then also be both a DL and UL Pareto improvement over B.

Example They give the following example to illustrate these relationships:

For A = [4], k = 2, V = [2] and

1 ≻1 2 ≻1 3 ≻1 4,

4 ≻2 3 ≻2 2 ≻2 1,

• the unique B-efficient committee is {a, d},

• the W-efficient committees are {a, b} , {b, c} , {c, d}, 3

• the DL-efficient committees are F \ {{b, c}},

• the UL-efficient committees are F \ {{a, d}},

• and the RS-efficient committees are all of F .

The primary results given by Aziz and Monnot [5] are the complexities of computing

Pareto optimal committees and verifying Pareto optimality for each of the different

set extensions. In terms of computing Pareto optimal committees, they show that

for B when there are linear preferences, and RS,DL,UL,W , one can be found in

polynomial time, but finding one for B in general is NP-hard. Verifying Pareto

optimality for W is in P, but verifying Pareto optimality for RS,DL,UL,B are all

3Their example mistakenly claimed {b, c} was the only W-efficient committee.
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co-NP-complete, even if we restrict to linear preferences or dichotomous preferences.

We only get a polynomial-time algorithm for verifying Pareto optimality with di-

chotomous preferences for RS,DL,UL,B if we restrict to tw(≿) ≤ 2 for the first

three and tw(≿) = 1 for B. If tw(≿) is allowed to be even 1 bigger then they return

to being co-NP-complete.

The algorithms Aziz and Monnot [5] give for computing Pareto optimal outcomes

are all serial dictatorships, which they acknowledge are not particularly fair between

the voters, but do have the desirable properties of being strategyproof and returning

Pareto optimal outcomes.

6.2 Extension to non-uniform costs

We extend some of the results of Aziz and Monnot [5] to when the cost of each item

is no longer uniform, so

F = {B ⊆ A : c(B) ≤ b} .

Note that if we try to compare bundles of different sizes, then RS will never return

a comparison and W and UL become degenerate as an empty selection is always

optimal. To remedy this problem we do the following. We have each ≿i be a

complete and transitive order over [m+ 1] (where A = [m]), where “item” m+ 1 is

always ranked as worst (it can be tied for worst). When comparing sets B and C,

we compare them as we would before, but where they are “padded” with copies of

“item” m+ 1 until they are both of size max {|D| : D ∈ F}.

Remark Note that for B,C ∈ F with B ⊊ C, it will never be the case that

B ≻ϵ
i C for any extension ϵ, so there is no need to consider outcomes in F that are

not maximal with respect to set inclusion.

Remark The relations Aziz and Monnot [5] noted previously still hold in the non-

uniform cost case. In particular, for all B,C ∈ F ,

37



• B ≿RS
i C =⇒ B ≿DL

i C =⇒ B ≿B
i C

• B ≿RS
i C =⇒ B ≿UL

i C =⇒ B ≿W
i C

• B ≻RS
i C =⇒ B ≻DL

i C

• B ≻RS
i C =⇒ B ≻UL

i C

and if a committee B is DL-efficient or UL-efficient then it is also RS-efficient.

Remark Note that a uniform cost scenario from before can be represented in our

setup by giving all items a cost of 1 and having a budget of k. Therefore any

hardness results concerning verification of Pareto optimality or computing Pareto

optimal solutions will still hold as we are generalizing the problem.

Theorem 6.1 There exists an efficient algorithm that returns an outcome that is

Pareto optimal under the RS extension.

Aziz and Monnot [5] give an algorithm which is also strategyproof. To do this they

used the fact that all sets of items of the same size cost the same amount, so given a

set of items, a size, and a budget it is easy to determine what a given voter’s favourite

outcomes are. We do not do that here as for example if we have 1 ≻i 2 ≻i 3 ≻i 4 for

some voter i and c(1) = 3, c(2) = c(3) = 2, c(4) = 1, with size 2 and budget 4, it is

unclear if voter i would prefer {1, 4} or {2, 3}, whereas in the uniform cost case their

favourite outcome would be {1, 2} (not affordable in the non-uniform example).

Proof Let

r(i, j) :=


m+ 1 if j ∈ Eki

i

p if j ∈ Ep
i for some p ̸= ki.

Calculate s(j) :=
∑

i∈V (m+ 1− r(i, j)) for each item j ∈ A. Take B such that

c(B) ≤ b and
∑

j∈B s(j) is maximized. Note that this is an instance of the knapsack

problem with utilities in Z≥0, and since s(j) ≤ n ·m, we have u(A) ≤ n ·m2, so this

can be done in polynomial time by Theorem 3.1. We claim that such a B is Pareto
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optimal under the RS extension.

Suppose we have outcomes C and D such that C is a Pareto improvement over D.

Let C ′ and D′ be these outcomes once they have been padded to be comparable.

There is a bijection f : C ′ → D′ with j ≿i f(j) for all i ∈ V and all j ∈ C ′,

and j ≻i f(j) for some i ∈ V and some j ∈ C ′ (this is the definition of C being

a Pareto improvement over D). Define r(i,m + 1) := m + 1 for all i ∈ V , and

s(m + 1) =
∑

i∈V (m+ 1− r(i,m+ 1)) = 0. Note that r(i, j) ≤ r(i, f(j)) for all

i ∈ V and all j ∈ C ′, and r(i, j) < r(i, f(j)) for some i ∈ V and some j ∈ C ′. We

therefore have

∑
j∈B

s(j) =
∑
j∈B′

s(j)

=
∑
j∈B′

∑
i∈V

(m+ 1− r(i, j))

>
∑
j∈C′

∑
i∈V

(m+ 1− r(i, j))

=
∑
j∈C′

s(j) =
∑
j∈C

s(j).

In particular, of all the affordable outcomes, any one for which the sum of the s

values is greatest is Pareto optimal, which is how we chose our outcome.

Theorem 6.2 There exist strategyproof algorithms that return committees that are

Pareto optimal under DL and UL set extensions that run in time

O (n ·m · (min {b, c(A)}+ 1)).

Proof We can define additive utility functions uDL, uUL : V ×P(A) → N such that

for B,C ∈ F , uDL(i, B) ≥ uDL(i, C) ⇐⇒ B ≿DL
i C and

uUL(i, B) ≥ uUL(i, C) ⇐⇒ B ≿UL
i C by taking

uDL(i, j) =


0 if j ∈ Eki

i

uDL
(
i,
⋃ki

q=p+1E
q
i

)
+ 1 if j ∈ Ep

i for p < ki
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and

u′(i, j) =


0 if j ∈ E1

i

u′
(
i,
⋃p−1

q=1 E
q
i

)
− 1 if j ∈ Ep

i for p > 1

uUL(i, j) = u′(i, j)−min {u′(i, j) : j ∈ A}

Suppose we have two outcomes B and C, and let B′ and C ′ be them padded. Note

that uDL(i,m + 1) = uUL(i,m + 1) = 0 for all i ∈ V , so both of these utility

functions give the same utility to an outcome as to its padded version. We will give

an argument as to why uDL preserves preferences, and then note that a very similar

argument holds for uUL.

