
Interpolation with Decidable Fixpoint Logics
Michael Benedikt

University of Oxford
Balder ten Cate

UC Santa Cruz and LogicBlox Inc
Michael Vanden Boom

University of Oxford

Abstract—A logic satisfies Craig interpolation if whenever one
formula φ1 in the logic entails another formula φ2 in the logic,
there is an intermediate formula — one entailed by φ1 and
entailing φ2 — using only relations in the common signature of φ1

and φ2. Uniform interpolation strengthens this by requiring the
interpolant to depend only on φ1 and the common signature. A
uniform interpolant can thus be thought of as a minimal upper
approximation of a formula within a subsignature. For first-
order logic, interpolation holds but uniform interpolation fails.
Uniform interpolation is known to hold for several modal and
description logics, but little is known about uniform interpolation
for fragments of predicate logic over relations with arbitrary
arity. Further, little is known about ordinary Craig interpolation
for logics over relations of arbitrary arity that have a recursion
mechanism, such as fixpoint logics.

In this work we take a step towards filling these gaps, proving
interpolation for a decidable fragment of least fixpoint logic called
unary negation fixpoint logic. We prove this by showing that
for any fixed k, uniform interpolation holds for the k-variable
fragment of the logic. In order to show this we develop the
technique of reducing questions about logics with tree-like models
to questions about modal logics, following an approach by Grädel,
Hirsch, and Otto. While this technique has been applied to
expressivity and satisfiability questions before, we show how to
extend it to reduce interpolation questions about such logics to
interpolation for the µ-calculus.

I. INTRODUCTION

A desirable property of a logic is interpolation: if one for-
mula φ1 entails another φ2, there is a formula in the common
signature that is entailed by the first and entails the second. It
implies the well-known Beth Definability Property as well as
its extension, the Projective Beth Definability Property stating
that implicit specifications can be converted to explicit ones,
which is important in knowledge representation [1] and for
rewriting queries in terms of views in databases [2], [3].
Interpolation has many other applications, both in simplifying
definitions and in verification [4].

It is even more desirable to have effective interpolation:
given φ1 and φ2, one can determine if entailment holds and
compute an interpolant if it does. An even stronger goal is
to prove effective uniform interpolation theorems. In uniform
interpolation, the interpolating formula depends only on φ1
and the signature of φ2. Uniform interpolation can be thought
of as stating that φ1 has a minimal approximation from above
in the signature of φ2.

The first interpolation result was proven for first-order logic
by Craig [5]; the undecidability of validity in first-order logic
implies that this cannot be made effective in the sense above.
Effective interpolation results were later shown for fragments
of first-order logic, such as the guarded negation fragment [6],
as well as a number of modal and description logics. On the

negative side, it is known that first-order logic does not have
uniform interpolation [7].

The situation is much less clear for logics that contain
recursion. The standard way to capture recursion in a logic
is via a fixpoint operator. One adds second-order variables
X,Y, . . . which are allowed in atomic formulas. These vari-
ables are bound not by second-order quantifiers, but by
[lfpX,x.φ(X,x,y)] where X is a second-order variable of
arity |x|. In the setting of modal logic, the addition of fixpoints
gives one the µ-calculus, which can express important reacha-
bility properties of a labelled transition system. The greater ex-
pressiveness of fixpoint logics makes them a natural candidate
for the stronger uniform interpolation property. D’Agostino
and Hollenberg [8] showed that in fact the µ-calculus has
uniform interpolation. Uniform interpolation has also been
shown for other modal and description logics [9], [10]. Little is
known about interpolation, uniform or otherwise, effective or
otherwise, for fixpoint logics over general relational structures,
where relations can have arbitrary arity.

Effective interpolation results are relevant only for logics
where entailment is decidable. This is not the case for LFP,
the fixpoint extension of first-order logic. However, several
decidable fragments of LFP are known, including guarded
fixpoint logic (GFP), guarded negation fixpoint logic (GNFP),
and unary negation fixpoint logic (UNFP). All of these achieve
decidability by restricting the use of either quantification or
negation.

Our main result is effective uniform interpolation for unary
fixpoint queries of some fixed width k, denoted UNFPk (the
width of a UNFP formula is, roughly, a bound on the maximal
number of free variables in any subformula). In particular, this
result provides a decidable extension of the description logic
ALCO having effective uniform interpolation with respect to
relation symbols. This contrasts with an earlier conjecture in
[10, Section 7] that no such extension could have uniform
interpolation with respect to both relations and constants.

From effective uniform interpolation for UNFPk, we can
deduce effective Craig interpolation for the full unary negation
fixpoint language UNFP. The fact that we have effective
interpolation for UNFP (and hence, e.g., the ability to ef-
fectively convert implicit to explicit definitions) is significant
in that UNFP is quite expressive, subsuming recursive query
languages such as Monadic Datalog (with stratified negation).

Our approach for proving uniform interpolation will work
via reducing logics that always admit “tree-like models” —
such as the guarded and unary negation fragments — to modal
logics. This technique was introduced by Grädel, Hirsch and

Otto [11]. In this approach we start with an input problem
in some logic over unrestricted structures in some relational
signature. Making use of the tree-like model property for
the logic, we apply a “forward mapping” that translates to a
corresponding problem in modal logics. Given a solution to the
problem in the modal logic setting, we then apply a “backward
mapping” to get a corresponding solution back in the setting of
the original logic. [11] applied this technique to prove that GFP
is precisely the “guarded-bisimulation” invariant fragment of
a “guarded” second-order logic, in analogy to the fact that the
µ-calculus is the bisimulation-invariant fragment of monadic
second-order logic [12]. We will apply it to interpolation, using
as our solution in the modal setting the interpolation result of
D’Agostino and Hollenberg mentioned above.

We supplement our effective interpolation theorems with
several negative results, showing the limitations of interpola-
tion. In particular, we show that one cannot hope to extend
the uniform interpolation result to full UNFP, and one can
not extend even ordinary interpolation to the larger language
of guarded negation fixpoint logic.

Due to space limitations, most proofs are deferred to the
full version of this paper.

II. PRELIMINARIES

A. Notation and conventions
We use x,y, . . . (respectively, X,Y , . . .) to denote vec-

tors of first-order (respectively, second-order) variables. For a
formula φ, we write φ(x) to indicate that the free first-order
variables in φ are among x. If we want to emphasize that there
are also free second-order variables X , we write φ(x,X). We
often use α to denote atomic formulas, and for such formulas,
if we write α(x) then we assume that the free variables in α
are precisely x.

A formula φ is assumed to be given in the standard tree
representation of a formula, and the size of φ, denoted |φ|, is
the number of symbols in φ. We will sometimes represent φ
using a node-labelled DAG (directed acyclic graph). The nodes
represent formulas, and the edge relation connects a formula
to its subformulas. The size of a DAG representation is the
number of nodes and edges in the DAG.

B. Basics of unary negation and guarded logics
The Unary Negation Fragment of FO [13] (denoted UNF)

is built up inductively according to the grammar:

φ ::= R t | ∃x.φ | φ ∨ φ | φ ∧ φ |¬φ(x)

where R is either a relation symbol or the equality relation,
and t is a tuple over variables and constants. Notice that any
use of negation must occur only on formulas with at most one
free variable. The Guarded Negation Fragment GNF extends
UNF by allowing α(x)∧¬φ(x), where α is an atomic relation
or equality that contains all of the free variables of the negated
formula. Such an atomic relation is a guard of the formula.
GNF is also related to the Guarded Fragment (GF), typically
defined via the grammar:

φ ::= R t | ∃x.(α(xy) ∧ φ(xy)) | φ ∨ φ | φ ∧ φ | ¬φ(x)

where R is either a relation symbol or the equality relation, α
is an atomic relation or equality relation, and t is a tuple over
variables and constants. Here it is the quantification that is
guarded, rather than negation. As in GNF, we allow equality
guards by default. Note that GNF subsumes GF sentences and
UNF formulas.

The fixpoint extensions of these logics (denoted GNFP,
UNFP, and GFP) extend the base logic by adding to the
grammars the additional production rule

[lfpX,x. gdd(x) ∧ φ(x, X,Y)](t)

where (i) X only appears positively in φ, (ii) second-order
variables like X cannot be used as guards and (iii) gdd(x)
expresses that x is guarded by an atom from the original
signature (it can be understood as an abbreviation for the dis-
junction of existentially quantified relational atoms involving
all of the variables in x).1 In UNFP, there is an additional
requirement that x has at most one variable, so only unary or
0-ary predicates can be defined. GNFP subsumes both GFP
sentences and UNFP formulas. These logics are all contained
in LFP, the fixpoint extension of FO.

The semantics for the existential quantifier and boolean
connectives is standard. We briefly review the semantics
of [lfpX,x. gdd(x) ∧ φ(x, X,Y)](t). Since φ(x, X,Y) is
monotone in X , it induces an operator U 7→ OA,V

φ (U) :=
{a : A, U,V |= gdd(a) ∧ φ(a, X,Y)} on every structure A
with valuation V for Y , and this operator has a least fixpoint.
Given some ordinal β, the fixpoint approximant φβ(A,V) of
φ on A,V is defined such that

φ0(A,V) := ∅
φβ+1(A,V) := OA,V

φ (φβ(A,V))

φβ(A,V) :=
⋃
β′<β

φβ
′
(A,V) where β is a limit ordinal.

We let φ∞(A,V) :=
⋃
β φ

β(A,V) denote the least fixpoint
based on this operation. Thus, [lfpX,x. gdd(x)∧φ(x, X,Y)]
defines a new predicate named X of arity |x|, and A,V ,a |=
[lfpX,x. gdd(x) ∧ φ(x, X,Y)](x) iff a ∈ φ∞(A,V). If V
is empty or understood in context, we just write φ∞(A).

We also write φβ for the fixpoint approximations obtained
by unfolding the fixpoint β times. That is, φ0 := ⊥,
φβ+1(x) := gdd(x) ∧ φ[φβ(y)/X(y)], and if β is a
limit ordinal, φβ :=

∨
β′<β φ

β′
. This formula defines

the β-approximation of the fixpoint process based on
[lfpX,x. gdd(x)∧φ(x, X,Y)]. In general these formulas live
in an infinitary version of the logic that allows conjunctions
and disjunctions over arbitrary sets of formulas. However, for
the logics that we are considering, if β is finite, then φβ

remains in the same logic.

1In GFP and UNFP, omitting gdd(x) does not change the expressivity of
the logic; however, in GNFP this guardedness condition must be explicitly
enforced.

We will sometimes utilize simultaneous fixpoints, or vecto-
rial fixpoints, of the form [lfpXi,xi.S](t) where

S =


X1,x1 := gdd(x1) ∧ φ1(x1, X1, . . . , Xj ,Y)
...
Xj ,xj := gdd(xj) ∧ φj(xj , X1, . . . , Xj ,Y)

is a system of formulas φi where X1, . . . , Xj occur posi-
tively, and satisfy the same requirements for the body of the
fixpoint formulas as before. Such a system can be viewed
as defining a monotone operation on vectors of relations,
and [lfpXi,xi.S](t) expresses that t is a tuple in the i-th
component of the least fixpoint defined by this operation.
Allowing simultaneous fixpoints does not change the expres-
sivity of these logics since they can be eliminated in favor
of traditional fixpoints using the Bekič principle [14], with a
possible exponential blow-up in the size of the formula, and
only a polynomial blow-up if a DAG-representation is used.

These logics are expressive: modal logic is contained in
each of these logics (even without fixpoints), every union
of conjunctive queries (UCQ) is expressible in UNF and
GNF, and every GF sentence can be expressed in GNF [15].
Nevertheless, these logics are decidable and have nice model
theoretic properties (see Theorem 2). In the first part of
the paper we will focus primarily on UNFP. This includes
Monadic Datalog and its extension with stratified negation.
UNFP can also be viewed as an expressive generalization
of many description logics: the concept language of many
description logics is contained in UNFP. In particular, this
holds for ALCIOreg , the extension of the basic description
logic ALC with inverse roles, individuals, and the regular role
operators [16]. UNFP also subsumes the hybrid µ-calculus,
which contains some description logics [17].

We pause to give a simple example of UNFP expressing a
reachability property.
Example 1. Consider structures over a single unary rela-
tion P and a binary relation R. Then

¬∃y. ((y = y) ∧ ¬[lfpY, y.Py ∨ ∃z.(Ryz ∧ Y z)](y))

expresses that every element can R-reach an element where
P holds. This sentence is in UNFP and GFP.

It is often helpful to consider the formulas in a normal form.
For instance, UNFP formulas in normal form can be generated
using the following grammar:

φ ::=
∨
i

∃x.
∧
j

ψij | [lfpX,x.φ(x,X,Y)](t)

ψ ::= R t | X t | φ(x) | ¬φ(x).

The idea is that each UNFP formula in normal form is built
from fixpoint predicates and UCQ-shaped formulas, where
each conjunct in a CQ-shaped subformula is an atom, a
normalized subformula with at most one free variable, or the
negation of a normalized subformula with at most one free
variable. Every UNFP-formula φ can be converted into this
form in a canonical way, with an exponential blow-up in size.

The width of φ is the maximum number of free variables
in any subformula of its equivalent normal form (obtained in
this canonical way). We remark that this is different than the
normal form used in [13], but the width of a UNFP-formula
under the two definitions is identical. We denote by UNFPk

the set of UNFP-formulas of width at most k.
The following theorem summarizes the decidability and

model theoretic results about UNFP and GNFP that we will
make use of.
Theorem 2 ([13],[15]). Satisfiability and finite satisfiability
are 2EXPTIME-complete for GNF and GNFP (and hence for
UNF and UNFP).

GNF (and hence UNF) has the finite-model property: if φ
is satisfiable, then φ is satisfiable in a finite structure. This
does not hold for UNFP or GNFP.

GNFP (and hence UNFP) has the tree-like model property:
if φ is satisfiable, then φ is satisfiable over structures of
bounded tree-width (in fact, tree-width width(φ)− 1).
C. Interpolation

Given a logic L and a relational signature σ, possibly
including constants, we write L[σ] to denote the logic over
this signature σ. We write rel(σ) for the set of relations and
con(σ) for the set of constants in σ.

For formula ϕL and ϕR over signatures σL and σR, we write
ϕL |= ϕR (ϕL entails ϕR) if every model of the antecedent ϕL

is a model of the consequent ϕR, and we say this entailment
is a validity.

An interpolant for such a validity is a formula θ for which
ϕL |= θ and θ |= ϕR, and θ mentions only relations in
rel(σL) ∩ rel(σR).

We say a logic L has Craig interpolation if any validity
ϕL |= ϕR for ϕL and ϕR in L, has an interpolant θ in L.
Craig famously proved that FO has Craig interpolation [5].
In [6], the authors demonstrated that GNF even has effective
Craig interpolation: the GNF interpolant can be constructed
from the GNF validity.

We say L has uniform interpolation if given some ϕL

over signature σL and some subsignature σ′ of σL, there is a
formula θ in L that is an interpolant for all validities ϕL |= ϕR

with rel(ϕL) ∩ rel(ϕR) ⊆ rel(σ′). That is, the interpolant
depends only on the antecedent and the common signature,
rather than on the particular consequent. It is clear that uniform
interpolation implies Craig interpolation.
D. Main results

The main result of this work is the following:
Theorem 3 (Uniform interpolation for UNFPk). Let ϕL be
a sentence in UNFPk[σ]. Then for all signatures σ′ with
rel(σ′) ⊆ rel(σ) and con(σ′) = con(σ), there is a sentence
χ ∈ UNFPk[σ′] such that
• ϕL |= χ, and
• χ |= ϕR for all sentences ϕR ∈ UNFPk[σR] where
ϕL |= ϕR and rel(σ)∩rel(σR) ⊆ rel(σ′) and con(σR) ⊆
con(σ′).

Furthermore, a DAG-representation for χ of size at most
doubly exponential in |ϕL| can be constructed in 2EXPTIME.

We emphasize that the subsignature σ′ for the uniform
interpolant can only restrict the relations, not the constants,
in σ. We discuss this more in Section IV-B.

An immediate corollary of Theorem 3 is that UNFP has
Craig interpolation.
Corollary 4 (Craig interpolation for UNFP). Let ϕL ∈
UNFP[σL] and ϕR ∈ UNFP[σR] be sentences such that
ϕL |= ϕR. Then there is a sentence χ ∈ UNFPK [σ′]
such that ϕL |= χ and χ |= ϕR, where rel(σ′) :=
rel(σL) ∩ rel(σR), con(σ′) := con(σL) ∪ con(σR), and
K := max {width(ϕL),width(ϕR)}. Furthermore, a DAG-
representation for χ of size at most doubly exponential in the
size of ϕL and ϕR can be constructed in 2EXPTIME.
E. Building blocks

In order to prove our results we will make use of GSO, a
rich logic extending UNFP. We will also use two logics, MSO
and Lµ, that will be interpreted over restricted signatures, so
we review here some important prior results.
Guarded second-order logic. Guarded second-order logic
(denoted GSO) over a signature σ is a fragment of second-
order logic in which second-order quantification is interpreted
only over guarded relations, i.e. over relations where every
tuple in the relation is guarded by some predicate from σ. We
refer the interested reader to [11] for more background and
some equivalent definitions of this logic.

The logics UNFP, GNFP, and GFP considered in this paper
can all be translated into GSO.
Proposition 5. Given φ ∈ GNFP[σ], we can construct an
equivalent φ′ ∈ GSO[σ].

Proof sketch: By structural induction on φ. The interest-
ing case is for the least fixpoint. If φ(y) = [lfpX,x. gdd(x)∧
ψ(X,x)](y) then

φ′(y) := ∀X.[(∀x.((gdd(x) ∧ ψ′(X,x))→ Xx))→ Xy]

where second-order quantifiers range over guarded relations.

Transition systems and their logics. A special kind of signa-
ture is a transition system signature, of the form σ̃ consisting
of unary predicates (corresponding to a set of propositions
props(σ̃)) and binary predicates (corresponding to a set of
actions actions(σ̃)). A structure for such a signature is a
transition system. Trees allowing both edge-labels and node-
labels have a natural interpretation as transition systems.

We will be interested in two logics over transition systems
signatures. One is monadic second-order logic (denoted MSO)
— where second-order quantification is only over unary rela-
tions. MSO is contained in GSO, because unary relations are
trivially guarded.

While MSO and GSO can be interpreted over arbitrary sig-
natures, there are logics that have syntax specific to transition
system signatures. One is the modal µ-calculus (denoted Lµ),
an extension of modal logic with fixpoints. Given a transition
system signature σ̃, formulas φ ∈ Lµ[σ̃] can be generated
using the grammar

φ ::= P | X | φ ∧ φ | ¬φ | 〈ρ〉φ | µX.φ

where P ∈ props(σ̃), ρ ∈ actions(σ̃). The formulas µX.φ
are required to use the variable X only positively in φ, and
the semantics define a least-fixpoint operation based on φ. For
instance, µY.(P ∨ 〈ER〉Y) ∈ Lµ holds at an element s in a
transition system over a binary relation R and unary relation
P iff s can R-reach an element where P holds. As usual,
we refer to 〈ρ〉φ as a diamond modality, and µX.φ as a least
fixpoint. Using negation, we also have the dual operators, the
box modality [ρ]φ and the greatest fixpoint νX.φ. We refer
the reader to [18] for the formal semantics, and a survey of
results. It is easy to see that Lµ can be translated into MSO.
Bisimulation games and logics. The logic Lµ applies to
transition system signatures, and lies within MSO. Similarly
the logics UNFP and GSO apply to arbitrary-arity signatures,
with UNFP lying within GSO. It is easy to see that in
both cases the containment is proper. In each case, what
distinguishes the smaller logic from the larger is invariance
under certain equivalences, called bisimulations.

