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Ontology-based data integration systems allow users to
effectively access data sitting in multiple sources by means
of queries over a global schema described by an ontology. In
practice, datasources often contain sensitive information that
the data owners want to keep inaccessible to users. In this
paper, we formalize and study the problem of determining
whether a given data integration system discloses a source
query to an attacker. We consider disclosure on a partic-
ular dataset, and also whether a schema admits a dataset
on which disclosure occurs. We provide lower and upper
bounds on disclosure analysis, in the process introducing a
number of techniques for analyzing logical privacy issues in
ontology-based data integration.

1 Introduction
Data integration systems expose information from multiple,
heterogeneous datasources by means of a global schema, in
which the mismatches between the individual schemas of
the datasources have been reconciled (Lenzerini 2002). The
relationships between the datasources and the global schema
are determined by mappings, which declaratively specify
how each term in the global schema relates to the data.

In addition to reconciling the structure of the datasources,
the global schema also enables uniform access to the data by
providing users with the vocabulary for query formulation.
Queries issued against the global schema are typically an-
swered by one of two approaches. In the first approach, an
instance of the global schema is initially materialized using
the mappings and the data in the sources; then, the query is
answered over the materialized instance. In the second ap-
proach, no data is exported from the sources and the global
schema remains virtual; this is achieved by first reformulat-
ing the user query on-the-fly into a set of queries over the
sources, and then assembling back their results.

In ontology-based data integration (Poggi et al. 2008) the
global schema is realized using an ontology. In addition
to a vocabulary, the ontology also specifies how the terms
in the vocabulary relate to each other, thus providing valu-
able background knowledge about the domain. In this set-
ting, queries are typically answered following the virtual ap-
proach, where the ontology axioms must now also be taken
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into account during query reformulation.
In practice, datasources often contain sensitive informa-

tion to be protected against unauthorized disclosure. It is
well-known that information integration and linkage poses
major threats to the confidentiality of such sensitive data,
even if it is only made available in an anonymized form
(Sweeney 2002). In the setting of ontology-based data
integration, the risks of unauthorized information disclo-
sure quickly become apparent; indeed, the information ex-
posed to users depends on a complex combination of schema
reconciliation, reasoning over the ontology, and access to
chunks of data in the sources via the mappings.
Example 1. A hospital has a number of information sys-
tems storing data about appointments. For instance, the on-
cology department relies on the following schema consisting
of a table OncAppt(TreatId,PatId,DocId,Date, . . .), where
TreatId, PatId, DocId represent treatment, patient and doc-
tor IDs. Although other departments, such as cardiology,
may store appointment data using different schemas, they
all share some basic attributes, such as the IDs for treat-
ments, patients, and doctors, as well as the appointment
times. To integrate this data, the hospital relies on a global
schema capturing the common terminology in all types of
appointments. Such global schema would include predicates
such as Appt(PatId,DocId,Date), Doctor(DocId,Date),
and SpecialistRecord(DocId,Date). The following simple
mappings translate from the source to the global schema,
where in each case ti, 1 ≤ i ≤ 4, represents sets of at-
tributes occurring only in the source:
OncAppt(t1,PatId,DocId,Date) → Appt(PatId,DocId,Date),

OncAppt(t2,DocId,Date) → SpecialistRecord(DocId,Date),

CardAppt(t3,PatId,DocId,Date) → Appt(PatId,DocId,Date),

CardAppt(t4,DocId,Date) → Doctor(DocId,Date).

The schema designers may not want to disclose the relation-
ship between patients and the departments they have vis-
ited. However, the confidentiality of such information is
at risk: by querying SpecialistRecord an attacker can de-
termine which doctors had some oncology appointment on
a given date. From Appt, the attacker has access to a list of
the appointments a doctor had on a given date, and if the data
contains only one oncology appointment for some doctor on
a given date, then the attacker could infer that the patient
involved had an oncology appointment.



In this case, the unauthorized disclosure depends on the
ability of the attacker to “trace back” (using the mappings)
the exact relation in the source that exported each tuple in
the extension of the global predicates SpecialistRecord and
Doctor. An ontology, however, could be used to represent
that these predicates have the same meaning and hence have
the same extension; then, an attacker would no longer be
able to determine the origin of the exported data tuples and
no disclosure would occur, regardless of the source data. ♦

Our goal in this paper is to lay the logical foundations
of information disclosure in ontology-based data integra-
tion. Our focus is on the semantic requirements that a data
integration system and dataset should satisfy before it is
made available to users for querying, as well as on the com-
plexity of checking whether such requirements are fulfilled.
These are fundamental steps towards the development of al-
gorithms suitable for applications.

Our framework for information disclosure builds on work
in the database community by Nash and Deutsch (2006).
The sensitive information is represented by a query over
the source schema (the policy). The schema-level informa-
tion in the system (ontology, mappings, source schemas, and
policy specification) is assumed publicly available (a worst-
case scenario for confidentiality enforcement). In contrast,
the actual data is not made available directly, but rather only
by means of queries over the global schema. Disclosure of
sensitive information occurs when a user is able to uncover
an answer to the policy over the datasource by just query-
ing the global schema and exploiting the full availability of
schema-level information. If no such disclosure is possible
given the current data in the sources, we say that the data
integration system complies to the policy. There is a natural
data-independent variant of this notion, where compliance
must hold regardless of the specific source data.

We study the computational properties of compli-
ance checking, both in its instance-dependent and data-
independent variants. We consider arbitrary first-order on-
tology languages and parametrize our main results in terms
of their complexity for standard query answering. Concern-
ing mappings, we consider the general case of GLAV map-
pings as well as well-known special cases (Lenzerini 2002).
Our contributions are as follows.
• We show that checking instance-based compliance is de-

cidable whenever the ontology language of choice has de-
cidable query answering problem. Then, we isolate its
precise complexity for many of the most common cases,
ranging from NEXPTIME to P.

• We study the data-independent version of compliance and
show that the problem is undecidable even if the ontology
is empty. We then isolate a decidable case and study a
further restriction ensuring tractability.

• Our notions of compliance depend on the ability of an
attacker to distinguish between difference datasources.
Hence, we also study the source indistinguishability prob-
lem and provide tight complexity bounds for many cases.

• Our results have implications on related work. On the one
hand, they correct some of the complexity bounds claimed
by Nash and Deutsch (2006); on the other hand, our work
also closes an open problem in data pricing (Koutris et

al. 2015), by showing a Πp
2 lower bound to the so-called

instance-based determinacy problem.
• We introduce a “repair” process that ensures tractability of

instance-based compliance in certain cases. For the data-
independent compliance problem, we give refinements of
methods from earlier work, particularly the “critical in-
stance method” (Gogacz and Marcinkowski 2014; Cuenca
Grau et al. 2013a; Benedikt et al. 2016; Baader et al. 2016;
Shmueli 1993; Marnette 2010) for obtaining decidability.
Organization. The background and problem definition

are introduced in Section 2 and Section 3. The problem of
deciding whether two source instances are indistinguishable
in an ontology-based data integration setting is studied in
Section 4, as a prelude to the study of instance-level com-
pliance in Section 5. The schema-level compliance problem
(compliance over all instances) is studied in Section 6. Con-
nections of our work with problems studied previously in
the literature are discussed in Section 7, and additional re-
lated work is overviewed in Section 8. Finally, conclusions
and future work are examined in Section 9. All proofs of the
results are either given in the text or in the appendix.

2 Preliminaries
Tuple-Generating Dependencies and Ontologies. We
adopt standard notions from function-free first-order logic
over a vocabulary of relational names and constants. An
instance is a finite set of facts. A tuple generating depen-
dency (TGD) is a universally quantified sentence of the form
ϕ(x, z) → ∃y.ψ(x,y), where the body ϕ(x, z) and the
head ψ(x,y) are conjunctions of atoms such that each term
is either a constant or a variable in x ∪ z and x ∪ y, re-
spectively. Variables x, common for the head and body, are
called the frontier variables. A TGD is linear if its body
consists of a single atom; it is Datalog if its head consists
of a single atom and there are no existential variables y. An
ontology is a finite set of first-order sentences; an ontology
is linear if it consists of linear TGDs. A conjunctive query
(CQ) with free variables x is a formula q(x) = ∃y.ϕ(x,y),
where ϕ(x,y) is a conjunction of atoms with each term ei-
ther a constant or a variable from x∪ y; arity of a CQ is the
number of its free variables, and CQs of arity 0 are Boolean.

LetO be an ontology, let q be a Boolean CQ, and letD be
an instance. We recall the standard query entailment prob-
lem: CQEnt(O,D, q) = true if and only if O ∪D |= q.

Data Integration. Assume that the relational names in
the vocabulary are split into two disjoint subsets: source and
global schema. The arity of such a schema is the maximal
arity of its relational names. A GLAV mapping is a TGD
where the body is over the source schema and the head is
over the global schema. Datalog mappings are called GAV.
A set of CQ views is a set of GAV mappings with different
head predicates.

A data integration setting is a tuple (O,M,D), where
O is an ontology over the global schema, M is a finite set
of GLAV mappings, and D is an instance over the source
schema. For q(x) a CQ over the global schema, we say
that a tuple a of constants is a certain answer to q(x) with
respect to (O,M,D) if I |= q(a) for all models I of O



such that, for every mapping ϕ(x, z) → ∃y.ψ(x,y) inM
and each tuple of constants c it holds that I |= ∃y.ψ(c,y)
whenever D |= ϕ(c, z). The virtual image of M and D,
denoted VM,D, is the following set of Boolean CQs:

{∃y.ψ(c,y) | ϕ(x, z)→ ∃y.ψ(x,y) inM,

and D |= ∃z.ϕ(c, z)}.

It is routine to check that a is a certain answer to a CQ q(x)
with respect to (O,M,D) if and only ifO∪VM,D |= q(a).

3 Basic Framework
In this section we present our framework for information
disclosure and define its associated reasoning problems.

In a data integration setting, users (including malicious at-
tackers) can only interact with the system by posing queries
against the global schema. Users have no direct access to the
source instances and hence the information they can gather
about the source data is inherently incomplete. As a result of
such incompleteness, many different source instances may
be indistinguishable, in the sense that users cannot tell the
difference between them by just querying the system.

Definition 2. Source instances D and D′ are indistinguish-
able with respect to an ontology O over the global schema
and mappings M if, for every query q(x) over the global
schema, the certain answers to q(x) over the data integra-
tion settings (O,M,D) and (O,M,D′) coincide.

Informally, all a malicious attacker can gather from the
source instance D is that it must be one of the (possibly in-
finitely many) source instancesD′ indistinguishable fromD.

The sensitive information in a data integration setting is
given by a CQ over the source schema, which we refer to
as the policy. Intuitively, disclosure of sensitive information
occurs whenever there is an answer to the policy that holds
in all the sources that are indistinguishable from the point of
view of the attacker. Indeed, in such situation the attacker
would be able to uncover the aforementioned answer with-
out a shadow of a doubt. If no such disclosure can occur,
then the data integration setting complies to the policy.

Definition 3. Let (O,M,D) be a data integration setting,
and let p(x) be a CQ over the source schema (called policy).
Setting (O,M,D) complies to p(x) if, for every tuple of
constants a such that D |= p(a), there is a source instance
Da indistinguishable from D with respect to O andM such
that Da 6|= p(a).

Returning to Example 1, the security need for the schema
might include the requirement that the schema complies
with the following policy with free variable PatId:

∃t1.∃DocId.∃Date.OncAppt(t1,PatId,DocId,Date).

With these definitions in hand, we are ready to present the
computational problems considered in our work.

Definition 4. Let O be an ontology, M be mappings, D
and D′ be source instances, and p be a policy. Consider the
following decision problems:
– SourceInd(O,M,D,D′) is true iff D and D′ are indis-

tinguishable with respect to O andM;

– Comply(O,M,D, p) is true iff (O,M,D) complies to p;
– ComplyAll(O,M, p) is true iff Comply(O,M,D, p) is
true for every source instance D.