Note that uDL(i, j) has the same value for all j within the same Ep
i ,

so if |B′ ∩ Ep
i | = |C ′ ∩ Ep

i | for all p, then uDL(i, B′) = uDL(i, C ′). If it is not the case

that |B′ ∩ Ep
i | = |C ′ ∩ Ep

i | for all p, then consider the first p on which they differ. If

|B′ ∩ Ep
i | > |C ′ ∩ Ep

i | then

uDL(i, B′) = uDL

(
i, B′ ∩

p−1⋃
q=1

Eq
i

)
+ uDL (i, B′ ∩ Ep

i ) + uDL

(
i, B′ ∩

ki⋃
q=p+1

Eq
i

)

= uDL

(
i, C ′ ∩

p−1⋃
q=1

Eq
i

)
+ uDL (i, B′ ∩ Ep

i ) + uDL

(
i, B′ ∩

ki⋃
q=p+1

Eq
i

)

≥ uDL

(
i, C ′ ∩

p−1⋃
q=1

Eq
i

)
+ uDL (i, B′ ∩ Ep

i )

≥ uDL

(
i, C ′ ∩

p−1⋃
q=1

Eq
i

)
+ uDL (i, C ′ ∩ Ep

i ) + uDL

(
i,

ki⋃
q=p+1

Eq
i

)
+ 1

≥ uDL

(
i, C ′ ∩

p−1⋃
q=1

Eq
i

)
+ uDL (i, C ′ ∩ Ep

i ) + uDL

(
i, C ′ ∩

ki⋃
q=p+1

Eq
i

)
+ 1

> uDL

(
i, C ′ ∩

p−1⋃
q=1

Eq
i

)
+ uDL (i, C ′ ∩ Ep

i ) + uDL

(
i, C ′ ∩

ki⋃
q=p+1

Eq
i

)

= uDL(i, C ′),

and similarly if |C ′ ∩ Ep
i | > |B′ ∩ Ep

i | then uDL(i, C ′) > uDL(i, B′). Therefore for
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B,C ∈ F , we have uDL(i, B) ≥ uDL(i, C) ⇐⇒ B ≿DL
i C. A similar argument

shows that for B,C ∈ F , we have uUL(i, B) ≥ uUL(i, C) ⇐⇒ B ≿UL
i C.

Using the one-dimensional Theorem 3.2 where we let the utility function return

the vector (u(1, B), ..., u(n,B)) for u either uDL or uUL depending on which set

extension we care about, and have the order be lexicographical, using the same

costs and budget, we can get an outcome in O (n ·m · (min {bi, ci(A)}+ 1)) time

that would maximize the lexicographical utility (be chosen by a serial dictatorship)

subject to the budget.

Remark Note that if a committee is DL or UL efficient, then it is also RS effi-

cient, so the above algorithm also works for RS, though as previously discussed,

strategyproofness is not well-defined.

Remark In the dichotomous setting, RS, DL, and UL are equivalent (whichever of

B,C ∈ F has a larger intersection with E1
i is preferred).

Theorem 6.3 For dichotomous preferences, a Pareto improvement (if one exists)

over a committee with respect to the responsive set extension (or DL or UL set

extension) can be computed in polynomial time when tw(≿) ≤ 2.

Proof We extend the proof of Theorem 3 given by Aziz and Monnot [5] to our

non-uniform cost case.

Suppose the preferences are dichotomous and tw(≿) ≤ 2. Let B ∈ F be arbitrary.

Note that if E1
i ⊆ B for all i ∈ V , then B is RS-efficient, so we will assume that

there is at least one voter i such that E1
i \B ̸= ∅.

We will construct C, a Pareto improvement with respect to the RS extension over

B if such a Pareto improvement exists.

Let

V ′ =
{
i ∈ V : E1

i ⊆ B
}
,W ′ =

⋃
i∈V ′

E1
i ⊆ B,
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so V ′ are all voters who have all their liked items chosen in B, and W ′ are all the

items they like, so if such a C exists, it would have to be the case that W ′ ⊆ C,

V ′′ =
{
i ∈ V \ V ′ : E1

i ∩ (B \W ′) ̸= ∅
}
, A′ =

⋃
i∈V ′′

E1
i ,

so V ′′ are all the voters who like exactly one item in B \W ′ and exactly one item

in A \ B (the latter as otherwise they would be in V ′), meaning if such a C exists,

every voter in V ′′ would have at least one of their liked items in C, and A′ is all of

these voters’ liked items. Note that all voters in V \V ′ \V ′′ have none of their liked

items selected.

Consider now a graph with vertices A′ and edges between all [j1, j2] such that there

is an i ∈ V ′′ with E1
i = {j1, j2}.

We claim that such a C exists iff there is a vertex cover C ′ such that either

c(C ′) ≤ b − c(W ′) and there is an edge with both vertices covered, or for j the

cheapest item in
(⋃

i∈V E1
i

)
\ (W ′ ∪ A′), it holds that c(C ′) ≤ b− c(W ′ ∪ {j}).

Suppose there is a vertex cover C ′ such that c(C ′) ≤ b− c(W ′) and there is an edge

with both vertices covered. We have c(W ′ ∪ C ′) ≤ b so let C = W ′ ∪ C ′. All voters

in V ′ still have all their liked items selected as W ′ ⊆ C, all voters in V ′′ still have

at least one of the items they like selected as C ′ contains at least one element of E1
i

for each i ∈ V ′′, and at least one voter in V ′′ has both of the items they like selected

(as compared to the one they had before) as C ′ contains both elements of E1
i for

some i ∈ V ′′. Therefore C is a Pareto improvement over B.

Now suppose instead there is a vertex cover C ′ such that for j the cheapest item in(⋃
i∈V E1

i

)
\ (W ′ ∪ A′), it holds that c(C ′) ≤ b− c(W ′ ∪ {j}). We have

c(W ′ ∪ C ′ ∪ {j}) ≤ b so let C = W ′ ∪ C ′ ∪ {j}. Note that even without j, all

voters in V ′ still have all their liked items selected as W ′ ⊆ C and all voters in

V ′′ still have at least one of the items they like selected as C ′ contains at least one
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element of E1
i for each i ∈ V ′′, so every voter is no worse off. We then have that

since j ∈
(⋃

i∈V E1
i

)
\ (W ′ ∪ A′) any voter i for which j ∈ E1

i must be such that

i ∈ V \ V ′ \ V ′′, so they have more of the items they like selected (they had none

before), so C is a Pareto improvement over B.

Conversely, suppose there is a Pareto improvement C over B. Let C ′ = C ∩ A′

(note C ′ ∩W ′ = ∅). As C is a Pareto improvement, all voters in V ′′ have at least

one of their items selected, so C ′ is a vertex cover. Consider now a voter i who has

strictly more of their liked items selected in C as compared to B. If i ∈ V ′′, then

both of their liked items were selected, so there is an edge with both vertices covered

by C ′, and c(C ′ ∪ W ′) ≤ c(C) ≤ b. If i /∈ V ′′ (and clearly i /∈ V ′ as those voters

had all of their liked items selected in B), then for any j ∈ E1
i ∩ C, we have that

j /∈ W ′ ∪A′, so since W ′ ∪C ′ ∪ {j} ⊆ C, there is an item j ∈
(⋃

i∈V E1
i

)
\ (W ′ ∪A′)

with c(C ′ ∪W ′ ∪ {j}) ≤ c(C) ≤ b, so c(C ′) ≤ b − c(W ′ ∪ {j}) (so in particular it

would also hold for the cheapest such j).

Therefore our claim holds. Now it just remains to show that these graph theory

problems can be solved in polynomial time.