For instance, the classical bisimulation game between tran-
sition systems A and B defines an equivalence relation over
structures for a transition system signature σ̃. Positions in
the game consist of pairs (a, b) ∈ dom(A) × dom(B) that
agree on all propositions in props(σ̃). From such a position
(a, b), Spoiler first chooses which structure to move in, say
A (the choice of B is symmetric). Spoiler then selects some
a′ with (a, a′) ∈ EA

ρ ; if this is not possible, then the game
terminates, and Duplicator wins. Duplicator must then choose
some b′ with (b, b′) ∈ EB

ρ such that a′ and b′ agree on all
propositions in props(σ̃). If this is not possible, the game
terminates and Duplicator loses. Otherwise, the game proceeds
from (a′, b′). If the game never terminates then Duplicator
wins. If Duplicator has a winning strategy in the bisimulation
game starting from (a, b), we say A, a and B, b are bisimilar.
We say two tree structures are bisimilar if they are bisimilar
from their roots.

We say a formula φ is σ̃-bisimulation-invariant if it
does not distinguish between σ̃-bisimilar transition systems.
It is straightforward to check that Lµ[σ̃]-formulas are σ̃-
bisimulation invariant. We will make use of a stronger result
of Janin and Walukiewicz [12] that the µ-calculus is the
bisimulation-invariant fragment of MSO (we state it here for
trees because of how we use this later).

Theorem 6 (Lµ ≡ bisimulation invariant MSO [12]). Let σ̃
be a transition system signature. A class of trees is definable
in Lµ[σ̃] iff it is definable in MSO[σ̃] and closed under σ̃-
bisimulation within the class of all σ̃-trees. Moreover, the
translation between these logics is effective.

There are variants of bisimulation and bisimulation games
for the guarded logics mentioned earlier (see [19] and [15]).
We describe here the UNk-bisimulation game between σ-
structures A and B corresponding to UNk[σ]-bisimulation of
width k. Let A and B be σ-structures. We say f is a partial
unary-rigid homomorphism if f is a partial homomorphism
from A to B or B to A (relative to σ), and the restriction of
f to any single element in its domain is a partial isomorphism.

Positions in the UNk[σ] bisimulation game between A and B
are partial unary-rigid homomorphisms f with |dom(f)| ≤ k.
In general, we call these bag positions, since they represent a
bag of at most k elements from each structure. In the special
case when |dom(f)| ≤ 1, f is also called an interface position.
We say the active structure is the structure containing dom(f).

The initial position is an empty partial homomorphism (an
interface position). Starting in an interface position f , one
round of the game consists of the following:
• Spoiler selects k elements d in the active structure (these

elements need not be distinct, but they must include any
elements in dom(f));

• Duplicator chooses d′ in the other structure such that g :
d 7→ d′ is a partial unary-rigid homomorphism consistent
with f (i.e. f(c) = g(c) for all c ∈ dom(f)).

Duplicator immediately loses if this is not possible. Otherwise,
the game proceeds from the bag position g. Starting in a bag
position g, one round of the game consists of the following:
• Spoiler collapses to at most one element d ∈ dom(g),

and chooses h to be d 7→ g(d) or g(d) 7→ d (in case
Spoiler collapses to the empty set, h is an empty partial
homomorphism from A to B or vice versa).

The game proceeds from the interface position h.
If Duplicator has a winning strategy in this game, then we

say that A and B are UNk[σ]-bisimilar. We say a sentence
φ is UNk[σ]-bisimulation invariant if it does not distinguish
between UNk[σ]-bisimilar structures. That is, if A is UNk[σ]-
bisimilar to B, then A |= φ iff B |= φ. It is straightforward
to show that UNFPk[σ] sentences are UNk[σ]-bisimulation
invariant.
Proposition 7. Assume Duplicator has a winning strategy in
the UNk[σ]-bisimulation game between A and B. If ϕ is a
UNFPk[σ] sentence in normal form, then A |= ϕ iff B |= ϕ.

In the course of this work, we will prove a converse to this,
an analog of the Janin-Walukiewicz theorem, showing that
UNFPk[σ] captures the UNk[σ]-bisimulation invariant subset
of GSO (see Theorem 24).
Interpolation over transition systems. A motivation for
this work was the main prior example of effective uniform
interpolation for a fixpoint logic, D’Agostino and Hollenberg’s
result that Lµ has uniform interpolation [8]. Although it is
not emphasized in their work, the proof they describe yields
effective uniform interpolation.
Theorem 8 (Uniform interpolation for Lµ [8]). Let σ̃ be a
transition system signature, and let ϕ̃L ∈ Lµ[σ̃]. Then for all
signatures σ̃′ such that rel(σ̃′) ⊆ rel(σ̃) there is a formula
θ ∈ Lµ[σ̃′] such that
• ϕ̃L |= θ, and
• θ |= ϕ̃R for all ϕ̃R ∈ Lµ[σ̃R] where ϕ̃L |= ϕ̃R and

rel(σ̃) ∩ rel(σ̃R) ⊆ rel(σ̃′).
Furthermore, θ can be obtained effectively from ϕL and σ̃′.

III. UNIFORM INTERPOLATION FOR UNFPk

A. Overview
The goal in this section is to prove Theorem 3, effective

uniform interpolation for UNFPk, but without the elementary

Relational
structures

Coded
structures

Coded
structures

UNFPk well-struct. Lµ

well-struct. Lµ

MSO

over subsignature
encoding

UNFPk

over subsignature

(1) (2)

(3)

(4)

Fig. 1. Proof structure for effective uniform interpolation

bounds. As a by-product of this first “inefficient” version, we
will get an analogue of the Janin-Walukiewicz theorem for
UNFPk (see Theorem 24). For now, we will only consider
signatures without constants or equality. In the next section
we will refine the construction to get the elementary bounds
and we will describe how to adapt the arguments to handle
features like constants and equality.

We first give the idea behind our proof. The proof structure
is presented in Figure 1.

Because of the tree-like model property for UNFP, we can
restrict to structures of bounded tree-width. In fact, if k is
the width of the UNFP-formula, then by Theorem 2 we can
restrict to structures of tree-width k − 1.

We now want to convert a UNFPk sentence into a logical
formula defining the trees that encode its tree-like models.
This requires two steps: we must first argue that the set of
codes is a regular set of trees, and we must come up with
a corresponding “regular” representation of it. We call the
representation in MSO the naı̈ve forward mapping step (1).
Secondly we have a simplification step (2): we use the fact
that the original sentence was in UNFPk, and hence UNk-
bisimulation invariant, to simplify the regular representation
into a Lµ-formula, of a particular “well-structured” form,
defined later.

Next is the Lµ-interpolation step (3): we apply uniform
interpolation for Lµ in the coded world to get a new Lµ
formula representing the interpolant we want on these tree
codes. Finally, there is the backward mapping step (4): we
translate this Lµ-formula back into UNFPk, which yields a
uniform interpolant for the original UNFPk sentence.

It turns out that in order to actually transform from Lµ to
UNFPk it helps to have stronger properties on the tree-like
models and coded structures. We capture this idea in the notion
of a “shrewd unravelling” and “shrewd tree” below.

B. Schema for coding structures by trees
It is well-known that structures of tree-width k − 1 can be

interpreted by labeled trees over an alphabet that depends only
on the signature of the structure and k. But in this work we
will need to choose a special kind of encoding — for example,
we will need that the decoding can be done within UNFPk.

Fix some signature σ and some k ∈ N. We now define a
signature σ̃k for structures that encode tree decompositions of
σ-structures of tree-width at most k − 1. Informally, these
coded tree structures will mimic the structure of a UN-
bisimulation game of width k, alternating between interface

nodes representing positions with at most one element, and bag
nodes representing positions with k elements. Edges between
nodes will indicate the relationship between the names of
elements in each node.

Formally, we define σ̃k as follows.
• There is a unary relation I ∈ σ̃k, which will be used to

indicate interface nodes.
• There are unary relations Dn ∈ σ̃k for n ∈ {0, 1, k},

which will be used to indicate the number of elements
represented at each node.

• For every relation R ∈ σ of arity n and every sequence
i = i1 . . . in of n indices taken from {1, . . . , k}, there is
a unary relation Ri ∈ σ̃k, which will be used to indicate
that the tuple of elements indexed by i at that node is
in R. For instance, if R ∈ σ is a binary relation and
k = 2, then we would have R11, R12, R21, R22 ∈ σ̃k.
For a sequence i = i1 . . . in, we say that Ri uses indices
i1 . . . in.

• For every partial 1-1 map ρ from {1, . . . , k} to {1, . . . , k}
with dom(ρ) = {1} or rng(ρ) = {1}, there is a binary
relation Eρ ∈ σ̃k. These will be used to indicate the
relationship between elements in neighboring nodes.

Let Propsk := props(σ̃k) (respectively, Actionsk :=
actions(σ̃k)) denote the collection of unary relations (respec-
tively, binary relations) in σ̃k. Likewise, let Props1k denote the
set of unary relations from σ̃k that use only one index. We will
sometimes think of σ̃k-structures as transitions systems over
propositions Propsk and actions Actionsk. This means node
labels come from P(Propsk) and edge labels from Actionsk.

Let T be a σ̃k-tree. We say a node v is an empty interface
node (respectively, non-empty interface node) if v ∈ I and
v ∈ D0 (respectively, v ∈ I and v ∈ D1). We say v is a bag
node if v /∈ I and v ∈ Dk. We say T is consistent if it satisfies
certain natural conditions that ensure that these σ̃k-structures
correspond to a σ-structure: for instance, if (u, v) ∈ Eρ, then
for all R ∈ σ of arity r and for all i ∈ dom(ρ)r, u ∈ Ri iff
v ∈ Rρ(i). We also enforce some simple properties about the
structure of the coded trees, for instance, requiring that the root
is an empty interface node, and nodes at even (respectively,
odd) depths are interface nodes (respectively, bag nodes).

The tree decompositions of every σ-structure of tree-width
k − 1 can be encoded in consistent σ̃k-trees, and every
consistent σ̃k-tree corresponds to an actual σ-structure. Given
a consistent σ̃k-tree T with nodes v, w ∈ dom(T) and
indices i, j ∈ {1, . . . , k}, we say (v, i) is equivalent to
(w, j) if the i-th element in node v corresponds to the j-
th element in node w, based on the edge label mappings
between nodes in the tree. Let [v, i] denote the equiva-
lence class based on this equivalence relation. Using this,
we can define the decoding of T to be the σ-structure
D(T) with universe {[v, i] : v ∈ dom(T) and i ∈ {1, . . . , k}}
and RD(T)([v1, i1], . . . , [vr, ir]) iff there is some node w ∈
dom(T) such that w ∈ Rj1...jr and [w, jm] = [vm, im] for
all m ∈ {1, . . . , r}. For v a node in a consistent tree T with
v ∈ Dn, we write elem(v) for the vector of elements a1 · · · an
in D(T) induced by v in T .

The conditions for a consistent tree are definable in FO, and
are σ̃k-bisimulation invariant.
Lemma 9. Within the class of σ̃k-trees, the class of consistent
σ̃k-trees is σ̃k-bisimulation invariant and definable in FO[σ̃k].

There is also a connection between bisimilarity of consistent
trees and UNk-bisimilarity of the corresponding structures.
Proposition 10. If consistent σ̃k-trees T and T ′ are σ̃k-
bisimilar, then D(T) is UNk[σ]-bisimilar to D(T ′).

C. Coding structures shrewdly
While the decoding of a consistent tree is well-defined, there

are many ways to code a given structure, depending on the
particular decomposition used. Below we will define particular
codings based on unravellings.

The UNk[σ]-unravelling of a σ-structure A is defined as
follows. Consider the set Π of finite sequences of the form
X0Y1X1 . . . Ym or X0Y1X1 . . . YmXm, where each Xi is a
tuple of elements of A of size at most 1, each Yi is a tuple of
elements of A of size k, and Yi+1 contains every element in
Xi and Xi+1. We can assume X0 = ∅. Each π ∈ Π represents
the projection to A of a play in the UNk[σ]-bisimulation game
between A and some other structure, starting from the empty
position.

We want to define a σ̃k-tree T = T k(A) based on this.
Sequences π ∈ Π can be arranged in a tree structure in
the obvious way based on the prefix order. We interpret the
predicates in σ̃k as discussed earlier. For all nodes π ending
in a position Y = a1 . . . an,
• π ∈ IT iff π ends in an interface position, i.e. π is of the

form X0Y1X1 . . . YmXm,
• π ∈ DTj iff j = n,
• π ∈ RTi for i = i1 . . . ir iff (ai1 , . . . , air) ∈ RA,
• (π, π′) ∈ ETρ iff π′ = πZ and either (i) ρ is empty and

there are no shared elements in Y and Z, or (ii) ρ(i) = j
for i (respectively, j) the index of the shared element in
Y (respectively, Z).

The UNk[σ]-unravelling of A is defined to be D(T k(A)), and
its tree decomposition is encoded by T k(A).

Usually, T k(A) would be a suitable canonical coding of
an infinite structure, allowing one to perform a forward and
backward mapping as described in the overview. Indeed, an
unravelling similar to this, but based on guarded bisimulation,
is used in [11]. However, we were unable to do the back-
ward mapping step when using this coding based on UNk-
unravelling, because this unravelling does not provide a close
enough correspondence with the power — and limitations —
of UNFPk.

We overcome this difficulty by defining a “shrewd” un-
ravelling. The idea is that a single tuple of elements in the
original structure A has many copies in the unravelling of A,
as usual. However, we take this further, by including even
more copies of certain parts of the structure, with variations
to these copies that UNFPk cannot distinguish. We capture
the desired property of the coded structures in the following
definition, and then define the corresponding unravelling that

will yield coded trees like this. For τ, τ ′ ⊆ Propsk, we write
τ ′ ⊆1 τ if τ ′ ⊆ τ and τ ′ ∩ Props1k = τ ∩ Props1k.

Definition 11 (Shrewd tree). We say a consistent σ̃k-tree T is
shrewd if it satisfies the following property. For all interface
nodes v, if w is a ρ-child of v and τ is the set of unary
predicates from σ̃k that hold at w, then for any τ ′ ⊆1 τ , there
is a ρ-child w′ of v such that

• τ ′ describes exactly the collection of unary predicates
that hold at w′, and

• the subtrees rooted at w and w′ are isomorphic (ignoring
w and w′).

We now define the shrewd UNk[σ]-unravelling. Given a σ-
structure A and some sequence a = a1 . . . an of elements
from A (of size at most k), we define τ(a) ⊆ Propsk such
that Ri ∈ τ(a) for i = i1 . . . ir iff (ai1 , . . . , air) ∈ RA.
Now consider the set Π of finite sequences of the form
X0(Y1, τ1)X1 . . . (Ym, τm) or X0(Y1, τ1)X1 . . . (Ym, τm)Xm,
where each Xi is a tuple of elements of A of size at most 1,
each Yi is a tuple of elements of A of size k, Yi+1 contains
every element in Xi and Xi+1, and τi ⊆1 τ(Yi).

We can define a σ̃k-tree T = Sk(A) based on this.
Sequences π ∈ Π can be arranged in a tree structure in
the obvious way based on the prefix order. We interpret the
predicates in σ̃k as follows. For all nodes π ending in a position
of the form Y or (Y, τ) for Y = a1 . . . an,

• π ∈ IT iff π ends in an interface position Y ,
• π ∈ DTj iff j = n,
• π ∈ RTi iff π ends in the interface position Y and Ri ∈
τ(a), or π ends in the bag position (Y, τ) and Ri ∈ τ ,

• (π, π′) ∈ ETρ iff π′ is of the form πZ or π(Z, τ) and
either (i) ρ is empty and there are no shared elements in
Y and Z, or (ii) ρ(i) = j for i (respectively, j) the index
of the shared element in Y (respectively, Z).

The shrewd UNk-unravelling of A is D(Sk(A)), and its key
properties are stated in the following lemma.

Lemma 12. For all σ-structures A, Sk(A) is a shrewd
consistent σ̃k-tree, and D(Sk(A)) is UNk[σ]-bisimilar to A.

We remark that none of the logics considered in this paper
can enforce that a given consistent σ̃k-tree T is shrewd or
that T is the shrewd-unravelling of some structure A (i.e. that
T = Sk(A)), but this is not problematic for our purposes.

D. Forward and backward mapping between relational struc-
tures and their encodings as trees

We are now ready to state the naı̈ve forward mapping
step mentioned in the overview, moving between coded σ̃k-
structures and σ-structures. This mapping will be from GSO[σ]
to MSO[σ̃k].

Theorem 13 (GSO[σ] to MSO[σ̃k]). Let ψ be a sentence
in GSO[σ]. For all k, we can construct a sentence ψ→ ∈
MSO[σ̃k] such that for all consistent σ̃k trees T , D(T) |= ψ
iff T |= ψ→.

Note that the mapping “plays well” with bisimulations.

Corollary 14. If ψ ∈ GSO[σ] is a sentence that is invari-
ant under UNk[σ]-bisimulation, then ψ→ is σ̃k-bisimulation
invariant on consistent σ̃k-trees.

Proof: Assume T and T ′ are σ̃k-bisimilar consistent σ̃k-
trees with roots ε and ε′, respectively. Then using Theorem 13
and Proposition 10, we have T , ε |= ψ→ iff D(T) |= ψ iff
D(T ′) |= ψ iff T ′, ε′ |= ψ→.

Once we have moved from a UNFPk formula over structures
to an MSO formula on their encodings, the next step is the
invariant simplification step, which gets us from bisimulation-
invariant MSO on encodings to an Lµ formula on encodings.
In fact, it is helpful at this stage to simplify to what we call
“well-structured” Lµ. We say a Lµ-formula is well-structured
if there is some set Q = {q1, . . . , qn} with corresponding
fixpoint variables Xqi and fixpoints λi ∈ {µ, ν} such that the
formula is of the form

λnXqn . . . λ1Xq1 .

δq1...
δqn

 with

δq :=
∨
τ

∧
P∈τ

P ∧
∧

P∈Propsk\τ

¬P

 ∧ δq,τ


δq,τ :=
∨
S

 ∧
(ρ,r)∈S

〈ρ〉Xr ∧
∧

ρ∈Actionsk

[ρ]
∨

(ρ,r)∈S

Xr


where the outer disjunction in δq ranges over some collection
of τ ∈ P(Propsk), and the outer disjunction in δq,τ ranges
over some collection of S ∈ P(Actionsk × Q). We also
require that there is some i such that the fixpoint predicates
Xq1 , . . . , Xqi only contain bag nodes, and Xqi+1

, . . . , Xqn

only contain interface nodes, by requiring that the correspond-
ing τ in δq include or omit the proposition I as appropriate.
The simplification step is captured in the following theorem.
Theorem 15. Let ψ ∈ MSO[σ̃k] be σ̃k-bisimulation invariant
over the class of σ̃k-trees. Then we can effectively obtain a
well-structured Lµ-formula ψ′ such that for all σ̃k-trees T ,
T |= ψ iff T |= ψ′.