4 Source Indistinguishability
In this section we study the complexity of checking whether
two given sources are indistinguishable from the point of
view of users of a data integration system. The results in
this section will be relevant to the study of policy compli-
ance later on. Furthermore, source indistinguishability is an
interesting problem in its own right; for instance, it can be
used to determine whether given changes in the source in-
stances can affect applications that query the system.

The following lemma extends Theorem 1 of (Nash and
Deutsch 2006) to the setting with an ontology, providing a
fundamental characterization of source indistinguishability.

Lemma 5. The following are equivalent for any ontology
O, mappingsM, and source instances D and D′:
1. SourceInd(O,M,D,D′) is true;
2. for each mapping with the head CQ q, the certain an-

swers to q with respect to (O,M,D) and (O,M,D′) co-
incide;

3. O ∪ VM,D and O ∪ VM,D′ are logically equivalent.

The lemma suggests a basic high-level algorithm that de-
cides SourceInd(O,M,D,D′) for any ontology language
with decidable entailment problem: (i) construct the virtual
images VM,D and VM,D′ ; (ii) check whetherO∪VM,D and
O ∪ VM,D′ are equivalent.

Checking indistinguishability is potentially harder than
query entailment since precomputing the images of the
sources can lead to an exponential blowup. Analysis of our
algorithm reveals that SourceInd is no harder than query en-
tailment in many cases: e.g., if the mappings are linear then
no such blowup occurs, or if the ontology language has suf-
ficiently high complexity for entailment (at least EXPTIME)
while retaining tractability in the size of the data. In other
cases, however, source indistinguishability is indeed harder
than entailment. For example, when the input ontology is
empty and the mappings are GAV, determining equivalence
of the source images amounts to a syntactic check, whereas
we prove SourceInd to be Πp

2-hard. Additionally, if the ar-
ity of the global schema is bounded (as in Description Logic
ontologies, where arity is at most two), the problem stays
hard for P‖NP: the class of problems solvable in P with non-
adaptive calls to an NP oracle (Wagner 1987).

Theorem 6. Problem SourceInd(∅,M,D,D′) is Πp
2-hard

for sets of GAV mappingsM; it is P‖NP-hard if, additionally,
the arity of the global schema is bounded by 2.

In such cases, our basic algorithm only provides an
EXPTIME upper bound, which stems from the cost of ma-
terializing the images of the sources.

If the ontology consists of linear TGDs, however, we can
do better. We can avoid explicit construction of the virtual
images of the sources by exploiting the following property
of linear ontologies: to check whether O ∪ VM,D |= q with
Boolean CQ q in VM,D′ it suffices to consider only a set



of instantiations of the frontier of M over D that is poly-
nomially bounded in the size of q. This allows us to obtain
matching upper bounds for the lower bounds in Theorem 6.

Theorem 7. Problem SourceInd(O,M,D,D′) for O in an
ontology language O andM in a mappings language M is
1. C-complete, for a complexity class C with EXPTIME ⊆

C, and in P in the size |D ∪D′| of D∪D′ for O such that
CQEnt(O,D, q) is C-complete and in P in |D|;

2. PSPACE-complete and in AC0 in |D ∪ D′| for linear O;
3. Πp

2-complete for the empty O;
4. P‖NP-complete for linear O (i.e., O consisting of lin-

ear ontologies), M consisting of sets of mappings with
bounded numbers of frontier variables, and the arity of
the global schema bounded by 2;

5. NP-complete and in AC0 in |D∪D′| for linear O, linear
M, and the arity of the global schema bounded by 2;

6. in P for linear O, linear GAV M, and the arity of the
global schema bounded by 2.

Case 4 is of particular interest because it covers OBDA
settings with DL-LiteR ontologies (Calvanese et al. 2007).

5 Policy Compliance
We now turn our attention to the Comply problem and show
that it is decidable for any ontology language with decid-
able query entailment problem. Furthermore, we establish
its precise complexity for the most common cases.

5.1 Decidability and Upper Bounds
In what follows, let us consider a fixed, but arbitrary, input
(O,M,D, p) to Comply; let Dom(D) be the set of constants
in D. By Definition 3, a correct procedure must return true
if and only if, for every tuple a with D |= p(a), there exists
Da indistinguishable from D such that Da 6|= p(a).

We start with a basic observation: for a source instance
to be indistinguishable from D, its image via M can only
contain constants from Dom(D). The following definition
formalises such notion of a “candidate” source image.

Definition 8. For a set of constants C, a C-source type τ
is a function assigning true or false to each sentence
of the form ∃z.ϕ(a, z), with a a tuple of constants from C
and ϕ(x, z) the body of a mapping in M. The image of
τ , denoted Vτ , is the set of sentences ∃y.ψ(a,y) such that
ϕ(x, z) → ∃y.ψ(x,y) is a mapping in M and τ returns
true when applied to ∃z.ϕ(a, z).

Intuitively, each Vτ associated to a type τ represents a
candidate source image. We will be interested only in real-
izable C-types τ : those having a witness source instance Dτ
that refutes some answer to the policy.

Definition 9. Let a be a tuple of constants from a set C. A
C-source type τ is a-realizable if there is a source instance
Dτ such that (i) VM,Dτ = Vτ , and (ii) Dτ 6|= p(a).

The following lemma shows that realizability can be char-
acterized as a logical satisfiability problem.

Lemma 10. Let a be a tuple of constants from a set C, and τ
be a C-source type. Let ρ be the conjunction of the sentences

¬p(a),
ϕ, for all ϕ with τ(ϕ) = true,
¬ϕ, for all ϕ with τ(ϕ) = false,
∀x.∀y.

(
ϕ(x,y)→

∧
x∈x

∨
c∈Dom(D) x = c

)
,

for each mapping inM with body ϕ(x,y) and frontier x.

Then, τ is a-realizable if and only if ρ is satisfiable.
Note that the formula in Lemma 10 is a Boolean combina-

tion of existentially quantified sentences; hence, whenever it
is satisfiable, it has a model polynomial in its size.

Finally, by Lemma 5 in the previous section, a realizable
type τ must satisfy an additional property to witness compli-
ance, namely that O ∪ Vτ must be equivalent to O ∪ VM,D.

With these ingredients, we are ready to present an alter-
nating procedure for checking Comply(O,M,D, p):
1. universally guess a tuple a of constants from Dom(D) of

the size equal to the arity of p;
2. existentially guess a Dom(D)-source type τ ;
3. verify whether τ is a-realizable and reject if it is not;
4. verify whetherO∪Vτ is equivalent toO∪VM,D; accept

if yes and reject otherwise.
Correctness of this algorithm follows from Lemma 5 and

the definition of realizable type. Furthermore, by analysing
the algorithm, we can obtain decidability and complexity
upper bounds for a range of ontology languages. In particu-
lar, cases 2 and 4 in the following theorem are applicable to
DL-LiteR ontologies, whereas case 3 is relevant to the more
general case of ontologies consisting of linear TGDs.
Theorem 11. Problem Comply(O,M,D, p) for O in an
ontology language O is
1. decidable if CQEnt(O′,D′, q) is decidable as O′ ranges

over O;
2. in NEXPTIME if CQEnt(O′,D′, q) is in NP asO′ ranges

over O;
3. in PSPACE if CQEnt(O′,D′, q) is in PSPACE as O′

ranges over O, when M ranges over sets of mappings
with bounded number of frontier variables;

4. in Σp2 if CQEnt(O′,D′, q) is in NP as O′ ranges over O,
M ranges over sets of mappings with bounded number of
frontier variables, and p over queries with bounded arity;

5. in NP in |D| if CQEnt(O′,D′, q) is in NP in |D′| for O′
ranging over O.
The proof of the theorem is a consequence of the correct-

ness of our generic algorithm and the following remarks.
Case 1 in the theorem follows from the fact that realizabil-
ity is decidable and equivalence checking is also decidable
for O if so is CQEnt. In all cases but the fourth one, we
can iterate over the possible bindings of the free variables in
p within the required complexity class; in case 4, however,
this is possible only if the arity of p is assumed bounded.

For case 2, guessing a source type and finding a witness
instance can be done in NEXPTIME, with the size of the wit-
ness instance being bounded by an exponential. The verifi-
cation of equivalence can be done with exponentially many
calls to CQEnt, which is feasible in exponential time under
the assumption that CQEnt is in NP for O.



For cases 3 and 4, the bound on the frontier allows us to
guess a source type τ in NP and then also a witness source
instance Dτ of polynomial size (Lemma 10). Then, we can
use an NP oracle to check that Dτ satisfies the required
properties in Definition 9. The equivalence check can then
be done with polynomially many calls to CQEnt, each of
which is feasible in PSPACE (case 3) or in NP (case 4).

Finally, in case 5, the ontology, policy and mappings are
considered to be fixed; as a result, the verification that the
guessed witness instance satisfies the source type can be
done in polynomial time, bringing complexity down to NP.

5.2 Lower Bounds
The main drawback of our generic algorithm for Comply is
the need to guess a source type, given that the number of
source-types is exponential, even when the schema is fixed.
Unfortunately, this algorithm cannot be improved in general.

Theorem 12. Problem Comply(O,M,D, p) forO in a lan-
guage O andM in a language M is
1. NEXPTIME-hard if O is empty and M consists of sets of

CQ views;
2. PSPACE-hard if CQEnt(O,D, q) is PSPACE-hard for O,

and all the mappings in M have no frontier variables;
3. Σp2-hard if O is empty, M consists of sets of linear CQ

views, and the arity of the global schema is bounded by 2;
4. NP-hard in |D| if O is empty and M consists of sets of

linear CQ views.
All these bounds hold even if p is Boolean.

Case 1 uses an encoding of an NEXPTIME-complete ver-
sion of the tiling problem. In the source, there are relations
associating “cell objects” with vertical and horizontal coor-
dinates, and also with tile types. The only exported infor-
mation is that adjacent coordinates are associated with some
cells and with some compatible tile type assignments. In
the source instance D, a cell with coordinates (x,y) will be
associated with each tile type, since there is only one cell ob-
ject; this information is not exported, and thus sources that
are indistinguishable from D may be better behaved. The
policy p is chosen so that indistinguishable sources where p
fails will correspond to ones where coordinates are assigned
a unique tiling type. Case 2 relies on an easy reduction from
CQ entailment. Case 3 uses a non-trivial encoding of the
well-known Σp2-hard variant of QBF validity; as discussed
later on, a variant of our Σp2-hardness result closes a prob-
lem on instance-based determinacy left open in (Koutris et
al. 2015). Case 4 follows from the proof of hardness of
instance-based determinacy in (Koutris et al. 2015).

5.3 Tractable Case
The lower bounds in Theorem 12 are rather discouraging:
even with the empty ontology and linear CQ views, the com-
pliance problem is Σp2-hard and NP-hard in data complexity.
We next show that tractability can be obtained if we restrict
ourselves to linear mappings and require also the policy to
be ground, that is, to be a conjunction of facts. It is easy to
see, however, that the upper bounds implied by our generic
algorithm in Section 5.1 do not improve if we restrict our-

selves to ground policies. Hence, we next describe a new
algorithm that deals with ground policies explicitly.

Let us fix an arbitrary input (∅,M,D, p) to Comply,
whereM is linear and GAV, and p is ground. For simplicity,
let us assume also that p consists of a single fact (the exten-
sion to the general case is straightforward). Our algorithm
proceeds as follows:
1. construct the image VM,D of D;
2. construct VM,D′ , where D′ = D \ {p};
3. for each “uncovered” fact U(c) ∈ VM,D \ VM,D′ and

each mapping R(x, z)→ U(x) inM
– look for a fact R(c,d), where d can include constants

from D or fresh constants, such that R(c,d) 6= p and
the application of all mappings to R(c,d) yields only
facts in VM,D; if no such fact exists, return false, oth-
erwise, add R(c,d) to D′;

4. return true and witnessing D′.
The algorithm attempts to construct a witness to compli-

ance by first removing the policy fact p from D. The result-
ing D′, however, may not be indistinguishable from D. The
algorithm proceeds to “repair” D′ by recovering each fact
U(c) that was lost from the image after removing p from the
source. For this, it attempts to find a fact (different from p)
which, when added to D′, brings U(c) back into the image
without generating other facts not already in VM,D.