Plummer and Lovász [14] state that finding a vertex cover in a bipartite graph with

a bounded cost can be done in polynomial time.

To see if there is a vertex cover C ′ such that c(C ′) ≤ b − c(W ′) and there is an

edge with both vertices covered, we can check for each edge [j1, j2] in the graph (of

which there are at most
(
m
2

)
) if there is a vertex cover C ′′ in the subgraph induced

by A′ \ {j1, j2} such that c(C ′′) ≤ b− c(W ′ ∪ {j1, j2}).

We can also check if there is a vertex cover C ′ such that for j the cheapest item in(⋃
i∈V E1

i

)
\ (W ′ ∪ A′), it holds that c(C ′) ≤ b− c(W ′ ∪ {j}).

Theorem 6.4 For dichotomous preferences, a Pareto improvement (if one exists)

over a committee with respect to B can be computed in O(n+ k) when tw(≿) = 1.
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Intuitively, in this setup every voter likes exactly 1 item, so they are happy iff their

item is selected.

Proof Suppose we wish to check the B-efficiency of an outcome B.

Letting B′ = B ∩
⋃

i∈V E1
i , if there is any item j ∈

⋃
i∈V E1

i \B with cost no more

than b− c(B′), then C = B′∪{j} forms a Pareto improvement as all the voters that

were happy are still happy, and another voter who was not happy is now happy. If

there are no such affordable items, then there is no Pareto improvement as to make

some voter happier we would have to remove an item that another voter likes.

B′ and
⋃

i∈V E1
i \B can be constructed in O(n) time, computing the remaining bud-

get takes O(k) time, and checking
⋃

i∈V E1
i \B for affordable items takes O(n) time.

Theorem 6.5 Under linear preferences, there is a strategyproof algorithm to com-

pute a B-efficient committee that runs in O(nm) time.

Proof Starting with ∅, have each voter in turn add their favourite affordable item

(the cost of a previously added item is 0) and subtract the cost from the remaining

budget until all the voters have had a turn.

A voter finding their favourite affordable item take O(m) time, and O(n) voters do

this.

Theorem 6.6 There exists a polynomial-time algorithm that checks whether an out-

come is W-efficient and computes a Pareto improvement over it if possible.

With W , for an outcome B and k = max {|C| : C ∈ F}, a voter is as unhappy as

their least favourite item selected in B′, where B′ is B padded to size k. Note that

if |B| < k then every voter will be as unhappy as possible.

Proof Let k = max {|C| : C ∈ F}.

Given an outcome B, if |B| < k, let pi = ki for each voter. Otherwise, let pi be the
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largest index such that B ∩ Epi
i ̸= ∅ for each voter i. Let

S =
⋂
i∈V

(
pi⋃
q=1

Eq
i

)
\ {m+ 1} .

S represents the set of all items that can be included in an outcome of size k while

not making any voter less happy than they were in B, so any Pareto improvement

C on B would have to be such that C ⊆ S and |C| = k.

For each voter i, check if the k cheapest items in S\Epi
i are together affordable.

If so for any voter, they form a Pareto improvement as that voter will be happier

than with B, and no voter will be less happy than with B. If not, then there is no

Pareto-improvement, as if there were a Pareto improvement C over B, then for i

the voter who was strictly happier with C than B, we would have C ⊆ S\Epi
i .

Theorem 6.7 There exists a polynomial-time and strategyproof algorithm that re-

turns a W-efficient committee.

Proof Let k = max {|C| : C ∈ F}.

Let B0 = A.

Let p1 be the least integer such that the k cheapest items in B0 ∩
⋃p1

q=1 E
q
1 are

together affordable.

Let B1 = B0 ∩
⋃p1

q=1 E
q
1 .

Let p2 be the least integer such that the k cheapest items in B1 ∩
⋃p2

q=1 E
q
2 are

together affordable.

Let B2 = B1 ∩
⋃p2

q=1 E
q
2 .

Continue in this manner until we have Bn, then return the k cheapest items in Bn.

Note that this is a serial dictatorship, so it is Pareto optimal and strategyproof.
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7 Explainability

7.1 Introduction

In this section we investigate the Sequential Phragmén and Equal Shares budgeting

methods. We chose these budgeting methods as they are fairly straightforward and

have some desirable fairness guarantees, as we will describe later. They are also

both generalizations on previous rules, so the results we find here are more widely

applicable.

We look at how variations in the price of an item or the total budget affect whether

that item is selected, to complement the search for ways to make budgeting methods

more understandable. By doing this, we can inform proposers whose projects were

not chosen how much cheaper it would have needed to be to get chosen or how much

more overall budget they should have lobbied for to get their project funding, and

we can inform proposers whose projects were chosen how much more expensive their

project could have been while still getting chosen or how safe they were with respect

to the overall budget being cut.

7.2 Sequential Phragmén

Given our standard participatory budgeting setup but with costs and budget in

R≥0 and utilities in {0, 1} (represented by approval sets), Sequential Phragmén is

an algorithm which returns an outcome. The first version of this rule was given

by Phragmém [13] for Approval-Based Multi-Agent scenarios. Brill et al. [7] then

showed that Sequential Phragmén satisfies proportional justified representation (and

so also justified representation), though unfortunately not extended justified repre-

sentation. Aziz et al. [4] then extended Sequential Phragmén to the non-uniform

cost case, but while doing so made the algorithm less straightforward. Finally, Pe-

ters et al. [11] gave an extension to non-uniform costs which was more in line with

the original algorithm, and that is the one we will be considering.
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Sequential Phragmén We start with an empty outcome and our total budget.

We also give each voter i a personal budget which starts with $0, then increases

continuously by $1 every second. As soon as an item j is affordable with the com-

bined budgets of all voters who approve of j, j is added to the outcome, c(j) is

subtracted from the total budget, and the voters who approve of j have their bud-

get reset to $0 (in this paper, we by default break ties based on the natural ordering

of {1, 2, ...,m}, where 1 wins any tie it is in). This continues until the item to be

added has higher cost than the remaining total budget, or all the items that are not

unanimously disapproved of have been added.

While the algorithms we use to implement Sequential Phragmén achieve the de-

scribed outcome, clearly they do not actually implement a continuous process as

described. Note though that it is easy to see how much time it would take a par-

ticular item to have enough funds, given its supporters’ current budgets and total

income, so it is also easy to figure out which item would be funded next and in how

many seconds, and then each voter’s budget can be updated accordingly.

Remark A common variant on this rule would be to change the termination con-

dition to be “This continues until all the remaining items that are not unanimously

disapproved of have higher cost than the remaining total budget.”

7.2.1 Finding affordable pricing

To find at what costs item 1 will be selected by Sequential Phragmén given all other

pieces of a scenario, we actually go about answering the somewhat more detailed

question of “For which costs will it be selected first? second? ... mth?”

Note that if c(1) = 0, then it will be selected first.

Otherwise, if u(i, 1) = 0 for all i, then it will not be selected, regardless of its cost.

Otherwise, we find the item j ∈ A \ {1} which is affordable by its supporters after

t ∈ R≥0 seconds for the least t, and calculate at what cost c′ would item 1 would be
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affordable after t seconds (if no such j exists, have c′ be the remaining total budget).

For all costs in [0, c′] (this interval is closed due to our tie-breaking rule), item 1 will

be selected first. If item 1 is not selected first, item j will be selected first, and we

can remove j from consideration and update the budgets.