Proof: Apply the Janin-Walukiewicz theorem (Theo-
rem 6), and then take advantage of the equivalence between Lµ
and a form of automata called µ-automata [20]. The structure
in the formula comes from the structure of the transition
function of the automaton.

Uniform interpolation of well-structured Lµ-formulas can
then be done, with the help of Theorem 8; the well-structured
form again follows by observing that the interpolation result
in [8] actually uses the µ-automata mentioned earlier.
Theorem 16. Let ψ ∈ Lµ[σ̃] be a well-structured Lµ-formula.
Let σ̃′ be a subsignature of σ̃. We can construct a well-
structured θ ∈ Lµ[σ̃′] such that θ is a uniform interpolant
for ψ and σ̃′.

Finally, the backward step moves from Lµ-formulas on
encodings, back to UNFPk on relational structures. This is
the step that requires the most work.

Theorem 17 (Lµ[σ̃k] to UNFPk[σ]). Let ψ be a well-
structured formula in Lµ[σ̃k]. We can construct a sentence
ψ← ∈ UNFPk[σ] such that for all σ-structures B, B |= ψ←

iff Sk(B) |= ψ.
Proof sketch: Fix ψ ∈ Lµ[σ̃k]. We want to produce

the UNFPk[σ] sentence ψ←. Unfortunately, the well-structured
Lµ-formula cannot be translated directly into UNFP, since we
may need to use non-unary negation in the translation of some∧
P∈Propsk\τ

¬P (for instance, if R21 ∈ Propsk \ τ , then
¬R21 would become the non-unary negation ¬Rx2x1). Hence
we first transform into a “UNFP-safe” version that is easier to
work with; this transformation takes advantage of the fact that
we are working over shrewd consistent trees (see Claim 18).
Once we are in this form, we then give the backward mapping
(Claim 19).

The UNFP-safe Lµ formulas restrict indices and other prob-
lematic constructs that would lead to negation in the backward
mapping. Let indices(χ) denote the outermost indices in the
formula, up to the next occurrences of a modality. We say an
Lµ[σ̃k] formula is UNFP-safe for interface nodes (respectively,
UNFP-safe for bag nodes) if
• there are no explicit ν-fixpoints or box-modalities (they

have been rewritten using negation, µ-fixpoints, and dia-
mond modalities);

• negation is only applied to subformulas χ where
|indices(χ)| ≤ 1;

• for every subformula χ in the scope of an even (respec-
tively, odd) number of modalities, indices(χ) is contained
in {1} (respectively, {1, . . . , k});

• every fixpoint subformula or fixpoint variable is in the
scope of an even (respectively, odd) number of modalities
(i.e. fixpoints reference only interface nodes).

In general, we would not be able to convert an arbitrary Lµ-
formula to an equivalent UNFP-safe form. However, because
we are working over shrewd consistent trees, we can convert
any well-structured Lµ formula to a UNFP-safe form. For
instance, we can show that we can replace some instances
of
∧
P∈Propsk\τ

¬P that are under a diamond modality with
just

∧
P∈Props1k\τ

¬P .

Claim 18. Let ψ′ ∈ Lµ[σ̃k] be a well-structured formula. Then
we can effectively obtain a UNFP-safe formula ϕ such that for
all shrewd consistent trees T , T |= ψ′ iff T |= ϕ.

Once we have this UNFP-safe Lµ formula, we can translate
into UNFPk. The proof proceeds by induction on the structure
of the formula, so we must handle free variables. For each
fixpoint variable X we introduce two fixpoint variables X1 and
X0 to handle non-empty and empty interface nodes, respec-
tively; we define X← := (X0, X1). A set J of nodes in Sk(B)
is a UNFP-safe valuation for a free variable X if it (i) contains
only interface nodes, and (ii) if it contains an empty interface
node then it contains every empty interface node. We write
J← for its representation in B, i.e. J← := (J0, J1) where
J1 is defined to be {elem(v) : v ∈ J and |elem(v)| = 1}, and
J0 is > (respectively, ⊥) if J contains all empty interface
node (respectively, contains no empty interface nodes). The

strengthened result for formulas with free variables is captured
in the following claim.
Claim 19. Let ϕ ∈ Lµ[σ̃k] be UNFP-safe for interface
nodes (respectively, bag nodes) with free second-order vari-
ables X . We can construct UNFP[σ]-formulas ϕ←0 (X←),
ϕ←1 (x1,X

←), and ϕ←k (x1, . . . , xk,X
←) of width k such that

for all σ-structures B, for all UNFP-safe valuations J of
X , and for all interface nodes (respectively, bag nodes) v
in Sk(B) with |elem(v)| = m,

B, elem(v),J← |= ϕ←m iff Sk(B), v,J |= ϕ.

Moreover, if indices(ϕ) = {i1, . . . , in}, then free(ϕ←m) =
{xi1 , . . . , xin}, and any strict subformula in ϕ←m that begins
with an existential quantifier and is not directly below another
existential quantifier has at most one free variable.

We construct the formulas as follows.
• Assume ϕ = I . Then ϕ←0 := >, ϕ←1 := >, and
ϕ←k := ⊥.

• Assume ϕ = Dj . Then ϕ←m :=

{
> if m = j,
⊥ otherwise.

• Assume ϕ = Ri1...in . Then ϕ←0 := ⊥, ϕ←1 :=
Rxi1 . . . xin , and ϕ←k := Rxi1 . . . xin .

• Assume ϕ = X . Then ϕ←0 := X0, ϕ←1 := X1x1, and
ϕ←k := ⊥.

• The translation commutes with ∨, ∧, and ¬. For the
negation case, the definition of UNFP-safety and the
inductive hypothesis ensures that the resulting formulas
are in UNFP.

• Assume ϕ = 〈ρ〉χ. Then

ϕ←0 := ∃y1 . . . yk. (χ←k (y1, . . . , yk)) ,

ϕ←1 := ∃y1 . . . yk.
(
x1 = yρ(1) ∧ χ←k (y1, . . . , yk)

)
,

ϕ←k :=

{
χ←1 (xi) if dom(ρ) = {i}
χ←0 if dom(ρ) = ∅

.

• Assume ϕ = µY.χ(X, Y). Then ϕ←0 and ϕ←1 are the
first and second components of the vectorial fixpoint

ϕ← := lfp

(
Y0

Y1, y1

)
.

(
χ←0 (X←, Y0, Y1)

χ←1 (y1,X
←, Y0, Y1)

)
and ϕ←k := ⊥.

It can be checked that the constructed formulas have width k.
This concludes the proof sketch of Theorem 17, the back-

ward mapping going from Lµ to UNFP.

E. Putting it all together
We are now ready to give an initial algorithm for effective

uniform interpolation for UNFPk, without elementary bounds.
Fix ϕL ∈ UNFPk[σ], and fix some σ′ ⊆ σ. Let σ̃k and σ̃′k

be the signatures of tree representations for σ-structures and
σ′-structures, respectively.

1) Naı̈ve forward mapping step: Convert ϕL to GSO using
Proposition 5, and then obtain ϕL

→ ∈ MSO[σ̃k] using
Theorem 13. This is σ̃k-bisimulation invariant over con-
sistent σ̃k-trees by Corollary 14.

2) Simplification step: Let γσ,k be an FO[σ̃k]-sentence ex-
pressing the consistency conditions for the trees over σ̃k,
using Lemma 9. Then γσ,k ∧ϕL

→ is σ̃k-bisimulation in-
variant over all σ̃k-trees, so we can obtain well-structured
ϕ̃L ∈ Lµ[σ̃k] by applying Theorem 15 to γσ,k ∧ ϕL

→.
3) Lµ interpolation step: Obtain well-structured θ ∈ Lµ[σ̃′k]

by applying Theorem 8 to ϕ̃L and σ̃′k.
4) Backward mapping step: Obtain θ← ∈ UNFPk[σ′] using

Theorem 17. Set χ := θ←.

First we prove that ϕL |= χ. Let B be a σ-structure and
assume B |= ϕL. Then D(Sk(B)) |= ϕL (since ϕL is UNk[σ]-
bisimulation invariant), so Sk(B) |= ϕL

→ by Theorem 13.
Since Sk(B) is a consistent σ̃k-tree, Sk(B) |= γσ,k ∧ ϕL

→,
so Sk(B) |= ϕ̃L. By Theorem 8, this means that Sk(B) |= θ
(now viewed as a σ̃′k structure). Finally, by Theorem 17, this
means that B |= θ←.

Next, assume that ϕL |= ϕR for some ϕR ∈ UNFPk[σR]
where σ ∩ σR ⊆ σ′. Let σ′′ = σ ∪ σR. Let ϕ̃L ∈ Lµ[σ̃k] as
above. Let ϕ̃R ∈ Lµ[σ̃R,k] be the formula obtained by applying
Theorem 6 to γσR,k → ϕR

→, where ϕR
→ is obtained using

Theorem 13. We aim to prove that χ |= ϕR.
We first prove that ϕ̃L |= ϕ̃R over all σ̃′′k -trees. Assume

T |= ϕ̃L, where T is a σ̃′′k -tree. Then T |= γσ,k ∧ ϕL
→ so

we know that T is a consistent σ̃k-tree. If T is not σ̃R,k-
consistent, then T |= γσR,k → ϕR

→, so T |= ϕ̃R and we are
done. Otherwise, T is both σ̃k-consistent and σ̃R,k-consistent,
which is enough to conclude that it is a consistent σ̃′′k -tree.
Hence, by Theorem 13, D(T) |= ϕL. By our initial assumption
that ϕL |= ϕR, this means D(T) |= ϕR. By Theorem 13, this
means that T |= ϕR

→, so by weakening, T |= γσR,k → ϕR
→.

This means that T |= ϕ̃R.
Now we claim that ϕ̃L |= ϕ̃R over all σ̃′′k -structures. Assume

not. Then there is some σ̃′′k -structure A such that A |= ϕ̃L ∧
¬ϕ̃R. But by the tree-model property of Lµ [18], this means
there is some σ̃′′k -tree T such that T |= ϕ̃L ∧ ¬ϕ̃R, which
contradicts the previous paragraph. This means that ϕ̃L |= ϕ̃R

over all σ̃′′k -structures.
Since ϕ̃L |= ϕ̃R we can apply Theorem 8 to see that θ |= ϕ̃R

(over all σ̃R,k-structures).
Now we are ready to show that χ |= ϕR. If B |= θ← for

a σR-structure B, then Sk(B) |= θ by Theorem 17. By the
previous paragraph, this implies that Sk(B) |= ϕ̃R and hence
Sk(B) |= γσR,k → ϕR

→. But this means that D(Sk(B)) |=
ϕR by Theorem 17. Since B and D(Sk(B)) are UNk[σR]-
bisimilar, this means that B |= ϕR as desired.

This completes the proof of uniform interpolation for
UNFPk, without the elementary bounds. We will come back
to this technique using the naı̈ve forward mapping in order to
prove Theorem 24.

IV. REFINING AND EXTENDING THE CONSTRUCTION

A. Obtaining elementary bounds

The prior approach using the naı̈ve forward mapping yields
a non-elementary upper bound on the size of the uniform
interpolant and the time complexity of constructing it. This

Relational
structures

Coded
structures

Coded
structures

UNFPk well-struct. Lµ

well-struct. Lµ

2-way µ-aut.

over subsignature
encoding

UNFPk

over subsignature

(1) (2)

(3)

(4)

Fig. 2. Proof structure for elementary uniform interpolation

is due to the fact that we pass through MSO, and converting
from MSO to Lµ can result in a non-elementary blow-up [21].

We improve the complexity of this uniform interpolation
algorithm in this section by avoiding GSO and MSO, and
using automata on trees instead (see Figure 2).

The automata that we use are designed to work on trees with
arbitrary branching, so they cannot refer to specific children
of a node. This is different than traditional tree automata on
binary trees that can refer to the left child and right child. To
start, we also allow 2-way movement.

Formally, a 2-way alternating µ-automaton A is a tuple
〈Σp,Σa, QE , QA, q0, δ,Ω〉 where Σp and Σa are finite alpha-
bets of propositions and actions, Q := QE ∪QA is a finite set
of states partitioned into states QE controlled by Eve and states
QA controlled by Adam, and q0 ∈ Q is the initial state. The
transition function has the form δ : Q×Σp → P(Dir×Σa×Q)
where Dir = {↑, 0, ↓} is the set of possible directions (up ↑,
stay 0, down ↓). The acceptance condition is a parity condition
specified by Ω : Q→ Pri, which maps each state to a priority
in a finite set of priorities Pri.

We view A running on a tree T starting at node
v0 ∈ dom(T) as a game G(A, T , v0). The arena is Q ×
dom(T), and the initial position is (q0, v0). From a position
(q, v) with q ∈ QE (respectively, q ∈ QA), Eve (respectively
Adam) selects (d, a, r) ∈ δ(q, T (v)). If d = 0, then the game
continues from position (r, v). Otherwise, Eve (respectively,
Adam) selects an a-neighbor w of v in direction d and the
game continues from position (r, w).

A play in G(A, T , v0) is a sequence
(q0, v0), (q1, v1), (q2, v2), . . . of moves in the game.
Such a play is winning for Eve if the parity condition
is satisfied: the maximum priority that occurs infinitely often
in Ω(q0),Ω(q1), . . . is even.

A strategy for one of the players is a function that returns
the next choice for that player given the history of the
play. Choosing a strategy for both players fixes a play in
G(A, T , v0). A play π is compatible with a strategy ζ if there
is a strategy ζ ′ for the other player such that ζ and ζ ′ yield π.
A strategy is winning for Eve if every play compatible with it
is winning.

We write L(A) for the set of trees T such that Eve has a
winning strategy in G(A, T , ε), where ε is the root of T .

The idea is to redo the forward mapping, but now go directly
from UNFPk to a 2-way alternating µ-automaton. For brevity
in the following theorem (and the rest of this section), we give
only bounds on the output size, not the running time of the

algorithm. However the proofs will show that the worst-case
running time is bounded by a polynomial in the output size.
Theorem 20 (UNFPk[σ] to 2-way alternating µ-automata).
Let ψ be a sentence in UNFPk[σ]. We can construct a 2-
way alternating µ-automaton Aψ such that for all consistent
σ̃k trees T , D(T) |= ψ iff T |= L(Aψ) and the size of Aψ
is doubly exponential in |ψ|, but the number of states and
priorities of Aψ is at most singly exponential in |ψ|.

Proof sketch: We need to test whether ψ holds in the
decoding of the input tree T . We construct the automaton
by induction on the structure of ψ. The idea behind the
construction is to allow Eve to guess an annotation of T with
information about which unary subformulas of ψ hold, and
then run an automaton that checks ψ with the help of these
annotations. In order to prevent Eve from cheating with her
guesses about the subformulas, Adam is also allowed to launch
automata that check Eve’s claims about the subformulas.

Likewise, testing D(T) |= [lfpY, y.χ(y, Y)](a) can be
viewed as a game between Adam and Eve which starts with
y = a and proceeds as follows:
• Eve chooses some valuation for Y such that D(T) |=
χ(y, Y) (she loses if this is not possible), then

• Adam chooses some new y ∈ Y (he loses if this is not
possible), and then the game proceeds to the next turn.

If the game never terminates then Adam is declared the winner.
We can implement this game as an automaton running on T ,
where Eve guesses an annotation of T with the valuation of
Y in the current round, and then simulates the inductively-
defined automaton checking χ(y, Y). Adam can challenge any
b in the set Y chosen by Eve by launching another copy of
the automaton checking χ starting from the node carrying b.
Correctness is enforced by using the parity condition: an odd
priority is used if Adam challenges a lfp fixpoint.

The new simplification step then converts this 2-way alter-
nating µ-automaton to a well-structured Lµ-formula.
Theorem 21 (2-way µ-automata to well-structured Lµ[σ̃k]).
Let A be a 2-way alternating µ-automaton on σ̃k trees. We can
construct a well-structured Lµ[σ̃k]-formula ψ such that for all
consistent σ̃k trees T , D(T) |= ψ iff T ∈ L(A). The size of
ψ is at most |A|f(m) where m is the number of states and
priorities of A and f is a polynomial function independent
of A.

This is accomplished by converting to a µ-automaton [20]
— which can be seen as the 1-way nondeterministic coun-
terpart to the 2-way alternating automata described earlier —
using a variation of a construction in [22].

Uniform interpolation of well-structured Lµ-formulas can
be done without a blow-up in the size of the formula.
Theorem 22. Let ψ ∈ Lµ[σ̃] be a well-structured Lµ-formula.
Let σ̃′ be a subsignature of σ̃. We can construct a well-
structured θ ∈ Lµ[σ̃′] such that θ is a uniform interpolant
for ψ and σ̃′ and is of size at most |ψ|.

As with the previous step, this is also accomplished using
µ-automata. Finding the uniform interpolant corresponds to

taking a projection of the automaton language based on
the (encoding) of the desired subsignature. Indeed, this is
how uniform interpolation for µ-calculus is proven (see [8,
Theorem 3.3 and Corollarly 3.4]). This does not increase the
size of the automaton, or the corresponding well-structured
Lµ-formula.

Finally, the backward step is now from well-structured Lµ
to UNFPk.
Theorem 23 (well-structured Lµ[σ̃k] to UNFPk[σ]). Let ψ ∈
UNFPk[σ̃k] be well-structured. We can construct a DAG-
representation of a sentence ψ← ∈ UNFPk[σ] such that for
all σ-structures B, B |= ψ← iff Sk(B) |= ψ, and the size of
the DAG-representation of ψ← is polynomial in the size of ψ.

The proof of the backward mapping step is actually the
same as before, noting that the conversion starting from a well-
structured Lµ-formula can be done in polynomial time.

We now summarize this improved uniform interpolation
algorithm (see Figure 2). Let ϕ ∈ UNFPk[σ], and let σ′ ⊆ σ
be the target subsignature for the uniform interpolant.

1) Forward mapping step: Apply Theorem 20 to obtain a
2-way alternating µ-automaton A for ϕ over σ̃k-trees, of
size doubly exponential in |ϕ|, but with the number of
states and priorities only singly exponential in |ϕ|.

2) Simplification step: Apply Theorem 21 to obtain a well-
structured Lµ[σ̃k]-formula ψ equivalent to A. Note that ψ
is of size doubly exponential in |ϕ|, since the exponential
blow-up in this step is only relative to the number of states
and priorities in A.

3) Interpolation step: Apply Theorem 22 to ψ and σ̃′k to
obtain a well-structured Lµ[σ̃′k]-formula θ. This is at most
the size of ψ, so it is still doubly exponential in |ϕ|.

4) Backward mapping step: Obtain a DAG-representation
of the UNFPk[σ′] formula θ← equivalent to θ using
Theorem 23. The DAG-representation is at most doubly
exponential in |ϕ|. Set χ := θ←.

Overall, this means that the uniform interpolant χ has a DAG-
representation that is at most doubly exponential in the size
of ϕ, as stated in Theorem 3. As mentioned earlier, because
the time complexity is bounded by the size of the output at
each stage, this algorithm also yields the 2EXPTIME bound
on uniform interpolation for UNFPk.