This algorithm justifies the following theorem.

Theorem 13. If the arity of the source schema is bounded,
then Comply(∅,M,D, p) is in P for linear GAV sets of map-
pingsM and ground policies p.

6 Data-Independent Compliance
We now turn to problem ComplyAll, which requires that all
possible source instances comply to the policy. This is a
very desirable property for (the schema of) a data integration
system to satisfy: it ensures that none of the tuples in the
extension of the policy is revealed to a malicious attacker,
regardless of the underlying source data.

Unfortunately, ComplyAll can be shown undecidable even
under very strong restrictions on the input.

Theorem 14. Problem ComplyAll(∅,M, p) is undecidable
even for GAV mappings M and the arity of the global
schema is bounded by 2.

The proof is via an involved reduction from the well-
known tiling problem (Berger 1966) into the complement of
ComplyAll. Our reduction exploits a variant of the “chal-
lenge method” by Benedikt et al. (2016), where special
“challenge” predicates are introduces in the mappings and
query to ensure confluence and hence close the grid. The
construction relies on GAV mappings and an empty ontol-
ogy. But it is easy to see that with a non-trivial ontology we
can simulate arbitrary GAV using CQ views. Thus, our un-
decidability result extends to the case of CQ views, provided
a very simple ontology is present.

Corollary 15. Problem ComplyAll(O,M, p) is undecid-
able even for linear Datalog ontologies O, sets of CQ views
M, and the arity of the global schema bounded by 2.



We now complete the picture for ComplyAll by showing
that it is decidable when the mappings are CQ views and
there is no ontology. Here, we exploit the critical instance
method which has been used for both decidability and unde-
cidability results (Gogacz and Marcinkowski 2014; Cuenca
Grau et al. 2013a; Benedikt et al. 2016; Baader et al. 2016;
Shmueli 1993; Marnette 2010). We show that if there is
any non-compliant source instance, then the critical instance
of the source schema is also a witness to non-compliance.
The critical instance CritR for a schema R is the instance
whose domain has one single constant a and whose facts are
R(a, . . . , a) for all R ∈ R. Note that every CQ holds on
the critical instance, and thus it is (intuitively) the “hardest”
instance to get to comply.

Theorem 16. Let R be a source schema, M be a set of
CQ views, p be a Boolean policy, and both M and p be
constant-free. Then Comply(∅,M,CritR, p) = true if and
only if ComplyAll(∅,M, p) = true.

From this theorem and the results for Comply in Section 5,
we immediately obtain decidability in Σp2 of ComplyAll for
the case of CQ views. This upper bound is, however, not
tight since we can exploit the special structure of the critical
instance to obtain more favourable complexity.

Theorem 17. The problem ComplyAll(∅,M, p) for
constant-free policies p, and sets of constant-free CQ views
M is CONP-complete; it is in P if the CQ views are linear.

7 Implications of Our Results
We discuss the implications of our work on the literature.

Nash and Deutsch (2006) study similar problems to ours
in the context of data integration via GLAV mappings and
no ontology. In the discussion below, we focus for simplic-
ity on the case of Boolean policies p. Nash and Deutsch
(2006) consider privacy guarantees for Boolean policies that
are stricter than ours: they require that neither the policy nor
its negation can be inferred by an attacker. In Example 1,
we could require that the attacker can neither learn that a
specific patient has an oncology appointment or that they
do not have such an appointment. Following (Benedikt et al.
2016), we can extend the compliance guarantee in (Nash and
Deutsch 2006) to account for an ontology as given next. We
let ComplyBoth(O,M,D, p) be true if and only if both
Comply(O,M,D, p) and Comply(O,M,D,¬p) are true.
Then, a variation of our hardness proof for Comply in case 3
of Theorem 12 gives us also hardness for ComplyBoth.

Theorem 18. Problem ComplyBoth(∅,M,D, p) is
NEXPTIME-hard for sets of CQ viewsM; it is Σp2-hard for
sets of linear CQ views.

The second result contradicts (modulo standard
complexity-theoretic assumptions) a prior NP upper
bound established by Corollary 3 of Theorem 3 in (Nash
and Deutsch 2006). The bound of Nash and Deutsch (2006)
is given in terms of the size of D and the rewriting of the
global relations inM over the source relations. Indeed, our
Σp2 lower bound holds already for linear views, in which
case such rewriting is of linear size in |M|.

We conclude this section by discussing the instance-based
determinacy problem studied in Koutris et al. (2015).

Let V be a set of CQ views, D be a source instance, and p
be a CQ over the source schema. We say that V determines
p given D if, for each D′ such that the extension of V over
D′ coincides with the extension of V over D, the answers to
p overD andD′ also coincide. Then, Determinacy(V, p,D)
is true if and only if V determines p given D.

Koutris et al. (2015) show that Determinacy is in Πp
2 in

the combined size of the views, mappings, source instance
and its global extension, but leave the lower bound open.
We can observe, however, that, for Boolean queries and the
empty ontology, Determinacy is precisely the complement
of ComplyBoth. Thus, the following holds by Theorem 18.

Corollary 19. Determinacy(V, p,D) is CONEXPTIME
hard; it is Πp

2-hard if the extension of D over V is also part
of the input.

8 Related Work
The problem of preventing information disclosure in infor-
mation systems has received significant attention in recent
years. We focus our discussion on logic-based approaches,
which are the closest to our work, and leave out probabilistic
techniques such as those in (Dalvi, Miklau, and Suciu 2005;
Miklau and Suciu 2007). We also leave out anonymization
approaches, which involve modification of the source data
(Cuenca Grau et al. 2015; Cuenca Grau et al. 2013b).

Disclosure in the setting where data is materialized is re-
lated to “querying with closed predicates”, which has drawn
much recent attention in the KR community (Lutz, Seylan,
and Wolter 2015; Ahmetaj, Ortiz, and Simkus 2016). Our
work takes ideas from one paper in this line, Benedikt et al.
(2016), which considers the scenario where the materialized
contents of visible relations in a relational schema are known
to users, whereas the contents of all other tables are hidden.
A background theory provides semantic information about
both visible and invisible relations. The secret information
is provided by a query, and the goal is to determine whether
(positive or negative) information about the query can be
answered by looking only at the contents of the visible ta-
bles. Our instance-level problems for GAV mappings are
subsumed by this setting, since we can consider the targets
instead of the sources, and can generate a background the-
ory from the mappings and constraints. However, even for
GAV mappings, the complexity of our problem is difficult to
align with the problems of (Lutz, Seylan, and Wolter 2015;
Ahmetaj, Ortiz, and Simkus 2016; Benedikt et al. 2016).
Our input is the source instance, whose size may be larger or
smaller than the target, while our background theory consid-
ers only mappings coupled with an ontology over the global
vocabulary, quite different from the assumptions in (Lutz,
Seylan, and Wolter 2015; Ahmetaj, Ortiz, and Simkus 2016;
Benedikt et al. 2016).

A number of works focus not on policy analysis at design
time, as we do, but on policy enforcement at query time.
Calvanese et al. (2012) study privacy-aware data access in
the presence of ontologies, by extending the database au-
thorization framework by Zhang and Mendelzon (2005). In



their setting, users are assigned a set of authorization views;
every query is then answered by the system using only the
information that follows from the ontology and their re-
spective views. In the Controlled Query Evaluation (CQE)
framework, a censor ensures that query answers that may
compromise the policy are either distorted, or not returned
to users. CQE was introduced by (Sicherman, de Jonge,
and van de Riet 1983) for databases and has received sig-
nificant attention since (e.g., see (Biskup and Bonatti 2004;
Biskup and Weibert 2008; Bonatti, Kraus, and Subrahma-
nian 1995)) CQE has been recently extended to ontologies in
(Cuenca Grau et al. 2015; Bonatti and Sauro 2013; Cuenca
Grau et al. 2013b; Studer and Werner 2014). (Guarnieri
and Basin 2014) compares policy enforcement and policy
restriction based approaches, in the absence of an ontology
but for richer query languages (e.g., full relational calculus).

Finally, source indistinguishability is related to query in-
separability in knowledge bases as studied by (Botoeva et al.
2016). However, the emphasis in query inseparability is on
having distinct ontologies (and not data) and mappings are
not present; as a result, the techniques applied are different.

9 Future Work
In this paper, we have provided an analysis of disclosure of
source data in an ontology-based integration scenario.

Most of our decidability results are likely to extend to the
setting where the sources come with integrity constraints. In
future work, we will study the impact of source constraints
on the complexity of our problems. We also leave for future
work an extended study of the ComplyBoth problem in the
presence ontologies and its data-independent version.

Our notion of compliance does not limit the computa-
tional resources of the attacker. Although Lemma 5 shows
that the attacker can always make due with polynomially
many queries, Theorem 12 suggests that it is hard in gen-
eral for an attacker to determine if the policy holds. Thus, a
main open issue is to distinguish the schema/query combi-
nations that are computationally easy (as data varies) for the
attacker from those that are hard. Lutz, Seylan, and Wolter
(2015) and Lutz, Seylan, and Wolter (2012) did a similar
analysis for hybrid closed-and-open world query answering,
and their techniques may be directly relevant.
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Appendix A: Proofs of Results in Section 4
Lemma 5. The following are equivalent for any ontology O, mappingsM, and source instances D and D′:
1. SourceInd(O,M,D,D′) is true;
2. for each mapping with the head CQ q, the certain answers to q with respect to (O,M,D) and (O,M,D′) coincide;
3. O ∪ VM,D and O ∪ VM,D′ are logically equivalent.

Proof. The first statement implies the second by definition.
If the second statement holds, then clearly the third holds, by the observation after the definition of virtual image.
We show that the third statement implies the first.
Assume thatO∪VM,D andO∪VM,D′ are logically equivalent. Let q(x) be an arbitrary CQ over the global relations, and let

a be a binding for the variables of q such that q(a) is a certain answer with respect to (O,M,D). We show that the same holds
with respect to (O,M,D′) as well. If not, then there is an instance F ′ over both source and global relations such that it satisfies
bothM and O, its source part is precisely D′, and it does not satisfy q(a). Let F be formed by replacing the interpretation
of the source relations in F ′ by D. Clearly F satisfies O ∧ ¬q(a), since these mention only the global relations, which are
unchanged from F ′. Also the source part of F isD by definition. To see that F satisfiesM, consider any trigger h for the body
of a mapping in D. Then the head of the mapping is in VM,D. Thus by hypothesis the head is implied by O ∪ VM,D′ . But F ′
satisfies O ∪ VM,D′ , and thus F ′ satisfies the head. Since F agrees with F ′ on the global relations, the conclusion follows.

Arguing symmetrically, we see that a certain answer of q with respect to (O,M,D′) is a certain answer of q with respect to
(O,M,D). This completes the proof.

Theorem 6. Problem SourceInd(∅,M,D,D′) is Πp
2-hard for sets of GAV mappingsM; it is P‖NP-hard if, additionally, the

arity of the global schema is bounded by 2.

Proof.

First statement. We show Πp
2-hardness by reduction from ∀∃SAT. Let ϕ = ∀u.∃v.ψ, where ψ is a conjunction of clauses γ of

the form `1 ∨ `2 ∨ `3 for `j either a propositional variable from u ∪ v or the negation of such a variable; for each such γ, we
denote wjγ , for j = 1, 2, 3, the variable in `j . Let also u = u1, . . . , un.

Let Bool be a unary source relation and let Clauseγ be a unary source relation for each clause γ in ψ. Furthermore, let Argj
for j = 1, 2, 3 and UValue be binary source relations. Let also Target be an n-ary global relation. We define the set of GAV
mappingsM that consists of mappings

Bool(y1) ∧ · · · ∧ Bool(yn)→ Target(y1, . . . , yn)

and ∧
γ in ψ

Clauseγ(xγ) ∧
3∧
j=1

Argj(xγ , xwjγ )

 ∧ n∧
i=1

UValue(xui , yui)→ Target(yu1
, . . . , yun).