To find at what costs item 1 will be selected second is now (with j removed and

the budgets modified) an identical problem to finding at what costs it would have

been selected first (though we will need to remove the costs at which it would have

been selected first from the resulting closed interval). The previous paragraph can

therefore be repeated until item 1 is no longer affordable by the total budget or

we have finished an iteration where the item that would have been chosen was not

affordable by the total budget.

The union of all the intervals gives the costs at which item 1 will be selected.

Remark This process can be done efficiently.

Example We give an example where item 1 can be selected first or third depending

on its cost, but never second (that is not reliant on our tie-breaking).

A = [3], c(2) = 2, c(3) = 3, b = 7, V = [2], A1 = {1, 2} , A2 = {3}.

Note that item 2 would be affordable by voter 1 after 2 s and item 3 would be

affordable by voter 2 after 3 s. Therefore item 1 will be selected first iff c(1) ∈ [0, 2].

If c(1) > 2 though, then item 2 will be selected first. At this point it will take at

least 2 s for item 1 to be affordable by voter 1, but it will only take 1 s for item 3

to be selected, so item 3 will be selected second.

Remark Note that the range of costs for which item 1 will be selected is of the

form [0, c′], and more precisely, this interval can be split into intervals

[ci0 , ci1 ] ∪ (ci1 , ci2 ] ∪ · · · ∪ (cik−1
, cik ] for ci0 = 0, cik = c′, i1 < · · · < ik, and i1 = 1,

where the interval from cik′−1
to cik′ are the costs for which it will be selected ik′th.
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If we consider this procedure for items j other than 1, we might get slight variations

in the formatting of the result. One such change is that i1 may not be 1. This will

happen if there is an item with a lower-indexed item with cost 0. Another such

change is that some of the right ends of the intervals may change from closed to

open (and the following left end if it exists would then change from open to closed).

Remark The process by which we find costs at which an item will be purchased

does not change significantly if we use the alternate termination condition.

7.2.2 Finding good budgets

Note that the total budget is only taken into account in the termination condition.

In particular, running Sequential Phragmén with infinite budget but then taking

the last constructed outcome that is affordable by the total budget, is equivalent

to running Sequential Phragmén normally. We can therefore easily see what the

minimum required budget b′ is for an item j to be selected by running Sequential

Phragmén with infinite budget and finding how much of the total budget is used

immediately after j is added to the outcome. We then have that item j will be

selected iff b ∈ [b′,∞).

Remark The above given process by which we find budgets at which an item will

be purchased does not work if we use the alternate termination condition, as shown

by the following example. In the case where there is only one voter though, this

becomes equivalent to Equal Shares with one voter and utilities in {0, 1}, for which

we have results later (without the assumption on the utilities).

Example Let A = [2], c(1) = 3, c(2) = 2, V = [2], A1 = {1, 2} , A2 = {1}. Using

the alternate termination condition, note that if b = 2, the outcome will be {2}, but

if b = 3 the outcome will be {1}, so the budgets for which item 2 is selected are not

of the form [b′,∞).
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7.3 Equal Shares

Peters et al. [11] extend the previously described Equal Shares method to our stan-

dard participatory budgeting setup, but with costs in Q+, a budget of 1, and utilities

in [0, 1].

Equal Shares Each voter i is given bi =
b
n
dollars.

We say that an item j is ρ-affordable for ρ ≥ 0 if ρ is the least value such that

∑
i∈V

min {bi, u(i, j) · ρ} = c(j),

and we say it is affordable if it is ρ-affordable for any ρ, or equivalently

∑
i∈V

bi · 1 [u(i, j) > 0] ≥ c(j).

Starting with an empty outcome B = ∅, we take an item j which is ρ-affordable

for the least ρ (in this paper we by default break ties based on the natural or-

dering of {1, 2, ...,m}, where 1 wins any tie it is in), add j to B, and subtract

min {bi, u(i, j) · ρ} from each bi (ρ can be seen as the ratio dollars spent/utility

gained). We repeat this until no item is ρ-affordable for any ρ, then terminate.

Note that finding a ρ for which an item j is ρ-affordable (or whether no such ρ

exists) is solvable in O(n) time as for fixed b1, ..., bn,

fj(ρ) =
∑
i∈V

min {bi, u(i, j) · ρ}

is a continuous non-decreasing piecewise linear function with breakpoints exactly at

{
bi

u(i, j)
: i ∈ V, u(i, j) > 0

}
.
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Peters et al. [11] show that this extension of Equal Shares satisfies a few nice prop-

erties related to the following definitions, some of which are extensions on previous

definitions which were in more restrictive settings.

Definition We say that a group of voters V ′ is (α,C)-cohesive for α : A → [0, 1]

and C ⊆ A, if |V ′| ≥ c(C) · n and it holds that u(i, j) ≥ α(j) for all voters i ∈ V ′

and items j ∈ C.

Using this definition, they extend the definition of EJR to non-uniform costs and

utilities.

Definition A rule satisfies extended justified representation (up to one item) if for

all scenarios A, c, b, V, u and resulting bundles B, for all α : A → [0, 1], for all C ⊆ A,

for each (α,C)-cohesive group of voters V ′, there exists a voter i ∈ V ′ such that

u(i, B) ≥ α(C) (where α(C) is shorthand for
∑

j∈C α(j)) or for some j ∈ A it holds

that u(i, B ∪ {j}) > α(C).

Intuitively, a group of voters V ′ is (α,C)-cohesive means they all agree that each

item j ∈ C is worth at least α(j), and satisfying EJR up to one project means that

such a cohesive group should have at least one of their voters have as much utility

as α (the group consensus on each of the items) if they pooled their funds to get C,

allowing a wiggle room of one item.

Remark Peters et al. [11] show that this extension of Equal Shares satisfies EJR

up to one item.

Definition We say that an outcome B is in the core if for all V ′ ⊆ V and C ⊆ A

with |V ′| ≥ c(C) ·n, there exists i ∈ V ′ such that u(i, B) ≥ u(i, C). An election rule

satisfies the core property if it always returns an outcome in the core.

Intuitively, if the outcome is in the core, no group of voters V ′ is entirely motivated

to take their share of funds and purchase their own bundle.

Unfortunately, Peters et al. [11] give the following example where no outcomes are
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in the core, even with uniform costs.

Example A = [6], c(j) = 1
3
for all j ∈ A, V = [6].

u(1, 1) > u(1, 2) > 0, u(2, 2) > u(2, 3) > 0, u(3, 3) > u(3, 1) > 0,

u(4, 4) > u(4, 5) > 0, u(5, 5) > u(5, 6) > 0, u(6, 6) > u(6, 4) > 0,

and all other utilities 0. Note that any feasible outcome B has |B ∩ {1, 2, 3}| ≤ 1

or |B ∩ {4, 5, 6}| ≤ 1. Without loss of generality, suppose |B ∩ {1, 2, 3}| ≤ 1, and

again without loss of generality, suppose B ∩ {1, 2, 3} = {1}. Voters {2, 3} with

bundle {3} show that B is not in the core, and for any other feasible outcome we

have a symmetric argument.