B. Extension for unary formulas, constants, and equality
The uniform interpolation results can be easily extended

to handle formulas with at most one free variable, instead of
sentences. This requires only a slight change to the definition
of consistent tree to allow the root to be a non-empty interface
node, representing the free variable.

In order to handle signatures σ with constants, we must
modify the encodings of the tree decompositions so the
constants from σ are represented at every node in the tree
encodings (so in particular, interface nodes contain every
constant, plus at most one additional element). This comes
from the fact that in order to have a connection between
the UNk[σ]-bisimulation game and satisfaction of UNFPk[σ]

formulas with constants (as required for Proposition 7), we
need information about constants at every position in the game.

Note that these constants do not adversely impact the
forward and backward mapping. In particular, the constants
do not lead to any difficulties in the backward mapping from
Lµ to UNFP because constants can appear freely in UNFP-
formulas. Indeed, as long as some formula ψ has at most one
free variable, we can negate ψ regardless of the number of
constants it mentions.

It is important to note that in our uniform interpolation
result, the uniform interpolant may make use of any constants
from the original signature. That is, although the uniform
interpolant can restrict the relations that are used, it cannot
restrict the constants that are used. This is unavoidable, at
least for interpolation over formulas. We explain this more in
the full version of this paper.

For equality, we must first convert formulas with equality to
an equality normal form with very restricted uses of equality.
This allows us to use the algorithms presented earlier, treating
equality like any other relation. We provide more details on
this equality extension in the full version of this paper.

C. Characterization of UNFPk as UNk-bisimulation invariant
fragment of GSO

As a by-product of our translations, we can conclude that
UNFPk is the UNk-bisimulation invariant fragment of GSO.
This is in analogy to the fact that Lµ is the bisimulation
invariant fragment of MSO (see Theorem 6), and that GFP
is the “guarded bisimulation” invariant fragment of GSO [11].
Theorem 24 (UNFPk ≡ UNk-bisimulation invariant GSO).
Every sentence ψ in GSO[σ] that is invariant under UNk[σ]-
bisimulation is effectively equivalent to a sentence ϕ in
UNFPk[σ].

Proof: If we start from a UNFPk-sentence, then we
can translate into UNFPk-bismilar GSO (even MSO), using
Propositions 5 and 7. For the other direction, fix some UNk[σ]-
bisimulation invariant sentence ψ in GSO[σ].

1) Naı̈ve forward mapping step: Obtain ψ→ in MSO[σ̃k]
from ψ using Theorem 13. By Corollary 14, ψ→ is σ̃k-
bisimulation invariant on consistent σ̃k-trees.

2) Simplification step: Let γ be an FO[σ̃k] sentence ex-
pressing the conditions for consistent trees, obtained
using Lemma 9. Then (γ → ψ→) in MSO[σ̃k] is σ̃k-
bisimulation invariant within the class of all σ̃k-trees,
so we can obtain ϕ in Lµ[σ̃k] from (γ → ψ→) using
Theorem 6.

3) Backward mapping step: Obtain ϕ← in UNFPk[σ] from
ϕ using Theorem 17.

We must show that ϕ← is the UNFPk[σ]-sentence equivalent
to ψ. Consider some σ-structure B. Assume that B |= ψ.
Then D(Sk(B)) |= ψ by Lemma 12 and UNk[σ]-bisimulation
invariance of ψ. Using Theorem 13, this means Sk(B) |= ψ→.
Moreover, Sk(B) |= γ → ψ→ since Sk(B) is a consistent
σ̃k-tree. so Sk(B) |= ϕ. Finally, by Theorem 17, B |= ϕ←

as desired. Similar reasoning shows that B |= ϕ← implies
B |= ψ.

V. FAILURE OF INTERPOLATION

In this section we will see that some natural extensions and
variants of our main interpolation theorems fail.
A. Failure of uniform interpolation

Although we have shown that UNFP has Craig interpolation,
it fails to have uniform interpolation.
Proposition 25. Uniform interpolation fails for UNFP. In par-
ticular, there is a UNF antecedent with no uniform interpolant
in LFP, even when the consequents are restricted to sentences
in UNF. The variant of uniform interpolation where entailment
is considered only over finite structures also fails for UNFP.

Proof: There is a UNF sentence ϕ that expresses that
unary relations R,G,B form a 3-coloring of a graph with edge
relation E. Consider a uniform interpolant θ (in any logic) for
the UNF sentence ϕ with respect to its UNF-consequences
in the signature {E}. We claim that there cannot be an LFP
formula equivalent to θ.

For all finite graphs G that are not 3-colorable, let ψG
be the UNF sentence corresponding to the canonical con-
junctive query of G over relation E — that is, if G
consists of edges E mentioning vertices v1 . . . vn, ψG is
∃v1 . . . vn

∧
e∈G,e=(vi,vj)

E(vi, vj). Then ϕ must entail ¬ψG,
since the 3-coloring of a graph G′ satisfying ψG is easily seen
to induce a 3-coloring on G.

Now consider a finite graph G. If G is 3-colorable, then
G |= ϕ, and hence G |= θ. On the other hand, if G is not 3-
colorable, then G |= ψG, so G |= ¬θ because ϕ entails ¬ψG
and thus, by the assumption on θ, θ entails ¬ψG. Therefore,
θ holds in G iff G is 3-colorable.

Dawar [23] showed that 3-colorability is not expressible in
the infinitary logic Lω∞ω over finite structures. Since LFP can
be translated into Lω∞ω over finite structures, this implies that
θ cannot be in LFP.

The above argument only makes use of the properties of θ
over finite structures, and thus demonstrates the failure of the
variant of uniform interpolation in the finite.

Recall that we have trivial uniform interpolants in existential
second-order logic, i.e. in NP. The previous arguments shows
that interpolants for UNFP express NP-hard problems, and
thus cannot be in any PTime language if PTime is not equal
to NP. We remark that one could still hope to find uniform
interpolants for UNFP by allowing the interpolants to live in
a larger fragment that is still “tame”, but we leave this as an
open question.

Uniform interpolation also fails for GSO.
Proposition 26. Uniform interpolation fails for GSO. In par-
ticular, there is a GF antecedent with no uniform interpolant
in GSO, even when the consequents are restricted to sentences
of GF (or UNF) of width 2.

Proof sketch: Consider σ = {P,Q,R1, R2, S}, and let
ϕ ∈ GSO[σ] be

∀z.[Qz → ∃xy.(Sxy ∧R1zx ∧R2zy)] ∧
∀xy.[Sxy → ∃x′y′.(Sx′y′ ∧R1xx

′ ∧R2yy
′ ∧

((Px′ ∧ Py′) ∨ (¬Px′ ∧ ¬Py′)))]

which expresses that there is an infinite “ladder” starting at
every Q-node (where S connects pairs of elements on the same
rung, and Ri connects corresponding elements on different
rungs) and the pair of elements on each rung agree on P .
By adding an additional dummy guard G (of arity 4), we can
write a GF sentence that implies the same property.

Then for each n, we can define over σ′ = {P,Q,R1, R2}
a formula ψn ∈ GSO[σ′],

[∃x.(Qx ∧ ∀x1 . . . xn((
∧
iR1xixi+1 ∧ x1 = x)→ Pxn))]→

[∃y(Qy ∧ ∃y1 . . . yn(
∧
iR2yiyi+1 ∧ y1 = y ∧ Pyn))]

which expresses that if there is some Q-position x such that
every R1-path of length n from x ends in a position satisfying
P , then there is an R2-path of length n from some Q-position
y that ends in a position satisfying P . Note that for all n,
ϕ |= ψn. Moreover, ψn can also be expressed in either GF or
UNF of width 2.

Assume for the sake of contradiction that there is some
uniform interpolant θ in GSO[σ′]. Since GSO coincides with
MSO over trees ([24], as cited in [11]), this means we can
construct a nondeterministic parity tree automaton A that rec-
ognizes precisely the language of tree structures satisfying θ.
A pumping argument can then be used to construct a tree
structure accepted by this automaton, and hence satisfying θ,
that fails to satisfy some ψn. This contradicts θ |= ψn.

It has been known for some time that GF fails to have
even ordinary Craig interpolation [25], and hence fails to have
uniform interpolation. The previous proposition shows that we
cannot get uniform interpolants for GF even when we allow
the uniform interpolants to come from GSO.

B. Failure of Craig interpolation for GNFP
It is natural to try to extend our results to the logic GNFP.

Unfortunately, Craig interpolation fails for GNFP.
Proposition 27. Craig interpolation fails for GNFP. In par-
ticular, there is an entailment of GFP sentences with no GNFP
interpolant, even over finite structures.

Proof sketch: Let ϕ′ be

[lfpX,xy.Gxyy ∧ (Rxy ∨ ∃y′.(Gxy′y ∧Rxy′ ∧Xy′y)](xx)

and let ϕ be ∀x.(Qx → ϕ′). This sentence ϕ ∈ GFP[σ] over
the signature σ = {G,Q,R} implies that there is an R-loop
from every Q-labelled element. Define the GFP[σ′] sentence
ψ over signature σ′ = {P,Q,R} to be

∀x.((Qx ∧ Px)→ [lfpX,x.∃y.(Rxy ∧ (Py ∨Xy))](x))

which expresses that for all Q and P labelled elements x,
there is an R-path from x leading to some node y with Py.

Now ϕ |= ψ, but it can be shown that any GNFP sentence θ
over the common signature {Q,R} cannot distinguish between
a structure consisting of a single loop satisfying ϕ and ψ, and
a structure built from “lassos” of sufficient size (depending
only on the width of θ) where ϕ and ψ fail to hold. Hence,
there can be no GNFP interpolant.

VI. CONCLUSION

In this work we have extended the “bootstrapping from
modal logic” technique of [11] to show that the logic UNFP
has interpolation. We also have shown that the richer logics,
such as guarded negation fixpoint, do not have interpolation. It
is still possible that there is a decidable logic containing GNFP
which has interpolation. We also leave open the question of
whether interpolation holds over finite structures for UNFP.

ACKNOWLEDGMENT

Benedikt and Vanden Boom are supported by EPSRC grants
EP/H017690/1 and EP/L012138/1. ten Cate is supported by
NSF grant IIS-1217869.

REFERENCES

[1] B. ten Cate, E. Franconi, and I. Seylan, “Beth definability in expressive
description logics,” in IJCAI, 2011.

[2] A. Nash, L. Segoufin, and V. Vianu, “Views and queries: Determinacy
and rewriting,” ACM TODS, vol. 35, no. 3, 2010.

[3] M. Marx, “Queries determined by views: pack your views,” in PODS,
2007.

[4] K. L. McMillan, “Applications of Craig Interpolation to model check-
ing,” in CSL, 2004.

[5] W. Craig, “Linear reasoning. A new form of the Herbrand-Gentzen
theorem,” The Journal of Symbolic Logic, vol. 22, no. 03, pp. 250–268,
1957.

[6] M. Benedikt, B. ten Cate, and M. Vanden Boom, “Effective interpolation
and preservation in guarded logics,” in CSL-LICS, 2014.

[7] L. Henkin, “An extension of the Craig-Lyndon interpolation theorem,”
The Journal of Symbolic Logic, vol. 28, no. 3, pp. 201–216, 1963.

[8] G. D’Agostino and M. Hollenberg, “Logical Questions Concerning The
mu-Calculus: Interpolation, Lyndon and Los-Tarski,” The Journal of
Symbolic Logic, vol. 65, no. 1, pp. 310–332, 2000.

[9] C. Lutz, I. Seylan, and F. Wolter, “An automata-theoretic approach to
uniform interpolation and approximation in the description logic EL,”
in KR, 2012.

[10] P. Koopmann and R. Schmidt, “Count and forget: Uniform interpolation
of SHQ-ontologies,” in IJCAR, 2014.

[11] E. Grädel, C. Hirsch, and M. Otto, “Back and forth between guarded
and modal logics,” ACM TOCL, vol. 3, no. 3, pp. 418–463, 2002.

[12] D. Janin and I. Walukiewicz, “On the expressive completeness of the
propositional mu-calculus with respect to monadic second order logic,”
in CONCUR, 1996.

[13] B. ten Cate and L. Segoufin, “Unary negation,” in STACS, 2011.
[14] A. Arnold and D. Niwiński, Rudiments of mu-calculus. North Holland,

2001.
[15] V. Bárány, B. ten Cate, and L. Segoufin, “Guarded negation,” in ICALP,

2011.
[16] G. D. Giacomo, “Decidability of class-based knowledge representation

formalisms,” Ph.D. dissertation, Universitá di Roma “La Sapienza”,
1995.

[17] U. Sattler and M. Y. Vardi, “The hybrid µ-calculus,” in IJCAR, 2001.
[18] J. Bradfield and C. Stirling, “Modal mu-calculi,” in Handbook of Modal

Logic. Elsevier, 2007, pp. 721–756.
[19] H. Andréka, I. Németi, and J. van Benthem, “Modal languages and

bounded fragments of predicate logic,” Journal of Philosophical Logic,
vol. 27, no. 3, pp. 217–274, 1998.

[20] D. Janin and I. Walukiewicz, “Automata for the modal mu-calculus and
related results,” in MFCS, 1995.

[21] L. J. Stockmeyer, “The complexity of decision problems in automata the-
ory and logic,” Ph.D. dissertation, Department of Electrical Engineering,
MIT, 1974.

[22] M. Y. Vardi, “Reasoning about the past with two-way automata,” in
ICALP, 1998.

[23] A. Dawar, “A restricted second order logic for finite structures,” Inf.
Comput., vol. 143, no. 2, pp. 154–174, 1998.

[24] B. Courcelle, “The expression of graph properties and graph transforma-
tions in monadic second-order logic,” in Handbook of Graph Grammars
and Computing by Graph Transformations, vol. 1, 1997, pp. 313–400.

[25] E. Hoogland, M. Marx, and M. Otto, “Beth definability for the guarded
fragment,” in LPAR, 1999.

[26] W. Thomas, “Languages, Automata, and Logic,” in Handbook of Formal
Languages, G. Rozenberg and A. Salomaa, Eds., 1997.

[27] E. Grädel and I. Walukiewicz, “Guarded fixed point logic,” in LICS,
1999.

[28] I. Walukiewicz, “Automata and logic,” 2001, available at
http://www.labri.fr/perso/igw/Papers/igw-eefss01.pdf.

[29] E. A. Emerson and C. S. Jutla, “The complexity of tree automata and
logics of programs (extended abstract),” in FOCS, 1988.

APPENDIX A
UNk-BISIMULATION GAME

A. Proof of Proposition 7 (Connection between UNFPk and
UNk-bisimulation game)

Recall the statement:

Assume Duplicator has a winning strategy in the
UNk[σ]-bisimulation game between A and B. If
ϕ(x) is a UNFPk[σ] sentence in normal form, then
A |= ϕ iff B |= ϕ.

We first prove the following result about infinitary UNFk,
the extension of UNF with infinitary disjunctions and conjunc-
tions.

Proposition 28. Assume Duplicator has a winning strategy in
the UNk[σ]-bisimulation game between A and B starting from
an interface position a 7→ b. If ϕ(x) is an infinitary UNFk[σ]
formula in normal form with at most one free variable, then
A |= ϕ(a) iff B |= ϕ(b).

Proof: We proceed by induction on the structure of ϕ.
The base case for an atomic formula, or boolean combination
of atomic formulas, is trivial.

Consider ϕ of the form ∃y.ψ(x,y), where ψ is a boolean
combination of formulas χ that are atomic or have at most
one free variable. Let c be the tuple of elements from A such
that A |= ψ(a, c), and consider Duplicator’s strategy in the
game when Spoiler selects c in A. Her strategy specifies a
corresponding tuple d in B such that f : ac 7→ bd is a
partial unary-rigid homomorphism. Now consider some χ in
ψ that holds in A. If χ is atomic, then the inductive hypothesis
ensures that χ also holds in B. Otherwise, χ must have at most
one free variable, say c′. Duplicator has a winning strategy in
the game when Spoiler collapses to c′, so if χ begins with an
existential quantifier, the inductive hypothesis implies that χ
also holds in B for element f(c′). Likewise, Duplicator has
a winning strategy in the game when Spoiler collapses to c′

and switches structures, so if χ begins with a negation, the
inductive hypothesis implies that if χ does not hold in B for
element f(c′), then it does not hold in A for c, so it must be
the case that χ holds in B as desired.

Proposition 28 implies A and B cannot distinguish between
infinitary UNFk[σ]-sentences. Moreover, for all UNFPk[σ]-
formulas ϕ and for all cardinals κ, there is an infinitary
UNFk[σ]-formula that is equivalent to ϕ on structures of cardi-
nality at most κ: each least fixpoint subformula is replaced by
an infinitary disjunction of the possible fixpoint approximants,
up to the successor cardinal of κ = max {A,B}, which is
an upper bound on the closure ordinal where the fixpoint is
reached. Therefore, Proposition 7 must hold.

APPENDIX B
µ-AUTOMATA

A. Automaton models
We will make use of automata on trees in Ap-

pendix C and D. We assume familiarity with standard automata
theory over infinite structures (see, e.g., [26]). However, the
automata that we use are designed to work on trees with
arbitrary branching, so they cannot refer to specific children
of a node. This is different than traditional tree automata on
binary trees that can refer to the left child and right child.

We define two automaton models, and state some properties
that will be needed later.

Fix finite alphabets Σp and Σa for the node labels and edge
labels, respectively.

A 2-way alternating µ-automaton A is a tuple
〈Σp,Σa, QE , QA, q0, δ,Ω〉 where Q := QE ∪ QA is a
finite set of states partitioned into states QE controlled by
Eve and states QA controlled by Adam, and q0 ∈ Q is the
initial state. The transition function has the form

δ : Q× Σp → P(Dir× Σa ×Q)

where Dir = {↑, 0, ↓} is the set of possible directions (up ↑,
stay 0, down ↓). The acceptance condition is a parity condition
specified by Ω : Q→ Pri, which maps each state to a priority
in a finite set of priorities Pri.

We view A running on a tree T starting at node v0 ∈
dom(T) as a game G(A, T , v0). The arena is Q×dom(T), and
the initial position is (q0, v0). From a position (q, v) with q ∈
QE (respectively, q ∈ QA), Eve (respectively Adam) selects
(d, a, r) ∈ δ(q, T (v)), and an a-neighbor w of v in direction
d (note if d = 0, then v is considered the only option). The
game continues from position (r, w).

A play in G(A, T , v0) is a sequence
(q0, v0), (q1, v1), (q2, v2), . . . of moves in the game.
Such a play is winning for Eve if the parity condition
is satisfied: the maximum priority that occurs infinitely often
in Ω(q0),Ω(q1), . . . is even.

A strategy for one of the players is a function that returns the
next choice for that player given the history of the play. If the
function depends only on the current position (rather than the
full history), then it is positional. Choosing a strategy for both
players fixes a play in G(A, T , v0). A play π is compatible
with a strategy ζ if there is a strategy for the other play such
that ζ and ζ ′ yield π. A strategy is winning for Eve if every
play compatible with it is winning.