Finally, let D = {Bool(0),Bool(1)} and let D′ consist of the following facts:

– Clauseγ(aπγ ),Arg1(aπγ , b1),Arg2(aπγ , b2),Arg3(aπγ , b3) for each clause γ = `1 ∨ `2 ∨ `3 in ψ and each satisfying assignment
π of γ, where, for each j = 1, 2, 3, bj = twjγ if π(wjγ) = true and bj = fwjγ if π(wjγ) = false (each π assigns only
variables in γ, so there are at most 7 of them for γ);

– UValue(fui , 0) and UValue(tui , 1) for all (universally quantified) variables ui in u.

We argue that formula ϕ is true if and only if SourceInd(∅,M,D,D′) = true. Observe that, due to the first mapping of
M, VM,D contains all facts Target(c1, . . . , cn) where ci ∈ {0, 1} for all i = 1, . . . , n. It is now routine to check, using the
construction of the second mapping, that VM,D′ consists of exactly the same facts (thus making D and D′ indistinguishable) if
and only if ϕ is true.

Second statement. We show P‖NP-hardness by reduction from Max-True-3SAT-Equality problem, which is known to be
P‖NP-complete (see (Spakowski 2005)). Its input is two satisfiable propositional formulas ψ1 and ψ2 in 3CNF and the question
is whether max1(ψ1) = max1(ψ2), where max1(ψ) is the maximum of the number of variables assigned to true over all
satisfying assignments of ψ.

Consider a formula ψ in 3CNF that is a conjunction of clauses γ of the form `1 ∨ `2 ∨ `3 for `j either a propositional variable
from u = u1, . . . , un or the negation of such a variable; for each such γ, denote ujγ , for j = 1, 2, 3, the variable in `j . Note that
in this proof the order of u1, . . . , un plays a technical role: it can be arbitrary, but it is important that it is fixed. Next we define
a set of mappingsMψ and a source instance Dψ for ψ.



LetMψ consist of the following mappings, for each m = 0, . . . , n:

∧
γ in ψ

Clauseψγ (xγ) ∧
3∧
j=1

Argj(xγ , xujγ )

 ∧

PartialSum(xu1
, s1) ∧

n∧
i=2

(
PreviousValue(si−1, ri) ∧ CurrentValue(xui , ri) ∧ PartialSum(ri, si)

)
∧

TotalSumm(sn)→ TotalSum′m(),

and let Dψ consist of

– the facts
Clauseψγ (aπγ ),Arg1(aπγ , b1),Arg2(aπγ , b2),Arg3(aπγ , b3)

for each clause γ = `1 ∨ `2 ∨ `3 in ψ and each satisfying assignment π of γ, where, for each j = 1, 2, 3, bj = tujγ if
π(ujγ) = true and bj = fujγ if π(ujγ) = false (as before each π assigns only variables in γ);

– the facts
PartialSum(fu1

, d01),PartialSum(tu1
, d11),PartialSum(tu1

, d01),

– for each i = 2, . . . , n and k = 0, . . . , i− 1, the facts
PreviousValue(dki−1, c

k0
i ),CurrentValue(fui , c

k0
i ),PartialSum(ck0i , d

m
i ), for all m = 0, . . . , k,

PreviousValue(dki−1, c
k1
i ),CurrentValue(tui , c

k1
i ),PartialSum(ck1i , d

m
i ), for all m = 0, . . . , k + 1,

– for each m = 0, . . . , n, the fact
TotalSumm(dmn ).

The key property of Mψ and Dψ is that VMψ,Dψ |= TotalSum′k() for a number k if and only if k ≤ max1(ψ). Indeed,
consider a satisfying assignment σ of ψ. As before, the Clauseψγ and Argj atoms of the body of every homomorphism can be
uniquely mapped to Dψ in such that way that each xui is mapped to fui or tui depending of the Boolean value σ(ui). If xu1

is
mapped to fu1

, then variable s1 can be mapped only to d01: intuitively, PartialSum(fui , d
0
1) in the image of the homomorphism

represents the fact that at least 0 propositional variables are assigned to true among the first 1 variables. If xu1
is sent to tu1

then s1 can be sent either to d01 or to d11, representing similar facts. Having a homomorphism defined for all the variables up to
si−1, which is sent to dki−1, we know that at least k propositional variables are assigned to true among the first i−1 ones. If the
current propositional variable ui is assigned to false by σ, that is, xui is sent to fui , then ri can be sent only to ck0i , and, hence,
si can be sent to any of d0i , . . . , d

k
i . Each option dmi represents the fact that at least m variables are assigned to true among the

first i ones. Similarly, if ui is assigned to true, then si can be sent to any of d0i , . . . , d
k+1
i . At the end, sn can be sent to one of

d0n, . . . , d
k
n where k is the total number of propositional variables assigned to true by σ, so all TotalSum′0(), . . . ,TotalSum′k()

are present in VMψ,Dψ . This process goes through for all satisfying assignments, so the key property indeed holds.
Therefore, Max-True-3SAT-Equality(ψ1, ψ2) is true for two satisfiable formulas ψ1 and ψ2 in 3CNF if and only if

SourceInd(∅,Mψ1 ∪Mψ2 ,Dψ1 ,Dψ2) is true.

Theorem 7. Problem SourceInd(O,M,D,D′) for O in an ontology language O andM in a mappings language M is
1. C-complete, for a complexity class C with EXPTIME ⊆ C, and in P in the size |D ∪ D′| of D ∪ D′ for O such that

CQEnt(O,D, q) is C-complete and in P in |D|;
2. PSPACE-complete and in AC0 in |D ∪ D′| for linear O;
3. Πp

2-complete for the empty O;
4. P‖NP-complete for linear O (i.e., O consisting of linear ontologies), M consisting of sets of mappings with bounded numbers

of frontier variables, and the arity of the global schema bounded by 2;
5. NP-complete and in AC0 in |D ∪ D′| for linear O, linear M, and the arity of the global schema bounded by 2;
6. in P for linear O, linear GAV M, and the arity of the global schema bounded by 2.

Proof. We start with the lower bounds. Cases 3 and 4 (Πp
2-hardness and P‖NP-hardness, respectively) follow from Theorem 6.

Hardness for cases 1, 2, and 5 follow by the following reduction from CQEnt (recall that CQEnt is PSPACE-complete for
linear ontologies and NP-complete if, additionally, the arity of predicates is bounded). Note that the reduction uses only linear
mappings.

Consider an instance of CQEnt consisting of an ontology O0, an instance D0, and a Boolean CQ q0. Let θ be a predicate
renaming which maps each relation R in D0 to a distinct source relation Rθ of the same arity. Furthermore, let Q be a fresh
unary predicate. We now define an instance of SourceInd consisting of the following ontology O, mappingsM, and source
instances D and D′:



1. O = O0,
2. D = D0θ and D′ = D ∪ {Q(a)},
3. M consists of the set of all linear GAV mappings Rθ(x) → R(x), for each relation R in D0, extended with a linear GLAV

mapping Q(x)→ q0.

We argue that SourceInd(O,M,D,D′) = true if and only if O0 ∪ D0 |= q0. Assume that SourceInd(O,M,D,D′) = true.
Then,O∪VM,D andO∪VM,D′ must be logically equivalent. By construction ofD′ andMwe have that VM,D′ = VM,D∪{q0}
and the equivalence implies that O ∪ VM,D |= q0. Since O = O0 and VM,D = D0 we have that O0 ∪ D0 |= q0, as required.
For the converse, assume that O0 ∪ D0 |= q0. Since O = O0 and VM,D = D0, we have that O ∪ VM,D |= q0. Since
VM,D′ = VM,D ∪ {q0} we then have that O ∪ VM,D |= VM,D′ and hence O ∪ VM,D and O ∪ VM,D′ must be equivalent,
which implies that SourceInd(O,M,D,D′) = true.

We now argue the upper bounds. For cases 1, 5, and 6 we analyse the basic algorithm for indistinguishability:

1. construct the source images VM,D and VM,D′ ;
2. check equivalence of O ∪ VM,D and O ∪ VM,D′ .

Assume that the mappings are linear (which covers cases 5 and 6). Then, the first step of the algorithm requires polynomial
time. If we fixM (i.e., consider data complexity), then it is feasible in AC0. In turn, the second step requires polynomially
many entailment tests if the arity of global predicates is bounded, each of which is feasible in NP in case 5, and in P in case 6
(note that fact entailment under the conditions of case 6 is tractable).

If the mappings are not linear (case 1), then the first step takes exponential time (it requires exponentially many CQ evaluation
tests over the source instance in the size of the frontier ofM, each of which is feasible in NP). IfM is fixed, then again the
process is feasible in AC0. The (exponential) size of the images VM,D and VM,D′ determines the number of entailment tests
to be performed. Each test is feasible in C in the size of O and in P in the size of data. Hence the overall process is feasible in
C and in P in data.

The aforementioned basic algorithm does not give us tight upper bounds for cases 2, 3, and 4, which involve linear ontologies
or restrictions thereof. For this, we need a specialised algorithm that takes into account the specific properties of linear TGDs.
We use the following claim.

Claim 20. Let O be a linear ontology and let M be a set of mappings. Furthermore, let D and D′ be arbitrary source
instances. Then, O ∪ VM,D |= VM,D′ if and only if the following condition holds: for every mapping ϕ → ∃y.ψ inM and
every grounding θ′ such that ϕθ′ ⊆ D′ there are k ≤ |ψ| groundings θ1, . . . θk of mappings mi = ϕi → ∃y.ψi inM, with
1 ≤ i ≤ k, such that ϕiθi ⊆ D and O ∪ {∃y.ψiθi}ki=1 |= ∃y.ψθ′.

Proof. Assume that the condition in the claim holds. Pick an existentially quantified sentence ∃y.ψ(a,y) in VM,D′ . By the
definition of VM,D′ there must exist a mapping ϕ(x, z)→ ∃y.ψ(x,y) inM such that D′ |= ∃z.ϕ(a, z). But then, there must
exist a grounding θ′ = {x→ a, z→ c} such that ϕθ′ ⊆ D′. By the condition of the lemma, groundings θ1, . . . θk of mappings
m1, . . . ,mk must exist such that ϕiθi ⊆ D. But then, by the definition of VM,D, we have that {∃y.ψiθi}ki=1 ⊆ VM,D and
hence the condition of the lemma ensures that O ∪ VM,D |= ∃y.ψ(a,y), as required.

Assume now that O ∪ VM,D |= VM,D′ . Let ϕ → ∃y.ψ be a mapping inM and let θ′ be a grounding such that ϕθ′ ⊆ D′.
By the definition of VM,D′ we have that ∃y.ψθ′ ∈ VM,D, and hence by our assumption we have that O ∪ VM,D |= ∃y.ψθ′.
This implies that there exists a substitution σ = {y → b} such that the set of |ψ| facts ψθ′σ is contained in the chase of O
union the “freezing” of VM,D. SinceO consists of linear TGDs, each inference step in the chase depends of at most one fact. It
is convenient to think of the chase as a directed graph where nodes represent facts in the chase and the edges describe inference
steps; in this setting, if the TGDs are linear, all nodes in the chase are reachable from some root and every node in the chase has
at most one incoming edge. Now, each fact α in ψθ′σ is contained in the chase and has a single root root(α) associated to it in
the chase. Each such root(α) must be contained in the “freezing” of VM,D; by the definition of VM,D, the presence of a fact in
the freezing of VM,D is justified by a grounding θi of a mapping mi inM such that ϕiθi ⊆ D, which implies the claim.

For the PSPACE and Πp
2 upper bounds we analyse the following non-deterministic algorithm, which is correct by Claim 20

for linear ontologies:

1. universally guess a mapping m = ϕ→ ∃y.ψ inM and a grounding θ′ of ϕ such that ϕθ′ ⊆ D′;
2. for all (polynomially many) sets {θ1, . . . , θk} of k ≤ |ψ| groundings over D of mappings m1, . . . ,mk in M such that
ϕiθi ⊆ D for each 1 ≤ i ≤ k, check whether O ∪ {∃y.ψiθi}ki=1 |= ∃y.ψθ′; reject the branch if none of the entailment tests
hold;

3. repeat Steps 1 and 2 with D and D′ swapped;
4. accept the branch.