Definition For a ≥ 1, Peters et al. [11] say that an outcome B is in the a-core if for

all V ′ ⊆ V and C ⊆ A with |V ′| ≥ c(C) · n, there exists i ∈ V ′ and j ∈ C such that

u(i, B ∪ j) ≥ u(i,C)
a

. An election rule satisfies the core property if it always returns

an outcome in the core.

Remark Peters et al. [11] show that for

umax := max
i∈V

max
B∈F

u(i, B) and umin := min
i∈V

min
B∈F :u(i,B)>0

u(i, B)

the highest total utility a voter can get and the lowest positive utility a voter can

get, respectively, Equal shares satisfies the a-core property for a = 4 log
(
2 · umax

umin

)
.

Peters et al. [11] then give the following definition from Peters and Skowron [12].

Definition A price system is a pair (b, {pi}i∈V ), where b ≥ 1 is the initial budget

(with each voter controlling an equal share of the budget), and for each voter i ∈ V ,

the payment function pi : A → R≥0
4 specifies the amount of money voter i pays for

each item. An outcome B is supported by a price system (b, {pi}i∈V ) if
4Peters et al. [11] miss the condition that non-negative payments are not allowed.
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• voters do not pay for items they do not like: u(i, j) = 0 =⇒ pi(j) = 0 for all

i ∈ V and j ∈ A,

• each voter gets a fair share of the budget:
∑

j∈A pi(j) ≤ b
n
for all i ∈ V ,

• each selected item is paid for:
∑

i∈V pi(j) = c(j) for all j ∈ B,

• each unselected item is not paid for:
∑

i∈V pi(j) = 0 for all j /∈ B,

• and each unselected item can no longer be paid for by its supporters:∑
i∈V :u(i,j)>0

(
b
n
−
∑

j∈B pi(j)
)
< c(j) for all j /∈ B.

An outcome B is priceable if it is supported by some price system.

Remark Peters et al. [11] note that any rule that, like Equal Shares, equally splits

the budget between the voters, then purchases items using the funds of supporters,

will be priceable.

For these reasons Equal Shares seems like a nice rule to study.

7.3.1 Finding affordable pricing

To find at what costs item 1 will be selected by Equal Shares given all other pieces of

a scenario, we actually go about answering the somewhat more detailed question of

“For which costs will it be selected first? second? ... mth?” It is a similar procedure

to the one for Sequential Phragmén, but we present it still for a few important

details and completeness.

Note that if c(1) = 0, then it will be selected first.

Otherwise, if u(i, 1) = 0 for all i with remaining budget, then it will not be selected

going forward, regardless of its cost. Otherwise, we find the item j ∈ A \ {1} which

is ρ-affordable for the least ρ, and calculate at what cost c′ item 1 would be ρ-

affordable (if no such j exists, have c′ be the maximum cost such that item 1 is

affordable). For all costs in [0, c′] (closed due to our tie-breaking rule), item 1 will
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be selected first. If item 1 is not selected first, item j will be selected first, and we

can remove j from consideration and subtract the corresponding amounts from the

voters’ budgets.

To find at what costs item 1 will be selected second is now (with j removed and

the budgets modified) an identical problem to finding at what costs it would have

been selected first (though we will need to remove the costs at which it would have

been selected first from the resulting closed interval). The previous paragraph can

therefore be repeated until an iteration where no other item is affordable has been

done or the maximum cost at which 1 is affordable is within one of the previously

calculated intervals (note the maximum cost at which 1 is affordable is non-increasing

during a run of the algorithm).

The union of all the intervals gives the costs at which item 1 will be selected.

Remark For fixed b1, ..., bn, as

fj(ρ) =
∑
i∈V

min {bi, u(i, j) · ρ}

is a continuous non-decreasing piecewise linear function with breakpoints exactly at

P =

{
bi

u(i, j)
: i ∈ V, u(i, j) > 0

}
,

and it is strictly increasing on [0,max(P )], f−1
j (q) is a well-defined continuous strictly

increasing piecewise linear function on

[
0,
∑
i∈V

bi · 1 [u(i, j) > 0]

]

with breakpoints exactly at

{
fj

(
bi

u(i, j)

)
: i ∈ V, u(i, j) > 0

}
,
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so it is efficiently computable.

Remark The process for finding at which costs item 1 will be selected can be done

efficiently.

Example We give an example where item 1 can be selected first or third depending

on its price, but never second (that is not reliant on our tie-breaking).

A = [3], c(2) = c(3) = 1, b = 3, V = [3],

u(1, 1) = u(2, 1) = 1, u(2, 2) = 3, u(3, 3) = 2, and all other utilities are 0.

Note that initially item 2 is 1
3
-affordable and item 3 is 1

2
-affordable. Therefore item

1 will be selected first iff c(1) ∈
[
0, 2

3

]
.

If c(1) > 2
3
though, then item 2 will be selected first, paid for exactly by all of voter

2’s budget. At this point item 1 is c(1)-affordable, so item 3 will be selected second,

with item 1 being selected third if 2
3
< c(1) ≤ 1.

Remark Note that the range of costs for which item 1 will be selected is of the

form [0, c′], and more precisely, this interval can be split into intervals

[ci0 , ci1 ] ∪ (ci1 , ci2 ] ∪ · · · ∪ (cik−1
, cik ] for ci0 = 0, cik = c′, i1 < · · · < ik, and i1 = 1,

where the interval from cik′−1
to cik′ are the costs for which it will be selected ik′th.

If we consider this procedure for items j other than 1, we might get slight variations

in the formatting of the result. One such change is that i1 may not be 1. This will

happen if there is an item with a lower number with cost 0. Another such change

is that some of the right ends of the intervals may change from closed to open (and

the following left end if it exists would then change from open to closed).

7.3.2 Finding good budgets

We consider the case where there is one voter. When there is one voter we have that

an affordable item j is ρ-affordable for ρ = c(j)
u(1,j)

. In particular the ρ does not change

throughout the Equal Shares algorithm unless it becomes unaffordable. Therefore
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running the Equal Shares algorithm with one voter is equivalent to sorting the items

into a list by their ρ value (breaking ties however Equal Shares does) and greedily

taking affordable items.

Proposition 7.1 Suppose we have a list of items j1, ..., jm and an algorithm which

starting with a budget b0 = b and an outcome B0 = ∅, iterates through the list and

after reaching item jk sets bk = bk−1− c(jk) and Bk = Bk−1 ∪ jk if c(jk) ≤ bk−1, and

bk = bk−1 and Bk = Bk−1 otherwise.

Let f : R≥0 × ({0} ∪ [m]) → R≥0 be such that f(b, k) is the value of bk if this

algorithm is run with budget b.

Let g : R≥0 × ({0} ∪ [m]) → R≥0 be such that g(b′, k) = min {b : f(b, k) ≥ b′}.

We claim that for all k ∈ {0} ∪ [m] and b′ ∈ R≥0, g(b
′, k) exists,

for all k ∈ [m] and b′ ∈ R≥0

g(b′, k) =


g(b′ + c(jk), k − 1) if c(jk) ≤ b′,

g(b′, k − 1) else,

and that f(g(b′, k), k) = b′.

Proof We use a proof by induction on k to show that the g(b′, k) exist and that

f (g(b′, k), k) = b′, and in doing so prove the recurrence on g.

Let k ≥ 0 and b′ ∈ R≥0 be arbitrary.

Base case

If k = 0, note that f(b, 0) = b, so g(b′, 0) = b′, and f(g(b′, 0), 0) = b′.