We write Lv0(A) for the set of trees T such that Eve has a
winning strategy in G(A, T , v0). If v0 is the root of T , then
we often just write L(A).

The dual of a 2-way alternating µ-automaton A is the
automaton A′ obtained from A by switching QA and QE ,
and incrementing each priority by 1 (i.e. Ω′(q) := Ω(q) + 1).
This has the effect of switching the roles of the two players,
so the resulting automaton accepts the complement of L(A).

We are also interested in a type of automaton on trees with
arbitrary branching that operates in a 1-way, nondeterministic

fashion. A µ-automaton M is a tuple 〈Σp,Σa, Q, q0, δ,Ω〉.
where the transition function now has the form

δ : Q× Σp → P(P(Σa ×Q)).

Again, the acceptance condition is a parity condition specified
by Ω.

The operation of the automaton is not standard. As before,
we view A running on a tree T starting at node v0 ∈ dom(T)
as a game G(A, T , v0). The arena is Q × dom(T), and the
initial position is (q0, v0). From a position (q, v), Eve selects
some S ∈ δ(q, T (v)), and a marking of every successor of v
with a set of states such that (i) for all (a, r) ∈ S, there is
some a-successor whose marking includes r, and (ii) for all
a-successors w of v, if r is in the marking of w, then there
is some (a, r) ∈ S. Adam then selects some successor w of v
and a state r in the marking of w chosen by Eve, and the game
continues from position (r, w). A winning play and strategy
is defined as above.

We say a µ-automaton is action-deterministic if for all q ∈
Q, τ ∈ Σp, and S ∈ δ(q, τ), there is exactly one element of
the form (ρ, r) ∈ S for each ρ ∈ Σa. In this case, when in
position (q, v) in the game, Eve selects some S ∈ δ(q, T (v))
and Adam selects some successor w of v; suppose w is a ρ-
successor of v. Play continues from (r, w) where (ρ, w) is the
unique element in S with action ρ.

These µ-automata are described in more detail in [20]
and [8]. The 2-way alternating µ-automata are similar to the
automata used in [27].

B. Properties of µ-automata
We first observe that these automata are bisimulation-

invariant on trees.

Proposition 29. Let A be a 2-way alternating µ-automaton
or a µ-automaton. For all trees T , if T ∈ L(A) and T ′ is
bisimilar to T , then T ′ ∈ L(A).

Both automata models are closed under boolean operations
and other language operations. We mention here just the
operations that we need in this work.

For 2-way alternating µ-automata, we make use of the
following properties.

Proposition 30. 2-way alternating µ-automata are closed
under:
• Intersection: Let A1 and A2 be 2-way alternating µ-

automata. Then we can construct a 2-way alternating
µ-automaton A such that L(A) = L(A1) ∩ L(A2), and
the size of A is linear in |A1|+ |A2|.

• Union: Let A1 and A2 be 2-way alternating µ-automata.
Then we can construct a 2-way alternating µ-automaton
A such that L(A) = L(A1) ∪ L(A2), and the size of A
is linear in |A1|+ |A2|.

• Complement: Let A be a 2-way alternating µ-automaton.
Then we can construct a 2-way alternating µ-automaton
A′ of size at most |A| such that L(A′) is the complement
of L(A).

Proof: These are standard constructions for alternating
automata.

For intersection, we can just take the disjoint union of the
two automata, and create a new initial state q0 controlled by
Adam with moves to stay in the same position and go to
state qA1

0 , or stay in the same position and go to state qA2
0 .

Depending on this initial choice, the automaton then simulates
either A1 or A2. The construction for the union is similar, but
the initial choice is given to Eve, rather than Adam.

For complement, we use the dual automaton described ear-
lier, which requires switching QA and QE , and incrementing
the priority mapping by 1.

For µ-automata, we need the following properties.

Proposition 31. µ-automata are closed under the following
operations.
• Intersection: Let M1 and M2 be µ-automata. Then we

can construct a µ-automaton M such that L(M) =
L(M1) ∩ L(M2). If at least one of M1 and M2

is action-deterministic, then the size of M is at most
|M1| · |M2|.

• Projection, modulo bisimulation: Let M be a µ-
automaton over propositions Props , and let P ∈ Props .
Then we can construct a µ-automaton M′ over proposi-
tions Props \ {P} of size at most |M| such that for all
trees T , T ∈ L(M) iff there exists some T ′ ∈ L(M′)
and T ′ is (Props \ {P})-bisimilar to T .

Proof: In general, closure under intersection follows from
the equivalence between the µ-calculus and µ-automata [20],
and the fact that the µ-calculus has conjunction. With at least
one action-deterministic automaton, the result can be obtained
using a product construction.

Closure under projection follows from [8, Theorem 3.3].
We can convert any µ-automaton into a well-structured Lµ-

formula.

Proposition 32. Given a µ-automaton A over consistent σ̃k
trees we can construct a well-structured ψ ∈ Lµ[σ̃k] of size
polynomial in the size of A such that T ∈ L(A) iff T |= ψ.

Proof: We can assume without loss of generality that the
states of the automaton in interface nodes are disjoint from
the states of the automaton in bag nodes, so we will refer
to interface states and bag states as appropriate. Because
nodes along a branch in a consistent tree alternate between
interface nodes and bag nodes, we can also assume bag states
are assigned priority 0, and the initial state is assigned the
maximum priority. Converting an automaton into a version
satisfying these assumptions results in only a polynomial
blow-up.

We can then write in the usual way (see, e.g., [28]) a
vectorial Lµ-formula ψ describing the operation of A:

λnXqn . . . λ1Xq1 .

δq1...
δqn



where q1, . . . , qn is an ordering of the states based on the
priority (from least to greatest priority), λi is µ (respectively,
ν) if qi has an odd (respectively, even) priority, and δq are
transition formulas defined below. We can assume that the
ordering is chosen so that (for some i) q1, . . . , qi consists of
bag states, no bag states are present in qi+1, . . . , qn, and qn is
the initial state.

The transition formulas δq are defined as follows:

δq :=
∨
τ

∧
P∈τ

P ∧
∧

P∈Propsk\τ

¬P

 ∧ δq,τ


and

δq,τ :=
∨

S∈δ(q,τ)

 ∧
(ρ,r)∈S

〈ρ〉Xr ∧
∧

ρ∈Actionsk

[ρ]
∨

(ρ,r)∈S

Xr

 .

This captures precisely the meaning of the transition func-
tion in a µ-automaton. The idea is that it picks out exactly the
label τ at the current node, and then ensures that the successors
of this node satisfy the requirements specified by the transition
function when in state q and at a position with label τ .

This fits the well-structured form defined in the body of the
paper.

APPENDIX C
INITIAL ALGORITHM

A. Details on consistent trees
We give here the formal definition of a consistent σ̃k-tree,

which was described informally in Section III. A σ̃k-tree is
consistent if it satisfies the following conditions:

• D0, D1, Dk partition dom(T);
• the root ε is an empty interface node;
• if v is at an even (respectively, odd) depth then v is an

interface node (respectively, bag node);
• if v ∈ D0, then v /∈ Ri for all R ∈ σ of arity r and
i ∈ {1, . . . , k}r;

• if v ∈ D1, then v /∈ Ri for all i ∩ {2, . . . , k} 6= ∅;
• if v is an empty interface node, then (u, v) ∈ Eρ or

(v, u) ∈ Eρ implies that ρ is the empty map;
• if v is a non-empty interface node, then (u, v) ∈ Eρ

(respectively, (v, u) ∈ Eρ) implies that rng(ρ) = {1}
(respectively, dom(ρ) = {1});

• if (u, v) ∈ Eρ, then for all R ∈ σ of arity r and for all
i ∈ dom(ρ)r, u ∈ Ri iff v ∈ Rρ(i).

B. Proof of Lemma 12 (Shrewd unravelling)
Recall the statement of the lemma:

For all σ-structures A, Sk(A) is a shrewd consistent
σ̃k-tree, and D(Sk(A)) is UNk[σ]-bisimilar to A.

We give the proof for the second part, that D(Sk(A)) is
UNk[σ]-bisimilar to A. Let A′ = D(Sk(A)).

Let elemA′(π) denote the elements in A′ represented at
node π. Similarly, let elemA′(π, j) denote the element in A′

that is indexed by j in π. Let X ′ be a set of elements from
A′ of size at most 1. Let elemA(π), elemA(π, j), X be the
analogous definitions for A. A position X 7→ X ′ or X ′ 7→ X
in the UNk[σ]-bisimulation game is covered if there is a node
π in Sk(A) such that π ends in an interface position with
elemA′(π) = X ′ and elemA(π) = X . Note that if a position
f is covered, then f must be a partial isomorphism.

We claim that Duplicator has a winning strategy in the
UNk[σ]-bisimulation game between A and A′ starting from
any covered position, and in particular from the covered
position ∅ 7→ ∅. We present the proof only for the case when
we start from a non-empty partial homomorphism; the other
cases are similar.

Active structure A′: Consider first the case when we
start in a covered position a′ 7→ a. Assume Spoiler chooses
b′ = b′1 . . . b

′
k of size k in A′. We can assume without loss

of generality that b′1 = a′. Set b1 := a. For each b′i, let
πi be a node where b′i = elemA′(πi, j) for some j, and set
bi := elemA(πi, j). Set b := b1 . . . bk.

We claim b′ 7→ b is a partial unary-rigid homomorphism
from A′ to A.

Assume that A′ |= Rb′i1 . . . b
′
ir

. Then there is some bag
node π ending in (Y, τ ′) and some indices j1, . . . , jr such that
Rj1...jr ∈ τ ′, b′im = elemA′(π, jm), and bim = elemA(π, jm).
Note that this means that bim is represented in all nodes along

the path from π to πi1 (but this element could be indexed
differently in the nodes along this path, and in particular is
indexed by jm at π). Hence, {bi1 , . . . , bir} ⊆ Y . Since τ ′ ⊆
τ(Y), this implies that Rj1...jr ∈ τ(Y) and A |= Rbi1 . . . bir .
This ensures that b′ 7→ b is a partial homomorphism.

Now assume that A |= Rbi . . . bi (so only one element
from b is used). Recall that πi is the node such that there
is some j with b′i = elemA′(πi, j) and bi = elemA(πi, j). If
πi ends in an interface position Y , then by definition of Sk(A),
πi ∈ RS

k(A)
j...j and A′ |= Rb′i . . . b

′
i. Likewise, if πi ends in a

bag postion (Y, τ ′) then τ(Y) ∩ Props1k = τ ′ ∩ Props1k, so
Rj...j ∈ τ ′ and A′ |= Rb′i . . . b

′
i. Combined with the previous

paragraph, this ensures that b′ 7→ b is a partial unary-rigid
homomorphism.

We claim that when Spoiler collapses to the empty set or
a single element, the corresponding position in the game is
covered. If Spoiler moves to the empty partial homomorphism
(from A to A′ or A to A′) then we are clearly in a covered
position. If Spoiler collapses to b′i or bi, then by choice of b,
we know that there is some node πi and some j with b′i =
elemA′(πi, j) and bi = elemA′(πi, j). If πi is an interface
node, then we are done. Otherwise, by construction of Sk(A),
there is a successor node π′ of π such that elemA′(π′, 1) = b′i
and elemA(π, 1) = bi, so we are in a covered position.

Active structure A: Next consider the case when we
start in a covered position a 7→ a′. Then there is some
interface node π with elemA(π, 1) = a and elemA′(π, 1) = a′.
Assume Spoiler chooses b = b1 . . . bk of size k in A. There
is a successor π′ = π(b, τ(b)) of π in Sk(A) such that
elemA(π′) = b and elemA(π′, i) = bi. For each bi ∈ b, let
b′i := elemA′(π′, i). Set b′ := b′1 . . . b

′
k.

By definition of D(Sk(A)), it is easy to see that b 7→ b′

is a partial isomorphism, and hence a partial unary-rigid
homomorphism as desired.

If Spoiler moves to the empty partial homomorphism (from
A to A′ or A to A′) then we are clearly in a covered position.
If Spoiler collapses to b′i or bi, then we know by construction
of Sk(A) that there is some successor π′′i of π′ such that
elemA(π′′i , 1) = bi and elemA′(π′′i , 1) = b′i, so we are again
in a covered position.

C. Proof sketch of Theorem 13 (Forward mapping)
Recall the statement:

Let ψ be a sentence in GSO[σ]. For all k, we can
construct a sentence ψ→ ∈ MSO[σ̃k] such that for
all consistent σ̃k trees T , D(T) |= ψ iff T |= ψ→.

During the translation, we must deal with formulas with
free variables, so we describe how these are coded.

A first-order variable x is encoded by a sequence of second-
order variables x→ = (Zxi)i∈{1,...,k}. The set Zxi consists of
the nodes v in the coded structure where the i-th element in
v corresponds to the element identified by x.

Likewise, a second-order variable X corresponding to an
r-ary guarded relation (a relation that only includes tuples

guarded in σ) is encoded by a sequence of second-order
variables X→ = (ZXi)i∈{1,...,k}r . The set ZXi corresponds to
the set of nodes v in the coded structure where the elements
coded by i are in X .

It is straightforward to construct the following auxiliary
formulas that check whether some tuple of second-order
variables actually encodes a first-order variable or a guarded
relation in the way we just described.

Lemma 33. There is a formula correct(x→) ∈ MSO[σ̃k]
such that for all consistent σ̃k-trees T and for all j→ =
(Ji)i∈{1,...,k}, T |= correct(j→) iff there is some element a
in D(T) such that for all i, Ji = {v ∈ T : [v, i] = a}.

There is a formula correctr(X→) ∈ MSO[σ̃k] such that for
all consistent σ̃k-trees T and for all J→ = (Ji)i∈{1,...,k}r ,
T |= correctr(J→) iff there is some guarded relation J
of arity r on D(T) and for all i = i1 . . . ir, Ji =
{v ∈ T : ([v, i1], . . . , [v, ir]) ∈ J}.

Using these auxiliary formulas, we can perform the forward
translation.

Lemma 34. Let ψ be a formula in GSO[σ] with free first-
order variables among x1, . . . , xk, and free second-order
variables among X1, . . . , Xm. We can construct a formula
ψ→(x1

→, . . . , xk
→, X1

→, . . . , Xm
→) ∈ MSO[σ̃k] such that

for all consistent σ̃k-trees T , for all elements a1, . . . , ak in
D(T) encoded by j1→, . . . , jk→ and for all sets of guarded
relations J1, . . . , Jm encoded by J1→, . . . , Jm→,

D(T), a1, . . . , ak, J1, . . . , Jm |= ψ iff

T , j1→, . . . , jk→, J1→, . . . , Jm→ |= ψ→.

Proof: The proof is by induction on the structure of ψ.

• Assume ψ = Rxi1 . . . xin . Then

ψ→ := ∃z.
∨

ρ∈Actionsk

(
z ∈ Rρ(i1...in)∧

∧
i∈{i1,...,in}

z ∈ Zxi

ρ(i)

)
.

This expresses that there is some node in the coded struc-
ture where R holds for elements coded by ρ(i1 . . . in),
and these elements are precisely xi1 . . . xin .
Similarly for ψ = Xxi1 . . . xin .

• The translation commutes with ∨, ∧, and ¬.
• Assume ψ = ∃x.χ. Then

ψ→ := ∃x→. (correct(x→) ∧ χ→) .

• Assume ψ = ∃X.χ for X an r-ary relation. Then

ψ→ := ∃X→. (correctr(X→) ∧ χ→) .

The theorem follows directly from the previous lemma,
since the input is a sentence with no free first or second-order
variables.

D. Proof of Theorem 15 (Simplification)
Recall the statement of the theorem:

Let ψ ∈ MSO[σ̃k] be σ̃k-bisimulation invariant over
the class of σ̃k-trees. Then we can effectively obtain
a well-structured Lµ-formula ψ′ such that for all σ̃k-
trees T , T |= ψ iff T |= ψ′.

Apply Theorem 6. Then use [20] to convert ψ to a µ-
automaton A, and use Proposition 32 to convert to a well-
structured form.

E. Proof of Theorem 17 (Backward mapping)
Recall the statement:

Let ψ be a well-structured formula in Lµ[σ̃k]. We
can construct a sentence ψ← ∈ UNFPk[σ] such that
for all σ-structures B, B |= ψ← iff Sk(B) |= ψ.

Fix well-structured ψ ∈ Lµ[σ̃k]. Our goal in this section is
to produce the UNFPk[σ] sentence ψ←. We will first convert
to a special normal form which we call “UNFP-safe Lµ”. This
requires a series of transformations, described below. At each
stage, we ensure equivalence with ψ, at least over shrewd
consistent trees. Step 3 is the most interesting, because it relies
on the fact that we are working with shrewd trees.

Before defining UNFP-safety, we need a way to talk about
the parts of an Lµ-formula that will lead to free first-order
variables in the corresponding UNFP-formula. We need to
have an understanding of where these free variables come
from, since negation in UNFP can only be applied to formulas
with at most one free variable. Roughly speaking, variables in
the UNFPk[σ]-formula will come from the indices that are
being used by relations Ri in the Lµ[σ̃k]-formula. For this
reason, we define indices(χ) for χ ∈ Lµ[σ̃k] inductively as
follows:

• indices(Ri1...in) := {i1, . . . , in};
• indices(I) = indices(Dn) = indices(X) = indices(>) =

indices(⊥) := ∅;
• indices(χ1 ∧ χ2) = indices(χ1 ∨ χ2) := indices(χ1) ∪

indices(χ2);
• indices(¬χ) := indices(χ);
• indices(〈ρ〉χ) = indices([ρ]χ) := dom(ρ);
• indices(λX.χ) := indices(χ).

We say an Lµ[σ̃k] formula is UNFP-safe for interface nodes
(respectively, UNFP-safe for bag nodes) if

• there are no explicit ν-fixpoints or box-modalities;
• negation is only applied to subformulas χ where
|indices(χ)| ≤ 1;

• for every subformula χ in the scope of an even (respec-
tively, odd) number of modalities, indices(χ) is contained
in {1} (respectively, {1, . . . , k});

• every fixpoint subformula or fixpoint variable is in the
scope of an even (respectively, odd) number of modalities
(i.e. fixpoints reference only interface nodes).

We now proceed with the series of transformations taking ψ
to a UNFP-safe version that is equivalent at least over shrewd
consistent trees.

Step 1: We are given a well-structured formula ψ1 := ψ.
For reference later, we can assume that it is in the following
form:

λnXqn . . . λ1Xq1 .

δq1...
δqn


such that λi ∈ {µ, ν} are fixpoints,

δq :=
∨
τ

∧
P∈τ

P ∧
∧

P∈Propsk\τ

¬P

 ∧ δq,τ


δq,τ :=
∨

S∈δ(q,τ)

 ∧
(ρ,r)∈S

〈ρ〉Xr ∧
∧

ρ∈Actionsk

[ρ]
∨

(ρ,r)∈S

Xr

 .

and there is some i such that the fixpoint predicates
Xq1 , . . . , Xqi only contain bag nodes (call these bag predi-
cates), and Xqi+1 , . . . , Xqn only contain interface nodes (call
these interface predicates).