The algorithm works in non-deterministic polynomial space. In particular, each CQ entailment is feasible in polynomial
space if O consists of linear TGDs. If O = ∅, then each entailment test in the algorithm amounts to query containment, which
is feasible by a call to an NP oracle thus giving us decidability in Πp

2.
For the P‖NP upper bound we analyse the deterministic variant of the previous algorithm:

1. for each mapping m = ϕ(x, z)→ ∃y.ψ(x,y) inM and each grounding θ′ of the frontier x of m
– set b := false;
– for all (polynomially many) sets {θ1, . . . , θk} of k ≤ |ψ| groundings over D of mappings m1, . . . ,mk in M such that
ϕiθi ⊆ D for each 1 ≤ i ≤ k

- if D′ |= ∃z.(ϕθ′) and O ∪ {∃y.ψiθi}ki=1 |= ∃y.ψθ′, set b := true;
– if b = false, return false;

2. repeat Step 1 with D and D′ swapped;
3. return true.

If the frontier ofM is bounded, then the outermost loop has at most polynomially many iterations, and so do the nested loops
taken together. The semantic condition inside the loops is feasible with two oracle calls. None of the calls depend on each
other, which shows membership in P‖NP.

Finally, data complexity in AC0 for all cases 2, 3, and 4 follows from the analysis of the deterministic algorithm for O and
M fixed; indeed, the data complexity of Boolean CQ entailment for linear TGDs is in AC0 for fixed O and the number of
iterations of the nested loops is also polynomial if we fixM.

Appendix B: Proofs of Results in Section 5
Note that Lemma 10 is straightforward, while a proof of Theorem 11 is given after its statement in the main part of the paper.

Theorem 12. Problem Comply(O,M,D, p) for O in a language O andM in a language M is
1. NEXPTIME-hard if O is empty and M consists of sets of CQ views;
2. PSPACE-hard if CQEnt(O,D, q) is PSPACE-hard for O, and all the mappings in M have no frontier variables;
3. Σp2-hard if O is empty, M consists of sets of linear CQ views, and the arity of the global schema is bounded by 2;
4. NP-hard in |D| if O is empty and M consists of sets of linear CQ views.
All these bounds hold even if p is Boolean.

Proof. We next show each of the statements of the theorem.

Statement 1. We show NEXPTIME-hardness of Comply(∅,M,D, p) for the case where M is a set of CQ views. Let
(T , RH , RV ) be a tiling instance, where T is a finite set of tile types, whileRH andRV are horizontal and vertical compatibility
relations, respectively. We will first show how to construct a set of GAV mappingsM, a Boolean UCQ p and a source instance
D such that Comply(∅,M,D, p) = true if and only if it is possible to tile a square 2n × 2n, for n = |T |. After it we explain
how to modify this construction to makeM consist of CQ views and p be a single Boolean CQ. For the sake of readability, we
allow for (safe) equalities of variables in the bodies of mappings inM, which is clearly just a syntactic sugar.

Let D consist of the facts
Zero(0),One(1),
Tiledt(e), for t ∈ T ,
HBiti(e, 0),HBiti(e, 1), for n ≥ i ≥ 1,
VBiti(e, 0),VBiti(e, 1), for n ≥ i ≥ 1.

For u = un, . . . , u1 and v = vn, . . . , v1, we introduce the following abbreviations:

NextCoord1(u,v) = (un = vn) ∧ · · · ∧ (u2 = v2) ∧ Zero(u1) ∧ One(v1),
· · ·

NextCoordi(u,v) = (un = vn) ∧ · · · ∧ (ui+1 = vi+1) ∧
Zero(ui) ∧ One(vi) ∧ One(ui−1) ∧ Zero(vi−1) ∧ · · · ∧ One(u1) ∧ Zero(v1),
· · ·

NextCoordn(u,v) =
Zero(un) ∧ One(vn) ∧ One(un−1) ∧ Zero(vn−1) ∧ · · · ∧ One(u1) ∧ Zero(v1).

Essentially, NextCoordi(u,v) is true when u and v represent consecutive binary numbers of the form bn . . . bi+101 . . . 1 and
bn . . . bi+110 . . . 0, respectively.

Next, let, for x = xn, . . . , x1 and y = yn, . . . , y1,

CoordsOf(z,x,y) = HBitn(z, xn) ∧ . . . ∧ HBit1(z, x1) ∧ VBitn(z, yn) ∧ . . . ∧ VBit1(z, y1).



LetM include, for n ≥ i ≥ 1 and (t1, t2) ∈ RH , the following mapping, which checks that all horizontally adjacent cells
are assigned with the tile types according to RH :

NextCoordi(x1,x2) ∧ CoordsOf(z1,x1,y) ∧ CoordsOf(z2,x2,y) ∧ Tiledt1(z1) ∧ Tiledt2(z2) → HValidi(x1,x2,y).

Similarly, letM include, for the same i and (t1, t2) ∈ RV , the following mapping, which checks that all vertically adjacent
cells are assigned according to RV :

NextCoordi(y1,y2) ∧ CoordsOf(z1,x,y1) ∧ CoordsOf(z2,x,y2) ∧ Tiledt1(z1) ∧ Tiledt2(z2) → VValidi(x,y1,y2).

Finally, let p be the union of the following Boolean CQs, for all t1, t2 ∈ T with t1 6= t2:

CoordsOf(z1,x,y) ∧ CoordsOf(z2,x,y) ∧ Tiledt1(z1) ∧ Tiledt2(z2).

Intuitively, in the source there are relations that associated “cell objects” with vertical and horizontal co-ordinates, and also
with tile types. The only information exported to the attacker is that adjacent co-ordinates are associated with some cells and
with some tile type assignments which are compatible. In fact, in the input source D, a cell with coordinates (x,y) will be
associated with every tile type, since there is only one cell object. But this information is not exported, and thus sources that
are indistinguishable from the source D may be better behaved. In particular, indistinguishable sources where the query p fails
will correspond to ones where co-ordinates are associated with a unique tiling type.

Formally, suppose we have a source D′ indistinguishable from D and satisfying ¬p. From indistinguishability we know that
for each bit vectors x,y there is at least one cell object c and tile type t such that CoordsOf(c,x,y) and Tiledt(c). Further,
the fact that ¬p holds guarantees that there is at most one such t. We define a tiling by giving x,y the corresponding tile type,
and indistinguishability further guarantees that the compatibility relations are satisfied. Conversely, if we have a tiling, we can
define a source D′ by creating a unique c for each bit vectors x,y, associating c with x,y via CoordsOf, and setting Tiledt(c)
to true only for the tile type given to x,y in the tiling. It is easy to see that the resulting D′ is indistinguishable from D and
satisfies ¬p.

The mappings inM are not CQ views, because there is a mapping with the head predicate HValidi for every pair (t1, t2)
of compatible types (and, similar mappings for VValidi). Next we show how to transform these disjunctions to conjunctions.
The idea will be to have tile types as objects in a new “type storage” relation, along with a relation storing the compatibility
relations. This will allow us to replace a union of mappings ver the different pairs of tile types by an existential quantification.

Let D′ be the same as D, except that instead of the facts Tiledt(e), for t ∈ T , it contains the facts

TypeOf(e, dt),TileType(dt), for all t ∈ T ,
DiffTypes(t, t′) for all t 6= t′ ∈ T ,
HCompat(dt1 , dt2), for all (t1, t2) ∈ RH ,
VCompat(dt1 , dt2), for all (t1, t2) ∈ RV .

LetM′ contain the mappings

TileTypet(w) → TileType′t(w), for all t ∈ T ,
DiffTypes(x, y) → DiffTypes′(x, y),

HCompat(w1, w2) → HCompat′(w1, w2),
VCompat(w1, w2) → VCompat′(w1, w2).

That is, we export the information about what the tiles are, which tiles are different, and which ones are compatible.
LetM′ also contain, for each n ≥ i ≥ 1, the mapping

NextCoordi(x1,x2) ∧ CoordsOf(z1,x1,y) ∧ CoordsOf(z2,x2,y) ∧
TypeOf(z1, w1) ∧ TypeOf(z2, w2) ∧ HCompat(w1, w2)→ HValid′i(x1,x2,y)

and the mapping

NextCoordi(y1,y2) ∧ CoordsOf(z1,x,y1) ∧ CoordsOf(z2,x,y2) ∧
TypeOf(z1, w1) ∧ TypeOf(z2, w2) ∧ VCompat(w1, w2)→ VValid′i(x1,x2,y).

Finally, let p′ be the Boolean CQ:

CoordsOf(z1,x,y) ∧ CoordsOf(z2,x,y) ∧
TypeOf(z1, w1) ∧ TypeOf(z2, w2) ∧ TileType(w1) ∧ TileType(w2) ∧ DiffTypes(w1, w2).

MappingsM′ are CQ views as required.



Assume that we have an indistinguishable sourceD′ satisfying ¬p′. ThenD′ must agree withD on the tiles and their compat-
ibility relations, and as before each pair of vectors is associated with some tile type. Since D′ satisfies ¬p′, this type is unique.
Indistinguishability guarantees that the tilings satisfy the required compatibility. The other direction is also straightforward.

Statement 2. We prove that CQEnt is reducible to Comply, where the reduction does not change the ontology, and it only
involves mappings with empty frontier. The statement then follows for every ontology language with PSPACE-hard CQEnt
problem. Consider an instance of CQEnt consisting of an ontologyO0 an instance D0 and a Boolean conjunctive query q0. We
assume that O0 and q0 are both constant-free. Let θ be a predicate renaming which maps each relation R in D0 to a distinct
source relation Rθ of the same arity. Let σ1 and σ2 be renamings mapping each constant a in D0 to a fresh variable xa and
ya, respectively. Let also y be the set of all ya defined above. Finally, let Q be a source unary relation not contained in the
range of θ. We then define the instance of Comply consisting of the following ontology O, mappingsM, source instance D
and policy p:

– O = O0,
– M = {m1,m2}, where m1 is (D0θ)σ1 → ∃y.(D0σ2) and m2 is defined as Q(x)→ q0,
– D = D0θ ∪ {Q(a)},
– p = ∃x.Q(x).

Note that both mappings export no variables and hence have no frontier.
By construction, VM,D = D′0 ∪ {q0} where now the freezing of D′0 is isomorphic to D0. The implication

CQEnt(O0,D0, q0) = true implies Comply(O,M,D, p) = true holds easily. Now, assume Comply(O,M,D, p) = true.
This implies that there exists a source instance D′ indistinguishable with D for which the policy does not hold. But now, by
the way we defined the mappings, it must be the case that VM,D = VM,D′ ∪ {q0}. As a result, O0 ∪ VM,D |= O0 ∪ VM,D′ .
Furthermore, O0 ∪VM,D′ |= q0 and hence we haveO0 ∪VM,D |= q0. Since D0 and the freezing od VM,D are isomorphic, we
also have O0 ∪ D0 |= q0, as required.

Statement 3. We show Πp
2-hardness of the complement of Comply by reduction of ∀∃SAT. Let ϕ = ∀u.∃v.ψ, where ψ is

a conjunction of clauses of the form `1 ∨ `2 ∨ `3 for `i either a propositional variable from u ∪ v or the negation of such a
variable. LetM consist of mappings

Clauseγ(x) → Clause′γ(x), for all clauses γ in ψ,
Argi(x, y) → Arg′i(x, y), for all i = 1, 2, 3,

UVaru(x, y) → UVar′u(x), for all u ∈ u,
UVaru(x, y) → Choice′u(y), for all u ∈ u,
Chosenu(x) → Chosen′u(x), for all u ∈ u,

EVarv(x) → EVar′v(x), for all v ∈ v.