Inductive hypothesis

For all 0 ≤ k′ < k and b′ ∈ R≥0,

g(b′, k′) exists and f (g(b′, k′), k′) = b′.
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Inductive step

We now consider what happens when k ≥ 1.

Case 1 (c(jk) ≤ b′)

Let b ∈ {b : f(b, k) ≥ b′} be arbitrary. Note that this set is non-empty as

b′ +
∑

j∈[k] c(j) is in it as

f(b, k) ≥ f(b, k− 1)− c(jk) ≥ f(b, k− 2)− c(jk−1)− c(jk) ≥ · · · ≥ f(b, 0)−
∑
j∈[k]

c(j).

We have

f(b, k − 1) ≥ f(b, k) ≥ b′ ≥ c(jk),

so f(b, k) = f(b, k − 1)− c(jk). Therefore b ∈ {b : f(b, k − 1) ≥ b′ + c(jk)}.

Hence {b : f(b, k) ≥ b′} ⊆ {b : f(b, k − 1) ≥ b′ + c(jk)}, so (using the inductive hy-

pothesis for the existence of g(b′ + c(jk), k − 1))

inf {b : f(b, k) ≥ b′} ≥ g(b′ + c(jk), k − 1).

As

f(g(b′ + c(jk), k − 1), k − 1) ≥ b′ + c(jk) ≥ c(jk)

(by definition of g), we have that

f(g(b′ + c(jk), k − 1), k) = f(g(b′ + c(jk), k − 1), k − 1)− c(jk) ≥ b′,

so g(b′ + c(jk), k − 1) ∈ {b : f(b, k) ≥ b′}.

Therefore

inf {b : f(b, k) ≥ b′} = g(b′ + c(jk), k − 1) = min {b : f(b, k) ≥ b′} ,
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so g(b′, k) exists and

g(b′, k) = g(b′ + c(jk), k − 1).

Finally, we note that (using our inductive hypothesis that f(g(b′′, k−1), k−1) = b′′)

f (g(b′, k), k) = f (g(b′ + c(jk), k − 1), k)

= f (g(b′ + c(jk), k − 1), k − 1)− c(jk)

= b′ + c(jk)− c(jk)

= b′.

Case 2 (c(jk) > b′)

Let b ∈ {b : f(b, k) ≥ b′} be arbitrary. Note that this set is non-empty as shown

previously.

We have

f(b, k − 1) ≥ f(b, k) ≥ b′,

so b ∈ {b : f(b, k − 1) ≥ b′}.

Therefore {b : f(b, k) ≥ b′} ⊆ {b : f(b, k − 1) ≥ b′}, so (using the inductive hypoth-

esis for the existence of g(b′, k − 1))

inf {b : f(b, k) ≥ b′} ≥ g(b′, k − 1).

By our inductive hypothesis, f(g(b′, k − 1), k − 1) = b′, so since

f(g(b′, k − 1), k − 1) < c(jk), we have that f(g(b′, k − 1), k) = f(g(b′, k − 1), k − 1),

so g(b′, k − 1) ∈ {b : f(b, k) ≥ b′}.

Therefore

inf {b : f(b, k) ≥ b′} = g(b′, k − 1) = min {b : f(b, k) ≥ b′} ,
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so g(b′, k) exists and

g(b′, k) = g(b′, k − 1).

Finally, we note that (using the inductive hypothesis in the second to last step)

f (g(b′, k), k) = f (g(b′, k − 1), k)

=


f (g(b′, k − 1), k − 1)− c(jk) if c(jk) ≤ f (g(b′, k − 1), k − 1) ,

f (g(b′, k − 1), k − 1) else,

=


b′ − c(jk) if c(jk) ≤ b′,

b′ else,

= b′.

End of induction

Therefore by induction the g(b′, k) exist and f (g(b′, k), k) = b′. Along the way, we

also showed that for k ≥ 1,

g(b′, k) =


g(b′ + c(jk), k − 1) if c(jk) ≤ b′,

g(b′, k − 1) else,

Remark Note that using this recurrent definition of g we can calculate g(b′, k) in

time linear in k. Also note that item jk is bought iff f(b, k − 1) ≥ c(jk), so in

particular, g(c(jk), k − 1) is the least budget such that item jk is bought.

Example We give an example where each item can be selected first depending on

the budget.

A = [m], c(j) = 1 for all j ∈ A, V = [m], u(i, j) = 1 [i ≤ j] · m−j+1
j

.
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Consider before the first item is bought, when bi =
b
m

for all i. Note that item j is

affordable iff b ≥ m
j
as j voters give it non-zero utility.

If b ≥ m
j
though, note that

min

{
ρ :
∑
i∈V

min {bi, u(i, j) · ρ} = c(j)

}

= min

{
ρ :
∑
i∈V

min

{
b

m
,1 [i ≤ j] · m− j + 1

j
· ρ
}

= 1

}

= min

ρ :
∑
i∈[j]

min

{
b

m
,
m− j + 1

j
· ρ
}

= 1


= min

{
ρ : min

{
bj

m
, (m− j + 1) · ρ

}
= 1

}
= min {ρ : (m− j + 1) · ρ = 1}

= min

{
ρ : ρ =

1

m− j + 1

}
=

1

m− j + 1
,

so it is 1
m−j+1

-affordable.

Therefore the least j that is affordable will be the first one selected, so for all

j ∈ A \ {1}, item j will be selected first iff b ∈
[
m
j
, m
j−1

)
, and item 1 will be selected

first iff b ≥ m.

Example We give an example with one voter where varying the budget has some

potentially undesirable properties. In particular, all outcomes in P(A) can be real-

ized and the budgets for which item 1 is selected form 2m−1 connected components

(not relying on tie-breaking).

A = [m], c(j) = 2j−1, V = [1], u(1, j) = 22j−1.

Note when there is one voter we have that an affordable item j is ρ-affordable for

ρ = c(j)
u(1,j)

, and in this scenario we have c(j)
u(1,j)

= 2−j. In particular the largest j such

that item j is affordable will be bought first. Therefore if b ∈ [0, 2m − 1] ∩ Z and
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we write b =
∑m

j=1 dj · 2j−1 for dj ∈ {0, 1} (b in binary), we will have that item j is

bought iff dj = 1.

Therefore for any B ⊆ A, a budget of b =
∑m

j=1 1 [j ∈ B] · 2j−1 will yield outcome

B.

Note that for b ∈ [0, 2m − 1]\Z, at every point of the Equal Shares algorithm all

the values of ρ will be the same as they would have been for budget ⌊b⌋, and for

b ≥ 2m − 1, at every point of the Equal Shares algorithm all the values of ρ will be

the same as they would have been for budget 2m − 1, as the affordability of items

will not change.

Therefore item 1 will be in the outcome for all budgets in

2m−1−1⋃
k=1

[2k − 1, 2k) ∪ [2m − 1,∞).

Remark The previous example shows we cannot always list all the intervals of the

budgets for which an item is affordable in polynomial time.

Remark The process by which we found the minimum budget at which an item

is purchased when there is one voter unfortunately does not easily extend to even

two voters, even with utilities in {0, 1}. Key differences are that in the single voter

case, every item is either not affordable or has a fixed ρ, value, so they can be sorted

by ρ value. With 2 or more voters, the ρ values can change over the course of the

algorithm. Also, when working backwards, as we did with the g function, the case

in which an item was purchased does not always leave just one possible value for the

remaining budget before the purchase, as it can potentially have an uncountable set

of values. For example, if there are 2 voters each of which give utility 1 to an item

which costs 1, and both voters end with $0, they could potentially have started with

any budgets in {(b1, 1− b1) : b1 ∈ [0, 1]}.