Step 2: Consistent tree simplification:
Claim 35. There is a formula ψ2 obtained effectively from
ψ1 such that for all interface predicates (respectively, bag
predicates) Xq , the vectorial components δ2q in ψ2 satisfy
indices(δ2q) ⊆ {1} (respectively, indices(δ2q) ⊆ {1, . . . , k}).
Moreover, for all consistent σ̃k-trees T and for all interface
nodes v, we have T , v |= ψ2 iff T , v |= ψ1.

Proof: For all interface predicates Xq , we perform the
following simplifications of δq in ψ1.

• Substitute ⊥ for any unary predicate P with indices(P)∩
{2, . . . , k} 6= ∅.

• Substitute ⊥ for any 〈ρ〉Xr with dom(ρ) 6⊆ {1}.
• Substitute > for any [ρ]χ with dom(ρ) 6⊆ {1}.

Likewise, for all bag predicates Xr, we perform the follow-
ing simplifications of δr in ψ1.

• Substitute ⊥ for any 〈ρ〉Xq with rng(ρ) 6⊆ {1}.
• Substitute > for any [ρ]χ with rng(ρ) 6⊆ {1}.

The definition of consistent σ̃k-trees requires that interface
nodes have labels using only indices from {1}, and edges that
respect this domain, so the resulting formula still reflects the
operation of the automaton at an interface node. Let ψ2 be the
resulting formula, which has vectorial components δ2q .

Step 3: Shrewd tree simplification: We would like to elimi-
nate the use of any fixpoint variables in ψ2 that correspond to
bag predicates Xr. We can do this by substituting δ2r for any
occurrence of Xr in the other transition formulas.

After doing this substitution, the subformulas 〈ρ〉δ2r and
[ρ]
∨

(ρ,r)∈S δ
2
r both may have negations that are not allowed

in UNFP-safe formulas. For instance, in 〈ρ〉δ2r there may be
some ¬P for P ∈ Propsk \ τ with |indices(P)| > 1. This
is because the transition function described by δ2r depends
on knowing exactly the label τ at the current node. In a
shrewd tree, however, this is not really necessary: we only
need to know the propositions in Props1k exactly. Indeed, by
the properties of shrewd trees, we can simplify the formula
so that (among other things) we can replace

∧
P∈Propsk\τ

¬P
with

∧
P∈Props1k\τ

¬P .
We will use the following auxiliary formulas to help with

this process.

δ♦r :=
∨
τ

∧
P∈τ

P ∧
∧

P∈Props1k\τ

¬P

 ∧ δr,τ


δ�S :=
∧
τ

∧
P∈τ

P ∧
∧

P∈Props1k\τ

¬P

→ ∨
(ρ,r)∈S

δr,τ


Claim 36. Let v be an interface node in a shrewd consistent
σ̃k-tree T . Then

T , v |= 〈ρ〉δ2r iff T , v |= 〈ρ〉δ♦r , (1)

T , v |= [ρ]
∨

(ρ,r)∈S

δ2r iff T , v |= [ρ]δ�S . (2)

Proof of claim: Fix some shrewd consistent σ̃k tree T ,
and some interface node v. We write v |= ψ for T , v |= ψ.
(1) Assume v |= 〈ρ〉δ2r . Then there is some ρ-child w of

v. Let τ be the collection of propositions from Propsk
that hold at w. Then w |= δr,τ . Hence, in particular,
w |=

∧
P∈τ P ∧

∧
P∈Props1k\τ

¬P ∧δr,τ , which is enough
to conclude that w |= δ♦r and v |= 〈ρ〉δ♦r .
Next assume that v |= 〈ρ〉δ♦r . Then there is ρ-child w
and some set τ of propositions such that w |=

∧
P∈τ P ∧∧

P∈Props1k\τ
¬P∧δr,τ . By the properties of shrewd trees,

there is some ρ-child w′ of v such that τ describes exactly
the propositions that hold at w′, and the subtrees rooted
at w and w′ are isomorphic (ignoring the labels at w and
w′). Hence, w′ |=

∧
P∈τ P ∧

∧
P∈Propsk\τ

¬P ∧ δr,τ ,
which implies that v |= 〈ρ〉δ2r .

(2) Assume v |= [ρ]
∨

(ρ,r)∈S δ
2
r . Let w be a ρ-child

of v. Consider any τ such that w |=
∧
P∈τ P ∧∧

P∈Props1k\τ
¬P . It suffices to show that w |=∨

(ρ,r)∈S δr,τ . By the property of shrewd trees, there
is a ρ-child w′ of v such that w′ |=

∧
P∈τ P ∧∧

P∈Propsk\τ
¬P , and (ignoring the labels at the roots),

the subtrees rooted at w and w′ are isomorphic. By the
initial assumption, there is some (ρ, r) ∈ S such that w′

satisfies δ2r , and in particular, w′ |= δr,τ . Since δr,τ is not
affected by the label at the current node, this means that
w |= δr,τ as desired.
Now assume v |= [ρ]δ�S . Let w be a ρ-child of v, and let τ
be the set of propositions that hold at w. Then by the defi-
nition of δ�S , there is some (ρ, r) ∈ S, such that w |= δr,τ .

Hence, w |=
∧
P∈τ P ∧

∧
P∈Propsk\τ

¬P ∧ δr,τ , so w |=∨
(ρ,r)∈S δ

2
r . Overall, this means v |= [ρ]

∨
(ρ,r)∈S δ

2
r as

desired.

We are now ready to describe the transformation for this
step.

Claim 37. There is a formula ψ3 obtained effectively from ψ2

such that

• negation is only applied explicitly to subformulas χ where
|indices(χ)| ≤ 1,

• for every subformula χ in the scope of an even (respec-
tively, odd) number of modalities, indices(χ) is contained
in {1} (respectively, {1, . . . , k}),

• no bag predicates are used.

Moreover, for all consistent σ̃k-trees T and for all interface
nodes v, we have T , v |= ψ3 iff T , v |= ψ2.

Proof: For all interface predicates Xq , and for all bag
predicates Xr:

• substitute 〈ρ〉δ♦r for 〈ρ〉Xr in δ2q ;
• substitute [ρ]δ�S for [ρ]

∨
(ρ,r)∈S Xr in δ2q .

Then for all bag predicates Xr,

• remove λXr and the component δ2r .

Let ψ3 be the resulting formula, with vectorial compo-
nents δ3q .

Claim 36 ensures that we can perform these substitutions
while preserving equivalence over shrewd consistent trees.

Step 4: Clean up to obtain UNFP-safe Lµ-formula: The
formula ψ3 obtained in the previous step is almost UNFP-
safe. We can now perform a number of clean-up operations
to rewrite box modalities and ν-fixpoints in order to get the
formula into UNFP-safe form.

Claim 38. There is a formula ψ4 obtained effectively from
ψ3 such that ψ4 is UNFP-safe for interface nodes. Moreover,
for all consistent σ̃k-trees T and for all interface nodes v, we
have T , v |= ψ4 iff T , v |= ψ3.

Proof: To help eliminate the use of the box modality, we
first define

δ¬♦S :=
∨
τ

∧
P∈τ

P ∧
∧

P∈Props1k\τ

¬P

 ∧ δ4r,τ


where δ
4

r,τ is

∧
S∈δ(r,τ)

[∨
(ρ′,s)∈S s.t.
rng(ρ′)={1}

¬〈ρ′〉Xs∨
∨

ρ′∈Actionsk s.t.
rng(ρ′)={1}

〈ρ′〉
∧

(ρ′,s)∈S

¬Xs

]
.

By using the equivalence [ρ]χ ≡ ¬〈ρ〉¬χ and pushing
negations inside, it is easy to observe that [ρ]δ�S ≡ ¬〈ρ〉δ

¬♦
S ,

and ¬〈ρ〉δ¬♦S is UNFP-safe.
Finally, in order to obtain ψ4, we perform the following

operations:

• Substitute ¬〈ρ〉δ¬♦S for any occurrence of [ρ]δ�S .
• Substitute ¬〈ρ〉

∧
(ρ,s)∈S ¬Xs for any remaining occur-

rences of [ρ]
∨

(ρ,s)∈S Xs.
• Convert the vectorial fixpoint to a standard Lµ-formula

using the Bekič principle.
• Replace ν-fixpoints with µ-fixpoints using the equiv-

alence νX.χ ≡ ¬µX.¬χ[¬X/X]. These nega-
tions are UNFP-safe because of the property that
indices(δ3q) ⊆ {1}.

Putting it together: Based on the previous transformation
steps, we have proven the following lemma.

Lemma 39. The formula ϕ := ψ4 obtained effectively from
ψ according to steps (1)–(4) is UNFP-safe for interface nodes
and such that for all shrewd consistent σ̃k-trees T ,

T |= ϕ iff T |= ψ.

From a UNFP-safe formula in Lµ[σ̃k] we can produce
UNFPk[σ] formulas described below. Similar to [11], for each
fixpoint variable X we introduce two fixpoint variables X1 and
X0 to handle non-empty and empty interface nodes, respec-
tively; we define X← := (X0, X1). A set J of nodes in Sk(B)
is a UNFP-safe valuation for a free variable X if it (i) contains
only interface nodes, and (ii) if it contains an empty interface
node then it contains every empty interface node. We write
J← for its representation in B, i.e. J← := (J0, J1) where J1
is defined to be {elem(v) : v ∈ J and |elem(v)| = 1}, and J0
is > (respectively, ⊥) if J contains all empty interface node
(respectively, contains no empty interface nodes).

Lemma 40. Let ϕ ∈ Lµ[σ̃k] be UNFP-safe for interface
nodes (respectively, bag nodes) with free second-order vari-
ables X . We can construct UNFP[σ]-formulas ϕ←0 (X←),
ϕ←1 (x1,X

←), and ϕ←k (x1, . . . , xk,X
←) of width k such that

for all σ-structures B, for all UNFP-safe valuations J of
X , and for all interface nodes (respectively, bag nodes) v
in Sk(B) with |elem(v)| = m,

B, elem(v),J← |= ϕ←m iff Sk(B), v,J |= ϕ.

Moreover, if indices(ϕ) = {i1, . . . , in}, then free(ϕ←m) =
{xi1 , . . . , xin}, and any strict subformula in ϕ←m that begins
with an existential quantifier and is not directly below another
existential quantifier has at most one free variable.

Proof sketch: We proceed by induction on the structure
of the UNFP-safe formula ϕ to define ϕ←0 , ϕ

←
1 , ϕ

←
k (assuming

ϕ is UNFP-safe for interface nodes for the definition of ϕ←0
and ϕ←1 , and UNFP-safe for bag nodes for the definition of
ϕ←k).

• Assume ϕ = I . Then ϕ←0 := >, ϕ←1 := >, and ϕ←k :=
⊥.

• Assume ϕ = Dj . Then ϕ←m :=

{
> if m = j,
⊥ otherwise.

• Assume ϕ = Ri1...in . Then ϕ←0 := ⊥, ϕ←1 :=
Rxi1 . . . xin , and ϕ←k := Rxi1 . . . xin .

• Assume ϕ = X . Then ϕ←0 := X0, ϕ←1 := X1x1, and
ϕ←k := ⊥.

• The translation commutes with ∨, ∧, and ¬. For the
negation case, the definition of UNFP-safety and the
inductive hypothesis ensures that the resulting formulas
are in UNFP.

• Assume ϕ = 〈ρ〉χ. Then

ϕ←0 := ∃y1 . . . yk. (χ←k (y1, . . . , yk)) ,

ϕ←1 := ∃y1 . . . yk.
(
χ←k (y1, . . . , yk)[x1/yρ(1)]

)
,

ϕ←k :=

{
χ←1 (xi) if dom(ρ) = {i}
χ←0 if dom(ρ) = ∅

.

• Assume ϕ = µY.χ(X, Y). Then ϕ←0 and ϕ←1 are the
first and second components of the vectorial fixpoint

ϕ← := lfp

(
Y0

Y1, y1

)
.

(
χ←0 (X←, Y0, Y1)

χ←1 (y1,X
←, Y0, Y1)

)
and ϕ←k := ⊥.

We omit the proof of correctness for the base cases, and
focus on parts of the last two cases. For notational simplicity,
we assume there are no free second-order variables in ϕ.

Case ϕ = 〈ρ〉χ: Assume v is a non-empty interface node
in Sk(B). We prove correctness of ϕ←1 .

First, assume that Sk(B), v |= ϕ where elem(v) = a1. Then
there is some ρ-child w of v that satisfies χ. Let elem(w) =
b1 . . . bk, where a1 = bρ(1). By the inductive hypothesis, this
means that B, elem(w) |= χ←k , so we have B, elem(v) |= ϕ←1
as desired.

Next, assume that B, elem(v) |= ϕ←1 where elem(v) = a1.
Then there are elements b1, . . . , bk in B such that a1 = bρ(1)
and B |= χ←k (b1, . . . , bk). By definition of Sk(B), there is
a ρ-successor w of v based on exactly these elements (in
fact, there are many successors based on these elements).
Hence, B, elem(w) |= χ←k , so by the inductive hypothesis,
Sk(B), w |= χ. This is enough to conclude that Sk(B), v |=
ϕ.

By the inductive hypothesis, any strict subformula in χ←k
that begins with an existential quantifier and is not directly
below another existential quantifier has at most one free vari-
able. This implies that even if χ←k begins with an existential
quantifier, ϕ←1 also satisfies this property. Moreover, the only
free variable is x1.

Case ϕ = µY.χ(Y): By UNFP-safety, we must only
consider the case when v is an interface node.

For ordinals β, we write χβ and (χ←)β for the β-
approximant of the outer fixpoint in ϕ and ϕ←. We first
show the result for the fixpoint approximants. That is, for all

interface nodes v with |elem(v)| = m, B, elem(v) |= (χ←)βm,
iff Sk(B), v |= χβ . We proceed by induction on the fixpoint
approximant β.

For β = 0, the result follows by the outer inductive
hypothesis applied to the formulas that result from substituting
⊥ for Y in χ, and ⊥ for Y0 and Y1y in χ←.

Now assume β > 0 is a successor ordinal β = δ + 1.
Assume Sk(B), v |= χβ for v an interface node with

|elem(v)| = m. Then Sk(B), v, Jδ |= χ where

Jδ := {w : w is an interface node and Sk(B), w |= χδ}

is a valuation for X . Note that this is a UNFP-safe valuation:
any subtrees rooted at an empty interface node in Sk(B)
are isomorphic to Sk(B), which means that if any empty
interface nodes are included, all empty interface nodes must
be included. By the outer inductive hypothesis, this implies
that B, elem(v), J←δ |= χ←m .

However, by the inner inductive hypothesis,

J←δ = (J0, {elem(w) :w is an interface node and

B, elem(w) |= (χ←)δ|elem(w)|}).

This means that B, elem(v), J←δ |= χ←m iff B, elem(v) |=
(χ←)βm, so B, elem(v) |= (χ←)βm as desired.

Next, assume B, elem(v) |= (χ←)βm for v and interface
node with |elem(v)| = m. Then B, elem(v), J0, J1 |= χ←m
where J0 is > (respectively, ⊥) if B |= (χ←)δ0 (respectively,
B |= ¬(χ←)δ0) and J1 := {b : B, b |= (χ←)δ1}.

Define

Jδ :={w : w is an interface node and Sk(B), w |= χδ}

Note that every element in B appears as the element in an
interface node of Sk(B), and every subtree of Sk(B) rooted
at any empty interface node is isomorphic to Sk(B). Using
these properties and the inner inductive hypothesis, it can be
shown that J←δ = (J0, J1). Hence, we can apply the outer
inductive hypothesis to see that Sk(B), v, Jδ |= χ, and this
holds iff Sk(B), v |= χβ .

The proof is similar when β is a limit ordinal.
The overall result for this case follows by appealing to the

fact that the least fixpoint corresponds to some β-approximant,
and using the Bekič principle to eliminate vectorial fixpoints.

Width: The constructed formulas use at most k free
variables in any subformula. It can be checked that the
constructed formulas have width k (that is, the conversion into
normal form does not increase the maximum number of free
variables in the subformulas; see Proposition 42).

Theorem 17 follows by applying Lemma 39 to get a
UNFP-safe Lµ-formula ϕ, and then using Lemma 40, taking
ψ← := ϕ←0 as the desired UNFPk[σ] sentence (since we want
a sentence equivalent to ϕ at the root of Sk(B), an empty
interface node).

APPENDIX D
IMPROVED ALGORITHM

A. Proof of Theorem 20 (Forward mapping)
Recall the statement of Theorem 20:

Let ϕ be a sentence in UNFPk[σ]. We can construct
a 2-way alternating µ-automaton Aϕ such that for all
consistent σ̃k trees T , D(T) |= ϕ iff T |= L(Aϕ)
and the size of Aϕ is doubly exponential in |ϕ|,
but the number of states of Aϕ is at most singly
exponential in |ϕ|, and the number of priorities is at
most |ϕ|.

Before we give the construction, we want to define the
relevant formulas that will need to be considered by the
automaton in order to determine whether a UNFPk[σ]-formula
holds in some structure. It turns out that we need more
information than just the usual subformula closure, namely
“specializations” of CQ-shaped subformulas. Consider a CQ-
shaped φ(y) of the form ∃x.

∧
i ψi(xy). A specialization of φ

is a formula φ′ obtained from φ by the following operations:

• select a subset z of x (call variables from yz the inside
variables and variables from x\z the outside variables);

• select a partition x1, . . . ,xk of the outside variables, with
the property that for every ψj , either ψj has no outside
variables or all of its outside variables are contained in
some partition element xi;

• let χ0 be the conjunction of the ψi using only inside
variables, and let χj be the conjunction of the ψi using
outside variables and satisfying free(ψi) ⊆ xjyz;

• set φ′(yz) to be χ0(yz) ∧
∧
j∈{1,...,k} ∃xj .χj(xjyz).

Roughly speaking, a specialization describes a way in which
the original CQ-shaped subformula could be satisfied in a tree-
like model. A specialization is non-trivial if either there are
no outside variables (thus the specialization is only χ0), or
χ0 is non-empty, or the partition of the outside variables is
non-trivial (j > 0).

Lemma 41. Let φ(y) ∈ UNFP be a CQ-shaped formula
∃x.

∧
i ψi(xy).

• Given a structure M and a tree decomposition T of M,
if there exists a node v with b ⊆ T (v) and M, b |=
φ(y), then there is a non-trivial specialization φ′(yz) of
φ and a node w with a tuple c such that bc ∈ T (w) and
M, bc |= φ′(yz).

• For all structures M and for all specializations φ′(yz)
of φ, if M, bc |= φ′(yz), then M, b |= φ(y).

Proof: We prove the first part of this lemma.
For elements d and a node w with a neighboring node w′ in

a tree decomposition T we say d is contained in the direction
of w′ if (i) w′ is the parent of w and d appears in the tree
resulting from removing from T the subtree rooted at w, or
(ii) w′ is a child of w and d appears in the subtree rooted
at w′.

We can now prove the first part of the lemma. There must
be some tuple a = a1 . . . am of elements (corresponding to
x = x1 . . . xm) such that M,ab |=

∧
i ψi(xy).

If there is a node w in the tree decomposition T with
ab ⊆ T (w), then it is easy (take the specialization where
all variables x are inside variables).

Otherwise, there is a node w in T with b ⊆ T (w) and such
that ab is not contained in the direction of any neighbor of
w (if not, then starting at the node v containing b, we could
eventually reach a node w′ with ab ⊆ T (w′), which we are
assuming is not possible).