Let p be the Boolean CQ that has the following atoms:

UVaru(xu, yu),Chosenu(yu), for all u ∈ u,
EVarv(xv), for all v ∈ v;

and the following atoms for each clause γ = `1 ∨ `2 ∨ `3 in ψ:

Clauseγ(xγ),
Argi(xγ , xw), for all i = 1, 2, 3 and for the variable w ∈ u ∪ v of `i.

Let D consist of

– the facts
Clauseγ(aπγ ),Arg1(aπγ , b1),Arg2(aπγ , b2),Arg3(aπγ , b3),

for each γ = `1 ∨ `2 ∨ `3 in ψ and each satisfying assignment π of γ (π assigns only variables of γ, so there are at most 7
assignments π for each γ), where, for each i = 1, 2, 3 and for the variable w of `i, bi = tw if π(w) = true and bi = fw if
π(w) = false;

– the facts
UVaru(tu, c

+
u ),UVaru(fu, c

+
u ),UVaru(tu, c

−
u ),UVaru(fu, c

−
u ),

Chosenu(c+u ),

for all variables u ∈ u;
– the facts

EVarv(tv),EVarv(fv),

for all variables v ∈ v.



Next we give an intuition for the reduction. Source database D encodes all the satisfying assignments of all the clauses. In
particular, it has a constant aπγ for each assignment π of variables of each clause γ, and constants tw, fw for true and false
values of each propositional variable w (both universally and existentially quantified). Each universally quantified variable
u is additionally associated with two constants c+u and c−u . Each constant aπγ is connected to the corresponding values of its
variables by means of binary predicates Argi. Both constants tu and fu for values of each universally quantified variable
u are additionally connected to both of the corresponding constants c+u and c−u by predicate UVaru. Mappings M copy all
the source database, except UVaru, which is exported only by means of projections UVar′u and Choice′u on the first and the
second argument, respectively. Therefore, all the source databases indistinguishable from D differ from D only in UVaru: the
attacker knows that each of tu and fu, for all universally quantified u, is connected by UVaru to at least one of c+u and c−u , and,
conversely, each of c+u and c−u is connected to at least one of tu and fu. In other words, these indistinguishable sources represent
all possible assignments of universally quantified variables by means of the value constants connected to corresponding c+u (the
sources with both value constants of some u connected to c+u may be seen as representing several assignments). The task of
the attacker is to check that the policy query p holds in all these sources, which correspond to all possible assignments of u. A
homomorphism from p to any source sends each clause variable xγ to one of its assignment variables aπγ , and each xw to one
of its value constants tw, fw. If w is existential then the choice is free. However, if w is universal, then xw must be sent to
the value constant that is connected to c+w , because only c+w is in Chosenw as required by p. Therefore, such a homomorphism
exists if and only if for all assignments of u (i.e., for all indistinguishable sources) there exists an assignment of v that satisfies
all the clauses of ψ.

Next we formally prove that the reduction is correct.
Suppose first that ϕ holds. That is, for any assignment of u there exists an assignment of v such that ψ evaluates to true.

We need to show that Comply(∅,M,D, p) does not hold. That is, for each source database D′ indistinguishable from D there
is a homomorphism from p to D′. Consider any such D′. By construction, for each u ∈ u at least one of UVaru(tu, c

+
u ) and

UVaru(fu, c
+
u ) is in D′. Consider the assignment σ of u such that, for every u, σ(u) = true if UVaru(tu, c

+
u ) is in D′ and

σ(u) = false otherwise. Since ϕ holds, σ can be extended to v such that ψ is true. Taking such an extension, let, for every
w ∈ u ∪ v, sw be tw if σ(w) = true and fw otherwise. Consider now the mapping h of variables of p to constants of D′ such
that

– for each clause γ = `1 ∨ `2 ∨ `3, h(xγ) = aπγ , where π is the assignment that sends w of each `i to σ(w),

– for each w ∈ u ∪ v, h(xw) = sw,
– for each u ∈ u, h(yu) = c+u .

By construction, h is a homomorphism from p to D′.
Suppose now that Comply(∅,M,D, p) does not hold. That is, for eachD′ indistinguishable fromD there is a homomorphism

from p to D′. We need to show that for any assignment of u there exists an assignment of v such that ψ evaluates to true.
Consider any assignment σ of u. By construction, there is an indistinguishable D′ such that, for any u ∈ u, UVaru(tu, c

+
u )

is in D′ and UVaru(fu, c
+
u ) is not if σ(u) = true and vice versa otherwise. Consider a homomorphism h from p to D′. It

agrees with σ in the sense that h(xu) = tu if σ(u) = true and h(xu) = fu otherwise. Extend σ to v in the same way: let, for
each v ∈ v, σ(v) = true if h(xv) = tv and σ(v) = false otherwise. By construction, σ is a satisfying assignment of ψ, as
required.

Statement 4. We argue that there is a set of linear CQ view mappingsM and a CQ p such that Comply(∅,M,D, p) is NP-hard
as D varies over instances. This follows directly from the proof of Lemma 3.8 in (Koutris et al. 2015), which involves only CQ
mappings.

Theorem 13. If the arity of the source schema is bounded, then Comply(∅,M,D, p) is in P for linear GAV sets of mappings
M and ground policies p.

Proof. We first argue correctness of our repair algorithm. If it succeeds, the constructed D′ is clearly a witness to compliance
since it does not contain the policy and satisfies VM,D = VM,D′ . Conversely, suppose that some D0 witnesses compliance.
Without loss of generality, we can assume that D0 contains all facts of D \ {p}; otherwise, we can union D0 with D \ {p} and
the result would still be a witness to compliance. Consider an uncovered fact. Since D0 witnesses compliance, there must be
some fact R(c,d) in D0 which is different from p and generates U(c). By replacing with nulls all the constants from d not
already in D, we obtain a fact satisfying both requirements in the algorithm. Thus, the algorithm returns true.

Finally, we analyse the algorithm’s running time. Since M is linear, the images VM,D and VM,D′ can be constructed in
polynomial time. Also, if the source arity is bounded, then the algorithm considers only polynomially many candidate facts in
Step 3. Thus, the overall process runs in polynomial time.



Appendix C: Proofs of Results in Section 6
Theorem 14. Problem ComplyAll(∅,M, p) is undecidable even for GAV mappingsM and the arity of the global schema is
bounded by 2.

Proof. We start with reducing the problem of tiling an infinite grid, which is known to be undecidable, to the complement of
a relaxed version of ComplyAll(∅,M, p), in which p may be a UCQ and the source instance is allowed to be infinite, and then
discuss how to adapt the proof to get rid of the relaxations.

The tiling problem takes as input a finite set T of tile types, along with sets RH , RV ⊆ T × T , which are the horizontal
and vertical compatibility relations. The goal is to assign elements of T to each pair of numbers (m,n) such that the tile types
assigned to (m,n) and (m+ 1, n) are in the relation RH while the types assigned to (m,n) and (m,n+ 1) are in the relation
RV . Equivalently, it suffices to create a structure containing unary relations Tiledt for t ∈ T and binary relations Hor and Ver,
such that:

– elements are assigned a unique relation Tiledt, thus associating elements with tile types,
– Hor-related elements have their associated tile types in the relation in RH , while Ver-related elements have associated tile

types in RV ,
– relations Hor and Ver are functional,
– from any element traversing a Hor edge and then a Ver edge leads to the same element as traversing first a Ver and then a

Hor.

Let (T , RH , RV ) be a tiling instance. We will show how to construct a set of mappingsM and a Boolean UCQ p such that
there exists a (possibly infinite) source database D with Comply(∅,M,D, p) = false if and only if it is possible to tile an
infinite plane with the tiling instance. Intuitively, the only possibility for any such source database will be to “represent” the
tiling of the plane.

We construct mappingsM and query p in several steps, proving in parallel the properties of the corresponding components.
Boolean query p is in fact going to be a conjunction of Boolean UCQs, and its transformation to a single UCQ is standard. To
avoid multiple indexes, we will use the same variables in the conjuncts of p. Since we also omit existential quantifiers as usual,
the reader should keep in mind that the variables are local for the conjuncts.

We first show how to enforce the existence of a “square of successors” for each element. Let the first blockM1 ofM be

Hor(x, y) → Hor′(x, y),
Ver(x, y) → Ver′(x, y),

ConfCh(x) ∧ Hor(x, y) → ConfCh∗(),

where Hor and Ver are binary relations responsible for horizontal and vertical successors, respectively, Hor′ and Ver′ are their
copies in the global schema, while ConfCh and ConfCh∗ are special “challenge” predicates. Let the first conjunct p1 of p be
the Boolean CQ formed by existentially quantifying the following formula:

ConfCh(x) ∧ Hor(x, y) ∧ Ver(x, z) ∧ Hor(z, u) ∧ Ver(y, u) ∧ Hor(y, v) ∧ Hor(u,w).

Claim 21. Given a source instanceD such thatD |= p1, Comply(∅,M1,D, p1) = false if and only if for each fact Hor(ax, a)
in D there are also facts

Hor(ax, ay),Ver(ax, az),Hor(az, au),Ver(ay, au),Hor(ay, av),Hor(au, aw) (1)

in D for some constants ay , az , au, av and aw.

Proof. We start with the forward direction. Since D |= p1,M1 ∪ D |= ConfCh∗(). On the one hand, all source instances D′
indistinguishable from D differ from D only in the precise element ax such that Hor(ax, a) and ConfCh(ax) (and, possibly,
some irrelevant atoms). On the other, since Comply(∅,M1,D, p1) = false, for all indistinguishable D′ it holds that D′ |= p1.
Therefore, each element ax with Hor(ax, a) in D′ for some a must also have atoms (1) in D′ as required.

Next we show the backward direction. Again, since D |= p1,M1 ∪ D |= ConfCh∗(). Therefore, each indistinguishable D′
contains atoms Hor(ax, a) and ConfCh(ax) for some ax. Since it also contains atoms (1) for this ax, we have that D′ |= p1, as
required.

Next, we enforce functionality of Hor and Ver, which together with the previous property guarantees that they form a grid-like
structure. Let the second blockM2 of mappings inM be

Hor(x, y1) ∧ Hor(x, y2) ∧ HorCh1(y1) ∧ HorCh2(y2) → H∗(),
Ver(x, y1) ∧ Ver(x, y2) ∧ VerCh1(y1) ∧ VerCh2(y2) → V∗(),



where HorChi, VerChi, H∗ and V∗ are again special challenge predicates. Let the second conjunct p2 of p be the conjunction
of the following Boolean CQs (recall that variables x and y are local for both CQs):

Hor(x, y) ∧ HorCh1(y) ∧ HorCh2(y),
Ver(x, y) ∧ VerCh1(y) ∧ VerCh2(y).

The intuition is that the challenge predicates represent a test of a pair of x, y1 and x, y2 that are both in the Hor relation or
both in the Ver relation. By the setting the challenge predicates with only this particular y1 and y2 we get an indistinguishable
instance, and non-compliance would imply that this instance must satisfy the query, which would imply that y1 = y2.

A predicate P is functional in an instance I if for no element a there are distinct a1 and a2 with both P(a, a1) and P(a, a2)
in I.

Claim 22. Given a source instance D such that D |= p1 ∧ p2, Comply(∅,M1 ∪M2,D, p1 ∧ p2) = false if and only if

– the condition in Claim 21 holds;
– Hor and Ver are functional in D.

Proof. In one direction, suppose Comply(∅,M1 ∪M2,D, p1 ∧ p2) = false and one of the conditions above fails. By the
previous claim we see that it cannot be the first item. If Hor is not functional then for some x and distinct y1, y2 we have
Hor(x, y1)∧Hor(x, y2). We create D′ by letting HorCh1 hold only of y1 and HorCh2 hold only of y2. Thus D′ does not satisfy
p2 (and will not satisfy the other conjuncts as before). The second item implies that D will have H∗() in its virtual instance,
and the first mapping will imply that D′ will have H∗() as well. Using this, we can see that D′ and D are indistinguishable,
contradicting the hypothesis that Comply(∅,M1 ∪M2,D, p1 ∧ p2) = false. The case of Ver is argued similarly.