This combined with our remarks about how many different first purchases there can
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be, how many different final outcomes, and how frequently the outcome can change

for small variations in the budget, makes it seem like a more comprehensive analysis

of the behaviour for varying budgets would be difficult.

8 Future work

8.1 Stability for mixed utilities

In section 5 we considered notions of stability when voters had negative preferences,

but unfortunately none of the results were particularly satisfying as they either did

not take sufficient advantage of the information provided by the voters, or because

they resulted in inefficient outcomes. One potential avenue for further research is

to generalize the notion of the core for when there are both positive and negative

utilities.

For example, we could consider this definition in the case where we wish to select a

committee of k people.

Definition An outcome B is in the core if for every subset of voters V ′ ⊆ V , for

ℓ =
⌊
|V ′| · k

n

⌋
and ℓ′ =

⌊
|V − V ′| · k

n

⌋
, then for all S ⊆ A with |S| ≤ ℓ, there exists

a voter i ∈ V ′ such that there exists R ⊆ A− S with |R| ≤ ℓ′ such that

u(i, B) ≥ u(i, S ∪R).

This notion of the core is a generalization of previous notions of the core, which

is already a very demanding notion as mentioned earlier, but analogous notions of

fairness such and justified representation, proportional justified representation, and

extended justified representation could be defined and investigated.
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8.2 Explainability

In section 7, we could not find an efficient way to find a minimum budget at which

an item would be selected in Equal Shares, but on top of that, these ideas could be

extended to other aggregation rules to help project proposers better understand the

results.

9 Personal reflections

After having spent a significant quantity of time on the original idea for the disser-

tation without making satisfactory progress, we ended up pivoting to other topics,

of which we ended up working on several. I believe changing topics was the right

decision to make, as knowing when to cut your losses can help prevent getting stuck

in a rut. It was interesting going over the vast amount of literature on the subject

and seeing just how many different approaches there are, and I enjoyed working on

a variety of different topics.

In terms of the relevant coursework leading up to this project, certainly the co-

operative section of Computational Game Theory was the most relevant, but my

experience prior to the program was also key.
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A Code for computing a Pareto optimal outcome

when there is a constant number of distinct

costs

def g e t c o s t t u p l e s ( d i s t i n c t c o s t s : l i s t [ int ] ,

c o s t s t o i t em s : dict [ int , l i s t [ int ] ] ,

budget : int , i : int ) −> tuple [ l i s t [ tuple [ int , . . . ] ] , bool ] :

”””
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: param d i s t i n c t c o s t s : i s a l i s t o f the d i s t i n c t cos t s , s o r t ed from g r e a t e s t

to l e a s t . M = len ( d i s t i n c t c o s t s )

: param co s t s t o i t em s : maps c o s t s to s e t s o f i tems wi th t ha t co s t

: param budget :

: param i : 0 <= i <= M − 1

: re turn : a t u p l e con ta in ing a l i s t o f a l l maximal t u p l e s o f

l en ( d i s t i n c t c o s t s ) − i nonnegat ive i n t e g e r s such t ha t each t u p l e

( mul t i , . . . , mul t {M − 1}) i s such t ha t

sum {p = i }ˆ{M − 1} d i s t i n c t c o s t s [ p ] ∗ mult p <= budget ,

and a boo l s t a t i n g i f a l l i tems wi th c o s t s in d i s t i n c t c o s t s [ i : ] are

s imu l t aenous l y a f f o r d a b l e wi th the budget

>>> c o s t t u p l e s , f u l l y a f f o r d a b l e = g e t c o s t t u p l e s ( [ 3 , 2 , 1 ] ,

>>> {1: [ 1 , 2 , 3 , 10 ] ,

>>> 2 : [ 4 , 5 , 6 ] ,

>>> 3 : [ 7 , 8 , 9 ]} , 6 , 0)

>>> f u l l y a f f o r d a b l e

Fa lse

>>> c o s t t u p l e s == [ ( 2 , 0 , 0) , (1 , 1 , 1) , (1 , 0 , 3) , (0 , 3 , 0) , (0 , 2 , 2) ,

>>> (0 , 1 , 4 ) ]

True

”””

co s t = d i s t i n c t c o s t s [ i ]

i f i == len ( d i s t i n c t c o s t s ) − 1 :

mu l t i p l i c i t y = min( len ( c o s t s t o i t em s [ co s t ] ) , budget // co s t )

return [ ( mu l t i p l i c i t y , ) ] , mu l t i p l i c i t y == len ( c o s t s t o i t em s [ co s t ] )

c o s t t u p l e s : l i s t [ tuple [ int , . . . ] ] = [ ]

for mu l t i p l i c i t y in range (min( len ( c o s t s t o i t em s [ co s t ] ) , budget // co s t ) ,

−1, −1):

s ub co s t tup l e s , f u l l y a f f o r d a b l e \

= ge t c o s t t u p l e s ( d i s t i n c t c o s t s , c o s t s t o i t ems ,
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budget − co s t ∗ mu l t i p l i c i t y , i + 1)

c o s t t u p l e s += [ ( mu l t i p l i c i t y , ) + sub co s t t up l e

for s ub c o s t t up l e in s ub c o s t t up l e s ]

i f f u l l y a f f o r d a b l e :

return c o s t t up l e s , mu l t i p l i c i t y == len ( c o s t s t o i t em s [ co s t ] )

return c o s t t up l e s , Fa l se

def b e s t s e l e c t i o n ( num items : int , f i x e d i t ems : l i s t [ int ] ,

d e c i s i o n i t ems : l i s t [ int ] , op t i ona l : bool ,

u t i l i t i e s : l i s t [ int ] ) −> tuple [ int , l i s t [ int ] ,

l i s t [ int ] , bool ] :

”””

: param num items : the max number o f i tems to s e l e c t

: param f i x e d i t em s : l i s t o f i tems t ha t must be s e l e c t e d

: param dec i s i on i t ems : l i s t o f i tems from which we take a sub s e t to add to

the s e l e c t i o n

: param op t i ona l : i f t h i s i s Fa l se then the s e l e c t i o n needs to inc l ude as

many o f the t i e d i t em s as p o s s i b l e

: param u t i l i t i e s : u t i l i t i e s [ j − 1 ] i s the u t i l i t y g i ven to item j

: re turn : a t u p l e r ep r e s en t i n g a l l b e s t p o s s i b l e s e l e c t i o n s o f i tems

accord ing to the g iven u t i l i t y func t ion , s u b j e c t to the g iven con t r a i n t s .