Let z be the tuple of variables from x corresponding to
elements in c := T (w) ∩ a (i.e. xi ∈ z iff ai ∈ T (w)). Take
yz to be the inside variables, corresponding to elements bc
(the elements inside T (w).

Let O be the nonempty set of elements from a that are not in
T (w) (i.e. the elements that correspond to outside variables).
Let Ow′ be the set of elements from O that are contained in
the direction of a neighbor w′ of w. Because o ∈ O do not
appear in T (w) and |O| ≤ k, {Ow′ : w′ is a neighbor of w} is
a partition of O into at most k partition elements. This induces
a partition of the outside variables based on what variables
belong together because the witnesses are contained in the
same direction from w.

Taking the resulting non-trivial specialization φ′, we have
M, bc |= φ′(yz).

We are now ready to define the closure set. For ϕ ∈
UNFPk[σ] in normal form, let cl+(ϕ) be the smallest set C
of formulas containing ϕ and satisfying the following closure
conditions:
• if ¬ψ ∈ C, then ψ ∈ C;
• if

∨
i ψi ∈ C or

∧
i ψi ∈ C, then ψi ∈ C for all i;

• if ∃x.ψ(xy) ∈ C, then for every specialization
χ0(xy) ∧

∧
j ∃zj .χj(xyzj) of ∃x.ψ(xy), χ0 ∈ C and

∃zj .χj ∈ C;
• if [lfpY, y.S](x) ∈ C, then ψ ∈ C for each ψ in the

system of fixpoint formulas in S.
Let cl+(ϕ,Uk) be the set of formulas obtained by substituting
names from Uk = {1, . . . , k} for all of the free variables in
the formulas in cl+(ϕ).

It is straightforward to check that the size of cl+(ϕ,Uk) is
exponential in the size of ϕ. We are interested in the size of
the closure set, since we will see that this parameter controls
the size of the automata constructed. It turns out that the size
of the closure set is still exponential in the size of the input
formula, even when we first have to convert to normal form.

Proposition 42. Let ψ be a formula in UNFP with k = |ψ|.
We can construct an equivalent formula ϕ ∈ UNFPk in
normal form such that
• |ϕ| ≤ 2f(k),
• |cl+(ϕ,Uk)| ≤ 2f(k),

where f is a polynomial function independent of ψ.

Proof: Starting from the innermost formulas, we apply the
following transformation rules to convert an arbitrary formula

into normal form:

∃x.(φ ∨ ψ) → (∃x.φ) ∨ (∃x.ψ)

φ ∧ (ψ ∨ χ) → (φ ∧ ψ) ∨ (φ ∧ χ)

if |free(∃x.φ)| > 1: (∃x.φ) ∧ ψ → ∃x′.(φ[x′/x] ∧ ψ)

where φ[x′/x] is the result of substituting some fresh x′ for x
in φ. It is straightforward to check that this results in a formula
in normal form. The new formula ϕ is of size at most M :=
2f(k) for k = |ψ| and f some polynomial function, but has
CQ-shaped subformulas with at most k conjuncts. Moreover,
the number of free variable names needed in any subformula
is at most k, so ϕ ∈ UNFPk.

There are at most M subformulas of ϕ, all of which
appear in cl+(ϕ). However, each CQ-shaped subformula ψ
can contribute additional formulas to the closure set due
to specializations. Fix some CQ-shaped subformula χ of ϕ.
There are at most 2k additional CQ-shaped subformulas χ′

obtained by choosing some subset of the conjuncts in χ. In
each χ′, there are at most 2k choices of the inside variables,
and kk ways to partition the outside variables resulting in
specializations χ′′ of χ′. Notice that these specializations χ′′

only have CQ-shaped subformulas resulting from taking some
subset of the conjuncts in the original CQ-shaped formula χ,
so these formulas have already been accounted for. Hence,
χ contributes at most 2k2kkk new CQ-shaped subformulas to
cl+(ϕ). Overall, this means |cl+(ϕ)| ≤M ·2k2kkk. Finally, in
cl+(ϕ,Uk), each of the at most k free variables in formulas
from cl+(ϕ) is mapped to a name in Uk = {1, . . . , k}, so
|cl+(ϕ,Uk)| ≤ kk · cl+(ϕ), which is exponential in k as
claimed.

Hence, we can safely assume that ϕ ∈ UNFPk[σ] is in
normal form. We will also assume that no fixpoint variable is
bound by more than one fixpoint operator, so each fixpoint
variable X identifies a unique subformula Dφ(X) of φ in
which X only appears positively. If X occurs positively
(respectively, negatively) in φ then it is a lfp-variable (respec-
tively, gfp-variable). We say X depends on Y if Y occurs
free in Dφ(X). The dependency order @φ is the transitive
closure of this relation. The alternation level alφ(X) of X
is the maximum number of alternations between lfp and gfp
variables on the @φ-paths descending from X .

Fix such a ϕ ∈ UNFPk[σ] in normal form. We view ϕ
as a query about the decoding of the input tree T . The idea
behind the construction of the automaton for Theorem 20 is
to allow Eve to guess an annotation of T with information
about which unary subqueries of ϕ hold, and then run an
automaton that checks ϕ with the help of these annotations.
In order to prevent Eve from cheating with her guesses about
the subqueries, Adam is allowed to launch inductively-defined
automata in order to check Eve’s claims about the subqueries.

Testing D(T) |= [lfpY, y.ψ(y, Y)](a) can be viewed as a
game between Adam and Eve which starts with y = a and
proceeds as follows:
• Eve chooses some valuation for Y such that D(T) |=
ψ(y, Y) (she loses if this is not possible), then

• Adam chooses some new y ∈ Y (he loses if this is not
possible), and then the game proceeds to the next turn.

If the game never terminates then Adam is declared the winner.
We can implement this game as an automaton running on T ,
where Eve guesses an annotation of T with the valuation of
Y in the current round, and then simulates the inductively-
defined automaton checking ψ(y, Y). Adam can challenge any
b in the set Y chosen by Eve by launching another copy of
the automaton checking ψ starting from the node carrying b.
Correctness is enforced by using the parity condition: an odd
priority is used if Adam challenges a lfp fixpoint.

We prove two technical lemmas leading to Theorem 20.
As a first step, it is straightforward to construct an automa-

ton that checks a UCQ-shaped query when running on trees
annotated with subqueries with at most one free variable (we
call these unary subqueries). The idea is that the automaton
guesses a specialization of each CQ, and uses the annotations
to check that this specialization is actually realized.

Lemma 43. Let ψ(a1, . . . , ak,X,S) be a UCQ-shaped for-
mula from cl+(ϕ,Uk) with every unary subquery χ replaced
by a new predicate Sχ (we write S for this set of new predi-
cates). We can construct a 2-way alternating µ-automaton Cψ
of size exponential in |cl+(ψ,Uk)| such that for all consistent
σ̃k-trees (T ,Z→,S→) and for all nodes v ∈ dom(T),

D(T), [v, a1], . . . , [v, ak],Z,S |= ψ iff

(T ,Z→,S→) ∈ Lv(Cψ).

In Cψ , the number of states is polynomial in |cl+(ψ,Uk)|, and
only two priorities are used.

Proof: Assume we have constructed automata for each
CQ in ψ, of size polynomial in |cl+(ψ,Uk)|. Then it is
straightforward to create an automaton for ψ of the desired
size by taking the disjoint union of at most |cl+(ψ,Uk)|-many
automata, one for each CQ in ψ. Hence, it suffices to show that
for each CQ-shaped formula ψ, we can construct an automaton
of size polynomial in |cl+(ψ,Uk)|.

Fix such a ψ. The states of Cψ are CQ-shaped formulas in
cl+(ψ,Uk).

Assume Eve is in state ψ(a) (a CQ-shaped formula) at
position w ∈ dom(T). Eve immediately loses if w does not
contain a.

If ψ does not begin with existential quantifiers, then the
automaton checks locally if this part of the formula is satisfied,
based on the facts from the tree encoding, and the annotations
provided by Z→ and S→.

Otherwise, the automaton outputs priority 1 and proceeds
as follows:
• Eve guesses a specialization χ0(ay) ∧∧

j∈{1,...,l} ∃zj .χj(ayzj) of ψ and some names b
appearing in w.

• Adam chooses some j ∈ {0, . . . , l}.
• If j = 0, then the automaton remains in the same position

and moves to state χ0(ab). Otherwise, Eve selects a
neighboring node w′ (where ρ describes the relationship

between the names in w and w′), and the automaton
moves to state ∃zj .χj(ρ(ab)zj) in w′.

Correctness of the construction follows from Lemma 41.
This concludes the proof of Lemma 43.
Using this lemma, we define the 2-way alternating µ-

automaton that checks ϕ when running on tree encodings
(T ,Z→). In order to correctly handle negation, we need to
consider the polarity of subformulas ψ ∈ cl+(ϕ), i.e. whether
ψ occurred positively (in the scope of an even number of
negations) or negatively (in the scope of an odd number of
negations) in ϕ. For polarity p ∈ {+,−}, we write pψ to
denote ψ (respectively, ¬ψ) if p = + (respectively, p = −).
The definition of the automaton for ψ depends on the polarity
of ψ.

Lemma 44. Let ψ(a1, . . . , ak,Z) ∈ cl+(ϕ,Uk). If ψ appears
with polarity p in ϕ, then there exists a 2-way alternating µ-
automaton Bpψ of size exponential in |cl+(ψ,Uk)| such that
for all consistent σ̃k-trees (T ,Z→) and for all nodes v ∈
dom(T),

D(T), [v, a1], . . . , [v, ak],Z |= ψ iff T ,Z→ ∈ Lv(Bpψ).

The number of states and priorities in Bpψ is polynomial in
|cl+(ψ,Uk)|.

Proof: The proof uses ideas familiar from work on the
µ-calculus and GFP (see, e.g., [27]).

We first describe the construction of Bpψ , which proceeds
by induction on the structure of ψ.

• Assume ψ is a UCQ-shaped subformula. If p = +
(respectively, p = −), then let Bpψ be the automaton
where Eve (respectively, Adam) chooses a valuation S→,
Cψ (respectively, the dual of Cψ) from Lemma 43 is
simulated, and Adam (respectively, Eve) can choose to
launch Bpψ′′ from a node w if Sψ′′(w).

• Assume ψ is a unary subquery of the form ¬ψ′. If p = +
(respectively, p = −), then simulate B−ψ′ respectively, B+ψ .

• Assume ψ is a fixpoint subformula
[lfpX,x.ψ′(x,X,Z)](a) where X has alternation
level j relative to the other fixpoint variables in ϕ.
If p = + (respectively, p = −), then let Bpψ be the
automaton where Eve (respectively, Adam) chooses
valuation X→, Bpψ′(a,X,Z) is simulated, and Adam
(respectively, Eve) can choose to launch Bpψ′(b,X,Z) from
w if Xb(w). In case Xb(w) is challenged, the priority
output is 2j − 1 (respectively, 2j).

We now give the proof of correctness for one of the inter-
esting cases when ψ is a fixpoint subformula [lfpX,x.η](a)
and p = +. We assume that there are no free second-order
variables in ψ, since these do not affect the arguments below.

Let G := G(Bpψ(a), T , v). In the argument below, we also
consider approximant games G(Bpη(a), T , X

→, v), which are
intermediate games based on evaluating the body of the
fixpoint with some valuation X→. For ordinals α, let (Xα)

→

be the valuation such that Xb(w) holds iff D(T), [w, b] |= ηα.

Assume D(T), [v, a] |= ψ. We must define a winning
strategy ζ for Eve in G. There is some least ordinal α such
that D(T) |= ηα([v, a]). Moreover, α is a successor ordinal
and D(T) |= η([v, a])[ηα−1(y)/X(y)]. By the inductive
hypothesis, this means there is a winning strategy ζα−1 for Eve
in the approximant game Gα−1 := G(Bpη(a), T , (X

α−1)
→
, v).

Eve begins by selecting the valuation (Xα−1)
→, and using

the strategy ζα−1 from Gα−1. If Adam never challenges an
annotation, then the play is winning for Eve by assumption
on ζα−1. If Adam challenges some Xb(w) in (Xα−1)

→,
then there must be some least ordinal β ≤ α − 1 such
that D(T) |= ηβ([w, b]), by definition of (Xα−1)

→. Hence,
using similar reasoning as above, Eve can switch to selecting
the valuation (Xβ−1)

→ and playing the inductively defined
winning strategy ζβ−1 in Gβ−1 := G(Bpη(b), T , (X

β−1)
→
, w).

Eve continues updating the approximant and her strategy in
the approximant game like this after each challenge by Adam.
On any play, there can be only a finite number of challenges
by Adam (otherwise, α > β > . . . would be an infinite
descending chain, contradicting the well-foundedness of or-
dinals). This means that any play in the constructed strategy
will eventually stabilize in some particular approximant game,
where Eve can play her inductively-defined winning strategy.
Hence, Eve has a winning strategy.

Now assume D(T), [v, a] 6|= η. We must define a win-
ning strategy for Adam in G. Consider the valuation X→

such that Xb(w) holds iff D(T), [w, b] |= ψ. Let ζ ′ be
the inductively defined winning strategy for Adam in the
approximant game G′ := G(Bpη(a), T , X

→, v), based on this
valuation. We construct Adam’s strategy ζ in G so that he
starts by playing from ζ ′. If Eve deviates from the valuation
for X defined above by guessing some tuple Xb(w) such
that D(T), [w, b] 6|= ψ then Adam challenges this tuple,
and starts using a new inductively defined winning strategy
in the approximant game G(Bpη(b), T , X

→, w) (but with the
same valuation). If Eve eventually stabilizes in a particular
approximant game, then Adam wins using his inductively-
defined strategy. If Eve deviates infinitely-many times, then the
play will be winning for Adam, since the maximum priority
occurring infinitely often will be odd (corresponding to the
priority output at each challenge). Hence, Adam has a winning
strategy in G as desired.

This concludes Lemma 44.
The desired 2-way alternating µ-automaton Aϕ in Theo-

rem 20 is the result of running the automaton B+ϕ starting
from the root of T . This concludes the proof of Theorem 20.

B. Proof of Theorem 21 (Simplification)
Recall the statement:

Let A be a 2-way alternating µ-automaton on σ̃k
trees. We can construct a well-structured Lµ[σ̃k]-
formula ψ such that for all consistent σ̃k trees T ,
D(T) |= ψ iff T ∈ L(A). The size of ψ is
at most |A|f(m) where m is the number of states
and priorities of A and f is a polynomial function
independent of A.

As mentioned in the body, we actually convert to a µ-
automaton, and then use Proposition 32 to convert the µ-
automaton to a well-structured Lµ-formula. Hence, we prove
the following theorem:

Theorem 45. Let A be a 2-way alternating µ-automaton.
There is a µ-automatonM such that L(A) = L(M). The size
ofM is at most |A|f(m), where m is the number of states and
priorities of A and f is a polynomial function independent of
A. The number of states in M is exponential in the number
of states and priorities of A, and the number of priorities in
M is linear in the number of states of A.

This is similar to the result in [22]. In [22], however, the
result is about trees of some fixed finite branching k: a 2-
way alternating µ-automaton A using directions up (−1), stay
(0), and down in some direction 1, . . . , k, is converted to an
equivalent 1-way nondeterministic automaton M using only
directions 1, . . . , k.

We are dealing with trees with arbitrary branching, so we
cannot refer to specific children; instead, we start with a 2-
way alternating µ-automaton A using directions up (↑), stay
(0), and down (↓), and convert to an equivalent (1-way) µ-
automaton.

As in [22], the idea is that M on input T guesses an
annotation of T with a (positional) strategy for Eve in the
acceptance game of M on T , and then checks whether this
strategy is actually winning. In order to check this in a one-way
fashion, M also guesses additional information about loops
that are possible when using this strategy.

A strategy annotation γ of T is a labelling of the tree T
with information about a positional strategy for Eve in the
acceptance game of A on T . Formally, γ is a mapping from
dom(T) to P(Q × Dir × Σa × Q) satisfying the following
properties:

(i) if q0 is the initial state of A, then there must be some
(q0, d, a, q

′) ∈ γ(ε) (the initial state must be present at
the root ε);

(ii) if (q, d, a, q′) ∈ γ(v) and q ∈ QE , then (d, a, q′) ∈
δ(q, T (v));

(iii) if (q, d, a, q′) ∈ γ(v) and q ∈ QA, then (d, a, q′) ∈
δ(q, T (v)) and δ(q, T (v)) ∈ γ(v);

(iv) if (q, d, a, q′) ∈ γ(v) and q ∈ QE , then there is some a-
neighbor w of v in direction d with some (q′, d′, a′, q′′) ∈
γ(w);

(v) if (q, d, a, q′) ∈ γ(v) and q ∈ QA, then for all
a′-neighbors w of v in direction d′, there is some
(q′, d′, a′, q′′) ∈ γ(w).

Every play in A using the strategy γ can be decomposed
into a downwards path together with loops that come back to
this path, possibly in a different state. Given a tree T and a
strategy annotation γ of T , a loop annotation η summarizes
the loops that are possible using γ. Loops at v are summarized
by tuples (q, p, q′), which indicate that (using the strategy γ)
there is a finite path leading from q at v to q′ at v such that the

the maximum priority encountered on this path is p, and every
node on this path is in the subtree rooted at v. Formally, a loop
annotation η is a mapping from dom(T) to to P(Q×Pri×Q)
that satisfies some natural closure properties for all nodes v ∈
dom(T):

(i) if (q, 0, a, q′) ∈ γ(v), then (q,Ω(q′), q′) ∈ η(v);
(ii) if (q, p, q′) ∈ η(v) and (q′, p′, q′′) ∈ η(v), then

(q,max {p, p′} , q′′) ∈ η(v);
(iii) if (q, ↓, a, q′) ∈ γ(v) and (q′, ↑, a, q′′) ∈ γ(w) for an

a-successor w of v, then (q,max {Ω(q′),Ω(q′′)} , q′′) ∈
η(v);

(iv) if (q, ↓, a, q′) ∈ γ(v) and (q′, p, q′′) ∈ η(w) for an
a-successor w of v and (q′′, ↑, a, q′′′) ∈ γ(w), then
(q,max {Ω(q′), p,Ω(q′′′)} , q′′′) ∈ η(v).

It is straightforward to construct a µ-automaton C that reads
an annotated tree and checks whether these annotations are
strategy annotations and loop annotations. The state of the
automaton stores the previous annotation labels in order to
help perform these checks, so the size of the automaton is
exponential in the number of states and number of priorities
of A.

Lemma 46. There is a µ-automaton C that reads an annotated
tree and checks that the annotations actually correspond to a
strategy and loop annotation. The size of C is at most |A|f(m)

where m is the number of states and priorities of A and f is
a polynomial function independent of A.

Now consider a branch of a tree with these strategy and
loop annotations. This branch induces a word consisting of
the annotations along this branch. Given such a word w, a
downward path based w on is an infinite sequence of states that
describe a possible play on this branch based on the strategy
annotations and loop annotations — but not making use of
any upward moves. Note that it is possible that there are no
downward paths consistent with w. We say a strategy and loop
annotation of some tree T is winning if every downward path
satisfies the parity condition.