In the other direction, suppose the conditions above hold, but Comply(∅,M1 ∪ M2,D, p1 ∧ p2) = true with a
witness D′ indistinguishable from D. Indistinguishability of D′ and D coupled with the fact that D |= p1 ∧ p2 im-
ply that D′ contains ax, ay1 , ay2 with Hor(ax, ay1),Hor(ax, ay2),HorCh1(ay1),HorCh2(ay2) as well as bx, by1 , by2 with
Ver(bx, by1),Ver(bx, by2),VerCh1(by1),VerCh2(by2). Further, since D′ cannot satisfy p2 we must have either ay1 6= ay2 or
by1 6= by2 . But either of these contradicts the second item above.

The immediate corollary is that a non-compliant D contains a positive quadrant of a plane. That is, there exists a homomor-
phism from the infinite grid on H and V with a start point to D.

The next step is to guarantee that each node in the grid is assigned with a tile type. Let the third blockM3 ofM consist of
the mappings

Tiledt(x) → Tiled′t(x), for t ∈ T ,
TileCh(x) ∧ Hor(x, y) → TileCh∗(),

and let the third conjunct p3 of p be the Boolean query

TileCh(x) ∧ Hor(x, y) ∧
(∨

t∈T
Tiledt(x)

)
.

Intuitively, TileCh is a predicate challenging that a particular node has some tile type.

Claim 23. Given a source instance D such that D |= p1 ∧ p2 ∧ p3, Comply(∅,M1 ∪M2 ∪M3,D, p1 ∧ p2 ∧ p3) = false if
and only if

– the conditions in Claim 22 hold (including the one from Claim 21);
– for every ax such that Hor(ax, ay) in D for some ay there is t ∈ T with Tiledt(ax) in D.

Proof. In one direction, suppose Comply(∅,M1 ∪M2 ∪M3,D, p1 ∧ p2 ∧ p3) is false. The first item holds as before. To see
the second item, given Hor(ax, ay) ∈ D we modify D to D′ by letting TileCh hold only on ax. Then D′ is indistinguishable
from D, and hence satisfies p3 by assumption on D, which is only possible if Tiledt(ax) holds in D.

In the other direction, suppose D satisfies the properties above and consider any D′ indistinguishable from D. The fact
that D |= p1 ∧ p2 ∧ p3 implies that TileCh∗() is exported from D, and hence must be exported from D′ as well. Thus there
are ax, ay ∈ D′ satisfying TileCh(ax) ∧ Hor(ax, ay). Further since in the other mappings Hor is exported, we must have
Hor(ax, ay) holding in D as well. By the second item Tiledt(ax) holds in D for some t ∈ T . Since other mappings export
Tiledt, we know that Tiledt(ax) holds in D′, which guarantees that p3 holds in D′ as required.

The final step is to guarantee that no node is assigned with two differenttile types and the assignment is compatibility-
preserving. Let the forth blockM4 ofM be

OverlapCh() → OverlapCh∗(),
Tiledt1(x) ∧ Tiledt2(x) → OverlapCh∗(), for t1, t2 ∈ T , t1 6= t2,

Tiledt1(x) ∧ Hor(x, y) ∧ Tiledt2(y) → OverlapCh∗(), for t1, t2 ∈ T , (t1, t2) /∈ RH ,
Tiledt1(x) ∧ Ver(x, y) ∧ Tiledt2(y) → OverlapCh∗(), for t1, t2 ∈ T , (t1, t2) /∈ RV ,



and let the fourth conjunct p4 of p be the Boolean CQ

OverlapCh().

LetM =M1 ∪M2 ∪M3 ∪M4 and p = p1 ∧ p2 ∧ p3 ∧ p4.

Claim 24. Given a source instance D such that D |= p, Comply(∅,M,D, p) = false for a source instance D if and only if

– the conditions in Claim 23 hold; and
– the assignment of tile types is unique and agrees with compatibility relations RH and RV .

Proof. In one direction, suppose Comply(∅,M,D, p) = false and that one of the conditions above fails. By the prior
arguments we know it is not the first. Therefore, there is a node assigned multiple tiles in D or an edge, horizontal or vertical,
with an incompatible assignment. Since D |= p, it contains OverlapCh(). Create D′ from D by removing OverlapCh(). The
mappings imply that OverlapCh∗() still holds in the virtual image of D, and from this we can see that D′ is indistinguishable
from D. This contradicts Comply(∅,M,D, p) = false.

In the other direction, suppose that the conditions hold, and, for the sake of contradiction, that Comply(∅,M,D, p) = true
with a witness instance D′. In D′ OverlapCh() must be false, but the fact that D |= p implies that OverlapCh∗() is true in
the target. Thus in D′ one of the other mappings leading to OverlapCh∗() must fire. This contradicts the third item.

We conclude that there exists a source database D with Comply(∅,M,D, p) = false if and only if it is possible to tile an
infinite plane with the tiling instance, that is, Comply is undecidable for UCQs as policies.

Next we show how to modify this construction to guarantee that p is a Boolean CQ. We will first extend M1 and p1 to
guarantee that for each fact Hor(ax, a) in a non-compliant D each node ax has attached to it a “path gadget”: for each tile type
t, ax has a connection to an element et that in turn connects back to elements with all types beside t. Thus if ax is itself tiled, it
will have a connection to an element e that connects back to elements tiled with all tile types. By arranging this we convert the
disjunctive property that ax has some tile type to the conjunctive property that ax connects up and back to elements of all tile
types. The details of this will be a bit subtle, since we need to ensure that there are not “spurious occurrences” of the desired
conjunctive property.

For the first step, letM′1 extendM1 with the mappings

GadgetConnectt(x, y) → GadgetConnect′t(x, y), for t ∈ T ,
Tiledt(x) → Tiled′t(x), for t ∈ T ,

Hor(x, y) ∧ GadgetConnectt(x, z) ∧
GadgetConnects(u, z) ∧ STileCh(u, z) → STileCh′(u, z), for t, s ∈ T .

Here GadgetConnectt are our connection predicates. Note that the second set of mappings inM′1 are a part ofM3; we will
see later thatM′3 does not include this set.

Let p′1 be the Boolean CQ formed by conjoining all the atoms of p1 and∧
t∈T

(
GadgetConnectt(x, xt) ∧

∧
s∈T \{t}

(
GadgetConnects(x

s
t , xt) ∧ STileCh(xst , xt) ∧ Tileds(x

s
t )
))
.

The following claim establishes that in non-compliant instances each element has the “path gadget” attached to it.

Claim 25. Given a source instanceD such thatD |= p′1, Comply(∅,M′1,D, p′1) = false if and only if for each fact Hor(ax, a)
in D there are also facts

Hor(ax, ay),Ver(ax, az),Hor(az, au),Ver(ay, au),Hor(ay, av),Hor(au, aw),
GadgetConnectt(ax, axt),GadgetConnects(axst , axt),STileCh(axst , axt),Tileds(axst ), for all t ∈ T , s ∈ T \ {t},

in D for some constants ay , az , au, av , aw, as well as axt and axst for all t, s ∈ T , s 6= t.

Note that the first set of facts is as in Claim 21.

Proof. We start with the forward direction. Since D |= p′1, and M′1 includes M1, the virtual image of D satisfies
ConfCh∗(). All source instances D′ indistinguishable from D differ from D only in the precise element ax such that
Hor(ax, a) and ConfCh(ax) (and, possibly, some atoms that will be irrelevant for the remainder of the argument). Thus since
Comply(∅,M′1,D, p′1) = false, for all indistinguishable D′, we know that D′ |= p′1. Therefore, keeping in mind that p′1
contains all atoms of p1, each element ax with Hor(ax, a) in D′ for some a must also have the required atoms in D′.

Next we show the reverse direction. Again, since D |= p′1, M′1 ∪ D |= ConfCh∗(). Therefore, each indistinguishable D′
contains atoms Hor(ax, a) and ConfCh(ax) for some ax. Since it also contains the required atoms (GadgetConnects atoms and
the confluence-related atoms) for this ax, we have that D′ |= p′1, as required.



Next, we use these additions to guarantee that every ax with Hor(ax, a) is indeed assigned with a type. LetM′3 be

Hor(x, y) ∧ GadgetConnectt(x, z) ∧ GadgetConnectt(x
′, z) → STileCh′(x′, z), for all t ∈ T ,

Hor(x, y) ∧ STileCh(x, z) → STileCh∗(),

and let p′3 be the Boolean CQ ∧
s∈T

(
GadgetConnects(xs, x) ∧ STileCh(xs, x) ∧ Tileds(xs)

)
.

Claim 26. Given a source instance D such that D |= p′1 ∧ p2 ∧ p′3, Comply(∅,M′1 ∪M2 ∪M′3,D, p′1 ∧ p2 ∧ p′3) = false if
and only if

– the condition in Claim 25 and the second condition in Claim 22 hold;
– for every ax such that Hor(ax, a) ∈ D for some a there is t ∈ T with Tiledt(ax) ∈ D.

Proof. In one direction, suppose Comply(∅,M′1 ∪M2 ∪M ′3,D, p′1 ∧ p2 ∧ p′3) is false. The first item holds as before, so we
focus on the second item. Given Hor(ax, a) ∈ D we modify D to D′ as follows:

1. we remove from STileCh any pair (ax′ , az) such that∨
t∈T
∃x.∃y.Hor(x, y) ∧ GadgetConnectt(x, az) ∧ GadgetConnectt(ax′ , az)

holds in D;
2. we add to STileCh all the pairs (ax, az), for some az , such that GadgetConnects(ax, az) holds in D for s ∈ T ;
3. we remove from STileCh any pair (ax′ , az) not added in the previous step, such that∧

t,s∈T ,t6=s

¬∃x.∃y.Hor(x, y) ∧ GadgetConnectt(x, az) ∧ GadgetConnects(ax′ , az)

holds in D.

We first claim that D′ is indistinguishable from D. The mapping Hor(x, y) ∧ STileCh(x, z) → STileCh∗() is clearly not
impacted by any of the changes above, since the second item ensures that this still fires. We may worry about the impact of all
the changes above on the third family of mappings inM′1:

Hor(x, y) ∧ GadgetConnectt(x, z) ∧ GadgetConnects(u, z) ∧ STileCh(u, z)→ STileCh′(u, z).

However, the removal in the first item does not have any impact, since although we are removing elements where this mapping
fires, all these elements also trigger one of the mappings in the first family ofM′3

Hor(x, y) ∧ GadgetConnectt(x, z) ∧ GadgetConnectt(x
′, z)→ STileCh′(x′, z),

so the exported information is the same. Similarly, the addition in the second item does not have any impact, since
STileCh′(ax, az) was already exported due to the same mappings in M′3. Finally, the removal in the third item does not
have any impact, since by definition we are removing elements where the mapping did not fire.

Hence D′ satisfies p′3 by the assumption on D. Thus there are (not necessary different) ac and as, s ∈ T , such that∧
s∈T

(
GadgetConnects(as, ac) ∧ STileCh(as, ac) ∧ Tileds(as)

)
holds in D′. In particular all Tileds(as) hold in D as well, since D′ agrees with D on the relations Tileds. We claim that one
of these as must be ax, which would suffice to prove the forward direction of the claim. We first note that no as other than ax
can be in the first position of Hor. This is because any other element in that position would have been removed from STileCh
in the first removal step above, and would not have been replaced. Thus it suffices to argue that there is an as that is in the first
position of Hor. Now for each as other than ax there are ax′ and ay′ such that Hor(ax′ , ay′) ∧ GadgetConnectt′(ax′ , ac) ∧
GadgetConnects′(as, ac) holds in D′ for some s′, t′ ∈ T , since otherwise the pair (as, ac) would have been removed at the
third step. Take one of these elements as different from ax (if all of them equal ax, then the claim is automatic), and consider
the corresponding t′ and at′ . If at′ is not ax, then we would have removed STileCh(at′ , ac) in D′ in the first removal step
above, which is a contradiction. Hence we have at′ is ax, and we are done.