This t u p l e conta ins the u t i l i t y o f t h e s e s e l e c t i o n s ,

which i tems must be s e l e c t e d , which i tems s t i l l need to be dec ided on ,

and whether or not a maximal s u b s e t o f the i tems t ha t s t i l l need to be

dec ided on must be chosen

”””

num remaining items = num items − len ( f i x e d i t ems )

# prune d i s l i k e d i tems i f a l l owed and so r t from be s t to worst

de c i s i o n i t ems = sorted ( [ item for item in de c i s i o n i t ems

i f not op t i ona l or u t i l i t i e s [ item − 1 ] >= 0 ] ,

key=lambda item : u t i l i t i e s [ item − 1 ] , r e v e r s e=True )
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# the sma l l e s t u t i l i t y t ha t t h i s vo t e r would a l l ow s u b j e c t to the curren t

# con s t r a i n t s

sm a l l e s t s e l e c t e d i t em u t i l i t y = u t i l i t i e s [

d e c i s i o n i t ems [min( num remaining items , len ( d e c i s i o n i t ems ) ) − 1 ] − 1 ]

i f ( len ( d e c i s i o n i t ems ) < num remaining items

and ( sm a l l e s t s e l e c t e d i t em u t i l i t y > 0 or not op t i ona l ) ) :

new f ixed i t ems = f i x ed i t ems + de c i s i o n i t ems

new dec i s i on i t ems = [ ]

else :

n ew de c i s i o n i t ems s t a r t = −1

new dec i s i on i t ems end = −1

for i tem index , item in enumerate( d e c i s i o n i t ems ) :

i f ( u t i l i t i e s [ item − 1 ] == sma l l e s t s e l e c t e d i t em u t i l i t y

and new de c i s i o n i t ems s t a r t == −1):

n ew de c i s i o n i t ems s t a r t = item index

e l i f ( u t i l i t i e s [ item − 1 ] < sm a l l e s t s e l e c t e d i t em u t i l i t y

and new dec i s i on i t ems end == −1):

new dec i s i on i t ems end = item index

break

i f ( n ew de c i s i o n i t ems s t a r t + 1 == new dec i s i on i t ems end

and sm a l l e s t s e l e c t e d i t em u t i l i t y > 0 ) :

new f ixed i t ems = f i x ed i t ems + de c i s i o n i t ems [

: new dec i s i on i t ems end ]

new dec i s i on i t ems = [ ]

else :

n ew f ixed i t ems = f i x ed i t ems + de c i s i o n i t ems [

: n ew de c i s i o n i t ems s t a r t ]

n ew dec i s i on i t ems = ( d e c i s i o n i t ems [ n ew de c i s i o n i t ems s t a r t :

new dec i s i on i t ems end ]

i f len ( new f ixed i t ems ) < num items else [ ] )
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return ( (sum( u t i l i t i e s [ item − 1 ] for item in f i x e d i t ems )

+ sma l l e s t s e l e c t e d i t em u t i l i t y

∗ ( num items − len ( new f ixed i t ems ) ) ) ,

new f ixed i tems ,

new dec i s i on i t ems ,

op t i ona l and sm a l l e s t s e l e c t e d i t em u t i l i t y == 0)

def compute sp po outcomes when num costs bounded ( d i s t i n c t c o s t s : l i s t [ int ] ,

c o s t s t o i t em s : dict [

int , l i s t [ int ] ] ,

budget : int ,

u t i l i t i e s : l i s t [ l i s t [ int ] ]

) −> dict [

l i s t [ tuple [ int , . . . ] ] ,

l i s t [ tuple [ set ,

set , bool ] ] ] :

”””

: param d i s t i n c t c o s t s : a l i s t o f the d i s t i n c t c o s t s t h a t i tems may have

: param co s t s t o i t em s : a d i c t i ona r y which t a k e s a co s t in d i s t i n c t c o s t s and

g i v e s a l i s t o f i tems wi th t ha t co s t

: param budget : the t o t a l budget

: param u t i l i t i e s : u t i l i t i e s [ i − 1 ] [ j − 1 ] i s the u t i l i t y o f vo t e r i f o r

item j

: re turn : a Pareto opt imal outcome tha t was s e l e c t e d v ia s e r i a l d i c t a t o r s h i p

”””

num voters = len ( u t i l i t i e s )

d i s t i n c t c o s t s = sorted ( d i s t i n c t c o s t s , r e v e r s e=True )

c o s t t up l e s , = g e t c o s t t u p l e s ( d i s t i n c t c o s t s , c o s t s t o i t ems , budget , 0)

# take s a co s t t u p l e and g i v e s a r ep r e s en t a t i on o f a s e t o f outcomes ,

# i n i t i a l l y a l l p o s s i b l e outcomes wi th at most

# c o s t t u p l e s [ i ] i tems wi th co s t d i s t i n c t c o s t s [ i ] .

# A s e t o f outcomes i s r epre sen t ed by a l i s t , where the
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# repre sen t ed s e t i s the Cartes ian product o f the s e t s r epre sen t ed by each

# element o f the l i s t .

# outcomes [ i ] = ( f i x e d i t ems , dec i s i on i t ems , op t i ona l ) r ep r e s en t s a l l s e t s

# of s i z e at most c o s t t u p l e s [ i ]

# conta in ing f i x e d i t em s and a sub s e t o f d ec i s i on i t ems , where t ha t s u b s e t

# must be maximal s u b j e c t to the s i z e

# con s t r a i n t i f not op t i ona l

co s t tup l e t o ou t comes = { c o s t t up l e : [ ( set ( ) , c o s t s t o i t em s [ co s t ] , True )

for co s t in d i s t i n c t c o s t s ] for

c o s t t up l e in c o s t t u p l e s }

for voter in range ( num voters ) :

# the b e s t u t i l i t y t h i s vo t e r can r e a l i z e

b e s t u t i l i t y = f loat ( ’− i n f ’ )

t emp cos t tup l e to outcomes = {}

# check what the b e s t u t i l i t y each co s t t u p l e can g i v e s u b j e c t to the

# current c on s t r a i n t s

for co s t tup l e , outcomes in co s t tup l e t o ou t comes . i tems ( ) :

c u r r e n t u t i l i t y = 0

new outcomes = [ ]

for co s t index , chosen i tems in enumerate( outcomes ) :

num items = co s t t up l e [ c o s t i ndex ]

f i x ed i t ems , d e c i s i on i t ems , op t i ona l = chosen i tems

d e l t a u t i l i t y , new f ixed i tems , new t ied i tems , new opt iona l \

= b e s t s e l e c t i o n ( num items , f i x ed i t ems , d e c i s i on i t ems ,

opt iona l , u t i l i t i e s [ vote r ] )

c u r r e n t u t i l i t y += d e l t a u t i l i t y

new outcomes . append ( ( new f ixed i tems , new t ied i tems ,

new opt iona l ) )

# i f t h i s co s t t u p l e can g i v e t h i s vo t e r b e t t e r u t i l i t y than the

# prev ious ones , d e l e t e the prev ious ones and

# r e s t r i c t the outcomes f o r t h i s co s t t u p l e to the opt imal ones

i f c u r r e n t u t i l i t y > b e s t u t i l i t y :
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t emp cos t tup l e to outcomes = { c o s t t up l e : new outcomes}

b e s t u t i l i t y = c u r r e n t u t i l i t y

# i f t h i s co s t t u p l e can g i v e t h i s vo t e r the same u t i l i t y as the

# be s t u t i l i t y so far ,

# r e s t r i c t the outcomes f o r t h i s co s t t u p l e to the opt imal ones

# and add i t

e l i f c u r r e n t u t i l i t y == b e s t u t i l i t y :

t emp cos t tup l e to outcomes [ c o s t t up l e ] = new outcomes

co s t tup l e t o ou t comes = temp cos t tup l e to outcomes

return co s t tup l e t o ou t comes
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