Proposition 47. A 2-way alternating µ-automaton accepts an
input tree T iff there is a strategy annotation γ of T and a
loop annotation of γ that are winning.

The proof is similar to [22, Propositions 5 and 6] so we
omit it here; it relies on the positional determinacy of parity
games [29].

We now construct a µ-automaton N that reads a tree with
strategy and loop annotations, and checks (in a 1-way fashion)
whether the strategy is actually winning for Eve.

Lemma 48. There is an action-deterministic µ-automaton N
that reads a tree with strategy and loop annotations, and
checks whether the annotations are winning. The size of N is
at most |A|f(m) where m is the number of states and priorities
of A and f is a polynomial function independent of A.

Proof sketch: This is constructed by first observing that
there is a nondeterministic parity automaton—on words—that
accepts if a sequence of annotation labels describe a downward
path that is losing for Eve. This automaton guesses such a
downward path and some point on this path after which the
highest priority occurring infinitely often is odd. The size of
the state set is linear in the size of A, and it only uses two
priorities (i.e. it is a Büchi automaton). Hence, there is a
deterministic parity automaton D that accepts the complement
of this language (see, e.g., [26]). That is, D accepts sequences
w of annotations such that all downward paths based on w are
winning for Eve. The number of states of D is exponential in
the number of states of A, and the number of priorities is
linear in the number of states of A. We take N to be the
action-deterministic µ-automaton that simulates D on every
branch of the tree. The state set and priorities of N are the
same as in D.

We are now ready to constructM, the µ-automaton equiva-
lent to A for Theorem 45. LetM be the µ-automaton obtained
by taking the intersection of C and N , and then projecting the
strategy and loop annotations (using the closure properties in
Proposition 31). The size of M is at most |A|f(m) where
m is the number of states and priorities of A, and f is
a polynomial function independent of M. The correctness
of this construction relies on bisimulation-invariance of tree
languages for 2-way alternating µ-automata.

If A accepts some tree T , then by Proposition 47 there is
some strategy annotation and loop annotation describing the
winning strategy. Since it is winning, every downward path
satisfies the parity condition of A. Hence, the µ-automaton
can use this strategy and loop annotation to guide the choices
in M.

If M accepts some tree T , then there is some tree T ′ that
is bisimilar to T (with respect to the original alphabet, not
the alphabet with annotations) that is accepted by both N
and C. This means there is some strategy and loop annotation
for T ′, which by Proposition 47 means that T ′ (with the
annotations omitted) is accepted by A. But L(A) is closed
under bisimulation by Proposition 29, so T is also accepted
by A.

This concludes the proof of Theorem 45.

APPENDIX E
FORMULAS

A. Failure of strong form of interpolation with respect to
constants

Recall that in Section IV (in the discussion about the exten-
sion of uniform interpolation to signatures with constants) it
is stated that UNFP formulas do not have the stronger form of
interpolation where the constants are restricted to the common
signature. We justify this here.

Suppose for the sake of contradiction that we had this
stronger form of interpolation for UNFP formulas with one
free variable.

Consider the following UNF formulas with constants c
and d:

ψL := (x = c) ∧ ∃y.¬(y = c)

ψR := ¬(x = d) ∨ ∃y.¬(y = d)

Let θ ∈ UNFP be the uniform interpolant for ψL, restricting
to the subsignature with no constants. Since θ cannot use
any constants and ψL entails ψR, θ must be equivalent to
¬(x = y). But this is not expressible in UNFP, so we have
reached a contradiction.

APPENDIX F
EXTENSION FOR EQUALITY

Our aim is to extend the uniform interpolation algorithm to
allow sentences with equality. We accomplish this by showing
that we can convert to formulas and tree encodings with a
very limited use of equality that ensures that we can use the
algorithm described before, simply treating equality like any
other relation.

A. Equality normalization for GSO
Let us say that a formula φ in GSO using constants e and

free variables x is equality-normalized if
(i) every subformula beginning with a first-order existential

quantifier and using free variables z is of the form
∃y.(

∧
t∈(z∪e) ¬(y = t) ∧ χ(y,z)) and

(ii) every occurrence of equality in φ is either an equality
over its free variables and constants, or comes from (i).

Let ≡ be any equivalence relation over x ∪ e. We denote
by ξ≡ the formula∧

s≡t
(s = t) ∧

∧
s6≡t

¬(s = t),

that is, the conjunction of all equalities and inequalities
corresponding to ≡.

The following lemma describes a way to bring a formula
into equality normal form.

Lemma 49. Let φ(x) be a GSO formula. We can construct
an equality-normalized φ′ equivalent to φ.

Proof: Let x be the variables used in φ and e be the
constants used in it.

We first construct an equality-normalized formula φ′≡ that
is equivalent to φ assuming that ξ≡ holds. For each ≡-
equivalence class, we fix an arbitrary representative — a
constant whenever possible. We replace all occurrences of each
variable and constant in x ∪ e by the representative of its
equivalence class. Next, we replace subformulas of the form
s = t, with s, t ∈ x ∪ e, by > if s = t and by ⊥ otherwise.

Now consider any subformula of the form

ψ(z) = ∃y.χ(y,z)

We will essentially do a case distinction of the possible values
that y may take. More precisely, we replace ψ(z) by the
disjunction, for each map f : y → (y ∪ z ∪ e), of the formula
ψf obtained from ψ by (i) replacing y by f(y), (ii) replacing
y = y by >, (iii) replacing y = t or t = y for t ∈ z ∪ e
by > if f(y) = t and by ⊥ otherwise (and dropping the
quantifier if the quantified variable no longer occur in the
formula). Finally, for any ψf where y is still quantified, we
conjoin it with

∧
t∈(z∪e) ¬(y = t). This clearly preserves the

semantics of the formula over structures satisfying ξ≡. We
obtain the desired equality-normalized φ′≡ by performing this
rewriting in a bottom-up fashion starting with the innermost
quantifier.

Then φ′ :=
∨
≡ ξ≡ ∧ φ≡, where ≡ ranges over equivalence

relations over x ∪ e.

B. Equality normalization for UNFP
Let us say that a formula φ(x) in UNFP using constants e

and at most one free variable x is equality-normalized if
(i) every occurrence of R t or X t in φ appears in conjunc-

tion with ∧
t∈t,e∈e,t6=e

¬(t = e),

and
(ii) every occurrence of equality in φ is either over {x}∪ e,

or comes from (i).
In particular, this means that there are no assertions like y = z
for y and z distinct variables.

Now let ≡ be any equivalence relation over {x} ∪ e. We
denote by ξ≡ the formula∧

s≡t
(s = t) ∧

∧
s6≡t

¬(s = t),

that is, the conjunction of all equalities and inequalities
corresponding to ≡ (note that this is in UNF, since x is the
only variable).

The following lemma describes a way to eliminate equalities
to bring a formula into equality normal form, similar to the
result for GSO. The blow-up resulting from this normalization
is exponential in the width.

Lemma 50. Let φ(x) be a UNFP formula in normal form con-
taining constants e. We can construct a DAG-representation of
an equivalent equality-normalized φ′(x) in normal form such
that
• the size of the DAG-representation of φ′ is at most
p(|φ|k), where k is the width of φ, and p is a polynomial
function independent of φ;

• width(φ′) ≤ width(φ).

Proof: We proceed in a similar fashion as Lemma 49. Let
x be the free variable in φ and e be the constants used in it.

We first construct an equality-normalized formula φ′≡ that
is equivalent to φ assuming that ξ≡ holds. For each ≡-
equivalence class, we fix an arbitrary representative — a
constant whenever possible. We replace all occurrences of each
variable and constant in {x} ∪ e by the representative of its
equivalence class. Next, we replace subformulas of the form
s = t, with s, t ∈ {x}∪ e, by > if s = t and by ⊥ otherwise.
Finally, we conjoin every relational atom containing distinct
s, t ∈ {x} ∪ e with ¬(s = t).

We take advantage of the fact that we are in normal form,
and now consider CQ-shaped subformulas of the form

ψ(z) = ∃y.χ(y, z).

We now do a case distinction, for each quantified variable
yi ∈ y, of the possible values that yi may take. More precisely,
we replace ψ(z) by the disjunction, for each map f : y →
(y∪z∪e), of the formula ψf obtained from ψ by (i) replacing
each yi ∈ y by f(yi), (ii) replacing yi = yj by > if f(yi) =
f(yj) and by ⊥ otherwise, (iii) replacing yi = t or or t = yi
for t ∈ z ∪ e by > if f(yi) = t and by ⊥ otherwise (and

dropping the quantifiers corresponding to quantified variables
that no longer occur in the formula). Finally, we conjoin every
atom Rt or Xt with

∧
t∈t,e∈e,t6=e ¬(t = e). Because of the

restrictions on negation in ψ, this preserves the semantics of
the formula over structures satisfying ξ≡. The size blowup
involved in this procedure is at most exponential in the width
of φ.

We obtain the desired equality-normalized φ′≡ in
normal form by performing this rewriting in a bottom-
up fashion starting with the innermost quantifier. By using
a DAG-representation, the overall size of this equality-
normalized form is at most exponential in k (we remark that
using a tree representation, it would be exponential in both k
and the maximal nesting depth of quantifiers in the formula).
Furthermore, even though we introduce disjunctions, the
resulting formula is easily seen to be still in normal form.
The bound on the width is immediate from the construction.

Using this lemma, we can prove the following generalization
of Proposition 42.

Proposition 51. Let ψ(x) be a formula in UNFP with k =
|ψ|. We can construct a DAG-representation of an equivalent
equality-normalized ϕ ∈ UNFPk in normal form such that
• |ϕ| ≤ 2f(k),
• |cl+(ϕ,Uk)| ≤ 2f(k),

where f is a polynomial function independent of ψ.

The important thing to note is that going from a UNFP
sentence to an equality-normalized and normal form formula
is no more costly than just going to normal form.

Thus, we have shown that for sentences in GSO and UNFP,
we can convert to an equality-normalized form with very
restricted use of equality.

C. Equality-trivial coded structures
The next step is to ensure that the coded structures use only

a limited form of equality too. We say that a consistent tree
T is equality-trivial if for all nodes v in T (i) x = x′ is
asserted at v only if x and x′ are the same variable name, and
(ii) ¬(x = x′) is asserted at v only if x and x′ are distinct
names. If T is an equality-trivial consistent tree then distinct
terms are realized by distinct elements in D(T). Moreover, we
can modify the definition of the shrewd unravelling to enforce
that Sk(B) is an equality-trivial consistent tree: this is trivial
if B has at least k elements (since we can choose k distinct
elements in each bag node). But even if the elements from
B represented at some bag node are not distinct, in Sk(B)
we can declare that these copies are distinct, and the structure
D(Sk(B)) obtained like this is still UNk-bisimilar to B.

The most important property, however, is that for equality-
normalized sentences, equality-trivial consistent trees contain
all of the information necessary to evaluate whether some
sentence holds in the corresponding structure, just treating
equality as any other relation.

For instance, the new version of the forward mapping
theorem (extending Theorem 20) would be:

Theorem 52. Let ϕ be a sentence in equality-normalized
UNFPk[σ] in normal form. We can construct a 2-way al-
ternating µ-automaton Aϕ such that for all equality-trivial
consistent σ̃k trees T , D(T) |= ϕ iff T |= L(Aϕ) and the
size of Aϕ is doubly exponential in |ϕ|, but the number of
states of Aϕ is at most singly exponential in |ϕ|, and the
number of priorities is at most |ϕ|. These bounds hold even if
we start with a sentence in UNFPk that is not in normal form
or equality normal form.

D. Equality extension of Theorem 3
We can now extend Theorem 3 for sentences with equality

and constants. Given some UNFP sentence with equality and
constants, we can convert into normal form and equality-
normalized form using Proposition 51, and then use the
algorithm described in Section IV and Appendix D, working
over coded structures that are equality-trivial and treating
equality like any other relation. Proposition 51 ensures that the
conversion to this equality-normalized version does not change
the complexity of the forward mapping, or the complexity of
the algorithm as a whole.

Note that Theorem 24 can be extended in a similar way,
using Lemma 49 in the forward mapping step.

APPENDIX G
FAILURE OF INTERPOLATION

Proof of failure of uniform interpolation for GSO (Proposi-
tion 26)

Recall the statement:
Uniform interpolation fails for GSO. In particular,
there is a GF antecedent with no uniform interpolant
in GSO, even when the consequents are restricted to
sentences of GF (or UNF) of width 2.

Proof: Let ϕ ∈ GF[σ] for σ = {G,P,Q,R1, R2, S} be

∀z.[Qz → ∃xy.(Gzzxy ∧ Sxy ∧R1zx ∧R2zy)] ∧
∀xy.[Sxy → ∃x′y′.(Gxyx′y′ ∧ Sx′y′ ∧R1xx

′ ∧R2yy
′ ∧

((Px′ ∧ Py′) ∨ (¬Px′ ∧ ¬Py′)))]

which implies that there is an infinite “ladder” starting at every
Q-node (where S connects pairs of elements on the same rung,
and Ri connects corresponding elements on different rungs)
and the pair of elements on each rung agree on P . The relation
G is used as a dummy guard to ensure that the formula is in
GF.

Then for each n, we can define over σ′ = {P,Q,R1, R2}
a formula ψn

(∃x.(Qx ∧ ∀x1 . . . xn.((
∧
iR1xixi+1 ∧ x1 = x)→ Pxn)))→

(∃y.(Qy ∧ ∃y1 . . . yn.(
∧
iR2yiyi+1 ∧ y1 = y ∧ Pyn)))

which expresses that if there is some Q-position x such that
every R1-path of length n from x ends in a position satisfying
P , then there is an R2-path of length n from some Q-position
y that ends in a position satisfying P . Note that for all n, ψn
can be written in either GF or UNF of width 2, and ϕ |= ψn.

Assume for the sake of contradiction that there is some
uniform interpolant θ in GSO.

Over trees, GSO coincides with MSO ([24], as cited in [11]).
Hence, there is an equivalent θ′ in MSO over tree structures.
This means we can construct from θ′ a nondeterministic parity
tree automaton A that recognizes precisely the language of
trees (with branching degree at most 2, say) where θ′ holds.

Let m be the number of states in A. Consider the ladder
structure Am consisting of a single element a from which there
is an infinite R1-chain of distinct elements and an infinite R2-
chain of distinct elements, where the i-th elements on each
chain are connected by S, elements on level i and i + 1 are
guarded by G, P holds only at the (m+1)-st element in each
chain, and Q holds only at a.

Because Am |= ϕ, we have Am |= θ. But over σ′, Am is a
tree with branching degree at most 2, so Am |= θ′. Hence,
there is an accepting run of A on Am. Using a pumping
argument, we can pump a section of the R2 branch before
the P -labelled element in order to generate an accepting run
of A on a new tree A′m where P holds at the (m + 1)-st
element in the R1-chain and P does not hold at that position
in the R2 chain. Hence, this new tree A′m is a model for both
θ′ and θ. But A′m 6|= ψm, contradicting the fact that θ is a
uniform interpolant.

Proof of failure of interpolation for GNFP (Proposition 27)
Recall the statement:

Craig interpolation fails for GNFP. In particular,
there is a GFP antecedent and GFP consequent with
no GNFP interpolant, even over finite structures.

Proof: Define the GFP[σ] sentence ϕ over signature σ =
{G,Q,R} to be ∀x.(Qx→ ϕ′) where ϕ′ is

[lfpX,xy.Gxyy ∧ (Rxy ∨ ∃y′.(Gxy′y ∧Rxy′ ∧Xy′y)](xx)

which implies that there is an R-loop from every Q-labelled
element.

Define the GFP[σ′] sentence ψ over signature σ′ =
{P,Q,R} to be

∀x.((Qx ∧ Px)→ [lfpX,x.∃y.(Rxy ∧ (Py ∨Xy))](x))

which expresses that for all Q and P labelled elements x,
there is an R-path from x leading to some node y with Py.

We claim ϕ |= ψ.
Now suppose for the sake of contradiction that there is a

GNFP[σ ∩ σ′]-interpolant χ for ϕ |= ψ. Let k be the width of
χ (in GN-normal form).

Let A be the σ-structure with a single R-loop of length
k + 1, with every element in the loop satisfying Q, and a
single element satisfying P . Let B be the structure built by
starting from an R-chain of three elements, and then adding
an R-loop of length k + 1 to the first and third elements,
and labelling all elements with Q, and the second element
with P . In other words, B has two lassos, one terminating
at the second element, and the other starting from the second
element. Notice that A satisfies ϕ and ψ, but B does not
because the second element is not part of an R-cycle.

We claim that A and B are indistinguishable by GNFP[σ∩
σ′] sentences of width k. We now define a winning strategy
for Duplicator in the GNk-bisimulation game between A and
B. This is the game associated with the sublogic GNFk from
[15]. It is an infinite game played on a pair of structures A,B
by two players: Spoiler and Duplicator. The game has two
kinds of positions:

i) pairs of guarded tuples (m̄, n̄), such that m̄ 7→ n̄ is a
partial isomorphism from A to B; and

ii) partial homomorphisms h : A�X → B�Y or g : B�Y →
A�X , where X ⊂ A and Y ⊂ B, both finite and
|X|, |Y | ≤ k.

From a position (m̄, n̄) Spoiler must choose a finite subset
X ⊂ A or a finite subset Y ⊂ B , in either case of size at most
k, upon which Duplicator must respond by a homomorphism
with domain X or Y accordingly, mapping it into the other
structure in a manner consistent with m̄ 7→ n̄. From a position
h : X → Y Spoiler chooses a guarded tuple m̄ inside X taking
the play to the position (m̄, h(m̄)). Similarly, from a position
g : Y → X Spoiler chooses a guarded tuple n̄ in Y taking the
play to the position (g(n̄), n̄). Spoiler wins if he can force the
play into a position from which Duplicator cannot respond,
and Duplicator wins if she can continue to play indefinitely.

Duplicator’s strategy will maintain the property that any
group of R-connected elements that Spoiler selects in the
active structure are R-connected in the other structure, and
any elements that are R-connected to the starting position in
the active structure are R-connected to the starting position
in the other structure. Notice that any position in the game
consists of at most two R-connected elements.

If the active structure is A, then when Spoiler selects his
set of elements, there must be at least one element in the loop
that is not selected. For pebbles that are forward (respectively,
backward) connected to the starting position, we place these in
the corresponding forward (respectively, backward) connected
positions in B. Any other blocks of pebbles that are not
connected to the starting position can be placed arbitrarily (as
long as R-connected blocks stay together).

If the active structure is B, then the most interesting case
is when Spoiler plays pebbles both inside a lasso and outside
of it. For instance, if the starting position is the first element
in the chain, and Spoiler selects both R-successors of this
position (i.e. the second element in the chain), and the first
element in the R-loop starting from the first element), then
Duplicator maps both of these pebbles to the same element
in A (the single successor of the starting position in A). This
is acceptable, because it is not possible for Spoiler to select
all of the elements in a single lasso, which would be needed
to distinguish between these two different successors. Using
this sort of strategy, Duplicator can always choose her pebble
positions in A so that R-connected blocks of elements are
preserved.

Since A |= ϕ, we have A |= χ. Hence, B |= χ. But this
implies that B |= ψ, which is a contradiction.