In the other direction, suppose D satisfies the properties above and consider any D′ indistinguishable from D. The fact
that D |= p′1 ∧ p2 ∧ p′3 implies that STileCh∗() is exported from D, and hence must be exported from D′. Thus there are
ax, ay, az ∈ D′ satisfying Hor(ax, ay) ∧ STileCh(ax, az). Further since in the other mappings Hor is exported, we must have
Hor(ax, ay) holding in D as well. By the second item Tiledt(ax) holds in D for some t ∈ T . Since other mappings export
Tiledt, we know that Tiledt(ax) holds in D′, which guarantees that p′3 holds in D′ as required.



LetM′ =M′1 ∪M2 ∪M′3 ∪M4 and p′ = p′1 ∧ p2 ∧ p′3 ∧ p4.
We conclude that there exists a source database D with Comply(∅,M′,D, p′) = false if and only if it is possible to tile an

infinite plane with the tiling instance, that is, ComplyAll(∅,M′, p′) = true is undecidable.
Finally, we note that the argument above allows witnesses to non-compliance to be infinite. But the same construction

works for finite instances, reducing the existence of a periodic tiling (also known to be undecidable) to the complement of
ComplyAll.

Corollary 15. Problem ComplyAll(O,M, p) is undecidable even for linear Datalog ontologies O, sets of CQ viewsM, and
the arity of the global schema bounded by 2.

Proof. To prove this, by the prior undecidability results it suffices to simulate an arbitrary set of GAV mapping without an
ontology by CQ view mappings with an ontology. Given a GAV mapping in which global relation G is associated with bodies
ϕ1 . . . ϕn, we create a new scenario in which G is replaced by global relations G1 . . . Gn of the same arity as G, and the
ontology consinsts of the mappings

Gi(x)→ Gj(x)

for all i, j = 1, . . . , n, i 6= j.

Theorem 16. Let R be a source schema,M be a set of CQ views, p be a Boolean policy, and bothM and p be constant-free.
Then Comply(∅,M,CritR, p) = true if and only if ComplyAll(∅,M, p) = true.

Proof. We start with an alternative characterization of the Comply problem in the case where the mappings are CQ views and
the ontology is empty. We show that we can always take a witness to Comply to be of a special form. This will be useful in
dealing with the ComplyAll problem later. Given a GAV mapping of the form

ϕ(x,y)→ A(x),

the inverse mapping of this mapping is the TGD

A(x)→ ∃y.ϕ(x,y).

GivenM a set of CQ views, we letM−1 be the set of inverses. Note that an instance F over both source and global schemas
satisfiesM∪M−1 if and only if the global relations in F are exactly what one gets by applyingM to the source relations. If
T I is an instance over the global schema, we say that F is a realizer for (T I,M) if applyingM to the source relations in F
gives T I.

We use an idea from (Benedikt et al. 2016): a version of the “classical” chase procedure (Abiteboul, Hull, and Vianu 1995)
tailored for the variant of the certain answer problem with closed relations. This version returns a collection of instances, along
the lines of the “disjunctive chase” of (Deutsch, Nash, and Remmel 2008). The procedure receives as input a set of CQ views
M, and an initial instance D for the source schema. The procedure first produces the corresponding global instance T I0. In
then chases with the mappings and their inverses starting from the instance T I0, guaranteeing at the same time that the global
relations of the constructed instances agree with those of T I0.

In the first step (after producing T I0), we chase T I0 withM−1 to get a new source instance D′. In the second step we look
at each trigger for a mapping inM, and choose an existing witness in T I0 to satisfy it. If this requires identifying nulls (values
produced in the first step) within the source instance, we do so. If it requires identifying constants in T I0, then the chase fails.
As a result of the identifications in this second step, new triggers can fire. We iterate the second step until no new triggers fire.
Since no constants or nulls are created after the first step, the process must terminate. This process is well-defined only once the
ordering of steps is chosen, but for the results below which order is chosen will not matter, so we abuse notation by referring to
ClosedChase(M,D) as a single collection.

It is clear that every instance in ClosedChase(M,D) satisfies the constraints in M ∪M−1 and agrees with T I0 on the
target schema. In particular, the restriction of this instance to the source relations is indistinguishable from D. We claim that
ClosedChase(M,D) satisfies the following universality property.

Claim 27. LetM consist of CQ views and D be a source instance. For any instance D′′ indistinguishable from D with respect
toM, there exist an instance K ∈ ClosedChase(M,D) and a homomorphism h from K to D′′ ∪ T I0.

The proof is a straightforward generalization of earlier universality results (and in particular follows easily from (Deutsch,
Nash, and Remmel 2008)). But we include it for completeness.



Proof. We consider the sequence of instances created in each trigger of the process of building for ClosedChase(M,D) and,
based on the instance D′′ ∪ T I0, we identify inside this sequence a suitable path K0,K1, . . . and a corresponding sequence of
homomorphisms h0, h1, . . . such that, for all i ∈ N, hi maps Ki to D′′ ∪ T I0.

The base step is easy, as we simply let K0 be the initial global instance T I0, and let h0 be the identity. In the first step we
chased with the inverse mappings. Since D′′ ∪ T I0 also satisfied the inverse mappings, we can extend the homomorphism in
this step.

In the remaining steps, we consider mappings R1(x1, z1) ∧ . . . ∧ Rm(xm, zm) → ∃y.S(x,y), with x = x1 ∪ · · · ∪ xm,
fromM which have a trigger τ in Ki. Since hi is a homomorphism from Ki into D′′ ∪T I0 we know that R1(h(τ(x1, z1)))∧
. . . ∧ Rm(h(τ(xm, zm))) holds in D′′. Note that D′′ ∪ T I0 satisfies the same mappings by assumption, so T I0 must contain
a fact of the form S

(
h(τ(x,y))

)
. We extend Ki by identifying, for any frontier variable x of the mapping, τ(x) with h(τ(x)).

One can see that this is one of the valid choices available. We can then revise h to be the identity on the identified nodes.

From Claim 27 we obtain the following fact.

Claim 28. Let (∅,M,D, p) be an input to Comply where p is Boolean and M consists of CQ views. Then
Comply(∅,M,D, p) = true if and only if ¬p holds on some instance in ClosedChase(M,D).

Proof. Clearly the left-to-right direction holds. Suppose that Comply(∅,M,D, p) = true with instance D′ as a witness. Let
T I0 be formed by chasing D withM. Let F ′ be formed from T I0 by interpreting the source relations as in D′. From Lemma
27 we know that there is a homomorphism of some instance K ∈ ClosedChase(M,D) to F ′. Thus K cannot satisfy p, which
completes the argument.

We are now ready to prove the theorem.
The “only if” direction is trivial, so we focus on the “if” direction. Assume that Comply(∅,M,D1, p) = true, where

D1 = CritR. By Claim 28 we must have ¬p holding on some instance within ClosedChase(M,D1). Note that because
M is GAV, the corresponding virtual instance is a subinstance of the critical instance over the global schema. Since the
choices we make in the non-deterministic process of ClosedChase(M,D1) are only choices as to which global instance domain
element to choose, and there is only one global instance domain element, we conclude that there is only one instance K1 in
ClosedChase(M,D1).

Let D2 be an arbitrary source instance. We show that Comply(∅,M,D2, p) is true. If not, then in particular we must
have p holding on all instances within ClosedChase(M,D2). Although some branches of ClosedChase can fail, there must
always be at least one instance K2 in ClosedChase(M,D2). This follows from Claim 27, since we know there is some instance
indistinguishable from D2, and the claim says that any such instance there must be an element of ClosedChase(M,D2) that
maps homomorphically into it. In particular, we have a K2 in ClosedChase(M,D2) that satisfies p.

We claim that there is a homomorphism from K2 to some instance in ClosedChase(M,D1) (which can be none other than
K1 as noted above). This suffices to get a contradiction.

The homomorphism h will map every element of K2 that occurs in a global relation to the critical element. For each element
e occurring in a source relation but not in a global relation, there must be an inverse mapping m−1 that generated the element e
as a null, based on some trigger τ mapping to facts on a global relation. Collapsing those facts to facts on the global relation of
K1 (by mapping each element to the critical element) we get a trigger τ ′ for m−1 inK1, and we take the corresponding element
e′ as h(e).

Theorem 17. The problem ComplyAll(∅,M, p) for constant-free policies p, and sets of constant-free CQ viewsM is CONP-
complete; it is in P if the CQ views are linear.

Proof. In the proof we deal with p Boolean for simplicity.
By Theorem 16, the problem is equivalent to Comply(∅,M,CritR, p), where R is the source schema. Recall also from the

proof of Theorem 16 that to check this we need to see that the unique instance in ClosedChase(M,CritR) satisfies ¬p. Thus,
to determine that ¬ComplyAll holds we need to form the instance in ClosedChase(M,CritR) and then guess a homomorphism
of p in it. Clearly this can be done in NP, giving the desired CONP bound.

Conversely, we prove CONP-hardness by reducing conjunctive query containment, known to be NP-hard, to the complement
of ComplyAll. We employ a variation of an argument in (Benedikt et al. 2016) to do this. Given CQs q1 and q2, we create
a source schema containing all relations of q1 and q2. The global schema contains one 0-ary relational name good, and the
associated mappingM simply states

q1 → good().

The policy query p is q2. We claim that q1 is contained in q2 exactly when ¬ComplyAll(∅,M, p) holds.
First, suppose there is a non-compliant instance D. We claim q1 must hold on D. If not, then D would export ¬good(), and

the empty instance would then be an indistinguishable from D, and clearly satisfies ¬p, contradicting the assumption that D is
non-compliant. Non-compliance of D implies that every D′ having q1 true also has q2 true, and thus containment holds.



Conversely, suppose q1 is contained in q2. Take any instance satisfying q1 as D. Then, good() will hold of its image, and
every D′ indistinguishable to D must then satisfy q1, and hence q2.

Finally, we consider the linear case. As mentioned above, to decide ComplyAll we need only form the instance D′ =
ClosedChase(CritR), in P, and then evaluate p on it. In evaluating p, we can leverage that any joined variable of p can hold in
D′ only of the domain element of CritR, and thus after substituting this we need only check the individual atoms separately.

Appendix D: Proofs of Results in Section 7

Theorem 18. Problem ComplyBoth(∅,M,D, p) is NEXPTIME-hard for sets of CQ viewsM; it is Σp2-hard for sets of linear
CQ views.

Proof. For brevity, we only show how to adapt the Σp2-hardness argument from statement 3 of Theorem 12 to ComplyBoth; the
adaptation of the NEXPTIME-hardness from statement 1 of the same theorem is similar.

We give a reduction of ∀∃SAT to the complement of ComplyBoth. Given ϕ = ∀u.∃v.ψ, where ψ is a conjunction of clauses
of the form `1 ∨ `2 ∨ `3 for `i either a variable from u ∪ v or the negation of such a variable. Without loss of generality we
assume that ψ is satisfiable as a formula in CNF.

We construct an instance (∅,M,D, p) of ComplyBoth, where M consists of linear CQ views, such that the following
property holds:

ϕ is valid if and only if either Comply(∅,M,D, p) is false or Comply(∅,M,D,¬p) is false.

The construction of M, D, and p is exactly the same as that of statement 3 of Theorem 12. We show that the reduc-
tion works. Assume that formula ϕ is valid; then, in the aforementioned proof of Theorem 12 we already established that
Comply(∅,M,D, p) is false, and hence property above holds.

Conversely, assume that property holds. Then, either Comply(∅,M,D, p) is false or Comply(∅,M,D,¬p) is false. By
our construction, and the assumption that ψ is satisfiable as a formula in CNF, we have that p holds in D. This implies that
Comply(∅,M,D,¬p) must be true; indeed, there exists D′ (namely, D itself) such that D′ is indistinguishable from D and
D′ 6|= ¬p (and hence such thatD′ |= p under closed world assumption). As a result, the fact that the property holds implies that
Comply(∅,M,D, p) must be false. But then, in such a case, we already proved in Theorem 12 that ϕ is valid, as required.


